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Abstract

The wave kinetic equation predicts the averaged temporal evolution of
a continuous spectral density of waves either randomly interacting or
scattered by the fine structure of a medium. In a wide range of sys-
tems, the wave kinetic equation is derived from a fundamental equation
of wave motion, which is symmetric through time-reversal. By contrast,
the corresponding wave kinetic equations is time-irreversible: its solu-
tions monotonically increase an entropy-like quantity. A similar paradox
appears whenever one make a mesoscopic description of the evolution
of a very large number of microscopic degrees of freedom, the paradig-
matic example being the kinetic theory of dilute gas molecules leading
to the Boltzmann equation. Since Boltzmann, it has been understood
that a probabilistic understanding solves the apparent paradox. More
recently, it has been understood that the kinetic description itself, at
a mesoscopic level, should not break time reversal symmetry [1]. The
time reversal symmetry remains a fundamental property of the meso-
scopic stochastic process: without external forcing the path probabilities
obey a detailed balance relation with respect to an equilibrium quasipo-
tential. The proper theoretical or mathematical tool to derive fully this
mesoscopic time reversal stochastic process is large deviation theory: a



Springer Nature 2021 IMTEX template

2 Large deviations for linear wave kinetic equation

large deviation principle uncovers a time reversible field theory, char-
acterized by a large deviation Hamiltonian, for which the deterministic
wave kinetic equation appears as the most probable evolution. Its irre-
versibility appears as a consequence of an incomplete description, rather
than as a consequence of the kinetic limit itself, or some related chaotic
hypothesis. This paper follows [1] and a series of other works that derive
the large deviation Hamiltonians of the main classical kinetic theories,
for instance [2] for homogeneous wave kinetics. We propose here a deriva-
tion of the large deviation principle in an inhomogeneous situation, for
the linear scattering of waves by a weak random potential. This prob-
lem involves microscopic scales corresponding to the typical wavelengths
and periods of the waves and mesoscopic ones which are the scales
of spatial inhomogeneities in the spectral density of both the random
scatterers and the wave spectrum, and the time needed for the ran-
dom scatterers to alter the wave spectrum. The main assumption of the
kinetic regime is a large separation of these microscopic and mesoscopic
scales. For the sake of simplicity, we consider a generic model of wave
scattering by weak disorder: the Schrédinger equation with a random
potential. We derive the path large deviation principle for the local spec-
tral density and discuss its main properties. We show that the mesoscopic
process obeys a time-reversal symmetry at the level of large deviations.

This publication is part of a special issue in homage of the memory of Krzysztof
Gawedzki. The subject of this work is large deviation theory applied to wave
turbulence. Large deviation theory applied to complex dynamics and turbulent
flows was one of the subjects for which Krzysztof Gawedzki made a number
of important contributions during the last few years, see for instance [3-8]. He
taught many of us, including Freddy Bouchet, many aspects of large deviation
theory. We wrote a common paper on the subject of large deviation theory
and non-equilibrium quasipotentials for stochastic particles with mean field
interactions [8]. Given his scientific qualities, and his deep sense of friendship,
it is great pleasure for us to pay homage to Krzysztof Gawedzki through this
modest contribution.

1 Introduction

The aim of this paper is to extend the existing kinetic theory to describe
probabilistically mesoscopic evolutions of wave fields interacting with random
potentials. We will derive for the first time a large deviation principle that
describes completely typical and rare fluctuations of the wave local spectral
density. This is also the first large deviation principle for wave kinetic theory
in an inhomogeneous setup. This work lies at the intersection of three different
active fields in theoretical and mathematical physics: the description of waves
interacting with random media and their applications to ocean and atmosphere
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dynamics, recent mathematical and theoretical advances in the kinetic theory
of wave turbulence, and large deviation theory for kinetic theories.

For the first field, we note that wave propagation in disordered media is a
ubiquitous phenomenon appearing in various areas of physics. Typical exam-
ples include light radiation through the atmosphere, acoustic or internal gravity
waves in turbulent flows, and elastic waves in solid Earth. In most cases, one
is not interested in the individual wave interference or scattering processes but
in the statistical description of the overall wave field at a mesoscopic spatial
scale much greater than the extent of disorder or wavelength. For this pur-
pose, it is customary to define the spectral density of the wave signal at each
location and investigate its statistical properties. The wave kinetic equation,
sometimes referred to as a radiative transport equation or simply as a trans-
port equation, is known as the universal model to describe the evolution of the
local spectral density. It commonly derives from elementary wave equations
and has a broad range of applications [9-14]. Recently, the evolution of wave
spectra under scattering interactions with a turbulent flow were studied in a
two-dimensional model [15].

Wave kinetic theory is of special interest in some specific areas of ocean
and atmosphere research. Since the celebrated work by Klaus Hasselmann [16],
the kinetic description of nonlinear 4-wave interactions among water waves has
been used for estimating energy transfer rates in a wind wave spectrum and
forecasting the sea surface states. The linear counterpart of the wave kinetic
equation is relevant to surface or internal wave energy dispersion in a slowly
evolving turbulent flow [12, 13, 17-19]. In these actual problems, the scale-
separation assumption at the heart of the kinetic theory might be valid, but is
not necessarily always valid. For example, internal wave activity in the ocean
is highly heterogeneous, which is imprinted on the variability of energy dissi-
pation rates on scales of order 10 to 100 km, in the mid-depth layer [20]. For
tide or wind generated waves with 10-100 km horizontal wavelengths, devia-
tions of the spectral evolutions from that predicted by the kinetic equation
may not be negligible, and a first principle theory of fluctuation is missing.
This motivates us to revisit the theoretical basis of wave kinetic theory. Our
work can be considered as the first building block for stochastic parameteriza-
tion of the local spectral density from first principles, for the specific case of
wave interacting with random potentials.

In relation with geophysical applications, several experiments with funda-
mental scopes in wave kinetic theory have been recently devised. For instance
this led to the very first observation of the regime of inertial wave turbulence
in a rotating flow [21], the identification of regimes of weakly and strongly
nonlinear internal wave turbulence in an experiment of stratified turbulence
[22], experiments on statistical properties of water waves in a large basin [23],
the validation of the inverse cascade phenomenon [24], and extension of the
range of scales for observing pure gravity wave turbulence in the laboratory
[25] using reduced gravity experiments.
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The second field, fundamental theoretical developments in wave turbulence
theory, has seen many new advances recently. For the first time, using numeri-
cal simulations of the non-linear Schrédinger wave kinetic equation, predictions
by the wave kinetic equation were tested for several kinetic times [26, 27].
Novel finite-size effects in wave turbulence were systematically studied in a
one-dimensional model using a combination of theory and numerics [28]. Sig-
nificant recent progress has been made to give a mathematical foundation for
wave turbulence theory: theorem about approximations of the dynamics for
times much shorter than the kinetic time [29-34], the understanding of propa-
gation of chaos [35], and a remarkable first full rigorous derivation of the wave
kinetic theory at the kinetic timescale, for the non-linear Schrédinger equation
[30] and for water waves equation [36]. From the point of view of these funda-
mental perspectives, our work gives for the first time a description of all the
cumulants of the local spectral density, through a large deviation principle, in
an inhomogeneous setting.

The third field is the development of large deviation principles in relation
with kinetic theory. Many classical equations of mathematical physics arise
from a law of large numbers, when faster and smaller scale degrees of free-
dom are averaged out. This is the case for all classical kinetic theories. It is
natural to extend all these theories to look for the statistics of fluctuations.
Generically, one expects to derive a large deviation principle that describes a
statistical field theory quantifying the probabilities of any fluctuations, either
typical or extremely rare, in a way analogous to macroscopic fluctuation the-
ory [37] for stochastic diffusive systems, or large deviation theory for stochastic
dynamics with mean field interaction [8]. Deriving such large deviation prin-
ciples from deterministic microscopic dynamics is a fundamental endeavor in
theoretical and mathematical physics. Recently, the large deviation principles
for a number of classical kinetic theories, starting from first principles, have
been uncovered: for discrete models that mimic dilute gases and with Boltz-
mann like behavior [38, 39], for dilute gases related to the Boltzmann equation
[1, 40], for the Kac model [41, 42], for plasma at length scales much smaller
than the Debye length related to the Landau equation [43], for homogeneous
systems with long range interactions related to the Balescu—Guernsey—Lenard
equation [44], for weakly interacting waves in a homogeneous setup [2] related
to the wave kinetic equation. The large deviation principles describe fluctua-
tions but also uncover gradient structure for the deterministic kinetic equation,
see [45] and a simple explanation in [1]. Several mathematical results, usually
valid for a fraction of the kinetic time in the spirit of Lanford results for the
deterministic equation, have been obtained for the large deviation principles,
for instance for the Boltzmann equation [40, 46|, or for the Kac model with
unexpected corrections to the expected large deviation principle [41, 42] associ-
ated to giant concentrations and solutions of the Boltzmann equation without
energy conservation.

One aim of large deviation theory is to study rare events. In the context
of wave dynamics, large deviation theory has been used to study rare events
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for the evolution of the empirical spectrum [2] on the kinetic time scale, but
also for studying the appearance of very large amplitude waves [47], for the
non-linear Schrédinger dynamics for shorter time scales. Instantons structures
have been predicted and compared with experimental data taken from a 300
m long wave [47]. Large deviation principles for the wave amplitude due to
short time phase mixing has also been studied [48].

The result described in this paper is a new example of a large deviation
principle for a kinetic theory, derived from microscopic dynamics. It is the
first extension of large deviation theory for the local spectral density in an
inhomogeneous setup. It opens the way for other inhomogeneous large devia-
tion principle for wave turbulence, and for the study of new wave turbulence
phenomena where rare events play an important role.

As a generic model of waves interacting with random medium, we consider
the linear Schrédinger equation in a weak random potential

Y D,
ZE—_2VI¢+V¢>

where 9)(x,t) is a wave function defined on R4+ and V(z) is a homogeneous
random potential. For this model, we assume a regime with a wave spectrum
which is dominated by waves of typical wavelengths A, and with modulations
of the statistical properties of the wave spectrum on scales of order A\/u. The
second assumption is that the typical correlation length of the potential is of
order A\ and that interactions between the waves and the potential is weak,
more precise definitions are given in section 2. Then, for small value of u, we
have a separation of scales and of the associated times, where a huge amount
of waves experience multiple scattering in domains of typical size A\/u. It is
natural to focus on variations of the field on the mesoscopic scales of order A/p.
This defines a kinetic regime where such mesoscopic variations are captured by
the Wigner distribution n, that somehow measures the wave energy density in
both position and wave-vector space. After time and length rescaling ¢t — ut
and * — px, in the small 4 limit, the wave kinetic equation is classically
derived (see for instance [9, 49]):

PELL) & Van(espit) = [ dno(pn) (n(e.n.t) (e p.1).
where n(x,p,t) is the Wigner distribution at position x, wave vector p and
time ¢, and co(p,,py) is the scattering cross section.

Interestingly, the evolution of the Wigner distribution predicted from the
wave kinetic equation is an irreversible relaxation process. For this problem, a
Lyapunov function, S = [ dzdplogn(x, p), monotonically increases with time,
even though the fundamental equation of motion possesses a time-reversal
symmetry. This old irreversibility paradox has been recently revisited for the
kinetic theory of particles 1], using dynamical large deviation principles, in the
case of the Boltzmann equation. It turns out that the dynamical large deviation
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principle that quantifies the probability for the evolution of any trajectory has a
time reversal symmetry. The kinetic equation corresponds to the most probable
path of the system, while the probability of a path and its time-reversed path
is related through detailed balance, a manifestation of time reversal symmetry
for the mesoscopic stochastic process. This gives an extremely simple and
enlightening explication of the irreversibility paradox. The main result of the
present paper is a large deviation principle for the Schrédinger equation in a
weak random potential, which has also a time reversal symmetry. This gives a
new very clear explanation of the time reversal paradox.

The purpose of this paper is to formulate a path large deviation principle
for wave scattering by random disorder in spatially inhomogeneous problems.
In particular, to make the discussion as concise as possible, we restrict our
attention to the simplest Schréodinger equation model. Our fundamental results
are as follows. First, (i) for a small but finite ;1 we show that the probability
that a path of local spectral density {n*(t)} evolves at a vicinity of a prescribed
specific path {n(t)} satisfies a large deviation principle:

P [{n“(t) = n(t)}()gtgtf}

= e (—(%1#)(1 /Otf disup {/ it — Hn, A]}) Po[n(0)],

where H is the large deviation Hamiltonian that generally governs the stochas-
tic fluctuations of macroscopic variables and Py[n(0)] is the probability of the
initial condition n#(t = 0). Obtaining the explicit expression for H from the
microscopic equation is one of the main results of this paper. Next, (ii) we ver-
ify that the ordinary wave kinetic equation describes the path that minimizes
the exponent of the probability functional. Then, (iii) we establish a large
deviation principle for the microcanonical measure that defines the quasipo-
tential of the mesoscopic stochastic process of the local spectral density. We
analyze (iv) the property of the large deviation Hamiltonian, check its symme-
tries related to conservation laws and the time-reversal symmetry, and derive
an expression of the detailed balance that connects the probabilities of a path
and its time-reversed path. Finally (v) we study the diffusive limit when the
scales of variation of the random potential are much larger than the typical
wavelength of the waves. For this case we obtain a diffusive large deviation
Hamiltonian, for which we check all the desired symmetries.

The paper is organized in the following order. In section 2, we first set up
the basic problem, introduce scaling and statistical assumptions, and derive
the ordinary form of the wave kinetic equation. In section 3, we derive the
path large deviation principle for the temporal variations of the local spectral
density. The approach has some analogy with that of [2], with a slightly differ-
ent scaling assumption, and working with the Wigner distribution to describe
the wave local spectral density. We then show that this Hamiltonian satisfies
the expected properties. A remarkable point is that the quasipotential enter-
ing into the detailed balance relation is consistent with the one obtained from
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a direct computation of microcanonical ensemble, formulated in Appendix B.
Section 4 proposes several possible extensions in future studies.

2 Wayve kinetic equation for a linear Schrodinger
equation

2.1 Problem setup

We consider the Schrédinger equation for a wave function ¢*(z*,*) : R4t —
C, where t* is time and @* is the position vector, and with potential V*(x*) :
R?¢ — R:

i = g Ve VY (1)

We use an upper script * to represent variables with physical dimensions. The
physical parameter D > 0 has dimension L?7~!. In absence of interaction with
the potential, the free Schrodinger equation is the dynamics of linear waves
with a dispersion relation w(k*) = D|k*|?/2, where k* is a wave vector. A
localised wave packet propagates at group velocity Vi-w(k™) = Dk".

The potential V*(x*) is assumed to be a spatially homogeneous random
field with zero-average, E[V*] = 0, with its spectral density given by

I (k*) = ﬁ /R dy*e * V'R [V* <:1: + y2) V* <:1: — ’é)] . (©2)

For homogeneous fields, the two-point correlation function E [V*(x})V*(x3)]
depends only on the point separation aj — a3. The spectral density of
the potential is the Fourier transform of the two-point correlation function
E [V*(x3)V*(x5)] with respect to f — a3 and thus contains the same infor-
mation. Note that a prescription of higher order cumulants would be needed
to fully characterize the potential distribution. As we will see in the following,
the higher order statistics of the potential will not affect the dynamics of the
spectral density of the waves in the kinetic regime. Hence, although we do not
specify all the cumulants, the potential needs not to be Gaussian.

In this article, we assume that the spectral density II* is concentrated
around wave vectors |k*| ~ 2w/\ where X is the typical wavelength. In real
space, the wavelength ) is interpreted as the typical correlation length of the
potential. For such a potential, the Schrodinger dynamics Eq. (1) may display
many different regimes, depending on the order of magnitude of A compared
to typical wavelengths in the initial condition of ¥*. For instance, if the initial
condition is made of waves with wavelengths much smaller than A, the wave-
potential interaction corresponds to random but smooth refraction that leads
to diffusion in the macroscopic limit [17-19, 50]. We will see in section 3.4
that this diffusive limit can be recovered from the wave kinetic regime. On the
other hand, if the initial waves have wavelength much greater that X\, one faces
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a homogenization problem that is not described by the wave kinetic equation
[51, 52]. In the present paper, we will focus on an intermediate regime, when
the initial condition is made of waves with typical wavelengths which are of
order A\. We also make an assumption that the potential term is very small
compared to the Laplacian term, by setting

A2Vo
D

<1, (3)

[0}
Il

where Vj is a constant scaling the potential, i.e., the potential spectrum is
typically IT* ~ VZ\<.

Wave energy or wave action measures the local amplitude of the signal.
We denote ¢ the typical scale for spatial variation of wave action, and call it
the mesoscopic spatial scale. We introduce the second natural dimensionless
parameter

~| >

(4)

=
If

The kinetic limit is the limit 4 < 1. In the context of wave kinetics, we are
interested in the statistical behavior of the system at the mesoscopic scale,
avoiding chasing rapid phase oscillations at scale A. Since the group velocity
of a wave packet is D|k*| oc DA~!, the migration time of a wave packet over
a mesoscopic distance £ is A2/Du. We call this time the mesoscopic time.
Choosing such mesoscopic units naturally yields the following dimensionless
coordinates

x* " t*

where the scaled wave vector is now represented by p in a customary way of
quantum mechanics with p corresponding to the Dirac constant. Physically,
the square of the absolute value of the wave function, [¢)*|, represents the
wave action density that is proportional to energy, momentum, or number of
particles contained in a unit volume. Therefore, on the dimensional ground,
the wave function should be dependent on the scaling parameters as

)\d/QdJ*(.’B*)
Y (x) = T

The potential and its spectrum are scaled as

Vi(e) = ) = G,
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1 Zip- Y Y
Up)=—— [ d ”’y/“E[V“( f)w( ——)] 6
) (m)d/w ye z+ YY) v (oY (6)

In the end, the governing equation (1) is rewritten in the non-dimensional form

_aqpl‘_ “2 2,1 Hopfy e
=g = =5 Vo + Vi, (7)

which is the fundamental model of the present work.

For € = 0, waves ¢'(P®~«t)/k_ with w = |p|?/2, are exact solutions of the
equations, illustrating that the microscopic time scale and spatial scales are
t ~ O(p) and @, ~ O(u) respectively. A wave packet a(x, t)e'(P=~“1)/1 with
modulation of its amplitude a on spatial scales of order one (slow modulation
compared to the microscopic scale), will actually see an evolution of a on time
scales of order one, according to the group velocity p. In the limit of small e,
the effect of the inhomogeneous potential term is very small on the microscopic
time scale. Therefore, a wave packet propagates almost freely in a microscopic
time scale. Since E[V#] = 0 has been assumed, effects of terms proportional
to € will vanish on average. Accumulation of the random potential effect will
then give non zero contribution of order €2. In order for this to be on the same
order as effects of free propagation on the wave action requires

€= Vi (®)

with ¢ > 0 a finite constant which accounts for the relative importance of the
scattering interactions with respect to propagation. The constant c is strictly
speaking not needed, and it could be absorbed in the definition of II, but it is
useful for the physical discussion. The kinetic regime, or kinetic limit, is the
joint limit p — 0 with e = ,/cpi, where c is a fixed constant. Consequently, the
pertinent equation for the kinetic scaling will be

m 2
e NG (9)

In some parts of the following sections, we will perform asymptotic expansions
of the effect of the random potential by expanding (7) in power of e, while
integrating out explicitly the wave propagation effects. For this reason, we
often consider (7) instead of (9) for those technical parts.

2.2 Local spectral density

In the regime of wave kinetics, one is interested in the amount of wave action
existing at each position and wave vector. This is provided by the (rescaled)
Wigner distribution of the signal that is defined, following previous work on
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inhomogeneous wave kinetics [9, 10], as
1 —ip- Yy Yy
Iz t) = d ipy/p #( ,) MT( _,) 10
wapt) = G [ age v (o4 Yot (e = 3) L 0)

where we have denoted by ¢! the complex conjugate of ¥*. The Wigner
distribution function is the local spectral density of the wave action defined
in both space of position and wave vector. Indeed, the integral of n* over
wave-vector space coincides with the action density in position space, such
that [,, dpn*(x,p) = [¢*(x)[>. A caution for the physical interpretation of
n* is that it allows the existence of negative values, in contrast to wave action
or energy that should be strictly non-negative. The negativity of n* can be
eliminated by averaging it over a scale comparable to u [53].

In this study, we will take the asymptotically small limit of both p and e.
Statistically, the limit of ;1 — 0 is regarded as a kind of thermodynamic limit;
since u represents the typical correlation length of the wave signal, the total
number of degrees of freedom increase as p~%. In general, the thermodynamic
limit makes sense when we specify the macroscopic or mesoscopic variables,
e.g., temperature or pressure for gas molecules. In the present model, the
potential spectrum TI(p) is a mesoscopic control parameter that should not
depend on pu, and the local spectral density n* is a mesoscopic variable to
be determined. In our formulation, a superscript p is put on a variable that
depends on the scaling parameter. It is worth keeping in mind that, although
the spectral density function II(p) is fixed, the corresponding potential function
V#(x) depends on u because its structure becomes finer and finer for p — 0.

2.3 Conservation properties

We consider equation (7) on a spatial domain I', which is either R? or a periodic
domain V. The norm [ da|¢*(x,t)|? is conserved by the dynamics. If T' is
R9, the norm can be either finite for localized solution, or infinite. A local
conservation law always exists for [ (x,t)[2.

We now consider the other invariants, for equation (7), or the associated
local conservation laws. If not specified, integrations for positions and wave
vectors are always performed over I' and R¢, respectively. For a polynomial
function f: R — R, we define an operator K" = f(—(1*/2)V3 + €V#). Since
the Schrodinger operator is self-adjoint, a straightforward computation shows
that

()= [ dwo @ ok v (w0 (11)

is independent of the time ¢ when ¢* is a solution of Eq. (7). Equation (11) is
rewritten in terms of the local spectral density as

() = / dzdpK S (z, p)n(z, p,1), (12)
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where

() = ipulnfen (g Y oY
K (:c,p)f/Rddye YK (m+2,:c 2)

and k}’”(xl,wQ) = K$"0(z1 — x2)

is the Weyl symbol of the operator £*. In general, K" can be expanded
as a power series of € and u. The leading-order term is immediately obtained
as K?’O(cc,p) =f (|p|2/2). Therefore, for the small limit of € and p, we may
write the general invariant as

N = [aeins (BF) 0 @), (13)

Since the choice of f is arbitrary, the present system possesses an infinite
number of invariant. This property is related to wave frequency conservation.
For a scattering of wave action in spectral space by a time-independent poten-
tial, wave frequency does not change. Therefore, the amount of wave action
with frequency less than w remains constant. Setting f(¢) = h(w — o) in (13),
where h is the Heaviside function and w € RT, we define

A,[nt] = /dwdph <w - |p2|2) n*(z,p). (14)

Conservation of (f) for an arbitrary f is equivalent to the conservation of A,
for an arbitrary w € R, as fR+ dw dA‘” (w).

2.4 Wave kinetic equation

In this subsection, we shall derive the classical form of the wave kinetic
equation. A common derivation of the wave kinetic equation starts from a
closed equation on the Wigner distribution and performs a multiple time-scale
expansion, see e.g. [9]. We rather adopt here a perturbative approach in e
from the Schrédinger equation (7). This approach is also classical in the wave
turbulence literature [2, 54, 55|, will appear helpful in the derivation of the
dynamical large deviation theory in section 3, and has the advantage to gen-
eralize easily to the case of the kinetic theory of non-linear waves with 3-wave
interactions.

The first step is to express the solution of the Schrodinger equation (7)
using an expansion in power of €, such that ¥* = ¥f + ey}’ + 2§ + O(€?).
Inserting this expansion to (7), we derive the series of equations:

a¢ _ H’Q 2,1
81/1“

HQ 2
__® 3 ST
poat = =5 ViUl + VU
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) awlt H'Q
it =~V vyl

We consider this expansion for any given initial condition ¢*(z,0) = *°(z).
We assume that the initial condition does not depend on e, i.e., ¥f(x,0) =
YPH0(x) and wf(w, 0) =0 for j > 1. To write down the solution, we introduce
the propagator G*(x,t) such that

)
( v v2> G" = iud(x)s(t), (15)
and G* =0 for t < 0. We then obtain
G, t) = / dEG" (z — &, 1) (£, 0) (16a)
Rd
V(1) = i ar /R JEGH (@ — &, — T)VH(E)L (€,7)

= — dT/ d§1,GH (x — &t — T)VH(E1)GH (&1 — &2, TP (€2,0)

i
(16b)
1 [t
Vha,1) = i r [ dEGH @ — €.t = VAUt (ET)
- i [ an [ denGre - et mvie)
X GM"(&; — &1 — 2)VH(65)GH (€ — €5, 2)Y" (€3, 0). (16¢)
The equation for the propagator (15) is analytically solved as
h(t) 2 .
w _ i|p|“t/2n ip-x/p
GH(x,1) @) /dpe e , (17)

where h(t) is again the Heaviside function. Although the wave vector inte-
gration of this expression can be carried out, we keep this form because it is
convenient for later computations.

Importantly, the perturbation solution will be valid for not too large ¢. For
longer times, the higher order terms will not be small compared to ¢ even
though € is small. As will be clear in the following discussion, we will need
the perturbative solution to be valid up to p < t < 1; an intermediate range
between the microscopic and mesoscopic time scales.

Based on the perturbation solution of ¢* derived above, we shall consider
the evolution of the local spectral density n*. To simplify the computation, we
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introduce the Wigner transform of two functions, f(x) and g(x), as

w"(f,g)(x,p) = (2;#)(1 /Rd dy f (ac + %) gt <a; - g) e~ P Y/1 (18)

Its inverse is
f(ﬂh)gT(wg) = /dpw“ <:151-;:B2’p> eip'(wlfrm)/u. (19)

Basically, the local spectral density is the Wigner transform of identical wave
functions,

n' (@, p,t) = wh (", Pr). (20)

Inserting ¥* = o} + et + €2y + ... to (20), and using (16), we obtain an
expansion of the local spectral density n* in terms of € as

(@, p,t) = w' (g, vp) + ew" (P, 45) + ew” (vg, ¥1)
+Ew (W, Y1) + Ewl (U4, g) + Ewt (v, vh) + O(?). (21)

The first term on the right-hand side is easily computed as
wh (Pl fy) = n*(x — pt, p,0). (22)

This expression means that, in absence of the potential, the propagation of free
waves transports the spatial distribution of wave action density at the group
velocity p. It is notable that Eq. (22) is valid without taking an ensemble
average or an asymptotic limit.

We shall consider the expectation of (21) with respect to the realization of
the random potential V#. Since E[V#] = 0 has been assumed, terms propor-
tional to € vanish. The dominant contribution from the random potential to
the variations in local spectral density comes from terms of order €2. Direct
computations, performed in Appendix C, yield the expectation values of per-
turbation terms at the leading-order, (114), (115) and (116). Consequently, we
obtain

E [wh (', ) + Ew (0, 0f) + ' (0f, 5]
-2 /dna(n n) (n*(z,n,0) — n*(x,p,0)) + h.o.t.
o
with

2 2
o(py,p2) = 271l(p; — p2)d <p§| - p;') . (23)
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Here, h.o.t. represents the higher-order terms in the expansion that are
negligible in the asymptotic limit. Setting € = /¢, we have

14 Y _
lim E[n*(z,p,t)] — n*(x — pt,p,0)
pn—0 t

~ lim / dno(p,m) (n* (x,m,0) — n(z, p,0)).
p—0

Taking the limit ¢ — 0, we obtain a differential equation for the ensemble
average of the local spectral density, lim,,_,o E[n*] = n:

DL | - Tone,p.0) = ¢ [ dnolp,n) (e 1.0) ~ 0l p.0).
At this stage, this expression is only valid at the initial time, ¢ = 0. One cannot
extend it to t > 0 because the wave function " is a priori correlated with the
potential field V#. However, we shall argue that the correlation between *
and V* remains always weak at any time. Indeed, in the present problem, it
is assumed that the significant modification of the wave field ¢* by scattering
on the potential occurs at a time scale of wave propagation over a mesoscopic
distance. The typical correlation length of the random potential V# is much
shorter than this mesoscopic scale by a factor of u. Therefore, even though
interferences of the field with the potential produce slight correlations, the
free propagation of the field makes the correlation vanishes. This situation
resembles the loss of memory for particle collision in dilute gas—the molecular
chaos hypothesis. The present weak-correlation assumption allows us to regard
the temporal evolution of n* as a Markovian process such that the wave kinetic
equation would be valid any time as far as p is sufficiently small. We note
that this explanation applies to d > 2 cases. For one-dimensional problems, an
interesting phenomenon named localization is known to occur [56, 57]. This
localization phenomenon which invalidates the present kinetic regime [50, Sec.
5.2] is thus discarded in this paper.

Once this Markovian hypothesis is accepted, we may iterate the reasoning
expounded above for ¢ = 0 in order to reach any time ¢t > 0. We eventually
obtain the equation

PELL) 4 Van(a,pit) = [ dnolpon) (n(en )~ n(e.pur). (20
that is the ordinary form of the wave kinetic equation. Since the group velocity
of a free wave is now p, the second term on the left-hand side is understood
as the motion of the Wigner distribution at the group velocity due to the free
dynamics. The right-hand side represents wave scattering in wave-vector space
that occurs at microscopic scale. The function co(p;, p2) is the scattering cross
section determining the rate of wave action converted from wave vector p; to
P, per unit time.
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The wave kinetic equation inherits the conservation property of the original
Schrodinger equation, namely that d.A,[n]/dt = 0. However, the wave kinetic
equation differs from the microscopic Schrodinger dynamics (7) since the for-
mer appears time-irreversible whereas the latter is time reversible. Indeed,
for a prescribed potential field V#(x), let ¢ (x,t) be a solution of (7). Its
time-reverse counterpart is defined as ¢ (x,t) = YT (x, —t). As a consequence,
the time-reversed local spectral density reads as n’,(x,p,t) = n*(x, —p, —t).
Change in sign of p is a natural outcome because the wave group veloci-
ties of the forward and the reverse paths should be opposite. If ¢*(x,t) is a
solution of the Schrodinger equation, ¥/, (x,t) is also a solution. This is the
time-reversal symmetry. By contrast, the wave kinetic equation violates this
symmetry: if n is a solution, the time-reversed np is not a solution of the wave
kinetic equation, unless both n and ng are an identical stationary state (see
Eq. (26) defined below). This irreversibility paradox is reminiscent to the one
raised by Boltzmann for the case of dilute gases. As explained in [1] for the
case of the Boltzmann equation, we will see in the next section that one can
recover time-reversibility for the kinetic theory at the large deviation level, as a
time-reversibility for the stochastic process of the local spectral density. Time-
irreversibility arises because the wave kinetic equation describes the evolution
of the average n = E[n*] only, or equivalently in this case the most probable
evolution only. Other paths, including time-reversed paths, are possible: they
are just extremely unlikely.

Before moving toward the large deviation theory of wave kinetics, we
can remark that time-irreversibility can be also quantified by introducing a
Lyapunov function

S = /dwdplogn(sc,p). (25)

Following solutions of the wave kinetic equation, S increases monotonically
with time, dS/dt > 0. If the spatial domain T is finite, S achieves the maxi-
mum when the spectral density n(x,p) is homogeneous in « and isotropic in
p. We write this homogeneous distribution of the spectral density under the
constraint of A, [n] = A(w) as

B A'(pl2/2)
[ dwdnd(p2/2 ~ [n2/2)’

n3 (p) (26)

where the denominator is introduced for normalization purpose, and A’ =
dA/dw. Tt is obvious that n(x,p) = ni (p) is a stationary solution of the
wave kinetic equation. We note that the Lyapunov function S is actually the
microcanonical entropy of the macrostate specified by (n#,A,) = (n,A4) for
the Schrédinger equation as we discuss in Appendix B, and is related to the
quasipotential that appears in the discussion of the large deviation theory, as
we discuss in section 3.2.3.
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3 Large deviation formulation for random wave
scattering

In the previous section, we derived the wave kinetic equation as an equation for
the ensemble average E [n#] of the empirical local spectral density, with respect
to the probability measure of the random potential, in the limit g — 0. This
kinetic limit can be understood as a law of large number: lim,,_,o n* = E [n"],
where the limit has to be understood in a weak sense (for instance, the limit
holds when both n* and E [n#] are integrated over any subset U C ' x R?).
In statistical mechanics, it is quite common that an empirical macroscopic
quantity converges to its ensemble average for the large limit of the number
of elements. The deviation from the average is often exponentially small and
evaluated asymptotically by a large deviation principle. In this section, our
aim is to generalize the law of large number for the kinetic theory and to
compute the probability to observe any possible fluctuations for n*, as a large
deviation principle, in the limit p — 0. Such fluctuations are expected to be
characterized by a large deviation parameter proportional to p¢, where d is
the space dimension, because the number of statistically independent degrees

of freedom is of order p~?.

3.1 Large deviation Hamiltonian

We define the Newton ratio as the time increment for the local spectral density:
Ant /At = (n*(At) — n*(0))/At. We regard the temporal variations in n* as
a stochastic process, and look for the probability to observe a value of the
Newton ratio, conditioned on the value of the local spectral density at time 0:
n#(0) = n. Our aim is to justify that it satisfies

. . (27Tlu‘)d An* @ — ’
~ dimy Jimy SRy losP R = et =] = Llnal, o (27)
e=./cu

and to derive an explicit formula for the Lagrangian £. The limit lim , 0
e=./cu
corresponds to the kinetic limit ¢ — 0 where one has fixed ¢ = /cu. Here,

L[n,n] is the rate function of the probability of the Newton ratio P [n|n].
Through the fast microscopic dynamics, the memory of the initial condi-
tion of the phases of " are expected to be lost after some times, meaning that
two-times, or multi-times, correlation functions are expected to decay with the
time differences of two or several phase observables. Such a mixing property
is expected to be due to the conjunction of phase mixing (oscillating integrals
and the Riemann-Lebesgue lemma), spatial transport and dispersion, and the
effect of the random potential. Because the natural timescale for phase dynam-
ics is the microscopic timescale, one might expect a typical mixing time to be
much smaller than the kinetic time scale and to decay to zero in the kinetic
limit. This mixing property is required to justify a Markovian behavior and to
propagate local in time results, like the Lagrangian (27), in order to describe
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the dynamics at finite times. In none of the existing classical kinetic theories,
neither physicists nor mathematicians have been so far able to justify or prove
the requested mixing properties, in order to justify the long time validity of
kinetic theories or their probabilistic large deviation generalizations. This is
the main reason why mathematical results, for instance the celebrated Lan-
ford’s result for the Boltzmann equation [58|, or its generalizations [59], are
usually valid only for a fraction of the kinetic time. As it is customary in the-
oretical physics, we will assume the validity of such a mixing property in the
following.

We now assume the natural mixing hypothesis and the related Markov
behavior of the stochastic process. As a consequence, the evolution of n* does
not depend on its previous state. Then the path probability for the stochastic
process is Markovian, and the probability of a path of n#* for a finite time
interval, 0 < t < ty, can be derived from the local in time Lagrangian (27).
The path probability conditioned on the local spectral density at the initial
time n#(0) = n(0) is then

Pro) [{n“(t) - n(t)}ogt@f} X, oxP <_ ﬁ /Otf dtqn,n]> . (28)

This expression is analogous to the path-integral formulation for the probabil-
ity density in quantum theory. Note that the initial conditions n*(0) = n(0) is
fixed here, but one can easily consider a set of initial condition complemented
by an initial probability density Py. In such a case, the path probability of a
trajectory {n(t)}o<i<t, reads as

P [0 = nhvcres, ] 2,00 (~ e [ i) Bl (29

To compute the Lagrangian (27), we will use the Gértner-Ellis theorem
that connects the rate function £ to the cumulant-generating function, or the
Hamiltonian H defined by

d

o g (2mp)
Ml A= iy 2 A
e=./cpu

< log E [exp (f dwdpk(w,p)(?;g;)zg, At) — n(w,p)))} R

through the Legendre-Fenchel transform,

£, = sup { [ dzapria pli(e.p) — Hin, A]} . (31)

Our aim here is to derive the specific form of H directly from the perturbation
solutions of the original Schrdodinger equation (7).
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Following [2], we first compute the moment-generating function for the
increment of n*,

20\ A = E [exp (fdmdpA(w,P)(n"(%p, At) — n(w,p))ﬂ (32

(2mp)d

We insert the expansion of n#(x, p, t) in terms of € into (32). Since at the lead-
ing order w* (Yl , k) is statistically independent of V# by the weak correlation
hypothesis described before, it is possible to decompose Z# into two parts as

Zh = ZhZH (33a)

2t = o0 (g [ dedoA ) (0" (0. 0) ~ i) (33)

1
20 =B |exp( o [ dadph(e,p) (0 (@, A0) — w05, 05)) ) | - (350
(2mp)d
Using (22), the first part, Z{', is immediately rewritten as

1
Zl' = exp ((27W)d /dwdp)\(ac,p) (n(x — pAt,p,0)) — n(:n,p)) ) (34)
The second part is expanded in terms of € to obtain
ZF =142 +o(e?), (35)

where we have used E[V#] = 0. The Landau notation o(e?) gathers all the
terms that are negligible compared to O(€?) terms in the expansion. In the
following, we shall discard the higher order terms of o(e?) and concentrate
on computing Z4. Because we are considering the simultaneous limit of pu,
€ = ,/ci, neglecting o(€?) terms cannot be justified a priori. This kind of
problem commonly arises in wave kinetic theory [2] but we expect o(e?) to be
negligible in the kinetic limit. The direct computation of ZJ yields

2= ﬁ / deedp(z, p)E [wh (44, Y1) -+ wh () + b (4, 1)

+W/dw12dp12)‘(3’317171)>\(332»p2)
X E[(w" (¢4, 46) (@1, p1) + wh (95, 1) (1,p1))
X (W (P 00) (@2, pa) + wh (U5, ) (2, Pa)) ] (36)
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From the computations in Appendix C, specifically (114)-(116) and (118)-
(121), we obtain

2 = oy [ dwdps [O@p) - M@)oy ()
+ %(A(w,m) - A(fv,102))20(1)1,ioz)n(w,pl)n(ﬂ:,pz)} +hot. (37

Inserting Z* = Zl (1 + €22} into H = limay—o lim 0 ((2mp)?/At) log Z*,

e=,/cp
we obtain the Hamiltonian as
H[n,\| =Hr + Hg (38a)
Hr = —/dwdp)\(%p)p - Vyn(z,p) (38b)

Hs = [ dwdpy, (M. py) = Ne:p)o(pr, o)z, o)

S @.py) — M. p2) 0 (py po)n(e. pn(e.p)]. (380

We have separated the Hamiltonian into two parts, Hr and Hg. The first part,

‘Hp, represents the free wave propagation in position space and the second
one, Hg, the wave scattering in wave-vector space by the random potential.

3.2 Properties of the large deviation Hamiltonian

Once the specific form of the Hamiltonian is obtained, we can discuss the
properties of the stochastic process governed by the path-integral formula (28)
and (31). Formulations in the paper [1] are simple and informative, and we
summarize several important properties of dynamical large deviation theory
in Appendix A. We now check the classical expected properties of H.

3.2.1 Weak noise Langevin dynamics and wave kinetic
equation

The first important property of the large deviation Hamiltonian H is that it is
quadratic and convex with respect to the conjugated field A. This means that
the fluctuations of the infinitesimal current ndt are, locally in time, Gaussian.
Reading the quadratic part of the Hamiltonian (38c), we see that the local
covariance of the local in time Gaussian fluctuations are given by the diffusion
kernel

Y[n](x; p1,p2) = —co(py, po)n(x, py)n(x, py)

te / dno (py mn(x, p (@, mdp; —ps).  (39)
Rd
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As a consequence, in the kinetic limit p < 1, the dynamics of the local spectral
density in the kinetic regime corresponds to a weak noise Langevin dynamics
[60, 61]

i@, p,t) = —p- Von +c / dno(p,n) (n(z,m.t) — n(z, p, 1))
V(22 / dn =2l (@ p,m)E(n, 1) (40)

with &(p,t) a white noise such that E [£(p,t)¢(n, s)] = 6(t — s)d(p — m), and
where the kernel ¥!/2[n] is defined as a square root of diffusion kernel, meaning
that [ dnX'/2(z, py,n)SY2(z,n,py) = S(x, Py, Py)-

The second expected property is that the most probable path is the solution
of the wave kinetic equation. This is easily checked by noticing that the most
probable path, for which the action f(f T L[n,n)dt = 0 vanishes, satisfies

on 0H

(see Appendix A.1.1), and is also the linear term in A of the Hamiltonian H and
the drift term of the Langevin dynamics (40). Then, the path large deviation
analysis confirms that the wave kinetic equation can be understood as a law
of large number at the level of trajectories.

It is enlightening to rewrite the scattering part of the Hamiltonian Hg in
terms of the diffusion kernel (39) as

05

He = /dscdpldpg @, py)X[n](z; py,ps) <57”L(€EPQ)

n A(:c,m)) L (2)

where S is the entropy (25), and the Langevin equation (40) as

55
on(z,n)

V(2 / S n(z; pomE(n,t).  (43)

i@, p.t) + p- Von = / dn Sin)(z; p,n)

This suggestive forms immediately emphasize that .S is a Lyapunov function,
and that the dynamics has a detailed balance structure, as further explained
in section 3.2.4.

3.2.2 Conservation of the wave action distribution

As we discussed in section 2.3, in the original Schrédinger equation, the quan-
tity Au[n*] = [dxdph(w — |p|*/2)n#(z,p) for any w € R is conserved.
This conservation property has to be also verified at the large deviation
level, meaning that any trajectory {n(t)}o<i<t, has to lie on the manifold
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Au[n] = A(w). As explained in Appendix A.2.1, this is equivalent to the
Hamiltonian symmetry

5A,

A
’H[n, ta on

] = [n, N, (44)

for an arbitrary a € R, n and A. For the specific form of the Hamiltonian
H = Hp + Hs (38a) with Hg written in the symmetric form (42), one can
directly check the above Hamiltonian symmetry boils down to the following
property on the diffusive kernel (39)

[ dnStila: pomyses <o (15)

for any n, x, p, and w.

3.2.3 Stationary quasipotential

It was shown in the previous section that the wave kinetic equation possesses
an attractor which is a homogeneous distribution, nj, with the prescribed
constraints A, [n] = A(w), for any w. We now consider the fluctuations of n
from nj, at the large deviation level. More precisely, we define the equilibrium
distribution of the stochastic process at a large deviation level:

P sl =] =, ex (A0 ). (46

where ]P”:L g is the stationary probability measure of the microcanonical ensem-
ble which is parameterized by a small constant p as well as a function A(w)
specifying the action conservation constraint. The rate function U4 is named
the quasipotential (see Appendix A.1).

In principle, the quasipotential can be computed from the dynamics, start-
ing from the large deviation Hamiltonian, see for instance Appendix A.1.3.
Formula (69) gives an expression for the quasipotential, in the cases when
the wave kinetic equation has a single attractor. However, when one knows
explicitly the microscopic stationary distribution, for instance in the case of
equilibrium statistical mechanics, one can compute directly the quasipotential.
It is then related to the entropy. Those different expressions have to give con-
sistent results. Indeed, one may see a simple example of the relation between
microcanonical entropy and the quasipotential for the dilute gas dynamics in
[1]. The case of spatially homogeneous weakly nonlinear wave dynamics has
been discussed in [2]. For the present problem, we compute the quasipotential
from a microcanonical ensemble for the original Schrodinger equation model
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in Appendix B. One obtains

— [ dzdplog (T;(g(’;)) it Aun] = Aw) .

+00 otherwise

Ualn] = (47)

This result is technically not obvious. As far as we know, it had never been
derived before.

As shown in Appendix A.1.4, it is a generic property of the quasipoten-
tial to play the role of a Lyapunov function for the deterministic relaxation
dynamics, in this case the wave kinetic equation. Such a property can be
derived generically from the existence of a large deviation principle, indepen-
dently on the specific form of the large deviation Hamiltonian. One can note
that the quasipotential (47) is the opposite of the entropy S (25), up to an
additive constant. The quasipotential now depends on A(w) and satisfies the
normalization condition, min, U4 [n] = 0, where the minimum is achieved when
n(z,p) = nj (p) (26).

From Eq. (42) and the fact that U4 is equal to —S up to a constant,
it is immediately checked that /4 solves the stationary Hamiltonian-Jacobi
equation,

N {n ‘%] ~0. (48)

on

3.2.4 Time-reversal symmetry and detailed balance

Finally, we consider the time-reversal symmetry of the dynamics (see Appendix
A.2.2). For the present wave kinetic theory, we showed at the end of section
2.4 that the time-reversed local spectral density is defined as ngr(x,p,t) =
n(x, —p, —t), namely that wave vector needs to change sign in addition to time-
reversal t — —t. Therefore, it is useful to introduce the involution operator I
such that I[n(x, p)] = n(x, —p).

Since the wave kinetic dynamics is an equilibrium dynamics whose sta-
tionary state is characterised by the microcanonical quasipotential (47) at the
large deviation level, we expect the fluctuating dynamics to be time-reversible.
Following Appendix A.2.2, we indeed check that the Hamiltonian satisfies the
detailed-balance condition

H [n At 5;::‘] = H [I[n], ~I]\]], (49)

thus proving the time-reversal symmetry of the dynamics. For a trajectory that
follows the wave kinetic equation, /4 monotonically decreases towards 0, and
therefore the local spectral density irreversibly approaches the homogeneous
distribution nﬁ. However, when g is small but finite, there remains a possibility
that U, increases, namely that the spectrum moves away from the attractor
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nﬁ. This property is quantified by the fluctuation relation that is equivalent
to the detailed balance relation (49)

Proy [{n#(8) = n(t) }ocr<s ] (Z’{A [(0)] — Ua [n(tf)]) . (50)

= exp
Py [{n#(t) = nr(t —t5)}ogicy,] #=0 (2mp)?

The fluctuation relation (50) is the fundamental answer to the irreversibil-
ity paradox that arises in any classical kinetic theory, and in particular for
the classical wave kinetic theory. Indeed, let us consider a path starting from
n(0) that follows the wave kinetic equation until it reaches a state n(ty)
at some time t; > 0. Since the quasipotential U4 is a Lyapunov func-
tion, one has Uan(ts)] < Ua[n(0)]. From the fluctuation relation Eq. (50),
the exact time-reversed path starting from the state n(¢;) has a probablity
~ exp (—(2mp) " AU) (with AU = Ua[n(0)] — Ua[n(ts)] > 0) to occur in the
small g limit. The irreversibility turns into an improbability.

3.3 Decomposition of the Hamiltonian

Since a free wave packet does not change its wave vector during a free prop-
agation, and since also wave frequency is conserved during scattering by a
time-independent potential, waves with different pulsation w(p) = |p|*/2 (i.e.
located on distinct spherical shells) do not interfere with each other. There-
fore, the dynamics can be separated into an infinite number of subsystems in
which the degrees of freedom are mutually independent. Indeed, this expec-
tation can be verified by showing that the Hamiltonian is decomposed as an
integration over frequency, as we do now.

To do so, let us rewrite the wave vector as p = peg and define the cor-
responding frequency, w = p*/2. The vector ey is a unit vector whose angle
is specified by 6. Generally, the number of degrees of freedom for the angle
0 is d — 1. For example, for a d = 3 case, elevation and azimuthal angles
would be selected as a set of representative coordinate variables. The follow-
ing consideration is not dependent on the choice of these coordinates. We
just need to assume that a pair of opposite angles, § and —60, are defined
such that ey = —e_y. We decompose the wave vector integration element as
dp = p*dpdf = (2w)(?=2/2dwdh with df a surface element on a (d — 1)-
dimensional unit sphere, S?~!. We define new variables labeled by frequency
w as

n®(zx,0) = p?2n(x,pey) (51a)
A(z,0) = Az, pey) (51b)
0¥ (01, 02) = 27I1(p(eq, — €op,)) (51c)

Please do not confuse n“ with n*, in the context of this section. The Hamilto-
nian is decomposed into independent subdynamics, each of which involves the
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new variables labeled by w,
Hn, N = / HE [, A°)du = / (Y + HE)dw (522)
H7[n”, A°] = —/dwd9(2w)1/2)\‘“(m79)ee - Vn®(x,0) (52b)
HE[n?, A9] = c/da:d@lng

x | (2w) 4=D2(\ (a2, 01) — X (2, 02)) 0% (01, 02)n” (, 61)

+ = (A¥(x, 01) — X*(x,02))°0% (01, 02)n (2, 01)n” (,02) |, (52c)

M"—‘ L — |

where the integration for (z,6) is carried out over I' x S¢~1. For this system,
the diffusion kernel and the Lyapunov function are

¥ n“|(x; 61,02) = —co® (01, 02)n® (x, 6,)n" (x, 02)

+ c/d@’a“’(&l, 0 )n“ (z,01)n* (z,0)5(01 — 02)  (53a)

and S¥[n“] = / dadf(2w) =22 log n® (z, ). (53b)

The scattering part of the Hamiltonian is accordingly represented as

05«

W _ /dwd@ldﬂz)\w(w,el)z[nw](w; 01,02) <6nw(aw02)

+ Aw(%@)) . (54)

We may compute the probability of a path of local spectral density sepa-
rately for each frequency band. For each subsystem, the amount of wave action,
x [ dxdfn®(x,0) = Nn“], is invariant. For the attractor of the wave kinetic
equation, namely the homogeneous distribution, n* is everywhere constant in
I' x S%1, which we write ny. Finally, we find that the quasipotential,

n¥(x, 0)

; ) it ANne] = M)
h

400 otherwise

— [ dzdf(2w)(1=2)/2 ]og (

U“[n*] = (55)

satisfies the detailed balance condition, H“[n¥,A\“ + oUY/én¥] =
HY[Z[n¥], —Z[\*]] with the involution Z defined as Z[n“(z,0)] = n“(x, —0).
Consequently, the fluctuation relation for a path and its reverse applies to each
subsystem separately.
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3.4 Diffusive limit

In this paper, we have focused on the wave kinetic regime when the random
potential presents high oscillations at a scale comparable to a typical wave-
length of the wave field. Another relevant limit, referred to as the diffusive
approximation [17] or the Fokker-Planck limit [50], corresponds to the regime
when the spatial oscillations of the potential are at a scale larger than those
of the wave field. In this regime, a wave signal propagates along rays which
are randomly refracted by the potential, leading to an asymptotic diffusion
equation for the local spectral density [17, 50].

Technically, the diffusion equation on the local spectral density is often
derived from a multiscale expansion from the microscopic dynamics (7) [17, 50].
But interestingly, the diffusive limit can also be obtained from the scattering
kinetic regime that we have considered in this paper. Our goal in this sub-
section is to show how one can derive a path large deviation theory for wave
kinetics in the diffusive regime from the large deviation Hamiltonian (42). In a
recent paper, a similar weak scattering limit has been considered to derive the
path large deviation principle for plasma below the Debye length, related to
the Landau equation, from the path large deviation principle for dilute gases,
related to the Boltzmann equation [43].

In the diffusive regime, the random potential has typical variations over
large lengthscales compared to the typical wavelength of the signal. As a con-
sequence, the spectrum of the potential (6) is localised around p = 0, which
implies from the definition of the cross section (23) that incoming wave vec-
tors are randomly refracted by an infinitesimal amount at each time step by
the potential. One thus expects to obtain the path large deviation theory of
wave transport in the diffusive regime from the scattering regime by assuming
that the potential spectrum II is supported in the vicinity of p = 0.

In order to derive the diffusive limit from the large deviation Hamiltonian,
we use Eq. (42). We show in Appendix D that the diffusion kernel ¥ transforms
into a differential operator such that for any test function f and g:

/dpldpzf(pl)ﬁ(-’v; P1,P2)9(P2) & /depf(p)- [n(z,p)*D(p)] - Vyp(p)-
(56)
Here, D is the diffusion matrix computed from the potential spectrum II as

Dp) =5 [V, @ V,Rpe)ds and Ry) = [antimen. (57

From its definition, R(y) corresponds to the rescaled two-point correlation
function of the random potential.

Using Eq. (56), the large deviation Hamiltonian in the diffusive limit reads
as

Hln, \] = / dwdp Mz, p)p - Van(@, p)
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+ /d:cdp VpA(x,p) - [n(w,p)zD(p)] -Vp (571(5513) + )\(:c,p)) )
(58)

The diffusive Hamiltonian (58) conserves the spectral density at a given
pulsation w(p) = |p|?/2 because of the fundamental property

D(p)-p=0, (59)

which results from p - VR(ps) = OR(ps)/Js. This property means that the
diffusion of the spectrum is always orthogonal to the group velocity.

Moreover, the expression of the Hamiltonian (58) makes it clear that the
quasipotential of the diffusive dynamics is the same as the quasipotential of the
scattering limit Eq. (47). Furthermore, one can easily check that the detailed
balance relation (49) is still satisfied by the Hamiltonian (58).

4 Conclusions and perspective

The linear wave kinetic equation is a statistical model that governs wave
action density spreading in position and wave-vector space through propaga-
tion and scattering in random media. Motivated by recent works on dynamical
large deviation principles for kinetic theory, this study has derived the large
deviation principle describing the probability of a finite-time evolution of the
local spectral density of wave action in an asymptotic limit of scale separa-
tion. Importantly, the large deviation principle that is derived in this paper
satisfies a time-reversal symmetry with respect to the microcanoical quasipo-
tential, that is directly (and independently) computed from the microcanonical
measure.

In this paper, we restrict our considerations to the simplest Schrédinger
model with a homogeneous random potential. The next step is to extend the
present formulation to a wider range of situations. Possible technical difficulties
encountered during such future works involve (i) generalization of the disper-
sion relation to a function of position and wave vector, w(x, p), (ii) coping with
spatial inhomogeneity for the randomness, that leads to a space-dependent
scattering cross section, o(x, py,psy), (iii) consideration of a vector field that
involves polarized waves or multiple waves, e.g., elastic media holding com-
pressional and shear waves. Combining the present approach and a previous
work on wave turbulence [2|, we have also derived a formula of path-large
deviations for inhomogeneous spectral density in nonlinear 4-wave interacting
systems [62].

In the context of geophysics, the wave kinetic equation is used to discuss
energy cascades of internal waves in the oceans and atmosphere where rotation
and density stratification play key roles [13]. Because the dispersion relation
of internal waves depends not on wave vector but on its angle against the
gravity direction, even linear theory predicts interscale energy transfer. In this
process, balanced geostrophic turbulent flow acts as a random potential. If
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assuming a stationary flow state, i.e., fixing the potential field in time, the
formulation will be analogous to the present case. On the other hand, once
we allow the temporal variations in the geostrophic flow field, the situation
essentially changes. Wave frequency is no longer conserved during propagation
and scattering. Spreading of action density in frequency space associates gain
or loss of wave energy. Quantification of the energy exchange rate between
evolving turbulent eddies and waves remains an open problem. Recently, Dong
et al. [19] discussed wave frequency diffusion in geostrophic turbulence based
on a kind of kinetic equation model. As pointed out in the present study,
the ordinary kinetic equation predicts an irreversible change in the spectral
density. In the actual environmental situation, the scale separation parameter,
14, is not necessarily small and there should be non-negligible fluctuations in
spectral density. The large deviation formulation has a possible application for
the estimation of a fluctuating energy transfer rate, in such regime where the
kinetic theory is marginally valid.
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A Properties of the stochastic system specified
by a large deviation Hamiltonian

A.1 Path large deviation

This appendix presents some general properties of a stochastic process X €(t)
whose probability conditioned on an initial value, X€(t;) = X (¢;), is specified
at the large deviation level via a formula,

P[0 = X0 ciey ] 2,00 (-22) (60a)
S[X] = /ttf dtL(X, X) = /ttf di sup {P X — HX, P)} . (60D)

i i

Here, X¢(t) can be a scalar, vector, or continuous function defined on some
space. Basic requirements are that an inner product is properly defined,
and the dynamical property of the system is controlled by a single non-
negative parameter €. For the simplicity, we regard X as a scalar but the
following consideration can be immediately extended to general cases. The
large deviation Hamiltonian H(X, P) is a convex function of P and satis-
fies H(X,0) = 0 for any X. From the definition, the Lagrangian £ satisfies



Springer Nature 2021 IMTEX template

28 Large deviations for linear wave kinetic equation

L(X,X)>P-X—H(X,P) for any X, X and P. Therefore, inserting P = 0,
we know £ > 0.

A.1.1 Relaxation path

Clearly, in the limit of ¢ — 0, the system becomes deterministic with a sin-
gle path that minimizes the action S[X] for a prescribed initial condition
X (t;)—named the relaxation path. Since £ > 0, if there exists a function R(X)
that satisfies £(X, R(X)) = 0, a path solving X = R(X) minimizes the action
and yields minx S[X] = 0. From the facts that £(X,X) = P- X — #(X, P)
with P solving X — H/OP = 0 and #(X,0) = 0 for any X, we understand
that a function R(X) = OH/OP|p_, fulfills L(X, R(X)) = 0. We thus assert
that an equation

X"=R(X") =

Q|
I

(X7,0) (61)
determines the relaxation path X" (¢).

A.1.2 Optimal path

Slightly changing the situation, if we fix both the initial and final states,
X(t;) = z; and X(t5) = xy, respectively, the most probable path from z; to
x ¢, namely the optimal path, or the instanton, is obtained by again minimizing
S[X]. This problem is equivalent to the principle of least action in analytical
mechanics. In this context, P is called the generalized momenta and repre-
sented by P = 0L/ dX which is no longer 0. The optimal path in phase space
is governed by a set of canonical equations,

. oH
. oH

and we shall write their solutions as X°[xy,ts; ;,t;] and Py, ty; x4, t).
For the simplicity, we fix the initial conditions, ¢; and z;, and rewrite the final
state as x and ¢t. We then introduce the Hamilton’s principal function Q as an
integration of the action following the optimal path as

Q(x,t) = /t | drL(X°(r),X°(7)). (63)

i

It is known in analytical mechanics that in this case the generalized momenta
at the final time is represented as P°(t) = 65/8X’ = 0Q/dz, and Q solves
t
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the Hamilton-Jacobi equation,

09 0QY\
o T (;« m) = 0. (64)

In the definition of Q(x,t), a set of arguments, (z, t), is arbitrary chosen. When
we pick up an optimal path {X°(7), P°(7)}, at any point on this path, the
generalized momenta P and the Hamilton’s principle function Q is related via

Por) = 92 (X°() 7). (65)

Therefore, combining (65) and the first line of (62), we formally obtain a single
equation determining the optimal path,

dX"_a’H ., 09 .
dT_aP(X’a:U(X’T)). (66)

This equation is, however, not generally useful because Q(z,t) is inaccessible
in most cases.

A.1.3 Quasipotential and fluctuation path

Going back to the original stochastic model, the meaning of Q is understood
as the rate function for the probability that X¢ reaches x; at t = t;. Indeed,
we may derive from (60) an expression

PLX“(1) = 2l X*(t) = 2] < exp (—Q”)) (67)

€

based on the contraction principle. Now, we shall consider the stationary dis-
tribution of the probability density of X€. This can be done simply setting
t; = —oo in (67). To make the discussion more specific, let us assume that the
relaxation dynamics (61) has a unique global attractor xo, where R(xo) = 0.
Then, we set x; = xg and also t = 0, to write a large deviation formula for the
stationary distribution

€

Py(z) = exp (“ (@) (69)

with

0
Uz) = inf / dtL(X (1), X (t)). (69)

" X(0)|X(~o0)=ro and X(0)=z J oo

The rate function U is called the quasipotential. Since U is the special case of
Q but independent of ¢, it solves the stationary version of the Hamilton-Jacobi
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equation (64),

1 (x ‘;Z’) — 0. (70)

For the present case, the optical path X°(7) represents the most probable route
from an attractor xg to a specific point z. This route is called the fluctuation
path and is denoted by X/ (¢). Once we obtain the quasipotential U(x), (66)
provides an equation determining the fluctuation path as

X1 = rx = 58 (0, 5. )

Since the vector field F(x) does not depend on ¢, this equation is more useful
than the original one (66). On the fluctuation path, the generalized momenta
is computed based on (65) as P¥ = U /0x(X /). Combining (70) with the fact
that H is constant along the optical path, we understand that #(X/, P/) =0
always holds.

A.1.4 Quasipotential as a Lyapunov function

A relaxation path and a fluctuation path have distinct properties for the
variations in Y. For a relaxation path, we have

Q. U, .. OH, . U, .
MU xry = s W xry = P00 (x)
. COU N O U,
—H(XT,0)—H (X x >>) + 2 M (xn) <o,

=0
=0

where we have used the general expressions, H(X,0) = H(X,0U/0x(X)) =0,
and the convexity of H(X, P) for P. For a fluctuation path, we have

au . oU OH ou ou
ot =2 Gty = 91 (0, Ghxn ) )
ou OH ou ou
= a0y -3 (x0, Gheeny) + 5 (x0, Shexn) A =0,

=0

again from the convexity of H. We have thus learned that the quasipotential is
a Lyapunov function because it monotonically decreases in a relaxation path
while increases in a fluctuation path. These results are natural consequence
from a basic property that U(z) is minimum at the attractor zy and the
relaxation and fluctuation paths represent routes to and from the attractor.
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A.2 Properties of large deviation Hamiltonian
A.2.1 Conservation law

From now on, we shall regard X and P as vectors so that there are multiple
directions in X space. For this case, when the Hamiltonian H possesses a
kind of symmetry, it is related to the conservation law of the system. More
specifically, let us suppose that we find a function C(X) that satisfies

H <X7 P+ ag)c() =H(X,P) (72)

for any X, P, and «. This condition is equivalent to

Py ) =0

OP

for any X and P. Now that (X, ) is flat in the direction of dC/0X, from the
property of the Legendre-Fenchel transform [63], the corresponding Lagrangian
has a property,

oc

L(X,X) = +oo if Xa—X

(X) #0. (73)
This expression indicates that the probability for a path crossing a contour of
C is strictly 0. This constraint applies not only to the optimal path but also to
any path with random fluctuations. We thus understand that (72) serves as a
condition for C being an invariant of the system.

A.2.2 Detailed balance

The detailed balance is a property of equilibrium states which asserts time-
reversibility of the process, meaning that the probabilities of any trajectory
and its reversed counterpart are equal. A basic expression of detailed balance
for a stationary stochastic process is Pat(y; 2)Ps(z) = Pas(z; y)Ps(y), where
Pa¢(y; ) is the transition probability from a state = to another state y during
a time interval At, and Pg(x) is the stationary probability distribution.

Since we are now considering a continuous Markov process, it is enough to
regard At as arbitrary small. For the limit of At — 0, we may write y ~ z+TAt
and redefine the transition probability as Pa¢(z, &) ~ Pa¢(z+2At; ). Assum-
ing the continuity of P and Pg, the detailed balance condition is rewritten
as

Pas (.’E, z)Pg (3;‘) ~ PAt(,T + T At, —.i’)IPS (,T + .Z"At). (74)

For the present problem, the probability distribution is specified as Pa¢(z, &) =<
exp(—AtL(z,&)/e) and Pg(x) =< exp(—U(x)/e). Therefore, the detailed
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balance condition (74) is rewritten as

ou

L(z, &) — L(x,—%) =% - e

(75)
This condition is modified in terms of the Hamiltonian via the Legendre-
Fenchel transform as

H(z,—p) =H (;v p+ ZZ) (76)

Because H(x,0) = 0 in the current problem, the stationary Hamilton-Jacobi
equation (70) is a necessary (but not sufficient) condition for ¢ being the
quasipotential.

Once the detailed balance condition (76) is verified, we understand that
the probabilities of a path and its reverse are related at the large deviation
level via the expression,

P {{Xe(t) = X(t)}tjgtgtf] ( Z’{(If)u(x’)) . (77)

AO exp
P{Xe(t) = X(ts +ti — D} crr, | ¢

an equivalent form of the Crooks fluctuation theorem. Another outcome of
the detailed balance is that the fluctuation path is the time reverse of the
relaxation path. This property is derived from

R(X) = OH 87—[( ou

7p K0 =55 1% ax) = —F(X).

B Microcanonical ensemble and quasi-potential
for the Schrodinger equation

In this appendix, we consider the microcanonical ensemble of the dynamics

governed by the Schrédinger equation, (7). The aim is to compute the quasipo-

tential of the local empirical spectral density, i.e., the large deviation rate
function of n#, in the small p limit. We will prove that

=l = e (— 2l (79

with Pﬁl,m the probabilities with respect to the microcanonical measure with
the constraints,

A= [o(o- @3w@mmw Aw), (79)
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where h is the Heaviside function, and A : RT™ — R™ is a prescribed function.
The expected form of the rate function, namely, the quasipotential, is

— [ dazdplog ("n(:(f))) it Au[n] = Aw)

+00 otherwise

Ualn] = ; (80)

where

AR
[ dxdné(|p2/2 —nl2/2)"

i (p) (81)

In the following proof, we first define the microcanonical measure and then
derive the rate function (80).

If we consider an infinite domain with a finite amount of total wave action,
fRd |#|2dx < oo, since the wave action density will be diluted to absolutely 0
everywhere, an equilibrium state of the microcanonical ensemble does not make
sense. Here, we instead assume a spatial periodicity of the scaler field ¥*(x)
and concentrate our attention on a d-dimensional cubic domain, [0,27)? =
I' ¢ R% In this setting, the empirical local spectral density (10) consists of
delta functions in wave-vector space like

nf(@,p)= Y, nh(@)d(p— pk), (82)
ke(1/2)Z¢

where nf (x) is a discrete form of Wigner distribution adapted to periodic
domains, defined as

nli (@) = @ /F dye 2R UGH (5 4 y) it (). (83)

We also introduce the Fourier coefficients of * as

T 1 —ik-x
i = G /F e K i () dao (84a)
P(m) =Y R (84b)
kezd

Perceval’s theorem allows us to write the wave action density per unit volume
in three forms,

L nt(x xdp = 1 H(e)2de = pap:
ot [ e pidndp = o [t @) S )

We shall set p — 0 while keeping this action density finite. When we fix a
volume element in p space, the number of k vectors which are involved there
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increases as ~ p~%. Therefore, the typical amplitude of the Fourier coeffi-
cients depends on p as ) ~ O(pd/z) Now we scale ¥* by introducing a new

coefficient, af with p € uZe, as @g = pd/2at ke ie,
at = v efip-w/uy,u(m)dm (86)
P Gy |

Note that af remains finite for p — 0, but its norm,

(27p) ™ [1o, ga n* (@, p)dxdp, diverges in the same limit.

To apply equilibrium statistical mechanics, we consider the phase space
spanned by the scaled coefficients, {ag}peuzd. In this space, the Lebesgue
measure m is represented as

pEMZd‘a;ﬂQ

dm = [ [ dasdalst = T dajydaj, (87)
p P
where ak = (aj, + iaj,)/ v/2 is understood. This measure makes sense only

when an upper limit of the wave vector is set to truncate the infinite
product. As a result, the number of degrees of freedom of ¥* in physi-
cal space is also restricted. Let us define the bounded set of k as Kn =
{=1/(2A) +1,...,1/(2A)}*, and accordingly that of p as uKa. The number
of elements in Ka is N' = 1/A9. Then, ¥* is specified by the values at A
points, I'a = {0, A, ..., 27 — A}d, and the values in T'\ T are determined by
interpolation. The Lebesgue measure is now represented in either wave vector
or position space as

I1 dasdalt =5 T] dv*(@)dg (), (88)

peukKa wEFA

where JX is the Jacobian of the function that maps af to 1&”. To compute this
Jacobian, we consider the integral,

/ dm exp [—(27;)(1 /F e p)da:dp} (89)

that we express in two different ways:

/ H dagda‘;f exp |— Z |aki|?

pEpuKA pepKa
=JA / (L{W x)dyt (@ )) exp l— (m) gp:AW ] (90)
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The left-hand side turns out to be (27)", and the right-hand side is
IR @2m)N (27 )N NN . We therefore obtain JX and, accordingly,

i [ @)

2n ) TN (1)

xzcl'a

We denote by E integrals over the Lebesgue measure (91). The microcanonical
measure with constraints on A is then defined as
11,6 (A, [n*] — A(w))

4 B L6 (A o] — AW ™ o

where I1,6 (A, [n"] — A(w)) means that we constrain the values of all the
invariants A, for any w.

Our goal is to compute the probability distribution of n# for a microcanon-
ical measure constrained by A, i.e.,

E[5 (n#* = n) 11,0 (Ay [n#] — A(w))]

Byl = 1) = = L ]~ A@))]

(93)

It will be mathematically convenient, for intermediate computations, to use in
the following a normalizable Gaussian measure dmg,

datdatt
dmg = H e lapl? 2P P
2
peuKa

1 / L
=exp | ——— n#(x, p)dedp — N log 2w | dm, 94
g o@D &4

which satisfies [ dmg = 1. We note that the A'-dependent term diverges in
the A — 0 limit, but this divergence will be compensated in P!; below. We
denote Eg averages with respect to this Gaussian measure.

Then, (93) can be rewritten as

IP)fg,rn[nu = TL]
exp [(2m0) ™ [ i@, p)dadp] B [5 (= n) T3 (A, [n] — Aw))]
Eg {exp |[(2mn) = i g (@, p)dadp) T (A, 0] — A(w)) |

(95)

In the following, when we consider the Gaussian measure m¢, the continuous
limit A — 0 is always understood.
We look for a large deviation principle

(96)

=0 (2mp)d

Bo B (0" ~ ) TLb (A, ] = 4] =, 0 (15050 )
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Our strategy is to compute its rescaled cumulant generating function and to
apply the Géartner-Ellis theorem. We shall then define a free energy as

}7 (97)

where 8 : RT — R is a real continuous function representing the chemical
potential and X\ : T' x R — R is also a real continuous function. Because n*
is quadratic in ", the expectation is a Gaussian integral. To make it explicit,
the expression in the square brackets is rewritten as

1
A B3] =— lim (27 NogE exp|— / dxdp
fal 8] == lim (210)" log G{ [ i o

X ( [ B ( |’;| ) dw + Az, p))n“(w,p)

@) L5 )" (@) de (98)
where L5 is a pseudo-differential operator defined as
Lyt(e) = [ Lyfaa)or ()i (99a)

1 (z+a o
Lx(w,w’):W/Rd)\(Q,p>ep(m =)k dp (99b)

S(e.p) = {A(mm) + Jr B)h(w ~ [pP/2)dw (2 €T) (99¢)
0 (z¢l).

In (98) and (99a), the integration range is unbounded. However, Riemann-
Lebesgue lemma applied to (99b) assures that the kernel function Lj vanishes
in the limit of g — 0 except in the vicinity of the points of * = «’. Conse-
quently, further taking into account (99¢), the range of the integration of (98)
and (99a) can be reduced from R? to I

To obtain a simpler form of fg[A, 5], we need to compute the functional
determinant of £5. This is done here straightforwardly:

falh, Bl = — lim (2mp)*log Eg { exp | — ! Y () L50M (x) dee
pn—0 (27-‘-“)‘1 R A
dyp* (z)dyH ()
=~ limy Jim, (2my)"log / I —ramgmw

xel'A

A2d
X exp |— Z V(@) Ly (z, ')y (2! ZW)#

27('[1/) x,x’' €A 2 ZISEFA

= lim lim (27p)? log det I+ LA) (100)

n—0 A—0
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We have carried out the Gaussian integration. The problem thus reduces to

computing the determinant of an N x N matrix, I + LS\A, where I is a unit

matrix and L;\A consists of {AYL; (z, @) | ,@’ € T'a}. Let us use the following
expression,

log det (I + L;\A) = trlog (I + LXA)

> (—1)d .
= —Zi( D p, (101)
J A
Jj=1

which holds for sufficiently small X\. We know that LS\Aj consists of
{Adei(m,:c') | z,z’ € FA} where Lé\(:c,m’) corresponds to the kernel func-

tion of an operator,

Lh=L5.. . Ly, (102)

in the small A limit. In general, a product between pseudo-differential oper-
ators corresponds to a star product, or a Moyal product, between symbols
[64, 65]. The star product is expanded in terms of p with the leading term
equivalent to the ordinary product. Accordingly, E%\ = L5;+0O(u) holds, where

M is the jth power of A. We thus derive

, 1 -
1 -,7_ = ‘7
Jim L% (@, ) G’ /Rd N (2, p)dp + O(u)
. 1 -
T Aj J
o L{lglo trLy e /Fde M (x, p)dxdp + O(p), (103)

and hence
2
fal\ B = / log (/\(ac,p) + Blw)h <w - I;') dw + 1) dzdp. (104)
I'xRd R+

From this formula, the Géartner-Ellis theorem yields the rate function Zg (96)
as

Zoln A] =t { [ dedoA@pintep) + [ dos)at) - sna1

9 R+
(105)
which is computed as
—1-1 if =A
Telnd] = {fd:cdp(n ogn) i Awp?} @) (106)
+o00 otherwise
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As should have been expected, the minimum value of Zg[n, A] is 0, which is
realized when and only when n =1 and A(w) = A, [1].

Based on the large deviation result (96), the numerator in (95) turns out
to be

exp [<2w>-d [ n(w,mdwdp] Eqr 6 (1 — n) Tl (As [1#] — Aw))]
= exp ( Saln] ) (107)

=0 (2mp)d

with

Saln] = {f dzdp (1 +1logn) if A,[n] = Aw) . (108)

—00 otherwise

The finite part of this function defines the entropy for a mesoscopic state
specified by n, and it coincides with the Lyapunov function (25) for the wave
kinetic equation. Because the denominator of (95) is the integration of the
numerator over all n, the Laplace’s principle enables us to compute it as

o {oxp | (2m) 0 [ wpiamap] L3 (AL 1] A}

50 () (109)

with s[A] = sup,, {Sa[n]}. The supremum is achieved when A, [n] = A(w), and

nl.p) = nit(p) = (1)) (110)

that is, n is homogeneous in space and depends only on the magnitude of its
wave vector. The function N(w) is related to A(w) by the condition A, [nil] =
A(w). This gives formula (81) for ni'. We also have

s[A] = /dmdp (1+ lognf) . (111)

Finally, starting from (95), and using the two asymptotic relations (107) and
(109), as well as (108) and (111), we obtain

Ph [* =n] = exp (— Ualn] ) (112)

=0 (2mp)?

where the quasipotential U4[n] is given by equation (80). We have established
the announced results.
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C Computations of scattering terms

This appendix describes somewhat intricate derivation of the scattering terms
that appear in the wave kinetic equation and the large deviation Hamiltonian.
For this purpose, we prepare some useful formulae,

t T1 X
/ dnei‘””/“/ droye ™21 = s (w) + o(p) (113a)
0 0
/ dﬁe’“”/“/ drye™T2/1 = 21t 6 (w) + o(j) (113b)
0 0
1

—ig)lel
o [ agere g = 3 WG @)vssp). (1130)
(2mp)d /Rd O%O al

Equations (113a) and (113b) are often used in literature of weak turbulence
[2]. The residual terms denoted by o(u) make negligible contributions in the
limit of 4 — 0 compared to the leading-order terms when integrated with
respect to w. In (113c), a multi-index notation is used. In the following compu-
tation, integration is always carried out over R?, except for the basic positional
coordinates represented by & whose integration range is I'.

C.1 Terms appearing in the classical wave kinetic
equation

We first compute the scattering terms in the wave kinetic equation, specifically
E [w* (b, ¢¥8)], E [wh (Y, ¢4)], and E [w* (4, ¢4")]. These terms are common
with those linear to A in the scattering part of the large deviation Hamiltonian,
Hs. The computations are slightly involved but mostly straightforward. A
detailed procedure is presented only for the E [w# (¢4, ¥f)] case.

From (16) and (18), we have

1 t T1 ‘
) = g [ 40 [ [ dvdersemr e
xGH (m + % —&,t— 7'1) VE(E)GH (& — &y, 11 — T2)VH(€5)GH (&5 — &5, T2)YH (€5,0)

xGH (@ — % —g,t) 1€, 0).

Taking ensemble average, writing the propagators G* as Fourier integrals (17)
with wave vectors m,, 75,15 and 7, in this order, and setting

B(VH(€)V(E)] = [ dngens @ -€min,)

(€5, 0)0MT (€,,0) = / dnge™s &8 i (65 + €4)/2,m5),
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we derive

E [w* (¢, ¢5)]
1 .
=55 | Y AM)yomyce” PY/ B
_M2(27m)5d/ YdE12340M123456¢

t T

Xe—i(lmlz—lmlz)t/?u/ dﬁei(lnll2—|n2\2)n/2u/ el =y )72 /20
0 0

x6”11‘(m+y/2*§1)/I—Lein2'(£1*52)/#62"’13'(52*53)//»‘«6*75774'(3*1!/2*54)/#

XH(n5)ei”5'(51_§2)n((£3 + 54)/27776)6i"6'(53_54)/“.
Integration of this expression with respect to y, &; and &, yields

E [w" (5, 1))
1
=+ [ d&;,d
_Mz(zwu)Qd/ €34dM123456
t T
Xe*i(\mlzflmﬁ)t/?u/ dTlei(|"71|2*|"72‘2)7’1/2N\/ ldﬁei(lnz\k\ng\z)m/m

0 0
Xei("ll‘m_773'53_"74'm+"74'§4+716‘£3_776'§4)/H

x6((ny +m4)/2 = p)6(n1 — M2 —M5)6(N3 — M2 — M35)
x(ns)n((€3 +€4)/2,m6)-

We change the variables as

X:£3—;£47 Y:£3_£47

and carry out the integration with respect to Y to get

E [w* (¢4, ¢5)]

1
g | X
t T
Xefi(|m|2*|n4|2)t/2u/ dTlei(|Tl1|2*|772\2)Tl/2#/ " drgeimal®—Ins )72 /20
0 0

xe! M=) (@220 5 ((ny + 1) /2 — n)
xd((my +m4)/2 —P)o(My — N3 —M5)0(N3 — Ny —M5)
xI(n5)n(X, ng)-

We understand that 7, = m3 and g = p hold in the integrand. Integration
with respect to 5 and ng yields

E [w* (¢5, ¢5)]
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- dXd
T2 (2rp)d 1245

t T1
Xefi(lmlzflmﬁ)t/%/ dﬁeium%mﬂ%n/zu/ drypet(mal*=Im11)72/20
0 0

Xei(m—m)-(m—X)/u(g((nl +m4)/2 = Pp)o(n; — My — M)
xII(n;)n(X, p).

We use (113a) to derive

t ) T1 ) 2 2
/ dﬁez<|m\’-’—m2\2>n/2u/ drpei(malP=m P ma /20 _ g ("’;' ‘";' )+o(u)-
0 0

We also use (113c) to derive

1
(2mp)d
=0(m, —p)n(X,p) + O(u,t).

/ddee*i(\m|2*|n4|2)t/2uei(m*n4)~(w*X)/u5((n1 +n,)/2 — p)n(X,p)

Consequently, we obtain

E [w (ut, uf)] ——/dna P >+o(;> (114)

Because w (Yl ) = [wh (4, E)]T, and o and n are real functions, we also
have

Bl o8)) =~ [ dnotp.m) >+o(;> (115)

Finally, we consider E[w” (¢}, ¥}")]. From (16) and (18), we have

W (gt i) = ‘m / dn, / dr / Ay d€ yyse~ PV
x G* (:c += =&t - 71) VHE(&)G" (& — &2, m)P" (€2, 0)
x G (= 5~ €5t = 7) V()G (6 — €0 ) (60,0

Taking the ensemble average, introducing the Fourier integrals, and integrating
some variables in the same manner as the previous case, we derive

E [w* (41, 41)]
1

= s | X
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t t
Xe—i(lnl\z—\n3\2)t/2u/ dﬁemm|2—|n2|2>n/2u/ drye—ims = a7 /20
0 0

xe! (M=) (@=X)/u5((n, +ny) /2 — )
x0((my +m3)/2 —=p)o(ny — Ny —M5)6(N3 — Ny — M5)
xII(n5)n(X,ng).

Applying (113c), understanding 1, = 5 and 1, = 1, in the integrand, using
(113b), and Integrating all the possible variables, we finally obtain

Bl (04, 0f)] = © [ dnyotp.mnen) +o (;) S ()

C.2 Quadratic terms in the Hamiltonian

We compute the terms in H g quadratic in A, originating from four expressions,

(27T’L>2d/dm12dp12>‘(‘171aPl)A(m27p2)E[w#(¢fa¢5)(mlvpl)wﬂ(¢gawf)(fCZ»pQ)]
(117a)
ﬁ/dﬂ?lepu/\(fL'lap1))‘($27p2)E[w#(¢ga7#’;)(3317171)7”#(7/#’wg)(m%pQ)]
(117b)
ﬁ/dwudplz/\(whP1)>\(:v27p2)E[w“(W,1/}6‘)(:017191)10“(1%”,w(’f)(acz,pg)]
(117¢)
(%L)Qd/dwudPuA(whpl)/\(wz,Pz)E[W“(%‘vW)(wl,Pl)W(%,wi‘)(ﬂ?z,pz)}

(117d)

Among these, the two pairs, (11