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Graph structure-based Heuristics for Optimal
Targeting in Social Networks

Massimo Bini, Paolo Frasca, Chiara Ravazzi, Fabrizio Dabbene

Abstract—We consider a dynamic model for competition in a
social network, where two strategic agents have fixed beliefs and
the non-strategic/regular agents adjust their states according to
a distributed consensus protocol. We suppose that one strategic
agent must identify & target agents in the network in order to
maximally spread her own opinion and alter the average opinion
that eventually emerges. In the literature, this problem is cast
as the maximization of a set function and, leveraging on the
submodular property, is solved in a greedy manner by solving
k. separate single targeting problems. Our main contribution is
to exploit the underlying graph structure to build more refined
heuristics. As a first instance, we provide the analytical solution
for the optimal targeting problem over Complete Graphs. This
result provides a rule to understand whether it is convenient or
not to block the opponent’s influence by targeting the same nodes.
The argument is then extended to generic graphs leading to more
accurate solutions compared to a simple greedy approach. As a
second instance, by electrical analogy we provide the analytical
solution of the single targeting problem for the Line Graph and
derive some useful properties of the objective function for trees.
Inspired by these findings, we define a new algorithm which
selects the optimal solution on trees in a much faster way with
respect to a brute-force approach and works well also over tree-
like/sparse graphs. The proposed heuristics are then compared
to zero-cost heuristics on different random generated graphs and
real social networks. Summarizing, our results suggest a scheme
that tells which algorithm is more suitable in terms of accuracy
and computational complexity, based on the density of the graphs
and its degree distribution.

I. INTRODUCTION

In the course of the last decade, numerous works have
considered the problem of optimally allocating resources to
influence the outcome of opinion dynamics. The problem has
attracted researchers with backgrounds from economics to
engineering, who have deployed tools from game theory, opti-
mization and, of course, network science [1]-[|6]. A large part
of this research assumes a linear model of opinion evolution,
as per the influential De Groot model of opinion evolution—
see [[7]], [8] for a contextualization of this model. Under De
Groot model, the steady-state opinions satisfy a linear equation
defined by a weighted Laplacian matrix associated to the
network graph.
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A typical setup considers two strategic agents, holding
extreme opinions (say, —1 and +1), which compete with the
purpose of swaying the average steady-state opinion towards
their own. This setup has the mathematical advantage of
yielding an objective function that is a linear function of the
node opinions.

Actually, two kinds of (closely related) problems have
been considered: in one formulation of the problem (internal
influence), strategic agents have the opportunity to “recruit”,
among the regular nodes, influencers that hold their fixed
opinions [2]. In another formulation (external influence), the
strategic agents have the opportunity to create additional edges
between themselves and target nodes [5]]. Both setups allow
for either game theoretic analysis, where the focus is on
the interplay between the two strategic players, as well as
optimization approaches where one of the players has a fixed
strategy and the other is optimizing her strategy by targeting
k nodes for internal or external influence.

As both internal and external influence problems are com-
binatorially hard [6], effective heuristics are needed. Most
methods rely on submodularity to advocate greedy heuristics
that reduce the general problem of targeting the k. best nodes
to a sequence of k. problems of targeting the best node. Such
an approach requires O(Nk; ) evaluations of the equilibrium
opinions (where N is the number of network nodes). Each
1-best problem can be easily solved by comparing the N
possible solutions: in turn, evaluating each solution requires
the solution of a linear system of equations, which can be
performed in O(M) operations (where M is the number of
network edges [9]). Therefore, this kind of greedy approach
typically results in O(MN) cost, with the guarantee of a
bounded error. Other heuristic approaches may achieve O (M)
cost, though without bounded-error guarantees [10], [11].

In this paper, we concentrate on the external influence prob-
lem in which one of the two strategic agents has to optimize
the deployment of k., additional links between herself and
k4 regular nodes (to which she is not yet connected). On
this well studied problem, we provide theoretical results on
specific networks. First, we derive a closed-form solution for
the Optimal Targeting Problem (OTP) over Complete Graphs
leading to a zero-cost rule for the optimal strategy. Then, by
electrical analogy, we provide the analytical solution for the
Single Targeting Problem (STP) over line graphs and some
of the properties of the objective function are extended to
the branches of generic tree graphs. These theoretical findings
allow us to design new algorithms for general graphs. These
heuristics are compared with optimal solution and zero-cost
strategies, consisting in targeting with highest degree nodes.
To put the results into perspective, we provide a scheme to



identify which is the best heuristic, depending on the cost vs
accuracy trade-off and the underlying graph.

a) Paper outline: In Section [[I] the model of competition
and the OTP are formally introduced. In Section [[TI] we derive
an explicit solution of the OTP on the Complete Graph and
propose a simple heuristic that requires no evaluations of
the equilibrium opinions. Section |[[V| presents some analytical
results for STP on the Line Graph and on trees. These results
lead to a heuristic criterion to accelerate the solution to the
1-best problem by avoiding the evaluation of all N possible
solutions (Section [V). Section collects some concluding
remarks. Finally, the Appendix, containing some technical
proofs, completes the paper.

b) Notation: Throughout this paper, we use the following
notation. The set of real numbers is denoted by R and the
set of non-negative integers is denoted by Z>,. We denote
column vectors with lower case letters and matrices with upper
case letters. The vector of all ones of appropriate dimension
is represented by 1. We denote the 2-norm of a vector x with
the symbol ||z||. Given a matrix A, AT denotes its transpose.
Moreover, sr(A) is the spectral radius of the matrix A, and a
square matrix A is said to be Schur stable if sr(A4) < 1. A
matrix A with positive entries is said to be row stochastic if
Al = 1, and it is said to be row substochastic if A1 < 1,
where the inequality is entry-wise. We represent the network
by a directed graph, a pair G = (V, ), where V is the set of
nodes, unitary elements of the network, and £ C V x V is the
set of edges or links representing the relationships among such
entities. A path in a graph is a sequence of edges which joins
a sequence of vertices. A directed graph G is called strongly
connected if there is a path from each vertex in the graph
to every other vertex. An undirected graph in which any two
vertices are connected by exactly one path is called tree. Given
a matrix W € RY*V with non-negative entries, the weighted
graph associated to W is the graph G = (V, &, W) with node
set V, defined by drawing an edge (i,j) € & if and only if
W;; > 0 and putting weights W;;. If W is symmetric, i.e.
W;; = Wj; for each 4,5 € V, the undirected edges will be
denoted as unordered pairs {7, j}, corresponding to both the
directed links (4, j) and (j,¢). A subset of nodes & C V is said
to be globally reachable in G if for every node j € V\U there
exists a path from j to some node s € Y. Let G = (V,E, W) be
a graph, then the in-neighborhood of a node i € V is defined
as N; = {j € V : (j,i) € E}. The in-degree of a node is
defined as d; = Y jev W;;. We will consider the normalized
weight matrix Q = D~'W where D is the diagonal matrix
with diagonal entries equal to the in-degree of node ¢ € V:
Dii = ey Wij. We will denote the Laplacian matrix by
L=D-W.

II. OTP AND ITS STATE-OF-THE-ART SOLUTIONS
A. Dynamic model for competition

We consider an influence network described by a graph
G = (V,E,W). Nodes v € V represent the agents and &
is the set of edges describing the potential interactions among
them. We assume that the set of nodes is partitioned into two
disjoint sets: V = R U S, where R and S are the set of

regular and strategic agents, respectively. At an initial stage
regular agents have a belief around a certain topic or issue.
Then, by interacting with their contacts, each agent updates
her opinion by averaging her own with the ones of their
neighbors in a distributed manner. Strategic agents, instead,
are not updating their opinion, spreading over and over the
same idea. These agents can be interpreted as either individuals
or media outlets who wish to influence others with their
opinion, or as stubborn individuals/opinion leaders, who have
a strong influence over some communities and are less likely
to change their opinion as time goes on. More formally, the
structure of the network is encoded in the adjacency matrix
W. We assume that the graph is undirected and we consider
the normalized weight matrix Q = D~'W. We assume that
each agent is endowed with a state x4(t) = zs € {—1,1} for
all s € S and z;(t) € [-1,41] for all i € R, representing
the opinion/belief at time ¢. At each time step ¢t € Z>q the
opinion of a regular agent ¢+ € R is updated as a response to the
interaction with the neighbors, according to the following rule
zi(t+1) =) ey Qijz;(t) where Q;; > 0 for all i € R and
forall j €V, Qi =0 < (i,j) ¢ Eand 3,0, Qi =1
for all 7 € R.

Assembling opinions of regular and strategic agents in a
vector z(t) = (2R (),25(t) )T = @R (t),25")T, we
can rewrite the dynamics in the following compact form

z(t+1) = Quz(t) t=1,2,... (1)

QY Q1 [ (DYM)Tlwl (D)
Q—( 0 Ji )—( 0 (D?2)~1 )
where matrices Q'', Q'2, W', W'2, D! and D'?, are non-
negative matrices of appropriate dimensions. Such equation in
the social science context is known as the DeGroot opinion
dynamics model [[12f], [[13|] or, more generally, as the linear
averaging dynamics on G.

We assume that each strategic agent has at least one link to a
regular agent, but no more than one to the same target. Hence,
in the paper, we make the standing assumption that the influ-
ence matrix W2 € {0,1}7**S is such that 1T W'2 > 17, and
that G|, i.e. the graph restricted to nodes in R, is strongly
connected. Under these assumptions it can be shown that the
dynamics converges to a final limit profile that corresponds
to a disagreement. More precisely, the following proposition
holds [14].

Proposition 1. Ler Q' be substochastic and asymptotically
stable. Then I — Q' will be invertible with non-negative
inverse matrix. Moreover, for every initial state vector x(0) €
RY, the dynamics in converges to a finite limit profile

= (@™ @)’
ER :t_léinoomR(t) _ (I—Qll)_lQmazS. )

Proposition [1| states that the opinions converge asymptot-
ically to a stationary profile that is a combination of the
opinions of all strategic agents.

B. Optimal Targeting Problems



The main question addressed in this paper is related to the
control of dynamics in (). The problem is stated as a com-
petition between two strategic agents —of opposite opinion—
who try to lead the average asymptotic opinion towards their
own by targeting a certain number of regular agents. This
competition is set from the perspective of one of the strategic
agents, so as to be formalized by the optimization problem of
selecting at most %k regular agents to connect to in order to
maximally shift the average asymptotic opinion of the social
network. Formally, we consider the situation where there
are N regular agents, indexed by i € R = {1,...,N} and
two strategic agents S = {N + 1, N + 2} := {H,H} with
opinion g (t) = +1 and the latter with opinion zg(t) = —1
respectively, for all ¢ € Zx>o. We investigate how to identify
regular nodes in R in order to maximize the influence of
opinion +1 on the final limit profile, assuming that edges of
the strategic agent B are already placed. We use (isjA))UeR to
denote the asymptotic opinion profile that emerges from the
particular configuration in which the nodes belonging to the
set A are additionally linked to strategic node H. The OTP is
defined as the following optimization problem.

Problem 1 (Optimal Targeting Problem (k;OTP)). Given

G=MW,E), let A=~ = {v € R : (Byw) € & # 0,
A = {y e R: (B,v) € £}. Find the node set A+
At C argmax Fi(A), (3)

ACR\AO): |A|<ky
with

1
R = 3 Y o

vER

, ACR\ A %)

where T is the limit profile satisfying @).

In this optimization problem, for any different choice of
the set A, the influence matrices Q'' and Q'? change and
the final limit profile needs to be computed, requiring a new
matrix inversion. Then, the complexity of the problem is
combinatorial since we need to find the best solution among
all (kj\i ) possible configurations.

Problem 2 (Single Targeting Problem (STP)). The specific
case where ky. = 1, |A™| = 1, will be referred to as Single
Targeting Problem (STP). Then, the OTP reduces to finding
the node that maximizes the following objective function:

max,er\ 40 F4 ({v}).

C. Electrical Network Analogy

In the sequel it will be convenient to use the electrical
network analogy for the OTP problem. We briefly review the
basic notions of such analogy as presented in [10].

We consider a strongly connected undirected graph G =
(V,E,W), where € is the set of unordered couples {i, j}. Such
graph can be seen as an electrical network Ge = (V,&,C)
where the weight matrix W is replaced by the conductance
matrix C' € RY*Y, where C;; = Cj; is now the conductance
between the nodes ¢ and j (notice how the reciprocity as-
sumption must hold). Then, let us define the incidence matrix

B € {0,+1,—-1}¢*Y, such that Bl = 0 and B; # 0 <=
1 € ewithe € £ It is straightforward to verify that given
e = {i,j} , the e-th row of B has all entries equal to zero
except for Be; and B.;: one of them will be +1 and the other
one —1. Let Do € RE*€ be the diagonal matrix whose entries
are (D¢)ee = Ci5 = Cj; with e = (4,5) € €. It should be
noted that BT Do B = D¢y — C - where D¢y = diag(C1).
Indeed D¢ B associates at each row of B the weight of the
corresponding edge multiplied by 1 or —1, while B" Do B
generates the matrix that on each diagonal entry has the sum
of all the conductances on such node, while on the 7j-th entry
it has the conductance value of edge {7, j} of negative sign,
if present.

Defining n € RY as the input current vector (positive if
ingoing, negative if outgoing), such that n' 1 = 0; V € RY as
the the voltage vector, and ® € R¢ as the current flow vector
(positive if going from i to j on (i, §)), then the usual Kirchoff
and Ohm’s law can be written as follows

L(C)V =n ®)

where L(C) := D¢y — C is the Laplacian of C. Since
the graph is strongly connected, L(C') has rank |V| — 1 and
L(C)1 = 0, making V, up to translations, the unique solution
of the system. Also notice that (L(C)V); = 0 Vi € V
such that n; = 0. The Equation (3) resembles the system in
Proposition [I] where the asymptotic opinion of regular agents
can be interpreted as voltages with O input current, while those
the strategic nodes as voltages fixed to 1 and —1 with input
current different from 0.

From now on, we will exploit the electrical analogy where
the agents are nodes in the electrical network and their asymp-
totic opinions are the associated voltages. In this analogy, the
strategic nodes H and H are considered voltage sources of
value —1 and +1 respectively. Thus, the objective function of

OTP becomes
Fi(A) =Y er V(i) /N

where V(4 (4) is the voltage of node i when the set of nodes
linked to H is A.

In the sequel, we will also make use of two common
operations that allow to replace an electrical network by a
simpler one without changing certain quantities of interest.
Since current never flows between vertices with the same
voltage, we can merge vertices having the same voltage into
a single one, while keeping all existing edges, voltages and
currents are unchanged (gluing, [15]). Another useful opera-
tion is replacing a portion of the electrical network connecting
two nodes h, k by an equivalent resistance, a single resistance
denoted as R.s which keeps the difference of voltages V;, — Vj,
unchanged (series and parallel laws [15]]).

Remark 1. It is worth mentioning that considering the case
with two strategic nodes is not a restrictive assumption.
Indeed, leveraging the electrical network analogy of the
problem [10], all the strategic agents of identical opinion
can be considered as voltage sources and merged together,
without affecting the final results. So, rather than thinking
of two competitors as individuals, we can think of them as
two groups of people - made up of opinion leaders, media,



influencers, stubborn individuals - who hold opposing views
and try to make their idea prevail by optimally addressing new
individuals.

D. Some known heuristics for OTP

The OTP described in Problem [I] is computationally chal-
lenging if we are interested in targeting simultaneously k, > 2
nodes in the network. In this section we review some heuris-
tics, practical methods that are not guaranteed to be optimal
but useful to obtain an approximation of the solution to the
OTP problem.

A heuristic based on the out-degree centrality, defined as
the number of outgoing links of the nodes, is a rough but
common approach to approximate the OTP solution. This
method, summarized in Algorithm [T] consists in selecting the
k+ nodes with highest degree (if there are more subsets with
this property, one of them is selected randomly). It should be
noticed that this is a zero-cost heuristics, in the sense that
it provides a strategy without the burden of the equilibrium
opinions’ computation. This simple heuristic will be used as
a benchmark for the proposed methods.

Algorithm 1 Degree heuristic for £, OTP

Require: G = (V, &) graph, number of available links &
Initialization:
D set of nodes with top-k degree
Ay, =D
return A, , I (Ax,)

Another common approach in literature is to solve the
optimization problem for one target at a time in a greedy
manner, i.e. choosing at each iteration a target which gives
the largest gain in the objective function. This approach allows
to reduce the complexity and can be applied in large social
networks. We review the procedure in Algorithm [2]

Algorithm 2 Greedy algorithm for k£ OTP

Require: G = (V, &) graph, number of available links &
Initialization:
Ao =0
fori e {1,...,k+} do
A; = A1 Uargmax {A(v|A;_1).}
end for ‘
return Ay, ' (Ayg,)

The greedy algorithm starts with the empty set Ay = @, and
at iteration ¢ it adds a new element maximizing the discrete
derivative A(v|A;_1), i.e. A; = A;_1 Uargmax {A(v|A;—1)}

v

where A(v|A) = Fy (AU {v}) — F(A).

Theorem 1. For any arbitrary instance of G = (V, ), the set
Sfunction Fy(A) defined in (@) is monotone and submodular.

Submodularity ensures that the greedy procedure in Algo-
rithm [2] provides a good approximation to the optimal solution
[16], as stated in the following corollary.

Corollary 1. For ky > 0 and ¢ < k, it holds that F'{ (Ag) >
(1 —1/e=*/k+) F* with F* = max4/<x, Fy(A).

Algorithm [2] instead of evaluating the objective function for
all possible combination of edges, chooses one edge at a time,
reducing significantly the complexity from O(M (N/k,)k+)
to O(M NE,), at the price of a bounded relative error |F™* —
F(ADI/[F*| < 1/e.

Using monotonic properties and submodularity of set valued
functions to derive a greedy search algorithm with guaranteed
performance is quite standard in the set valued optimization.
The work by Kempe et al. in [1] is one of the first paper
that applies this approach to the field of maximization of the
spread of influence in social networks. However, the proof of
Theorem [I] is not straightforward. A self-contained proof in
our specific setting can be derived following the same lines
of [6]. The proof can be also obtained from results in [3]].
Leveraging the electrical network analogy, it can be possible
to split the strategic node H, described as a voltage source,
into several identical sources, without affecting the electrical
network. Then the problem is equivalent to the optimal leader
selection problem devised in [3] for which submodularity
holds true. We refer the reader to [17|] for details of this
equivalence.

III. OTP: A BLOCKING APPROACH

In this section, we study the OTP in the Complete Graph.
Inspired by this result, we propose a simple heuristic to solve
OTP in general graphs that does not require any evaluation of
the equilibrium opinions.

A. OTP in Complete Graphs

We consider the situation where there are N regular nodes
in the network forming a Complete Graph. In order to compute
the objective function in this case, we exploit the anonymity
property, i.e. the fact that regular agents share the same neigh-
borhood, except for being connected or not to the strategic
agents. Based on the latter, we can distinguish among four
kinds of regular nodes, that is, we partition the set R into

o RT, the set of nodes linked to B but not to H and denote

p:=[RT;
e R, the set of nodes linked to H but not to HH and denote
q:=[R7;

e R¥, the set of nodes linked to both B and B and denote
r = |R*|; and
o R@, the set of nodes linked to neither of them, so that
N-p—q—r=|R.
Anonymity ensures that the objective function is only a
function of p, g, r, that is, we can write F'; (A) =: F(p, q,7).
Then, the system of equations in (2) becomes

— —1 - — — N—p—q—r ~ 1
Tyt = BmZpr 4+ 20— + T + 520 + ¥

P = qg—1 - r oA N—p—q—r -, 1
Toy— NTov+ T Ty— + FTut + N Ly — N
P s 9 & r—1 = N—p—q—r =
Tyt = Frg Lot + N1 Tu- + NT1lot + B S
=  _ _P =& 9 = r_ s N—p—g—r—1_-
Ty = 3ot T §ogTo- + o7 Tut + N1  Lo®




with vt € Rt, v~ € R~, vF € R*, and v? € R?. Solving
this system, we find

(N +2)(p—q)
N(N +2)(p+q)+2N(N + 1)r

Notice that if p = ¢, then F_(p,q=p,r) = 0, and that
F.(p,q,7) is decreasing in r. This formula allows us to give

F+(p7 q, ’I") =

an explicit solution to the OTP problem. Let pg, qo, 7o be the
number of regular nodes initially linked to strategic agent H
but not to H, to H but not to B, and to both, respectively.
Strategic agent B has k. available links to add and define

max
ACR\AO):|A|<ky
Let r; and p; be the numbers of additional nodes that are
targeted by strategic agent HH and initially are, respectively,
linked or not to strategic agent B (with the constraints that
P1 + r = k+, T1 S qo and P1 S N —Po —qo — To). Observe
that F, (A) = F1(po + p1,q0 — k+ +p1,70 + by — p1).

Proposition 2 (k;OTP on Complete Graph). The optimal
solution pj satisfies the following properties.
o If ky < qo — po, then pj = ki and FY = F(po +
k+,q0,70);
o If ky = qo — po, then F(p,q,r) = 0 irrespective of p1;
o If ky > qo — po, then p} = max{0,ky — qo} and

FPL =Fi(po+pi,q0 — k+ +pi, 7m0+ k —pi)
The proof is postponed to the Appendix.

Remark 2 (Offensive versus defensive strategy). The result
can be interpreted as follows: in a scenario in which the
competing agent B has a smaller budget of links, in order
to maximize the influence of node W, the optimal strategy
is to have an offensive approach and target the same nodes
connected to H. Conversely, if B is at a disadvantage, the
optimal solution is to have a defensive approach, i.e. target
nodes that allow to limit the opponent’s influence, and then not
get overpowered by hitting the same nodes. This result intu-
itively formalizes a common sense: think of a 10 vs 11 soccer
game, where it makes more sense to defend strategically, than
to man-mark and leave one free.

B. Blocking heuristics on general graphs

In Section the OTP has been solved for the Complete
Graph. It is worth remarking that, using the greedy method
(see Algorithm [2), at each iteration the algorithm would have
introduced an error if the condition p*) + 1 > ¢(*) was not
satisfied, where p(*), ¢(*) are the number of nodes connected
exclusively to BH and H at iteration k = 1, . .., k4, respectively.
With this in mind, we design a new heuristic in Algorithm
Let us denote by A~ the set of nodes linked to H, while by
A©) the set of initial nodes linked to HB.

Algorithm [3| in practice, compares the |A©®) \ A_| + &k,
overall edges of agent M not linked to B, with the | A=\ A©)|
edges not linked to B of agent H. If the comparison tells that
the former is larger, then extra edges of B will be used until
possible to target the nodes in A~ \ .A®). Then, if some edges

Algorithm 3 Blocking heuristic for OTP

Require: G = (V, &) graph, set node A~, set node A©),

number of available links %
Initialization:

.A() = Q] , S = 0
if by > A"\ A©] —]A© \ A7 then

A=A\ AO s =47\ AO)]
end if
if k. > s then

foric{s+1,...,k:} do

A; = A;_1 Uargmax {A(U|A171)}

vER

end for
else
A, = A
end if
return A, , I (Ax,)

are still available to agent H, they will be placed by following
the greedy approach (see Algorithm [2). On the other hand,
if the first condition is not satisfied, it simply reduces to the
Greedy heuristic. It should be noticed that Algorithm [3] has
in general a smaller cost than the Greedy heuristic, since it
requires to evaluate the equilibrium opinions max{0, k. —q} N
times.

Experiment 1 (Erdos-Renyi graphs). We compare the pro-
posed algorithms with zero-cost heuristics and greedy ap-
proaches. The study is aimed at highlighting the effect of the
density of the network on the performance of the algorithms.
In particular, we consider random generated Erdos-Renyi
graphs [[15] with parameters N = 400 and p = a%. For
each value of a € [1.5,10], we generate 50 random graphs and
we connect | A~ | = 3 nodes randomly to the strategic agent 5,
whereas strategic agent H has k. = 5 available budget. The
performance of the algorithms are compared in Figure || (see
dotted curves). It should be noted that the best performance is
obtained with the heuristics based on the Blocking approach
(Alg. 3, ---) and, as to be expected, the Degree heuristics
(Alg. 1, - - -) performs the worst.

It is worth remarking that the initial choice of the adversary
may influence the performance of the proposed heuristics, and
it could make sense considering a “strategic” adversary (node
B) by selecting nodes with high centrality, or one maximizing
some other measure of influence. The dashed-dotted curves in
Fig. [I| show the performance of the heuristics when the node
H chooses three nodes uniformly at random among the 10%
of nodes with highest degree. Also in this case the Blocking
heuristic outperforms the other heuristics and the gain is higher
for sparse networks (for low values of a) and reduces with the
density of the network (high values of a). Finally, when the
node H is targeting regular nodes with maximal degree, all
heuristics have similar performance (see continuous curves in

Fig. [I).
In the following experiment we test the heuristics over

graphs with communities and study the performance as func-
tion of the overall connectivity.
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Fig. 1: Erdos-Renyi with p = alog(N)/N: Average F. over 50
simulations as a function of connectivity parameter a.

Experiment 2 (Modular graphs). We consider the case with
7 dense communities with total link density p € [0,2,0.5]
proportion of links within modules compared to links across
equal to 0.99. In Fig. 2] we show single realizations of the
networks for different values of p. As p increases, the number
of connections among the clusters becomes bigger and bigger.
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Fig. 2: Single realizations of modular graphs with connectivity pa-
rameter p € {0.2,0.3,0.4,0.5}.

For each value of total link density, we generate 50 random
graphs and we connect | A~ | = 3 nodes randomly to the strate-
gic agent H, whereas strategic agent H has k&, = 5 available
budget. The performance of the algorithms are compared in
Figure [3] (see dotted curves). Also in this case, the Blocking
approach (Alg. 3, ---) outperforms the other heuristics. The
Blocking heuristic is effective and robust, even if the strategic
agent H is targeting the nodes using the degree centrality or
the Greedy heuristics.

0258 | T

Fig. 3: Modular graphs: Average F; over 50 simulations as a func-

tion of connectivity parameter p € [0.2,0.5].

However, we want to point out that a “smart choice”
by the first strategic agent does not automatically imply

| Max Top-10  Random

Degree 0.25247  0.25013  0.27717
Greedy 0.25201  0.25199  0.27821
Blocking 0.25258  0.25259  0.27424
Blocking (high degree) | 0.25258  0.25259  0.27825

TABLE I: Heuristics comparison with different initial scenarios:
Values of cost function F', averaged over 50 graphs
randomly generated with bimodal degree distribution.

a worse performance of the Blocking algorithm for OTP.
On the contrary, in this case, when the adversary chooses
highly influential nodes, the blocking strategy becomes partic-
ularly advantageous. Conversely, a ’dumb” adversary choosing
poorly connected nodes may put ourselves in a situation where
the blocking strategy partially loses its efficacy. In this case,
indeed, a better choice would be to not consider this node and
concentrate on highly connected nodes. To show this fact we
consider an ensemble of graphs with a bimodal distribution for
the nodes’ degrees. Table [I| reports the value of F, averaged
over 50 graphs with degree distribution which is a mixture of
random variable with equal variance, one with mean 10 and
mass 0.75 and the other with mean 80 and mass 0.25.

Now, in addition to previous heuristics, we also consider a
modification of the Blocking heuristic where the blocking is
limited to high degree nodes (Blocking (high degree)). We con-
sider each of these, for three different initial targeting strategies
of node BH: i) targeting the nodes with max degree (Max), ii)
targeting the nodes randomly among the ones with degree in
the top-10% (Top-10), and iii) targeting the nodes randomly
(Random). In other terms, the Blocking heuristic is strictly
dependent on opponent’s strategy, but a simple modification
can easily bypass potential issues. For the detailed algorithm
of this modification, the reader can see [17]. The interplay
between strategies based on centrality measures and topology
would merit a deeper discussion and will be subject of future
research.

IV. STP: ELECTRICAL ANALOGY AND TREES

In this section, we show some analytical results regarding
the solution of STP on specific networks: Line Graphs and
trees. Before stating and proving our results, we describe a
key methodology.

A. Line Graph

We denote by v+ and v~ the regular nodes that are linked
to the strategic nodes H and H, respectively.

Proposition 3 (STP on the Line). Assume the strategic node
B is directly connected to a generic node v~ = (. Then, the
objective function reads

— k24 (N4+1)k—(N+1)0+02 .
Fi (k) = { —k2+§N]j-(1€;£—§]2\f)+l;+€2 lfk =
N(—k12) ifk <t
and  attains _ the — maximum  value  at k* =
axgmax { F ([E]), Py ([k])} with
k*{€—2+\/2N+6—4€ if £ < N
(+2+VAl+2-2N  ift>NH



Proposition [3] whose proof is given in the Appendix,
guarantees that there exists an optimal value of v* = k*,
which is placed on the left or on the right of v~ = ¢ depending
on the value of ¢. This fact is quite intuitive: indeed, if v~ is
not in the middle, the strategic agent H is able to influence
a larger amount of individuals by targeting an agent on the
opposite side of v~. What is surprising is that, in general,
targeting an agent immediately next to v~ is not an optimal
choice. It is more effective to target an agent slightly on the
opposite side, with some nodes of distance. This is due to the
impact that also agent B has, being close to v™ too. Clearly,
if v~ is in the middle, then the optimal choice for H is to
cancel out its effect by targeting the same node. This is what
happens in the popular game theoretical Hotelling model [18].
The following remark provide an interpretation of the result
using the electrical network analogy.

Remark 3 (A marginal analysis). Let us consider the follow-
ing scenario. Suppose agent B is targeting a node indexed
by ¢ (assume { is at least two nodes far from the extremes).
One could ask which forces are involved when moving agent
H from node k =0+ rtok=0+7r+1(r > 0), eventually
leading to the equilibrium in the result of Proposition 3

To grasp the intuition behind this, one can intuitively think
of the usual electrical analogy: when agent H targets node k,
the nodes from k to N (extreme node) are all short-circuited,
contributing to the final average opinion with the same voltage
V (k). So, moving from node k = {+r to k = {+r+1, means
having one less node contributing in the short-circuited tail.
On the other hand, voltage V (k) is intuitively influenced by its
vicinity to agent B: meaning that moving from node k = {+r
to k = L+r+1, the voltage V (k) shared in the short-circuited
tail increases, being less influenced by agent 5. Therefore, we
can identify these two opposing forces in (i) the number of
nodes present in the short-circuited tail, sharing the voltage
V(k), and (ii) the amount of such a voltage.

B. Tree Graphs

For the Line Graph we have found an analytical solution
for the STP, determining exactly the optimal position of v
in order to maximize the influence of H. In an analogous
way, we could think of extending the argument behind the
previous section to a generic tree. Indeed, given the position
of v~, for each possible choice of v there exists just one
path connecting v~ to v, thus leading to a similar situation
as before. By considering the corresponding electrical network
it is easy to see that each node that does not belong to this path
is short-circuited with one on the path, i.e. the only voltage
drops happen along this path.

On the other hand, when considering a generic tree, the
computation of V(%) is not straightforward. Indeed, while for
the Line Graph each intermediate node between v~ and v*
produces an identical voltage drop, for the Tree Graph each
node belonging to the path between v~ and v™ contributes
to such drop proportionally to the number of nodes of its
subtree (see Figure [ for a better understanding). Because of
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this complication, in order to compute F'; for a generic Tree
Graph, it becomes necessary to have more information about
the tree.

More formally, let 7 = (Z, £) be a Tree Graph. Then, given
a pair of distinct nodes 7, € Z, denote by Z<% the subtree
rooted at node ¢ that does not contain node j, along with the
path from ¢ to j (apart from 7), i.e.

Fig. 4: Tree Graph wi

Z<% = {h € Z|path from h to j goes through i}

Similarly, denote by ¢; the cardinality of the subtree rooted at
node i € {path from v~ to v} made up by the nodes j €
Z<® N Z<®" Using this formalism, the objective function
F can be written as follows:
_ i <vw
Fik) = |1
D

i€ {path from v~ to v}

W)+ 25 v et)+

ciV(i)]

It is clear from this expression that the optimal node lies on the

path from v~ to v™ and therefore the objective function needs
to be evaluated on these nodes only. Actually, we shall now
show that the number of evaluations can be reduced further.
The proof is presented in the Appendix.

Proposition 4 (Monotonicity over a branch). Let T = (Z, &)
be a tree. Let us consider v— = 1 as the root and consider
a tree branch, a path going from the root to one of the leafs,
denoting the nodes in the sequence by i € {1,2, ..., L}. Then,
there exists k* € {1,..., L} such that the objective function
F. (k) is monotone increasing in k € [1, k*]NN and monotone
decreasing in k € [k*, L] N N.

Let us visit one node at a time starting from the root v~ =
1. The strategic node H, currently considering node k, could
move to one of its children, looking for a node that increases
the objective function F.

Proposition 5 (Exploration of offspring population). Let
T =(Z,€) be a tree. Let v~ € I be the root node, and
consider the path from node v~ to a generic node k € T.
Let O(k) be the offspring of k, denoted as the set of nodes
linked to k belonging to the subtree T<FU . If there exists
m € O(k) such that F(m) > F(k), then F'(n) < F(k) for
each n € O(k) \ {m}.

Proposition [5] whose proof is given in Appendix, guarantees
that at most one of its children can increase the objective
function value. Then, it is useless to compute the objective
function on the other nodes, if an improving node has already
been found.

Proposition d and Proposition [5]imply that, starting from the
root v~ and moving vT from v~ to its first neighbors, only
one of them will make F increase. This is true also for such
improving neighbor and it continuous, as going towards the



leafs, until no improving neighbor is found, thereby identifying
the optimal node. This leads to design the following algorithm
in order to improve the maximum search algorithm.

Algorithm 4 Tree Graph Single Targeting Algorithm [TGSTA]

Require: 7 = (Z,€) tree graph, node v~
Initialization:
Root node r = v~
Number of visited nodes s = 0
Evaluate Fy (r)
Flag f =0
while f =0 do
f=1
for ¢ € O(r) do
s=s+1
Evaluate Fy ({)
if F+(’l°) < F+(£) then
r :£’F+(r) :F+(€)’f =0
break for
end if
end for
end while
return vT =7, F,(r), s

Theorem 2 (STP over trees). Let T = (Z,E&) be a tree,
Algorithm [] solves STP.

Proof. Since F(-) admits a maximum on each branch (see
Proposition @) and there is at most one initial node from which
a monotonically increasing branch can start (see Proposition
[B), we conclude the convergence of the algorithm to the
solution of STP. O

Experiment 3. We consider 50 random trees: we start with a
single individual in generation 0 and, for each node, a number
of children is generated according to a Poisson distribution
with parameter A € {3,6,9,12}. The strategic node B is
connected to a node chosen uniformly at random. For each
instance, the STP problem is solved using TGSTA (Alg. 4).
Figure [ depicts the average fraction of visited nodes as
function of number of regular nodes in the network for
different offspring distributions (different curves correspond to
different value of ). It should be noticed that TGSTA allows
to reduce largely the computational complexity of maximum
search. Moreover, when the size of the tree increases, then the
gain becomes larger and just a small fraction of nodes needs
to be explored.

V. TREE-LIKE HEURISTICS

We now apply the insights of the previous section and
extend Algorithm [ to graphs that are not trees.

A. STP in Tree-like graphs

We present now an algorithm, referred to Tree-like Single
Targeting Algorithm, that works as follows. When looking
at the root’s offspring, it does not stop looking at the first
increasing F'; value found, but it saves each improving node
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Fig. 5: TGSTA over random trees: Average fraction of visited nodes
averaged over 50 experiments for different offspring distri-

butions (Poisson(\)).

(i.e. a node leading to an increasing value of F.). In principle,
we could use all of them as roots for the next iterations. Indeed,
being the graph not a tree, it is possible to have more values in
the nearest neighborhood leading to increasing values of Fl.
Then, we decide to use only the node leading to the maximum
improvement as the root for the next iteration. The code is
summarized in Algorithm [3]

Algorithm 5 Tree-like Single Targeting Algorithm (Tree-like-
STA)

Require: G = (V, &) graph, node v~
Initialization:
Root node r = v~
Number of visited nodes s = 0
while r £ () do
v = () empty set of improving nodes
for £ € O(r) do
s=s+1
Evaluate F'; (¢)
if F(r) < Fy(¢) then
v=ovU{{}
end if
end for
r = argmax Fy ()
end while
return vt =7, F,(r), s

It is worth mentioning that the proposed routine is a greedy
search algorithm in general graphs: since there are multiple
utility-improving moves at each node, the algorithm evaluates
all possible transitions at the current node and moves to the one
with highest marginal gain. When comparing all the neighbors
of a current node, the algorithm is actually looking for the
best subsequent target that maximizes the average opinion at
that step: this comparison among all the discrete alternatives
at each step can be interpreted as a ranking of links based
on a sensitivity analysis. Then, a pruning of non-optimal
alternatives is done at each step, to get a tree where we can
exploit the proposed optimal strategies.
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Fig. 6: Tree-like STA over Erdos-Renyi graphs: Average fraction
of visited nodes averaged over 50 experiments for different
connectivity parameter a.

The main driver for the structural properties in optimal
single-targeting on trees is that the equilibrium average opinion
can be written as a weighted averaging of opinions of those
nodes on the path connecting the two targets (one for each
player), where for each node on the path the weight is
proportional to the size of the subtree attached to the path at
the node. This underlying property of the solution significantly
simplifies the single target search on trees but is not true for
general graphs. However, our intuition is that the proposed
algorithm should work for a class of graph ensembles for
which the typical random graph locally behaves like a tree.
The formal property of Local Weak Convergence is the key
feature that provides this link and formalizes the idea that,
for large size of the network, the local structure of the graph
near a vertex chosen uniformly at random is approximately
a tree. It can be shown that in the sparse regime where the
number of edges scales linearly in the size of the networks,
the large majority of random models are tree-like. We refer
the interested reader to [19] for a deeper discussion on this
class of graphs. The core idea is that exact computations
supposing to be on a tree provide a good approximation in
the large systems limits. This is a common approach applied
to a class of problems that arise in combinatorial probability
and combinatorial optimization over networks [20].

We corroborate these observations with the following ex-
periment.

Experiment 4 (Erdos-Renyi: sparse versus dense networks).
We now consider STP on 50 random generated Erdos-Renyi
graphs with connectivity parameter a € {1.5,3,4.5,6},
p = alog(N)/N. We solve the STP by using Tree-like-STA
(Alg. pB): denote by F™* the optimal value of the objective
function and F' the value of function at node identified by
Tree-like STA (Alg. 5). Figure[6|and Table[[l| show the number
of visited nodes and the empirical probability of success as a
function of thg size of the network, where we declare a success
when [Ff — F|/|Ff] < 1/e.

Some remarks are in order. The number of visited nodes
increases when the graph is less sparse and the probability of
success is larger than 0.8 for all networks. Additionally, as the
exploration decreases, accuracy gets worse.

a=15 a=3 a=45 a=6
N =100 0.900 0.960 0.980 1.000
N = 200 0.940 0.960 0.940 0.980
N = 300 0.840 0.940 0.960 0.960
N =400 0.840 0.920 0.880 0.940
N = 500 0.840 0.960 0.960 0.940
N = 600 0.800 0.900 0.940 0.980
N =700 0.920 0.940 0.880 0.960
N = 800 0.860 0.860 0.900 0.880

TABLE 1II: Tree-like STA over Erdos-Renyi graphs: Empirical prob-
ability of success for different connectivity parameter a.

In real networks we distinguish two distinct scenarios based
on the current target’s neighborhood: (i) target’s neighbor-
hood is locally tree-like; (ii) target’s neighborhood is highly
clustered. In the first scenario the algorithm will work for a
certain number of steps and simplify the exploration of the
graphs. In the second scenario the proposed greedy search will
choose at each step the nearest node with highest objective
function, while discarding the other options. By repeating
this procedure, after some steps, the algorithm will end up
exploring zones with locally tree-like structure, where the
algorithm is guaranteed to work well. In this regard, the greedy
search can be seen as a heuristic that is used locally to exit
from these dense zones.

We consider the family of modular graphs in order to test
the algorithm in this scenario.

Experiment 5 (Modular graphs). We consider the case with
7 dense communities with total link density p € [0,2,0.5]
proportion of links within modules compared to links across
equal to 0.99. Figure [/| and Table [[II] show the number of
visited nodes and the empirical probability of success as a
function of thg size of the network, where we declare a success
when [Ff — F|/|Ff] < 1/e.

of visited nodes

Average percentage
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Fig. 7: Tree-like STA over modular graphs: Average fraction of
visited nodes averaged over 50 experiments for different
connectivity parameter p.

We can see that also in this scenario, the proposed algorithm
simplifies the the exploration of the graph and finds a good
solution with high probability by visiting only approximately
27% of total nodes.

Experiment 6 (Facebook ego-network). We now test Al-
gorithm [5] on a real large-scale online social network:
the Facebook ego-network, retrieved from Stanford Large
Network Dataset Collection (https://snap.stanford.edu/data/


https://snap.stanford.edu/data/ egonets-Facebook.html

p=02 p=03 p=04 p=05
N =100 0.840 0.960 0.800 0.860
N =200 0.760 0.780 0.860 0.860
N =300 0.780 0.800 0.820 0.940
N =400 0.800 0.900 0.900 0.880
N =500 0.880 0.860 0.780 0.760
N =600 0.840 0.900 0.880 0.840
N =700 0.920 0.840 0.920 0.880
N =800 0.920 0.860 0.920 0.900

TABLE III: Tree-like STA over modular graphs: Empirical probabil-
ity of success computed on 50 experiments for different
connectivity parameter p.

egonets-Facebook.html). This dataset contains anonymized
personal networks of connections between friends and the size
of the graph associated is |V| = 4039, while the number of
links is equal to || = 88234. Such graph is extremely sparse,
since the number of nonzero elements |E]/|V|? ~ 5% 1073,
10 instances of STP are generated by linking agent H to a
random regular agent. We find that Algorithm [5] reaches the
optimum (solving STP by means of the brute-force approach).
We obtain that the average fraction of visited nodes is equal
to 30%.

When the number of links placed by strategic agent H is
greater than 1, we use a generalized version of the Tree-like
heuristic: among the nodes linked to H, we select as the root
v~ from which Algorithm [4| is started the one with smallest
degree. The reasoning behind this algorithm, supported by
empirical simulations, is that in sparse graphs it is easier to
move away from not relevant nodes rather than vice versa.
Indeed, if starting the algorithm from high degree nodes, the
first steps would generally be more affected by the noise
produced by the strong influence of H.

B. OTP on Tree-like graphs

For the general OTP, when both strategic agents have a
number of available or placed nodes greater than 1, we
propose an algorithm that is a generalized version of previous
Single Targeting algorithms over tree-like graphs. Specifically,
it simulates a Greedy heuristic where a sub-optimum is found
at each step. Specifically, this is done by selecting at each step
a different root node among the ones linked to H.

Experiment 7. Let us now compare the Tree-like heuristics
(Alg. 5) with Greedy heuristics (Alg. 3) on random generated
Erdos-Renyi graphs of parameters N = 200 and p = 0.1.
We generate 15 random graphs and we link |[A~| = 3 nodes
randomly selected to the strategic agent —, while k4 = 5. The
results are reported below:

Average F';  Average fraction of visited
nodes at each step
Tree-like heuristic 0.2555 27%
Greedy heuristic 0.2566 100%

We can easily see how the F'; values are really close to each
other, while the average number of computations is almost
reduced by one quarter by the Tree-like heuristic.

VI. SUMMARY AND CONCLUDING REMARKS

In this paper we have considered the optimal targeting prob-
lem in a social network where two strategic agents are compet-
ing. We have both studied the problem for special classes of
graphs and proposed heuristics for general graphs. Available
heuristics essentially rely on two approaches, namely, the
identification of “important” nodes by some general-purpose
measure of centrality —the simplest such centrality measure
is just the node degree—, or a greedy approach, in which
nodes are targeted one-at-the-time and which is justified by the
submodularity of the objective function. We have exemplified
these two approches by Algorithms 1 and 2.

Starting from this background, we have studied the problem
in Complete Graphs and on trees: in the former case, we
have explicitly found the optimal solution; in the latter, we
have identified two key properties that greatly simplify its
computation. Complete and tree graphs are extremal examples,
as they respectively feature maximal and minimal connectivity
(only one path connects any two nodes on a tree). The
insights from these two examples are more broadly relevant,
as they translate into novel heuristic approaches to the optimal
targeting problem. The Complete Graph suggests the approach
of blocking nodes that have been targeted by the adversary: this
approach has zero cost, meaning that it requires no evaluations
of the equilibrium opinions (Alg. 3). The tree graphs suggest
the approach of tree-like exploration, which allows greatly
reducing the cost of the greedy approach (Alg. 5).

These four heuristic approaches can —and should— be com-
bined in designing heuristic algorithms for the optimal target-
ing problem. Note, for instance, that our Algorithm 3 does
combine blocking and greedy approach. The most suitable
combination shall depend on the known properties of the
underlying graph and its choice will require to address the
trade-off between cost and accuracy. Let us for instance
consider the choice of whether to block or not the opponent’s
influence by targeting the same nodes. This is typically a wise
choice, at least if one has the possibility of targeting more
nodes than one’s opponent. However, a blocking approach is
less effective if the graph is very sparse or if the opponent is
linked to marginal nodes: the latter issue can be addressed by
restricting the blocking procedure to the high degree nodes
linked to H. More generally, if the graph is clearly split
between high and low degree nodes, a degree-based approach
would be a good choice. Also the choice of applying the Tree-
like approach to accelerate the greedy algorithm should mainly
be based on the graph structure. Indeed, if the graph is locally
tree-like or sparse, a Tree-like approach would perform well
and improve the complexity of the heuristic. Further research
should concentrate on refining these heuristic guidelines.

APPENDIX
A. Proof of Proposition 2]

If k£ edges are available, then the strategic agent H can
target p; nodes not already linked to H and 7; nodes in R™.
Adding these links, we obtain that

Fi =

max

Fr(po+p1,90 — 71,70 +71).
p1,r1:p1+ri=ky
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Fig. 8: Circuit analogous Line Graph with v~ =4, v* =k, k > 1
The objective function F, can be increasing or decreasing in
p1, depending on whether k4 > qo —po. If k4 < qo —po, then
the objective function is negative and the maximizing value p}
is obtained with p7 = ky and r7 = 0. If k4 = go — po, then
F. is always zero. If k. > go—po, then the objective function
is positive and the optimum is reached by taking the smallest
value of py, that is, the largest value of ;. Since the latter is
naturally constrained by 1 < gp and by p1 < N—pg—qo—70,
the result follows. O

B. Proof of Proposition

Assume the strategic node H is directly connected to a node
¢ and the strategic node H will choose a node £ > ¢. By
the electrical analogy, we can interpret the strategic nodes H
and B as voltage sources of value —1 and +1 respectively.
The nodes v € {1,...,—1} and v € {k+1,...,N} will
be short-circuited with the nodes ¢ and k, respectively, i.e.
V(i-)=-1,V(H+)=4+LV(1) =V(2) =--- = V({) and
V(k)=V(k+1)=---=V(N). We compute the voltage in
eachnode : = ¢,/+1, ...,k as the voltage drop in the voltage
divider (as represented below) where the effective resistances
are the summation of the resistances on the left and on the

right of node 4, that is R =i — ¢+ 1 and RST =k —i+1
leading to
. i—4+1
V@) =V = (V) —VE e
. i—0+1
VO =2%— s~

and Fy (k) = xorrs [-k? F(N 4+ Dk — (N +1)0+2].
The maximum value of F is at k=0-2+2N +6— 4,
when ¢ < % With similar arguments we get the expression
for k < £. O

C. Proof of Proposition

From the electrical analogy we obtain Vi = 1,...,k that
V(i) =2i/(k+1)—1and V(j) =V (i), Vj € I NIT<,
Then, noticing that Z<%* = 7<% vk :i < k < L, we have

k—1
Fo(k)= [TV 1)+ 3125 n 25|V () + 1754V ()]
1=2
1 k—1 . .
-~ HI<1L DJFZ |I<zlmI<1L‘V(i)+|1<k1|v(k)]
=2
k—1 L
=% S eVE) + V(R e
i=1 j=k
where ¢; = [Z<" N Z<L| and Z<' = <11 N Z<!L, Then,

putting the expression for V' (i), we get

k . L
21 2k
2 e (f 1 1) + (f i 1> 2 ]

j=k+1

1

Fy(k) = N

1 . /
NN /\\

Fig. 9: Generic path from 1 to k£ on a tree with root v~ = 1. Once
evaluated F'(k), Proposition [5| considers to move to one of
the children (here m and n)
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Notice that

Fy(k+1) — Fi (k)
LN (2 2N (k42 % .
N|="\k+2 k+1 k+2 k+1) ¢ .

>
part
. 9 L
[ cl<_ k+1) k+2))+(k+1)(k+2)jzk;f]}

2 . - ;
= N(k+1)(k+2) (j_zk;lcg - ;lCi)

Let G (k) be the quantity between brackets: observe that G (k)

is decreasing in k and that G(L — 1) < ¢j, — ZiL;ll ¢ =
—(L —1) < 0. We conclude that there exists k* € {1,...,L}
such that Fy (k) is decreasing in k € {k*,..., L}.

D. Proof of Proposition 3]

Let us represent 7 as a pseudo-line branch, and let us denote
the path from the root node v~ = 1 to k, as the length-%k
path shown in Figure 0] Let us assume that at least one node
m in k’s offspring O(k) is such that F'(m) > F(k), where
|O(k)| > 2, otherwise the proof would be trivial, and denote
with n a generic node in such offspring different from m.
=1to vt and let

CEUJF) be the cardinality of the subtree generating from each
node ¢ in the line. It should be noticed that c;k) = c,(cm) +
(m) D) + c(" and £ = |I<k1 A T<km ﬁI<l~m| — Cgck) _

c%n ) _ Cn ). By electrical analogy, we have

Let us consider the unique path from v~

Fy(m) =

=

(m)yr(m) (;
= Zci Vi (i) +
N [¢1
- 1) +

n 2k my 2k +2
+ €+ (m—l) + (M—l)]

k—1 .
_ m( 2 () (m)\( _2k
= — ( -1 B |
N[ (2 - 1) + e e e (2

cgm)v(m) (k‘) + C’E:Ln)v(m) (m):|

P i k+2

N




where ¢{™ = ¢{™ . Then

Fy(m) — Fy (k)
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