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Nonlinear Analysis of Stability and Safety
of Optimal Velocity Model Vehicle Groups

on Ring Roads
Cristina Magnetti Gisolo, Maria Laura Delle Monache, Francesco Ferrante, and Paolo Frasca

Abstract—In this work, we study a group of N homogeneous
vehicles travelling on a ring road by describing the collective
vehicle dynamics via the so-called Optimal Velocity Model
(OVM). We analyze the stability of the equilibrium motion regime
in which all vehicles drive at the same speed and keep the
same headway. First, stability is studied through linearization,
thereby highlighting the roles of the model parameters. Next,
we tackle the full nonlinear model and we determine ellipsoidal
estimates of the equilibrium’s region of attraction by defining and
solving suitable Linear Matrix Inequalities (LMIs). Finally, safety
aspects are discussed, incorporated in our LMI formulation as
lower bounds of the inter-vehicle distances, and illustrated via
simulations.

I. INTRODUCTION

A. Background
Vehicular transportation is undergoing a major disruption,

moving from vehicles in which the humans are completely
responsible of all the driving tasks towards fully automated
vehicles in which automation will be responsible of most
(if not all) driving tasks. Furthermore, several experiments
have shown that we can harvest the potential of automation
towards traffic control and even a small number of automated
vehicles can be effective in controlling traffic under specific
circumstances. A seminal experiment featuring a group of
vehicles on a ring road has been performed by Sugiyama
et al. [1]. The ring road, in this case, is a representation
of a road of infinite length that allows to observe in a
controlled environment the phenomenon of the stop-and-go
waves. More recent experiments in [2] show that stop-and-go
waves produced by a group of human-driven vehicles on a
ring road can be controlled by a small number of autonomous
vehicles (AVs).

Traffic control through AVs aims to avoid large oscillations
of the speed, sudden braking and acceleration, dissipate stop-
and-go waves and make traffic flow more fluid. In particular,
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the objective of the control strategy is to make the group
reach an equilibrium state, called uniform flow equilibrium,
in which all vehicles travel at the same velocity and have the
same headway. Despite the effectiveness of the use of AVs
in traffic control, it is not clear by which mechanism their
interconnection with human-driven vehicles stabilizes traffic:
hence the need for advancing the study of the stability of traffic
flows. In this perspective of control, in this work we analyze
the stability of the uniform flow equilibrium in a specific
mathematical description of traffic flow: the Optimal Velocity
Model (OVM). Other models have also been proposed and
studied in the literature; see, e.g., [3].

Several papers have looked at stability and string stability
to explain the stability of multi-vehicle platoons; see, e.g., [4],
[5]. In [6], the authors look at the linearized OVM and derive
a linear string stability approach to the problem: this approach
has been supplemented in [7] with specific string stability
condition for ring roads. Indeed, most analytic studies on the
topic of mixed traffic rely on the linearization of the nonlinear
dynamics around the equilibrium flow [8], [9], [10]. Relevant
exceptions include [11] and [12], where nonlinear approaches
based on bifurcation theory are proposed to evaluate the role of
delays and the impact of connected cruise control on connected
vehicle system.

B. Contributions

In this paper, we try to overcome this simplification by
moving from classical linear stability analysis to the study
of the nonlinear dynamics and stability. Before the nonlinear
analysis, we start by linearizing the nonlinear model around
the uniform flow equilibrium and studying its stability through
eigenvalue analysis. However, the linearization limits the study
of stability to a local neighborhood of the equilibrium, pre-
venting to derive any conclusion on the trajectories of the
original nonlinear model when they are sufficiently far from
the equilibrium point. For this reason, in the second part of
this paper, we study stability by focusing on the nonlinear
model and trying to identify its region of attraction through
ellipsoidal estimates. By this method, we are able to determine
a region of the state space from which the trajectories of the
nonlinear model are guaranteed to converge to the equilibrium
point. This method is computationally convenient because it is
based on solving suitable Linear Matrix Inequalities (LMIs).
Furthermore, safety constraints can be effectively incorporated
in the analysis, thereby defining “safe” ellipsoidal regions of
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attraction. The ability to compute safe invariant regions for the
full nonlinear model is a key advantage of our approach for
practical applications.

C. Outline

The article is organized as follows. In Section II we intro-
duce the OVM model on a ring. Section III studies the stability
of the model after linearization and how stability depends on
the model parameters. Next, we move on to the nonlinear
analysis of the model in Section IV by defining and computing
regions of attraction. Section V builds on these methods and
computes safety regions for the trajectories of the models to
avoid collisions. Section VI concludes the article.

II. OPTIMAL VELOCITY MODEL ON A RING

The Optimal Velocity Model of N vehicles introduced by
Bando et al. in [13] is described by:{

ẋi = vi

v̇i = b [Vopt (xi+1 − xi)− vi]
, ∀ i = 1, . . . , N, (1)

where b is a constant representing the sensitivity of the driver,
xi and vi are the absolute position and velocity of the center of
mass of the i-th vehicle and ∆xi = xi+1 − xi is the headway
with respect to the preceding vehicle i + 1. Suppose the N
vehicles drive on a ring road of length L, then N + 1 = 1.
The optimal velocity function is:

Vopt(∆xi) = Vmax
tanh (∆xi − lv − ds) + tanh (lv + ds)

1 + tanh (lv + ds)
,

where Vmax is the maximum speed, lv is the vehicle length
and ds is the safe distance between vehicles i and i+ 1.
We are interested in a particular state, called speed equilib-
rium, in which the vehicles of model (1) drive with the same
constant velocity v∗. Since the velocity function depends only
on the headway, at the speed equilibrium also the vehicle
distances are the same and equal to ∆x∗ = L/N . We refer to
this particular state as uniform flow equilibrium, in which

xi+1 − xi = ∆x∗ =
L

N
:= d

vi = v∗ = Vopt(d).
(2)

Model (1) is rewritten in a new set of state variables such that
the uniform flow equilibrium coincides with the origin of the
new model. The new state variables are the relative velocities
yi of each couple of adjacent vehicles and the spacing errors
zi with respect to the distance d = L/N at the uniform flow
equilibrium. zi = xi+1 − xi − d = ∆xi − d, yi = vi+1 − vi.
In these state variables, model (1) turns into{

żi = yi

ẏi = b
[
Vmax

tanh(zi+1+d−d0)−tanh(zi+d−d0)
1+tanh(d0)

− yi

] (3)

where d0 = lv + ds and, when i = N , i + 1 = 1. Therefore,
the uniform flow equilibrium (2) corresponds to the origin,
because zi = z∗ = ∆x∗ − d = 0 and yi = y∗ = 0. Since the
vehicles travel on a closed ring road, their relative distances

must satisfy
N∑
i=1

∆xi =
N∑
i=1

(zi + d) = L. Since L = Nd,

the sum of the spacing errors is equal to zero, which allows
writing zN as a function of the other variables. The resulting
Reduced Optimal Velocity Model is

żi = yi, i = 1, . . . , N − 1

ẏi = bVmax
tanh(zi+1+d−d0)−tanh(zi+d−d0)

1+tanh(d0)
− byi,

∀ i = 1, . . . , N − 2

ẏN−1 = bVmax

tanh

(
−

N−1∑
i=1

zi+d−d0

)
−tanh(zN−1+d−d0)

1+tanh(d0)
− byN−1

ẏN = bVmax

tanh(z1+d−d0)−tanh

(
−

N−1∑
i=1

zi+d−d0

)
1+tanh(d0)

− byN
(4)

The origin is an equilibrium point of model (4) and corre-
sponds to the uniform flow equilibrium.

III. LINEAR ANALYSIS

With the objective of unveiling some structural properties of
system (3), in this section we present some preliminary results
based on a linear analysis around the zero equilibrium point.
We therefore linearize the Reduced Optimal Velocity Model
(4) around the origin, thereby obtaining

żi = yi, ∀ i = 1, . . . , N − 1
ẏi = −γzi + γzi+1 − byi, ∀ i = 1, ..., N − 2

ẏN−1 = −γ
N−2∑
j=1

zj − 2γzN−1 − byN−1

ẏN = 2γz1 + γ
N−2∑
j=1

zj − byN

, (5)

where γ = b
∂Vopt(d)

∂zi
= bVmax

sech2(d− d0)

1 + tanh(d0)
. Using the state

vector

χ̃ = [z1, z2, ..., zN−1, y1, y2, ..., yN ]T ∈ R2N−1, (6)

we obtain ˙̃χ = J̃ χ̃, where

J̃ =

[
0 J̃zy
J̃yz −bIN

]
,

J̃yz =
bVmax sech

2(d− d0)

1 + tanh(d0)


−1 1 (0)

. . . . . .
(0) −1 1
−1 . . . −1 −2
2 1 . . . 1

 ∈ RN×N−1,

J̃zy =


1 (0) 0

1
...

. . .
...

(0) 1 0

 ∈ RN−1×N .

Its stability properties are stated in the following result,
which is a corollary of recent stability results by [7].
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Theorem 1. The most critical eigenvalue λ∗ of the linearized
reduced model (5) around the uniform flow equilibrium has
real part

ℜ(λ∗) = − b

2
+
1

2

(√b4 + 32γ2aN − 8b2γaN + b2 − 4γaN
2

) 1
2

,

where aN = 1− cos( 2πN ) and γ = bVmax
sech2(d− d0)

1 + tanh(d0)
, and

the uniform flow equilibrium is asymptotically stable if and
only if the parameters satisfy the following constraint:

Vmax

b

sech2(d− d0)

1 + tanh(d0)
<

1

1 + cos(2πN )
=: κN . (7)

Proof. The characteristic polynomial of J̃ can be explicitly
computed as:

det(J̃ − λI) = (λ+ b)

N−1∏
k=1

(λ2 + bλ+ γ − γe
2kπj
N ). (8)

By comparing this expression with the characteristic polyno-
mial in [7, Appendix A], we can apply the necessary and
sufficient stability conditions in [7, Theorem 1]. Specializing
these conditions to our model, we obtain:

Vmax

b

sech2(d− d0)

1 + tanh(d0)
<

1

1 + cos( 2π(i−1)
N )

, ∀ i = 2, ..., N

The most restrictive constraint is obtained for i = 2, thereby
leading to (7).

The stability of the equilibrium depends on the parameters.
Considering the stability condition (7), the uniform flow
equilibrium may become unstable when b decreases, Vmax

increases or |d − d0| decreases. If we fix d0 = lv + ds
and the number of vehicles, then the stability of the uniform
flow equilibrium depends on the length L of the ring road.
If ring road is too long (d ≫ d0), then the left-hand side
term of (7) is very close to zero for any b and Vmax. Thus,
the stability constraint is satisfied. Nevertheless, as |d − d0|
increases, the most critical eigenvalue tends to the imaginary
axis. In particular,

lim
|d−d0|→∞

ℜ(λ∗) = 0,

so the uniform flow equilibrium is asymptotically stable, but
the convergence of the trajectories towards it is slow.

The stability conditions also depend on the number of ve-
hicles N . As N increases, the stability constraint (7) becomes
more restrictive, so the set of the parameters for which the
uniform flow equilibrium is asymptotically stable is smaller.
However, since κN ≥ 1/2, for any N there exists a set of
parameters (b, Vmax, L, d0) such that asymptotic stability of
the uniform flow equilibrium is ensured. Moreover, the size of
the group of vehicles affects also ℜ(λ∗). Assume to increase
N and the length L of the ring road such that d = L

N is
constant. Then,

lim
N→∞

ℜ(λ∗) = 0.

Thus, as the number of vehicles and the length of the ring
increase, convergence of the trajectories to the uniform flow
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Fig. 1: Absolute positions xi of a group of N = 22 vehicles,
with b = 10 s−1 and Vmax = 5 m/s.

Fig. 2: Absolute velocities vi of a group of N = 22 vehicles,
with b = 10 s−1 and Vmax = 5 m/s.

equilibrium gets slower. The effect of b, Vmax, d − d0, and
N on the stability will be confirmed by the nonlinear analysis
that is presented in the next section.

In order to illustrate the value of the above stability analysis,
we simulate the Optimal Velocity Model on a ring road and
show that when the linearization is not stable, the nonlinear
OVM model produces stop-and-go-waves. To this purpose, we
present two simulations of a group of N = 22 vehicles on a
ring of length L = 220 m, where d0 = lv + ds = 10 m, with
two different choices of b and Vmax.

Example 1 (Asymptotically stable equilibrium). If b = 10 s−1

and Vmax = 5 m/s, then the stability condition (7) is satisfied.
The trajectories of the model converge to the uniform flow
equilibrium, as shown in Fig. 1 and Fig. 2.

Example 2 (Unstable equilibrium). If b = 3 s−1 and
Vmax = 15 m/s, the stability condition (7) is not satisfied
and the uniform flow equilibrium is unstable. In simulation,
the trajectories of (1) produce stop-and-go waves even if they
start from the uniform flow equilibrium, as shown in Fig. 3
and Fig. 4.

IV. NONLINEAR ANALYSIS: REGIONS OF ATTRACTION

The analysis presented in Section III enables to outline some
structural conditions to ensure local asymptotic stability of (3).
However, the results in Section III are based on a linearized
model and therefore only apply locally and do not provide
any information on the region of attraction of the origin for
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Fig. 3: Absolute positions xi of a group of N = 22 vehicles,
with b = 3 s−1 and Vmax = 15 m/s.
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Fig. 4: Absolute velocities vi of a group of N = 22 vehicles,
with b = 3 s−1 and Vmax = 15 m/s.

the actual dynamics, which can potentially be quite small. In
this sense, the results in Section III may be difficult to exploit
in practice. To overcome this drawback, in this section we
focus on the nonlinear system (4) and determine an ellipsoidal
inner estimate of the region of attraction (ROA) of the origin,
which is the region of attraction of the uniform flow for the
nonlinear system (1). To this end, we rely on the results in
[14] to encapsulate the nonlinearity tanh into a local sector
bound. This method enables to devise sufficient conditions in
terms of matrix inequalities that can be efficiently exploited
to obtain ellipsoidal estimates of the ROA.

System (4) can be rewritten as:

˙̃χ = Aχ̃+B tanh(Kχ̃+ d̄), (9)

where χ̃ is defined in (6), d̄ := (d − d0)1N , and A :=[
0 Azy

0 −bIN

]
, with

Azy :=


1 0 0

1
...

. . .
...

0 1 0

 ∈ RN−1×N

B :=

[
0N−1×N

Byz

]
∈ R2N−1×N

where

Byz :=
bVmax

1 + tanh(d0)


−1 1 (0)

−1 1
. . . . . .

(0) −1 1
1 0 . . . 0 −1

 ∈ RN×N

and K :=
[
Kyz 0N×N

]
∈ RN×2N−1, with

Kyz :=


1 (0)

1
. . .

(0) 1
−1 . . . . . . −1

 ∈ RN×N−1.

We compute an underestimate of the ROA of the origin of (4).
In particular, notice that for all d, d0 ∈ R, Bd̄ = 0, thereby
confirming that χ̃ = 0 is an equilibrium for (4). Similarly as
in [14], we inscribe the nonlinearity tanh into a local sector
bound by the following lemma [14, Lemma 1].

Lemma 1. Let ν and ν̄ be real numbers, ν⋆ ∈ [ν, ν], and

α(ν, ν) := min

{
tanh(ν̄)− tanh(ν∗)

ν̄ − ν∗
,
tanh(ν∗)− tanh(ν)

ν∗ − ν

}
where α < 1. Then, for all ν ≤ ν ≤ ν̄, one has that
tanh (ν) lies within the local sector [α(ν, ν), 1] centered in
(ν∗, tanh(ν∗)). Namely, for all ν ∈ [ν, ν̄]

(∆y(ν)− α(ν, ν)∆ν)(∆ν −∆y(ν)) ≥ 0, (10)

where ∆y(ν) := tanh(ν)− tanh(ν∗) and ∆ν := ν − ν∗. □

In the remainder of the analysis, we take ν∗ = d−d0. In the
particular case in which d = d0, it turns out that d̄ = 0, hence
tanh is inscribed in a local sector centered in the origin.

Lemma 1 can be used to obtain a sector condition for the
vector valued function tanh: RN → RN , this is due to the
decentralized nature of such a function. In particular, let v, v ∈
RN , a ∈ RN , where for all i ∈ {1, 2, . . . , N}, ai := α(vi, vi).
Then, from Lemma 1, for all v ⪯ v ⪯ v, v ⪯ v∗ ⪯ v

ζ(v, v∗)
TΨTM(λ)Ψζ(v, v∗) ≥ 0, (11)

where

ζ(v, v∗) :=

[
v − v∗

tanh(v)− tanh(v∗)

]
,Ψ :=

[
IN −IN

− diag(a) IN

]
,

M(λ) :=

[
0N×N diag(λ)
diag(λ) 0N×N

]
, λ ∈ RN

≥0.

Condition (11) is used to state the following result, which
is a continuous-time version of [14, Theorem 1].

Theorem 2 (LMIs & Regions Of Attraction). Consider system
(9). Let v∗ = d̄, v ⪰ v∗, and v = 2v∗− v̄. Define the following
matrices:

R :=

[
In 0n×N

0N×n IN

]
, Q :=

[
K 0N×N

0N×n IN

]
,

where n := 2N−1. If there exist a symmetric positive definite
matrix P ∈ Rn×n and a vector λ ∈ RN

≥0 such that

RT

[
ATP − PA PB

BTP 0

]
R+QTΨTM(λ)ΨQ < 0 (12)
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[
(v̄(i) − v∗(i)

)2 K(i)

KT
(i) P

]
≥ 0, i = 1, . . . , N, (13)

where K(i) is the i-th line of K, KT
(i) is its transpose, v∗(i)

and v̄(i) are the i-th elements of v∗ and v̄ respectively. Then

E(P ) := {χ̃ ∈ Rn : χ̃TPχ̃ ≤ 1}

is forward invariant and included in the ROA of the origin of
system (9).

Proof. The satisfaction of (13) guarantees that

E(P ) ⊆ {χ̃ ∈ Rn : v − v∗ ≼ Kχ̃ ≼ v̄ − v∗},

In particular, for all χ̃ ∈ E(P ), (11) holds. Let us consider
the following quadratic Lyapunov function candidate V (χ̃) :=
χ̃TPχ̃. To prove the result, we show that for all χ̃ ∈ (E(P ) \
{0})

V̇ (χ̃) = ˙̃χTPχ̃+ χ̃TP ˙̃χ < 0. (14)

The latter can be written in the following matrix form:

V̇ (χ̃) =
[
χ̃T (u− u∗)

T
] [ATP + PA PB

BTP 0

] [
χ̃

u− u∗

]
.

(15)
where we use the shorthand notation u = tanh(Kχ̃+ d) and
u∗ = tanh(d).

By pre-and-post multiplying the matrix in the lefthand side
of (12) by [χ̃T (u− u∗)

T ] and its transpose, one gets:

W (χ̃) :=
[
χ̃T (u− u∗)

T
] [ATP + PA PB

BTP 0

] [
χ̃

u− u∗

]
+

[
v − v∗
u− u∗

]T
ΨTM(λ)Ψ

[
v − v∗
u− u∗

]
.

Therefore, by using (12) and (15), it follows that

W (χ̃) = V̇ (χ̃) +

[
v − v∗
u− u∗

]T
ΨTM(λ)Ψ

[
v − v∗
u− u∗

]
< 0.

The latter with (11) yields (14) and concludes the proof.

Theorem 2 enables to obtain an ellipsoid that is an inner-
approximation of the ROA of model (4). With the objec-
tive of reducing the conservatism in the estimation of the
ROA, we embed the conditions of Theorem 2 into a suitable
optimization problem aimed at maximizing the size of the
ellipsoidal set E(P ). To this end, a possible approach consists
of minimizing the trace of matrix P . Specifically, an optimal
estimate of the ROA can be obtained by solving the following
optimization problem:

minimize trace(P )

subject to inequalities (12), (13).
(16)

When v̄ is fixed, conditions (12) (13) are linear matrix
inequalities in the decision variables P and λ. Therefore, (16)
can be efficiently solved via off-the-shelf software, with the
only caveat of selecting the vector v̄. Notice that since E(P )
is contained in the polyhedral set {χ̃ ∈ Rn : v − v∗ ≼
Kχ̃ ≼ v̄ − v∗}, the selection of the values of v̄ affects the
size of the ellipsoidal estimate in several ways. In particular,
the larger is v̄, the wider is the local sector and the volume of
the ellipsoid. Nevertheless, increasing too much v̄ may lead

TABLE I: Dependence of the ellipsoidal estimate on b.
Increasing b, the levels v̄ increases and the size of E(P )
increases. Vmax = 5 m/s and d = d0.

b [s−1] Vector v̄ Volume of E(P ) z1 and y1 ∈ E(P )

b = 10 v̄(i) = 0.7089 1.31× 104
|z1| ≤ 0.7088 m
|y1| ≤ 4.02 m/s

b = 20 v̄(i) = 0.8750 2.20× 1011
|z1| ≤ 0.8750 m
|y1| ≤ 6.77 m/s

b = 30 v̄(i) = 0.9143 1.37× 1014
|z1| ≤ 0.9141 m
|y1| ≤ 8.74 m/s

to no feasible solutions for problem (16). For this reason,
the choice of v̄ requires a trade-off between the quality
of the approximation and the feasibility of the optimization
problem. As in Example 3, given the model parameters, the
best estimate is obtained with the maximum v̄ for which the
optimization problem is feasible.

Example 3 (Ellipsoidal ROA). We consider a platoon of
N = 22 vehicles. Consider the same parameters of Example
1, where b = 10 s−1, Vmax = 5 m/s and d0 = 10 m.
Thus, the stability constraint (7) is satisfied and the origin
is an asymptotically stable equilibrium point for the model.
Assume the length L of the ring road is such that d = L

N
equals d0 = lv + ds = 10 m, then v∗ = u∗ = 0.
The maximum value of v̄(i) for which (16) is feasible is
v̄(i) = 0.7089, ∀ i = 1, 2, . . . , N. We compute the maximum-
volume ellipsoid E(P ) ∈ R43 and in Figure 5 are shown its
intersections with (z1, z2) and (y1, y2) planes.

The parameters of the model affect the maximum value
of v̄ for which (16) is feasible, so they ultimately affect the
size of the maximum-volume ellipsoidal estimate. Moreover,
the dependence on the parameters of the volume of the best
approximation of the ROA of the nonlinear model (4) around
the origin reflects the relationship between the parameters and
the eigenvalues of the linearized model (5) around the origin.

If d − d0 ̸= 0, then v∗, u∗ ̸= 0 and the local sectors are
not centered at the origin: in this case the choice of v̄ is
limited to small values with respect to v∗ and the volume of
the resulting ellipsoidal estimate is small. On the contrary, if
d = d0 the local sectors are centered in the origin and we get
the largest ellipsoidal estimate. Also the number of vehicles
affects the size of the maximum-volume ellipsoidal estimate
of the ROA. In particular, as N increases, the maximum
value of v̄ for which the optimization problem (16) is feasible
decreases, leading to ellipsoids with smaller volume. Finally,
we analyze the dependence of the size of the ellipsoidal
estimate of the ROA of the nonlinear model (4) around the
origin on b and Vmax. We fix d = d0, compute the ellipsoidal
estimates for different values of b and Vmax and see that
reducing b and increasing Vmax lead to smaller maximum
values of v̄(i) for which problem (16) is feasible and to smaller
ellipsoidal estimates. Let us fix Vmax = 5 m/s, compute
E(P ) for different values of b and project it on subspaces
generated by bases of the state variables. In Table I are shown
the ranges of the state variables belonging to E(P ) and the
corresponding volumes. As expected, by increasing b, the
volume of the ellipsoidal estimate of the ROA increases. The
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Fig. 5: Example 3 - Cross-sections of E(P ) (blue) in the (z1, z2) plane (left) and in the (y1, y2) plane (right), together with
illustrative trajectories (whose starting points are marked by a star). The purple trajectory starts inside E(P ), remains inside
by invariance and converges to the origin. Being E(P ) an underestimate of the ROA, there are trajectories (like the orange
one) that converge to the origin even if they originate from outside the ellipsoid.

TABLE II: Dependence of the ellipsoidal estimate on Vmax.
Increasing Vmax, the levels v̄ decrease and the size of E(P )
decreases. b = 20 s−1 and d = d0.

Vmax

[m
s

]
Vector v̄ Volume of E(P ) z1 and y1 ∈ E(P )

Vmax = 5 v̄(i) = 0.8750 2.20× 1011
|z1| ≤ 0.8750 m
|y1| ≤ 6.77 m/s

Vmax = 10 v̄(i) = 0.7171 2.13× 106
|z1| ≤ 0.7171 m
|y1| ≤ 7.57 m/s

Vmax = 15 v̄(i) = 0.5109 117.03
|z1| ≤ 0.5108 m
|y1| ≤ 6.62 m/s

ellipsoids are inner-approximations, so we can’t state whether
tuning b actually makes the ROA enlarge, but a larger b
allows to get to a wider set of initial conditions for which we
are sure the trajectories of (4) converge to the uniform flow
equilibrium. Finally, we compute the ellipsoidal estimates by
solving (16) fixing b = 20 s−1 with different values of Vmax.
The ellipsoids are projected on subspaces generated by bases
of the state variables. In Table II are shown the ranges of
the state variables belonging to E(P ) and the corresponding
volumes. By increasing Vmax, the volume of the ellipsoidal
estimates of the ROA decreases, meaning that the set of initial
conditions, from which the trajectories of (4) converge to the
uniform flow equilibrium, becomes smaller.

V. INVARIANCE-BASED SAFETY ANALYSIS

Besides the convergence of the trajectories of model (1)
to the uniform flow equilibrium, we are interested in vehicle
safety. To this goal, maintaining the inter-vehicle distances
above a certain minimum value is beneficial in order to avoid
collisions. Let us suppose that the minimum safe inter-vehicle
distance would be dmin = 8m. In Fig. 6 are shown the relative
distances of the time simulation of a group of 22 vehicles on
a ring of length L = 220 m. The parameters of the model do
not satisfy the stability condition and the vehicles do not keep
the minimum distance dmin.

The method put in place in Section IV to determine invariant
ellipsoidal sets is suitable to include safety constraints to
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Fig. 6: Evolution of the vehicle distances with respect to time.
The distance between the 21st and the 20th vehicle is in bold
black. With b = 3 s−1, Vmax = 20 m/s and d = d0, the
distances are not safe, as they reach values lower than dmin =
8 m.

avoid accidents. To prevent the collision between two adjacent
vehicles, we can impose a lower bound on their distance ∆xi

or, equivalently, on their spacing error zi = ∆xi − d. Let us
consider the following constraints on the minimum and the
maximum inter-vehicle distances ∆xi:

dmin ≤ ∆xi ≤ dmax, (17)

where dmin is the safety distance and dmax is the maximum
allowed inter-vehicle distance. Condition (17) can be obtained
by imposing the following constraints on the spacing errors
zi,∀ i = 1, . . . , N − 1:

dmin − d ≤ zi ≤ dmax − d, (18)

where d = L/N . These constraints are encoded in a symmetric
polytope defined as

S(|Q|, ρ) := {χ̃ ∈ Rn : |Qχ̃| ⪯ ρ}, (19)

where χ̃ is the state vector (6), the safety ranges are defined in
(18), where dmin−d = −(dmax−d) to get a symmetric poly-
tope, Q =

[
IN−1 0N−1×N

]
∈ RN−1×2N−1, with IN−1 the
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identity matrix ∈ RN−1×N−1, and ρ = (dmax−d)1 ∈ RN−1.
The objective is then to find the maximum-volume ellipsoidal
estimate of the ROA for system (4) that lies inside the safety
polytope S(|Q|, ρ). In this way, by starting the trajectories
inside the resulting ellipsoid, not only the vehicles reach the
uniform flow equilibrium, but they will travel at safe distance.

It is shown in [15, Appendix C.8.3] that the ellipsoid
E(P ) = {χ̃ ∈ Rn : χ̃TPχ̃ ≤ 1} can be included in a
symmetric polytope S(|Q|, ρ), with Q ∈ Rm×n by enforcing
the following inequality for each element of vector ρ:[

P QT
(i)

Q(i) ρ2(i)

]
≥ 0, ∀i ∈ {1, 2, . . . ,m} (20)

where QT
(i) is the transpose of the i-th row of Q. To find an

ellipsoid included into the intersection of the ROA and a safety
symmetric polytope S(|Q|, ρ), one can include (20) in the set
of constraints of the optimization problem (16). The resulting
optimization problem is then

minimize trace(P )

subject to inequalities (12), (13), (20).
(21)

Being E(P ) an invariant and contractive set, if the trajectories
of system (4) are initialized inside it, they remain within this
set and converge to the origin. Therefore, the vehicles keep a
minimum inter-vehicle distance dmin.

In the following example, we compute the maximum-
volume ellipsoidal estimate of the ROA included in a safety
polytope for the model (4). The estimate of the ROA provided
by the solution of (16) is not safe, therefore, solving problem
(21) provides a smaller ellipsoid that guarantees the safety of
the trajectories.

Example 4. Consider a group of N = 5 vehicles that travel on
a ring of length L = 50 m. Assume the model parameters are
b = 20 s−1, Vmax = 5 m/s and d0 = 10 m. The maximum-
volume ellipsoidal estimate of the ROA is obtained for v̄(i) =
3.1308 and its cross-section in the (z1, z2) plane is shown in
Fig. 7 in blue. Suppose to force the constraint on the vehicle
distances,

8 m ≤ ∆xi ≤ 12 m, (22)

then the ellipsoid should lie in a safety polytope S(|Q|, ρ)
where ρ = 2 m. Since our ellipsoidal estimate is not included
in the polytope, we add (20) and find a smaller ellipsoid whose
section on (z1, z2) is shown in Figure 7 in red. The trajectories
that start inside this smaller ellipsoid converge to the origin
and the vehicle distances satisfy the safety constraints (22).

VI. CONCLUSION

The stability of the Optimal Velocity model has been investi-
gated by completing the local linearization-based analysis with
a more refined nonlinear analysis. Sufficient conditions based
on LMIs have been proposed to determine ellipsoidal estimates
of the region of attraction of the nonlinear model. The rela-
tionship between stability of the uniform flow equilibrium and
the model parameters is first probed by the linearized model
and then confirmed by the analysis in the nonlinear framework.
In the linear model, some choices of the parameters may lead

Fig. 7: Example 4 - Cross-sections in the (z1, z2) plane of
the maximum-volume estimate of the ROA (blue), the safety
polytope S(|Q|, ρ) (pink), and the ellipsoidal estimate included
in the safety polytope (red). The trajectories initialized inside
the invariant safe ellipsoid (red) stay within it.

to eigenvalues with positive real part and make the uniform
flow an unstable equilibrium. In the nonlinear context, the
same behaviour of the parameters leads to smaller ellipsoidal
estimates of the region of attraction. The nonlinear analysis
also brings a contribution regarding safety: the computation of
invariant and contractive sets for the uniform flow equilibrium
allows us to identify sets of initial conditions such that the
trajectories of a group of N vehicles do not collide.

A possible improvement of the nonlinear analysis is to use
non-quadratic Lyapunov function and get polytopic estimates
of the region of attraction instead of ellipsoids. The polytopic
representation can potentially provide a clearer view of the set
of initial conditions from which the trajectories converge to the
equilibrium. Future work should also focus on the introduction
of a control input on one of the vehicles in order to improve
stability, enlarge the basin of attraction of the uniform flow
equilibrium, and avoid instability and collisions. The presence
of an input represents the action of an AV and the analysis
would help to understand the interconnection between AVs
and human-driven vehicles.
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Grenoble Alpes, France. He also held an Adjunct Assistant Professor position
at the Department of Automotive Engineering, Clemson University. Currently,
he is a tenure-track assistant professor at the Department of Engineering,
University of Perugia, Italy. He currently serves as an Associate Editor for
the IEEE Control Systems Letters, the European Journal of Control, and IMA
Journal of Mathematical Control and Information. He is a member of the
conference editorial board of the European Control Association.

Paolo Frasca (M’13–SM’18) received the Ph.D.
degree from Politecnico di Torino, Turin, Italy, in
2009. After Postdoctoral appointments in Rome and
in Turin, he has been an Assistant Professor with
the University of Twente, Enschede, The Nether-
lands, from 2013 to 2016. Since October 2016,
he has been CNRS Researcher with GIPSA-lab,
Grenoble, France. His research interests cover the
theory of control systems and networks, with main
applications in infrastructural and social networks.
On these topics, he has (co)authored more than fifty

journal publications and the book Introduction to Averaging Dynamics Over
Networks (Springer). He has been an Associate Editor for several conferences
and journals, including the International Journal of Robust and Nonlinear
Control, the IEEE Control Systems Letters, the Asian Journal of Control, and
Automatica.


