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The Doeblin Graph of a countable state space Markov chain describes
the joint pathwise evolutions of the Markov dynamics starting from all pos-
sible initial conditions, with two paths coalescing when they reach the same
point of the state space at the same time. Its Bridge Doeblin subgraph only
contains the paths starting from a tagged point of the state space at all possible
times. In the irreducible, aperiodic, and positive recurrent case, the following
results are known: the Bridge Doeblin Graph is an infinite tree that is unimod-
ularizable. Moreover, it contains a single bi-infinite path which allows one to
build a perfect sample of the stationary state of the Markov chain. The present
paper is focused on the null recurrent case. It is shown that when assuming
irreducibility and aperiodicity again, the Bridge Doeblin Graph is either an
infinite tree or a forest made of a countable collection of infinite trees. In the
first case, the infinite tree in question has a single end, is not unimodularizable
in general, but is always locally unimodular. These key properties are used to
study the stationary regime of several measure-valued random dynamics on
this Bridge Doeblin Tree. The most important ones are the taboo random dy-
namics, which admits as steady state a random measure with mean measure
equal to the invariant measure of the Markov chain, and the potential random
dynamics which is a random extension of the classical potential measure,
with a mean measure equal to infinity at every point of the state space. The
practical interest of these two random measures is discussed in the context of
perfect sampling.

Keywords: Discrete time discrete space Markov chain; potential measure; taboo measure;
invariant measure; perfect simulation; measure-valued Markov chain; dynamical system; re-
currence; foliation; Doeblin coupling; coalescing random processes; random graph; unimod-
ular random tree; one ended random tree; eternal family tree; renewal process; point process.

1. Introduction. Let {Xt}t∈N be a Markov Chain with countable state space, S . It is
well known that when {Xt}t∈N is irreducible, aperiodic, and positive recurrent, it has a
unique stationary distribution. On the other hand, when it is null recurrent, it admits no
stationary probability distribution, but a unique stationary measure σ, i.e., the measure σ
satisfies σ = σP with σ(s∗) = 1, where P is the transition probability matrix the Markov
Chain, and s∗ is an arbitrary fixed point in S .
One can consider a Markov Chain as a dynamics on S-valued random variables. This dy-
namics can be written as the following equation 1

(1) Xt+1 =
∑
x∈S

1{Xt=x}h(x, ξxt ),

1Another representation for Equation (1) is the stochastic recurrence equation Xt+1 = h(Xt, ξt).
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where {ξxt , x ∈ S}t∈Z is the source of randomness which can be assumed i.i.d. for different
t ∈ Z and such that P [h(x, ξxt = y)] = pxy . Here h is an update rule which allows one to
construct the random variable at time t + 1 from that at time t. When {Xt}t∈Z is positive
recurrent, Equation (1) has a stationary solution. This means there is a random variable X ,
with distribution σ, and such that X d

= h(X,ξXt ), with d
= meaning equality in distribution.

In the null recurrent case, this dynamic does not admit such a stationary solution. This paper
introduces two other dynamics related to the Markov Chain {Xt}t∈Z, that have a stationary
solution in the recurrent case, including the null recurrent one.These dynamics are on random
measures on S and are of the form

(2) Mt+1 =H(Mt, ξt),

where for each t, Mt is a random measure on S and ξt = {ξxt }x∈S is the same as in Equa-
tion (1). Two different update rules for H , referred to as the Taboo Dynamics and Potential
Dynamics are introduced. See Section 2 for their definitions. These two dynamics are related
to the Doeblin coupling of the Markov Chain {Xt}t∈Z. They leverage the Doeblin Graph
and a subgraph of it, the Bridge Graph, of the Markov Chain. The Doeblin Graph of {Xt}
is a random graph with vertices in Z× S . In this graph, the x-axis, which is referred to as
the time axis, represents time, and the y-axis represents the state space. The edges of the
Doeblin Graph are defined using the transition probabilities of the Markov Chain: there is an
edge from each vertex (t, x) to vertex (t+ 1, h(x, ξxt )), with { ξxt }x,t as defined above. The
Bridge Graph with respect to s∗ is the union of all paths of the Doeblin Graph starting from
Z× {s∗}, where s∗ is an arbitrary fixed point in S .
It is shown in [3] that the Bridge Graph of an aperiodic, positive recurrent Markov Chain is
a.s. a tree, which is locally finite and unimodularizable. Using the unimodular property, it is
shown that in this case, there is a unique bi-infinite path in the this graph. The distribution of
the points in this bi-infinite path is the stationary distribution.
The first aim of the present work is the study of the properties of the Bridge Graph con-
structed from an aperiodic and null recurrent Markov Chain. In this case, one can show that
the Bridge Graph is not unimodularizable in general, that it can be both a tree or a forest, and
that it contains no bi-infinite path when it is connected or when it satisfies some additional
condition given in the paper. It is also shown that the Bridge Graph is locally unimodular
in that it contains a unimodular and one ended random tree, the regeneration time tree. This
allows one to show that the Bridge Graph is one ended as well, which is essential for the
following analysis.
In the recurrent case, two measure-value dynamics are defined on the Bridge Graph, the
Taboo and the Potential dynamics. First, it is shown that the Taboo dynamics has a stationary
state on the space of random measures on S , called the Taboo Point Process (TPP). A key
point is that the mean measure of the TPP is equal to the invariant measure of the Markov
Chain.
The Potential Dynamics is also studied. In the null recurrent case, this dynamics also has
a stationary state on the space of random measures on S . This random measure is called
the Potential Point Process (Potential PP). This point process is locally finite, but its mean
measure is infinite.
These two point processes can also be defined in the positive recurrent case as well, and
their properties are also discussed in this case. They are hence fundamental objects in that
they can be defined for all recurrent discrete time discrete space Markov Chains, they are left
invariant by the Markov dynamics, and they provide, as it will be shown, key informations
on the CFTP algorithm as well as complementary informations on the two most important
deterministic measures of Markov Chain theory, namely the invariant measure and the po-
tential measure.
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After studying the existence of stationary regimes for these dynamics, their uniqueness
is also discussed. For this purpose, these dynamics are considered as Markov Chains on the
space of locally finite counting measures on S ,N (S). It is shown that the dynamical systems
introduced above may have other stationary solutions than the one built on the Bridge Graph
of the MC.
The paper is structured as follows: Section 2 contains the main definitions and results,
whereas the other sections gather the proofs. All the results are first established in a sim-
ple example, called the Renewal Markov Chain. They are then extended to the general case.
Section 3 introduces this simple example of null recurrent Markov Chain and the Renewal
Bridge Graph constructed from this MC.
Section 4 constructs a random graph on Z, called the Renewal Eternal Family Tree (Forest).
It will be shown that this random graph can be connected and form a tree or disconnected
and form a forest. For the definition of Eternal Family Trees, see [2]. Then other properties
of the Renewal EFT, such as its unimodularity, are proved.
In Section 5, a coupling between the Renewal Bridge Graph and the Renewal EFT is defined.
This coupling helps one studying the properties of the Renewal Bridge Graph using the prop-
erties of the Renewal EFT.
Section 6 considers the general null recurrent Markov Chain. It is shown that the structural
properties established for the simple example hold for the general Bridge Graphs.
Section 7 considers the Taboo and Potential Dynamics on the Bridge Graph and studies their
properties. The Taboo PP, is being introduced, which strongly relates to the unique invariant
measure of the null recurrent Markov Chain (Theorem 4.2). The constructibility of the Taboo
and Potential PPs is also discussed. It is shown that these random measures are locally finitely
constructible in the sense that the mass of the measure at each point only depends on an a.s.
finite subgraph of the Bridge Graph. Nevertheless, it does not mean that it is always algorith-
mically constructible, and that one can find this finite subgraph effectively. This algorithmic
constructibility holds nonetheless in the case where {Xt}t∈N is monotone. It means that in
this case, one can perfectly sample from the Taboo and Potential PPs. A concrete example
pertaining to queuing theory is also discussed in detail in Section 8. The GI/GI/1 queue
allows one to illustrate the meaning and the practical interest of these two point processes.
Section 9, considers the properties of the two point processes when the MC is positive recur-
rent. For the Taboo PP, the connection between perfect sampling in the CFTP sense, and the
one obtained using the definition of the TPP is discussed. The properties of the Potential PP
in the positive recurrent case are also considered. This section also gives some results about
the properties of these two dynamics in more general state spaces. Instead of considering
these dynamics on the Bridge Graph, they are regarded as Markov Chains on the space of the
random measures on S.

2. Main Definitions and Results. Consider a Markov Chain X = {Xt}t∈N defined on
a probability space (Ω,F ,P) with a countable state space S and transition probabilities P =
(px,y)x,y∈S . As mentioned in the introduction, two different dynamics are considered on the
random counting measures or point processes with multiplicity on S , satisfying (2).
The first dynamics is the Taboo Dynamics, denoted by HT which is defined with respect to
a reference point s∗ ∈ S . It is defined by MT

t+1 =HT (Mt, ξt), with, for each x, y ∈ S ,

(3) MT
t+1(y) =

{∑
x∈SM

T
t (x)1{h(x,ξxt )=y}, y 6= s∗

1, y = s∗.

This dynamics constructs the random measure at time t+ 1 from the random measure at time
t. It sends some mass from each state x to state y with rule h while adding up the masses
sent to the same state y. It ignores all the masses that enter s∗ at time t+ 1 and puts mass 1
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at this point.
The second dynamics is the Potential Dynamics. It is denoted by HP . One has MP

t+1 =

HP (Mt, ξt), with, for each x, y ∈ S ,

(4) MP
t+1(y) =

{∑
x∈SM

P
t (x)1{h(x,ξxt )=y}, y 6= s∗∑

x∈SM
P
t (x)1{h(x,ξxt )=y} + 1 y = s∗.

As the Taboo Dynamics, there is a reference point s∗ ∈ S . For constructing the random mea-
sure at time t + 1 from the random measure at time t, the Potential Dynamics sends some
mass from each state x to state y with rule h while adding up the masses sent to the same
state y; in addition it adds mass one at point s∗.
The difference between the Taboo Dynamics and the Potential Dynamics is that the former
always puts mass one at s∗ and does so by deleting the masses arriving at this point and adds
mass one at s∗. In contrast, the Potential Dynamics just adds mass one at s∗.
The update rules of these two dynamics are related to the Doeblin coupling of the MC. There-
fore, the main tool that will be leveraged to study these dynamics is the Doeblin Graph and
its subgraph, the Bridge Graph.
As already mentioned in the introduction, the Doeblin Graph is a random graph constructed
from {ξtx}. The vertices of the Doeblin Graph are Σ = Z × S . The first component of the
vertices is considered as time, and hence the horizontal axis will be referred to as the time
axis. The second component corresponds to the state of the vertices, and hence the vertical
axis will be referred to as the state axis. There is an identically distributed and independent
source of randomness {ξxt , x ∈ S}t∈Z, with ξxt ∈ Ξ = [0,1] such that {ξxt } is independent of
the initial distribution of {Xt}t∈N. The function h : S × Ξ→ S defines the transitions be-
tween the states of S . In addition, h satisfies P (h(x, ξxt ) = y) = px,y for all x, y ∈ S . The
edges of the Doeblin Graph, D, are directed edges which are defined from a vertex (x, t) at
time t, to a vertex at time t+ 1, through the random map

(5) (t, x) 7→ (t+ 1, h(x, ξxt )).

Consider the subgraph of the Doeblin Graph of X that contains those vertices which are in
the union of the trajectories starting from all (t, s∗), t ∈ Z. This gives a subgraph of the Doe-
blin Graph called the (Doeblin) Bridge Graph, BX . Here s∗ is a fixed arbitrary state in S .
The properties of the positive recurrent Bridge Graph were studied in [3]. The most impor-
tant properties are the fact that this graph is unimodularizable and the existence of a unique
bi-recurrent path {βt}t∈Z. The bi-recurrent path is a path such that the number of times that
it meets each state x in S , in both positive and negative times, is infinite a.s. Based on this
definition, when a random path is bi-recurrent, it is bi-infinite. The existence of a bi-recurrent
path is established from the unimodularizability of the positive recurrent Bridge Graph in
the sense of [1]. The importance of the bi-recurrent path is that the vertices belonging to this
path are distributed as the stationary distribution of the MC from which the Bridge Graph
was constructed. So each vertex in this path can be considered as a perfect sample of the
stationary distribution of the MC.

REMARK 1. In the definition of the Doeblin Graph and the dynamics defined in (2), the
same source of randomness {ξxt , x ∈ S}t∈Z is used. This sequence is always considered to be
independent in t but not necessarily in x. i.e., at each time t, the random variables {ξxt } can
be coupled. When the random variables {ξxt } are independent in both t and x, this sequence
will be called totally independent.
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EXAMPLE. Consider the lazy random walk, W, defined on the state space S = Z, with the
following transition probabilities: the walk stays at the current state, i, with probability 1/3,
and moves to each neighbor of i, i.e., i+1 or i−1, at random with probability 1/3. Then, one
can consider the Doeblin Graph ofW , constructed from the driving sequence {ξyt , y ∈ Z}t∈Z,
and the transition function h, where {ξyt , y ∈ Z} are maximally coupled for a given t, i.e., at
each time t, for all i, ξit = ξ0t , and for all i the transition h(i, ξit) = h(i, ξ0t ) = i+ h(0, ξ0t ). In
this example, one can show that the Bridge Graph of this lazy random walk coincides with
its Doeblin Graph (see Figure 1).

0

-1

-2

-3

-4

1

2

3

4

1 2 3 4 5 6 7 80-1-2-3-4-5-6-7-8

Fig 1: The maximally coupled Doeblin Graph and Bridge Graph of lazy random walk

In this paper, it will be shown that the null recurrent Bridge Graph has the following
properties:

PROPOSITION 2.1. The null recurrent Bridge Graph is either a tree or a forest, and both
cases can happen.

When the null recurrent Bridge Graph is connected, or equivalently it is a tree the following
property holds:

PROPOSITION 2.2. If the null recurrent Bridge Graph is a tree, it has no bi-infinite path.

A similar result is valid in the non-connected case with an additional condition:

PROPOSITION 2.3. Consider a null recurrent Bridge Graph, BX , which may not be con-
nected. Suppose the Bridge Graph satisfies this condition that for all (t1, s1) and (t2, s2) ∈
Z× S , the paths passing through (t1, s1) and (t2, s2) meet each other with positive proba-
bility in finite time. Then, the Bridge Graph has no bi-infinite path.

The main result about unimodularity is:
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PROPOSITION 2.4. When the null recurrent Bridge Graph is a tree, it is not unimodular-
izable, in general.

Consider all the vertices in the intersection of the Bridge Graph and the zero timeline, i.e.,
those on the state axis. This random set will be referred to as the S-set. The properties of the
S-set in the null recurrent Bridge Graph are studied in Section 6.
Two multiplicities for a point in the S-set are now defined. One can look at each vertex in the
Bridge Graph (or any directed graph) as an individual. Moreover, by following the outgoing
edge, go from each vertex to its parent vertex. In the Bridge Graph, one can consider the
descendants of a vertex that lie on the time axis, i.e., belonging to Z× {s∗}. Descendants of
this type are referred to as *-descendants.

DEFINITION 2.5. The Taboo multiplicity of a point in the S-set of a Bridge Graph is
the number of its *-descendants such that the path from this descendant to the S-set does not
visit state s∗ before time zero. See Figure 2. Note that by definition, the Taboo multiplicity is
positive at all points of the S-set.

REMARK 2. Note that the order of the generations is not consistent with the time direc-
tion, as ancestors live in the future, and these notions should not be mixed up.

i

Taboo multiplicity at point i = 3
Potential multiplicity at point point i = 5

Fig 2: The Taboo multiplicity and the Potential multiplicity

So far, it has has been shown that the Taboo multiplicity of any vertex in the Bridge Graph
is a.s. finite, so the definition of Taboo multiplicity gives a locally finite random measure
whose support is the S-set. This random measure is called the Taboo Point Process (Taboo
PP) and is denoted by τ . Below, τt(j) denotes the random mass (multiplicity) that the Taboo
PP puts on j at time t.



CFP FOR THE NULL RECURRENT MARKOV CHAIN 7

THEOREM 2.6. The Taboo PP, τ , is a steady state of the Taboo Dynamics,

(6) τt+1 =HT (τt, ξt).

The following theorem shows that there is a relation between the Taboo PP in the null
recurrent Bridge Graph and the stationary measure of the null recurrent Markov Chain:

THEOREM 2.7. Let {Xt}t∈Z be an aperiodic and recurrent MC, and BX be its associ-
ated Bridge Graph with the driving sequence {ξxt }t∈Z,x∈S . Then E[τt(i)], the mean measure
of the Taboo PP at points, does not depend t, nor on the coupling of {ξxt }t∈Z,x∈S in x, and it
is equal to the stationary measure of that point in the Markov Chain {Xn}. That is,

(7) E[τt(i)] = σ(i), ∀i ∈ S,

where σ is the invariant measure of the Markov Chain {Xn} and σ(s∗) = 1.

The second multiplicity that will be considered for a point in the S-set is the “Potential
multiplicity”:

DEFINITION 2.8. The Potential multiplicity of a point in the S-set is the number of all
its *-descendants in the Bridge Graph. See Figure 2.

The Potential multiplicity on the S-set gives a random measure with support the S-set
itself. This random measure is called the Potential Point Process (Potential PP) and de-
noted by π. Again, πt(j) denotes the random mass that the Potential PP puts on j at time
t. Proposition 6.6 shows that the Potential multiplicity of the vertices in the null recurrent
Bridge Graph is a.s. finite. In addition the following result holds:

THEOREM 2.9. In the null recurrent case, the Potential PP, π, is a steady state of the
Potential Dynamics,

(8) πt+1 =HP (πt, ξt).

The relation between the Potential PP of a null recurrent Bridge Graph and the associated
MC is summarized in the following theorem.

THEOREM 2.10. Consider a null recurrent Markov Chain {Xn} and its associated
Bridge Graph BX . The mean measure of the Potential PP is equal to the entries of a row
in the potential matrix of the Markov Chain {Xn}. So,

(9) E[πt(i)] =∞, ∀i ∈ S.

REMARK 3. Equation (9) remains valid in the positive recurrent case. Also, in the tran-
sient Bridge Graph, it can be shown that the potential multiplicities are such that their means
are equal to the entries of the classical potential matrix for MCs [5]. This is why the multi-
plicity, the associated point process and the dynamics are called “potential”. In the positive
recurrent case, since the value of the potential multiplicity, in one state is infinite, it is not a
locally finite measure. So Theorem 2.9 does not hold in the positive recurrent case.
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3. Renewal Bridge Graph. This section first introduces the Renewal Markov Chain, a
simple example of recurrent Markov Chain, which may be positive or null recurrent. After
that, the Renewal Bridge Graph, which is the Bridge Graph constructed from the Renewal
Markov Chain, is introduced. Before going through the proof of the properties of the general
null recurrent Bridge Graph, the proofs are first established in this particular example.
Consider random variable η on N∗ 2 with distribution

(10) Λ = {pk, k ∈N};pk = P(η = k).

Suppose that η is such that if

A= {n+ 1 ∈N;pn > 0},

then A is infinite, and the greatest common divisor of A is equal to 1. Using this random
variable, one can define the following Markov Chain:

DEFINITION 3.1 (Renewal Markov Chain). Consider the following transition probabili-
ties on the non-negative integers: for i 6= 0

(11) pij =

{
1 if j = i− 1,

0 otherwise,

and for i= 0

(12) p0j = pj+1,

where the pjs are the probabilities of the random variable η defined in (10). This Markov
Chain is called the Renewal Markov Chain. The assumptions that A is infinite and
gcd(A) = 1 make the Renewal MC irreducible and aperiodic. Starting from 0, it a.s. returns
to this point. So point 0 is recurrent, and thus the Markov Chain is recurrent. Let T+

0 be the
first return time to 0 starting from 0. Then

(13) E[T+
0 ] =

∑
i

E[T+
0 |first jump is i]p(first jump is i) =

∑
i

(i+ 1).p0(i+1) = E[η].

So if E[η] =∞, this Markov Chain is null recurrent, and hence in this case it is called the
null recurrent Renewal Markov Chain.

The Doeblin Graph of the Renewal Markov Chain is as follows: the set of vertices of this
random graph is Σ = Z×N, and the driving sequence is ξnt , n ∈N. For i 6= 0, vertex (t, i) has
a single outgoing edge which goes to the vertex (t+ 1, h(i, ξit)) with h(i, ξit) = i− 1 a.s. For
i= 0, the outgoing edge from (t,0) goes to vertex (t+1, h(0, ξ0t )) with P(h(i, ξ0t ) = j) = p0j
in (12). The vertices of this graph, which are formed by the union of the trajectories starting
from (t,0), t ∈ Z, form the Bridge graph with s∗ = 0. This graph is called the Renewal
Bridge Graph.

4. Renewal Eternal Family Tree. The Renewal Eternal Family Tree (EFT) is a random
graph defined from Renewal Bridge Graph.

2In this paper, N∗ denotes the natural numbers without zero and N natural numbers with zero.
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DEFINITION 4.1. Consider the directed random graph Gη = (V,E) on Z, with vertices
V = Z. The set of edges, E, is as follows: at each vertex i, there is an edge to vertex i+ ηi,
where the random variables {ηi}i∈Z are i.i.d. with ηi ∼ η defined in (10). One can verify
that this graph has no loops, and hence it is either a tree or a forest. If this graph is a tree,
it has all the properties of an Eternal Family Tree as defined in [3]. So Gη is called the
Renewal Eternal Family Forest (Renewal EFF). In the connected case, it is referred to as
the Renewal Eternal Family Tree (Renewal EFT).

Below, it is assumed that E(η) =∞. Proposition 4.2 shows that both a tree and forest
can arise. This proposition considers a specific distribution for η, satisfying the infinite mean
property. For this particular distribution, under certain conditions, Gη is an EFT, and under
others is a forest.

PROPOSITION 4.2. Suppose that η has following probability distribution

(14) P (η = j) = qj =
c1
jα+1

, 0<α≤ 1, j ≥ 1,

which gives the following tail distribution :

(15) P (η > j) =
c2
jα
, 0<α≤ 1, j ≥ 1,

where c1 and c2 are normalizing constants. Then the random graph constructed in Definition
4.1 is a.s. a Renewal EFT when α≥ 1

2 and a.s. a forest when α< 1
2 .

The proof of Proposition 4.2 is provided in Subsection 10.1 of the appendix. For the re-
mainder of the document, it is assumed that η satisfies E(η) =∞, unless mentioned other-
wise.

REMARK 4. The Renewal EFF is not limited to distribution (14). This distribution is
considered only for showing that both the Renewal EFT and the Renewal EFF exist when η
has an infinite mean.

4.1. Properties of the Renewal EFF. Here are some properties of Renewal EFF to be used
later. Proposition 4.3 studies the unimodular property of the Renewal EFF. For the definition
and some examples of unimodular random networks, see [1].

PROPOSITION 4.3. The Renewal EFF is a unimodular network.

PROOF. Let (G,o) is be the deterministic graph with vertices V = Z, and edge set, E =
{(n,n+ 1);∀n ∈ Z} that is rooted at 0. This is a unimodular graph.
For all unimodular networks, it is possible to enrich vertices and edges with i.i.d. marks and
preserve unimodularity (See [1]). Since the Renewal EFF is a random graph constructed from
i.i.d. marks added to (G,0), it is a unimodular network.

The following proposition requires some more properties of random networks. Here is a
brief review of these properties. For more details on these concepts, see [2]. One can define
a vertex shift on any network G=G(V,E). A vertex shift fG is a function on the vertices,
fG : V → V , such that fG commutes with network isomorphisms, and such that the function
[G,o, s] 7→ 1fG(o)=s is measurable on G∗∗. Here, G∗∗ denotes the set of isomorphism classes
of rooted, connected, and locally finite networks with a pair of distinguished vertices. The f -
graph ofG is the graphGf = (V,Ef ), with the set of vertices V and directed edgesEf (G) =
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{(x, f(x));x ∈ V }. Each connected component of the f -graph is called an f -component of
the graph. Consider the following equivalence relation on V :

(16) x∼f y ⇐⇒ ∃n ∈N; fnG(x) = fnG(y).

Every equivalence class of this equivalence relation is called a foil. The Foil Classification in
Unimodular Networks Theorem (Theorem 3.10 in [2]) states that in a unimodular network
(G,o), for all vertex shifts f , each connected component, C , of its f -graph belongs to one of
the following classes:

i Class F/F : C and all its foils are finite, and there is a unique cycle in C .
ii Class I/F : C is infinite but all its foils are finite, there are no cycles in C, and there is a

unique bi-infinite path in C .
iii Class I/I: C is infinite, all its foils are infinite, and there are no cycles or bi-infinite paths

in C .

PROPOSITION 4.4. Let Gη = Gη(V,E) be a Renewal EFF. Then each connected com-
ponent of Gη is I/I in the sense of the foil classification theorem of unimodular networks.

PROOF. Consider the vertex shift f on Gη , which maps each vertex to its right adjacent
vertex. Each connected component of the Renewal EFF is an infinite tree, so it is either in
the I/I class or the I/F class of the foil classification theorem. First, suppose that Gη is
connected and that it is I/F . It follows that there is a unique bi-infinite f -path, P , in this
component (see Theorem 3.10 in [2]). Since P is unique, it is distinguishable in the whole
graph. So it is a covariant subgraph of Gη . Using Lemma 2.8 of [2], P has a positive density
in Z. In the sense that P(0 ∈ VP) > 0, where VP is the set of vertices of P . Consider the
measurable function g defined as follows: g[Gη, x, y] ≡ 0, if there is no bi-infinite path in
Gη . When the bi -infinite path P exists:

• g[Gη, x, y] = 1, if x, y are two consecutive vertices in P such that x < y,
• g[Gη, x, y] = 1 , if x /∈ VP , and y is the nearest vertex to the left of x that belongs to VP ,

and
• g[Gη, x, y] = 0, otherwise.

Using the mass transport principle, one can write:

(17) E

[∑
x∈Z

g[Gη,0, x]

]
= E

[∑
x∈Z

g[Gη, x,0]

]
.

The left-hand side of equation (17) is equal to the probability of the existence of P in Gη ,
and the right-hand side of the equation is equal to

(18) P(0 ∈ VP).E[ number of the vertices between 0 and its right neighbor in P|0 ∈ VP ].

Since P(0 ∈ VP)> 0, the equality of (17) and (18) gives that the expectation of the number
of the vertices between 0 and its right vertex in VP given that 0 ∈ VP is finite.
On the other hand, note that the existence of a bi-infinite path is a property of the left-hand
side of the graph. In the sense that if there exists a path that comes from −∞ and reaches
zero, it is bi-infinite. The path on the right-hand side of 0 is “fresh”, and the distribution of
the length of P edges on this side is the same as η. So the distance between 0 and its right
neighbor in P has an infinite mean, while it is shown above that this expectation is finite.
Thus this path does not exist. Hence, the tree belongs to the I/I class.
Consider now the case where Gη is not connected. Suppose only one bi-infinite path exists in
the graph. Then this path is again a covariant subgraph of Gη , i.e., with positive probability,
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zero belongs to this path, and the same argument as in the EFT case shows that it is impos-
sible. So either there is no bi-infinite path in the graph, or there is more than one bi-infinite
path. Suppose that the latter case happens. The variables ηi, i < 0 determine the number of
bi-infinite paths in the EFF. Let P1 and P2 be two bi-infinite paths that come from −∞ and
reach time zero. Since after 0, these two paths do not depend on the past, and the gcd of A in
(3) is equal to one, these two paths meet each other with positive probability. So there is more
than one bi-infinite path in one connected component of the EFF with positive probability,
which is impossible due to the foil classification theorem of unimodular networks.

Rephrased in terms of the classification of unimodular EFTs, the last result complements
the known fact that the renewal EFT is I/F in the case where the renewal distribution has
finite mean, by showing that it is I/I when this mean is infinite.

5. Properties of the Renewal Bridge Graph.

5.1. Basic Properties. In the Renewal MC, the transition probabilities from zero are the
same as the jumps distribution in the Renewal EFT (EFF). Using this, one can define a cou-
pling between the Renewal EFT (EFF) and the Renewal Bridge Graph.

DEFINITION 5.1. In the Renewal Bridge Graph, consider et, the outgoing edge 3 at ver-
tex (t, s∗). Let (t+1, s′) be the end of edge et. Then the jump at time t is defined by |s′−s∗|.

Let {ηi}i∈Z be the length of the outgoing edge at vertex i in the Renewal EFT, and {η′i}i∈Z
be the jump at time i in the Renewal Bridge Graph. Then

ηi ∼ η′i + 1 ∀i.

The coupling between (ηi, η
′
i) is defined by taking

(19) ηi = η′i + 1 ∀i a.s.

PROPOSITION 5.2. The null recurrent Renewal Bridge Graph is either a tree or a forest.
Both cases can happen, i.e., there are examples where the Renewal Bridge Graph is a tree
and examples where it is a forest.

PROOF. In the Bridge Graph, there is only one outgoing edge from each vertex. Also,
the edges are just going forward in time. So there is no cycle. Hence the Bridge Graph is
either a tree or a forest. It remains to show both cases are possible. This is because, given the
coupling (19), by the following argument, the connectedness of the Renewal Bridge Graph
and the Renewal EFT(EFF) are equivalent.
Suppose that in the Renewal EFT, there is an edge from vertex t to vertex t′ = t+ j, where j
is the value of ηt. Correspondingly, using the coupling defined in (19), in the Renewal Bridge
Graph, there is an edge η′i = ηi − 1 = j − 1 between the vertices (t,0) and (t + 1, j − 1).
Due to the construction of the Renewal Bridge Graph, it has a decreasing path from vertex
(t+ 1, j − 1) to vertex (t+ j,0). It means that there is a path in the Bridge Graph starting
from vertex (t,0) in the time axis and back to the time axis for the first time again at vertex
(t+ j,0).

3In the Bridge Graph (and in the EFF), there is a natural direction for the edges from time t to time t+1. With
this direction, each edge has a beginning vertex and an end vertex.
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Fig 3: Coupling between Renewal EFT and Renewal Bridge Graph

So if two paths in the Renewal EFT (EFF) starting from two different vertices in the Renewal
EFT (EFF) meet each other at a given time, the paths starting from the corresponding vertices
in the Renewal Bridge Graph meet each other and vice versa. See Figure 4. Thus a Renewal
Bridge graph is a tree if and only if its corresponding Renewal EFT is a tree. Then the result
follows from Proposition 4.2.

PROPOSITION 5.3. Every bi-infinite path, {βt}t∈Z, in the Renewal Bridge Graph, BX ,
corresponds to a bi-infinite path in its associated Renewal EFF.

PROOF. The proof consists in proving that, every bi-infinite path {βt}t∈Z, in the Renewal
Bridge Graph, is bi-recurrent, i.e., it meets the time axis in both the positive and negative
parts a.s., infinitely many times. Since the MC X is recurrent, every bi-infinite path meets
the positive part of the time axis a.s. infinitely many times. So it is enough to show that it
meets time axis infinitely many times in the negative part.
let T be an arbitrary element of the time axis. Consider the following set in the Renewal
Bridge Graph:

D ={T − t; the path that starts from (T − t, s∗) goes back to the time axis for the first
time at time T }.

For a fix t, the probability that T − t ∈ D equals the probability that at time T − t, the
jump is equal to t − 1, i.e. pt−1. Since

∑∞
t=1 pt = 1, one can conclude, using the Borel-

Cantelli lemma, that the cardinality of D is a.s. finite. On the other hand, suppose there exists
an infinite path, {βt}t≤T , in the Renewal Bridge Graph that comes from (−∞,+∞) and
reaches the time axis for the first time at T . Hence

(20) {βt}t≤T = {(t, T − t)}t≤T .

Since {βt}t≤T is a path in the Renewal Bridge Graph, every vertex in this path has a backtrack
to the time axis. It means that there exist infinitely many edges starting from the time axis
and ending up at {βt}t≤T . Note that (20) gives that the probability that this happen is equal
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Fig 4: Equivalence of connectedness of the Renewal Bridge Graph and Renewal EFT

(t,0) (t’=t+j,0)

(t+1,j-1)

to the probability that D be infinite, which is equal to zero. So a.s., in the Renewal Bridge
Graph, there is no bi-infinite path that comes from (−∞,+∞) and reaches the time axis for
the first time at some T . So every bi-infinite path in the Bridge graph is bi-recurrent.

PROPOSITION 5.4. The Renewal Bridge Graph has no bi-infinite path.

PROOF. Proposition 5.3 states that every bi-infinite path in the Renewal Bridge Graph is
bi-recurrent. So, if there is a bi-infinite path in the Renewal Bridge Graph, some vertices
in this bi-infinite path have infinitely many descendants in the time axis. It means that cor-
respondingly some vertices in the Renewal EFF have infinitely many descendants, which
contradicts the fact that every connected component of EFF is I/I , as shown by Proposition
4.4.

Some further definitions on unimodularizability of a random network are needed. The fol-
lowing definition borrowed from [11]:

DEFINITION 5.5. Let [G] be a non-rooted random network. A random rooted network
[G′, o′] is unroot-equivalent to [G] if, by forgetting the root, the distribution of [G′] is identi-
cal to the distribution of [G]. A random network [G] is said unimodularizable if there exists
a unimodular random rooted network [G′, o′] which is unrooted-equivalent to[G].
Similarly, one can define the notion of unroot-equivalence between two random rooted net-
works.

PROPOSITION 5.6. The null recurrent Renewal Bridge Graph is not unimodularizable
in general.
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PROOF. The proof is similar to that of Proposition 2.4, which will be presented in Section
6.

In the Renewal Bridge Graph, the function that maps every vertex to its right adjacent ver-
tex, in the next time, is a vertex shift in the sense of [2]. As defined in Section 4, considering
this vertex shift, one can considers its foils in the Bridge Graph.

PROPOSITION 5.7. The foils of a connected components of the Renewal Bridge Graph
are its intersections with vertical timelines. There are infinitely many foils in each connected
component of the Bridge Graph, and the order of the foils is of type Z.

PROOF. It will be shown in Proposition 6.4 that the same property holds in the Bridge
Graphs constructed by a general null recurrent Markov Chain. So the result is valid for the
Renewal Bridge Graph as well.

5.2. Properties of the S-set in the Renewal Bridge Graph.

DEFINITION 5.8. Consider the intersection of the Bridge Graph with the zero timeline.
This set is a random subset of the state space S , referred to as the S-set.

In the Renewal Bridge Graph, suppose that vertex (0, y) belongs to the S-set. Then, since
the vertices of the Renewal Bridge Graph have a backtrack to a vertex in the time axis, if
one goes backward in time, from vertex (0, y), one eventually reaches a vertex in the time
axis for the first time. This vertex is denoted by (t−y ,0). Also, by continuing the path that
passes through the vertex (0, y) forward in time, it will also reach a vertex on the time axis.
Denote this vertex by (t+y ,0). Note that by the definition of the Renewal Markov Chain,
(t+y ,0) = (y,0). So for each vertex y 6= 0 in the S-set of the Renewal Bridge Graph, there is a
path in the graph that starts from a vertex on the time axis before time zero and returns to the
time axis, for the first time, after time zero. Correspondingly, under the coupling (19), there
is an edge in the Renewal EFT that starts from vertex t−y before time zero and ends at vertex
t+y after time zero. See Figure 5.

DEFINITION 5.9. In the Renewal EFT (EFF), an edge that starts before zero and ends
after zero is called flying over zero.

The following propositions give results about the S-set of the connected Renewal Bridge
Graph.

PROPOSITION 5.10. The S-set has an a.s. infinite cardinality.

PROOF. Assume the cardinality of the S-set is a.s finite. Then, in the corresponding Re-
newal EFT, there are finitely many edges flying over zero. That is, the set

(21) F := {t ∈N; there is a flying edge over zero in the Renewal EFT with the end vertex t},

is a.s. finite. So in the Renewal EFT, all the vertices before vertex 0 are the descendants of
one of the vertices in the F set. So at least one of the vertices in the F set has infinitely many
descendants, which is impossible because all trees of the Renewal EFF are I/I .
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Fig 5: Correspondence between an edge that flying over zero in the Renewal EFT and a path
that started before time zero and ended after time zero in the Renewal Bridge Graph.
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PROPOSITION 5.11. Almost surely, every vertex in the S-set has finitely many *-
descendants in the Renewal Bridge Graph.

PROOF. Let (0, y) be a vertex in the S-set. The number of *-descendants of (0, y) is equal
to the number of the descendants of vertex t+y in the Renewal EFF. Each connected compo-
nent of the Renewal EFF is I/I . So this number is a.s. finite.

REMARK 5. Note that the finite descendant property is not just for the vertices in the
S-set and holds for the whole Bridge Graph.

6. Properties of the Bridge Graph of a General Null Recurrent Markov Chain. This
section extends most of the results on the Renewal Bridge Graph to the Bridge Graph of
a general aperiodic, null recurrent Markov Chain. Many properties of the Renewal Bridge
Graph are concluded from the coupling defined in (19). An object similar to the Renewal
EFT will be used for the general Bridge Graph.

DEFINITION 6.1. Consider an aperiodic and null recurrent Markov Chain {Xn}n∈N,
and its associated Bridge Graph BX , with reference vertex, s∗. In this setup the time axis is
{(t, s∗); t ∈ Z). In BX , consider the paths starting from a point in the time axis for example
(t, s∗), then look at the times when these paths get back to this axis again. Let the random
variable Tt denote the time that it takes for the path starting from vertex (t, s∗) in the Bridge
Graph to return to the time axis for the first time. Define GT = GT (V,E) be the random
graph, where V , the set of the vertices, is the whole Z, and where E, the set of the edges, is
defined as follows: each point t has a single outgoing edge, et, with length Tt. This random
graph is called the Recurrence Time EFF of BX . In the connected case, it is referred to as
the Recurrence Time EFT.



16

REMARK 6. Note that in the Recurrence Time EFF:

i Since the Markov Chain {Xn}n∈N is null recurrent for all t, then E(Tt) =∞.
ii The random variables {Tt} are identically distributed. However, since the paths that start

from two different vertices (t1, s
∗) and (t2, s

∗) in the Bridge Graph may meet each other
before returning to s∗, the random variables {Tt} are not independent in general, even in
the totally independent case defined in Remark 1.

6.1. Properties of the Recurrence Time EFF and the Null Recurrent Bridge Graph.
The Recurrence Time EFF has almost the same properties as the Renewal EFF.

PROPOSITION 6.2. The Recurrence Time EFF is a unimodular network. Also, it is in the
I/I class of the foil classification theorem for unimodular networks, when it is connected.

PROOF. Since the Recurrence Time EFF is constructed by a stationary marking of Z, it
is a unimodular random graph rooted at 0 (see [1]). For the I/I structure property in the
connected case, the same proof as for Proposition 4.4 for the connected case works here.

REMARK 7. The Recurrence Time EFT,GT , is defined as a function of the Bridge Graph.
In the Bridge Graph, BX , the mass transport principle holds for those vertices that belong
to GT . This means that the triple (Bx,A,0) is locally unimodular in the sense of [8], with
A= {(x, y);y = s∗}.

So far, only the properties of Recurrence time EFFs were discussed. Their implications on
general null recurrent Bridge Graphs are now considered.

PROPOSITION 6.3. Every bi-infinite path, {βt}t∈Z, in the null recurrent Bridge Graph,
BX , corresponds to a bi-infinite path in its associated Recurrence time EFF.

PROOF. The proof of this proposition is almost the same as Proposition 5.3 in the Renewal
case. It is first shown that there is no bi-infinite path in the null recurrent Bridge Graph that
intersects the time axis for the first time at time T , where T is an arbitrary time in the time
axis. Define the same set D, as in the renewal case:

D ={T − t; the path that starts from (T − t, s∗) in the null recurrent Bridge Graph goes
back to the time axis for the first time at time T }.

Note that the definition of D gives that the vertices (T − t, s∗), in BX , that belong to
D, are, in its corresponding recurrence time EFF, the first generation descendants of T . The
unimodularity of the Recurrence Time EFF implies that a.s. all vertices have a finite degree.
So the cardinality of D is a.s. finite.
If there is a bi-infinite path, {βt}t∈Z, in BX , which is not bi-recurrent, then there is a time
T such that {βt}t≤T does not intersect the time axis. Since {βt}t≤T is a path in the Bridge
Graph, every vertex in it has a backtrack to the time axis. It means there exist infinitely many
paths starting from a vertex (t, s∗), t < T , in the time axis and entering {βt}t≤T , i.e., the
starting vertices of these paths belong to the set D. This contradicts the fact that D is a.s.
finite for any arbitrary T . So such a path does not exist.

PROOF OF PROPOSITION 2.1. Since the Renewal Bridge Graph is an example of null
recurrent Bridge Graph, in the general case also, the null recurrent Bridge Graph can be
either a tree or a forest.
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PROOF OF PROPOSITION 2.2. Proposition 6.3 gives that every bi-infinite path in the null
recurrent Bridge Graph is bi-recurrent. So if there exists any bi-infinite path in the Bridge
Graph, there is a bi-infinite path in the Recurrence Time EFT. Moreover, since the Recurrence
Time EFT is I/I , there is no bi-infinite path in the null recurrent Bridge Graph.

PROOF OF PROPOSITION 2.3. Proposition 6.3 gives that every bi-infinite path inBX cor-
responds to a bi-infinite path in the associated Recurrence Time EFF.
First, suppose that there is only one bi-infinite path in the Recurrence Time EFF. This bi-
infinite path is a covariant subset, and since the Recurrence Time EFF is unimodular, with
the same argument as in the proof of Proposition 4.4, one can show that this is not possible.
So either there is no bi-infinite path in the graph, or there are more than one bi-infinite path.
In order to show that the further case is impossible, consider the following set:

(22) M = {(0, s) ∈BX ; s is in a bi-infinite path}.

Note that, the set M is determined by the property of the Bridge Graph before time zero.
Suppose that (0, s1) and (0, s2) are two separate arbitrary elements in M . By assumption,
with positive probability, the trajectories starting from these two vertices meet each other in
the future, in the Bridge Graph. It means that, correspondingly, in the Recurrence Time EFF,
two bi-infinite paths meet each other with positive probability. I.e., with positive probability,
there is a connected component in the Recurrence Time EFF that has two bi-infinite paths,
which is impossible due to the foil classification theorem of unimodular networks. So there
is no bi-infinite path in the null recurrent Bridge Graph.

REMARK 8. Note that:

1. From the proof of Proposition 2.3, one can conclude that if the Recurrence Time EFF has
this property that every two vertices in this graph meet each other with positive probabil-
ity, then every connected component in this graph is I/I .

2. The assumption of Proposition 2.3 does not put any condition on the MC itself, but it
puts a condition on the coupling that exists between the driving sequence {ξyt }y∈S when
t is fixed. In particular, in the case where {ξyt }y∈S is totally independent, this condition is
satisfied. This condition does not hold is Example 2, where the random variables {ξyt }y∈S ,
in this case, are maximally coupled for a fixed t. In this example, there are infinitely many
bi-infinite paths in the Bridge Graph.

3. The Renewal Bridge Graph studied in Section 5 is an example where the driving sequence
is totally independent.

PROPOSITION 6.4. Foils in a connected component of the null recurrent Bridge Graph,
BX , are its intersections with vertical timelines. Thus the null recurrent Bridge Graph has
infinitely many foils, and the order of foils is that of Z.

PROOF. Consider the vertex shift f in the Bridge graph BX , where f maps each vertex
(x, y) to its right adjacent vertex. For each t ∈ Z, let

St = {(x, y) ∈BX ;x= t}.

Suppose that for some t ∈ Z , (t, y1) and (t, y2) are in St and in the same connected compo-
nent. Since they are in the same connected component, there is a vertex (t0, y0) ∈ BX such
that the trajectories of these two vertices meet each other. By definition of the Bridge Graph,
the number of steps that it takes for vertices (t, y1) and (t, y2) to reach (t0, y0) is equal to
t0 − t, so these two vertices belong to the same foil.
For the converse, note that if two vertices (t1, y1) and t2, y2) are in the same foil, then the
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trajectories of these two vertices meet each other after the same number of steps. Since by
definition of the Bridge Graph and the vertex shift f , at each step, the trajectories move
exactly one unit forward in time, it follows that t1 and t2 are equal.

PROOF OF PROPOSITION 2.4. Consider the Bridge Graph as a network, i.e., a graph with
marks on its vertices and edges. Suppose that the Bridge Graph, BX , is a unimodularizable
network. In the general case, as shown in Proposition 6.4, in each connected component,
the intersections of the Bridge Graph with vertical lines are the foils, and the foils are a.s.
infinite. The foils form a covariant vertex partition of the Bridge Graph in the sense of [2].
Moreover, the time axis is a covariant subset of the Bridge Graph if vertices are marked by
their coordinates with respect to the time and state axis.
Using the no infinite/finite inclusion lemma in [2] for unimodular networks, the intersection
of a foil with the time axis should also be infinite, because each foil is almost surely infinite.
However, in the Bridge Graph, this intersection has only one element. So the Bridge Graph
is not a unimodularizable network in the sense of Definition 5.5.

REMARK 9. When the Bridge Graph is considered as a graph without any marks with
respect to the time axis and the state axis coordinates, it is not unimodularizable, in general
as well. Indeed, this is the case when the time axis is distinguishable in the Bridge Graph as
a covariant subset and hence the same proof as Proposition 2.4 holds. For example, in the
Renewal Bridge Graph, the set R is a distinguishable set in the whole graph, so this graph
is not unimodularizable. However, considering the Bridge Graph without its marks can also
lead to situations where it is unimodularizable. For instance, the maximally coupled Bridge
Graph of the lazy random walk in Example 2 is a unimodular Bridge Graph rooted at (0,0).

The S-set of the general null recurrent Bridge Graph has the same properties as in the
Renewal Bridge Graph.

PROPOSITION 6.5. Under the assumptions of Proposition 2.2 (or Proposition 2.3), the
cardinality of the S-set of a null recurrent Bridge Graph is a.s. infinite.

PROOF. Proposition 6.2 states that the Recurrence time EFT of a null recurrent Bridge
Graph is I/I . Also, the proof of Proposition 2.3 shows that under its assumptions, the con-
nected components of the Recurrence time EFT is I/I . So the same proof as in the Renewal
Bridge Graph in Proposition 5.10 holds here.

PROPOSITION 6.6. Under the assumptions of Proposition 2.2 (or Proposition 2.3), every
vertex in the S-set of a null recurrent Bridge Graph has finitely many *-descendants a.s.

PROOF. The proof of this property in the Renewal Bridge Graph was only based on its
I/I nature. So the same proof holds here.

7. HT , and HP on the Null Recurrent Bridge Graph. This section considers the two
dynamics, HT and HP , defined in Section 2 as dynamics on the measures on the state space
of the null recurrent Bridge Graph, and studies their properties.
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7.1. Taboo Dynamics and Its Relation with the Invariant Measure of Null Recurrent MCs.
The first dynamics is the Taboo Dynamics, HT , defined in (3). Theorem 2.6 states that this
dynamics has at least one steady state.

PROOF OF THEOREM 2.6. Consider the Taboo PP as the initial state of the Taboo Dy-
namics. By the definition of this dynamics, at time one, there is mass one at state s∗. More-
over, the mass of any arbitrary state y 6= s∗ is

MT
1 (y) =

∑
x∈S,x 6=s∗

τ0(x)1{h(x,ξx0 )=y} + 1{h(s∗,ξs∗t )=y}.

Since for all x 6= s∗, τ0(x) is the number of *-descendant of x which are such that the first
return to s∗ of the path starting from them takes place after time zero, MT

1 (y) is also the
number of *-descendants with the same property, that is τ1(y) =MT

1 (y). It is clear from the

Bridge Graph construction that τ1
d
= τ0. So the Taboo PP is a stationary state of the Taboo

dynamics.

In the positive recurrent case, there is a known relation between the Bridge Graph and the
stationary distribution of the Markov chain. In this last case, the Bridge Graph contains a
unique bi-infinite path. So there is a point in the S-set with infinitely many descendants. It is
proven in [3] that this point is a perfect sample of the stationary distribution of the Markov
Chain. On the other hand, there is no bi-infinite path in the null recurrent Bridge Graph. All
the points have finitely many descendants, and the approach of the positive recurrent case
does not work. Instead, in the null recurrent case, the finite Taboo multiplicity defined in
Definition 2.5 can be defined for the vertices on the S-set. Theorem 2.7 establishes a connec-
tion between this Taboo PP and the stationary measure of the null recurrent Markov Chain.
Before going to the proof of Theorem 2.7, here is a classical lemma about computing station-
ary measure of the MC, using taboo probabilities.

LEMMA 7.1. Let Xn be an irreducible and recurrent Markov Chain. For fixed i in the
state space, let ζ be defined by

(23) ζj =

∞∑
n=0

qnij , j = i,

where qnij is the probability for going from i to j, after n steps, without visiting i. Then ζ is a
positive invariant measure for the chain. This invariant measure is unique up to multiplication
by a constant.

PROOF OF THEOREM 2.7. LetGT be the Recurrence Time EFF associated withBX , and
Qt be the path that starts from (t, s∗) in BX , where s∗ is the reference point of the Bridge
Graph.
Consider an arbitrary state y in the state space of the MC. Define g[GT , t, t′] = 1, when Qt
passes through vertex (t′, y) before returning to s∗. The mass transport principle states that,
for each y in the state space S, the following equation holds:

(24) E[
∑
t∈Z

g[GT , t,0]] = E[
∑
t∈Z

g[GT ,0, t]].

The right-hand side of (28) is the expectation of the number of times that path Q0 intersects
the state y before returning to s∗, whereas the left-hand side is equal to the expectation of the
mass that the Taboo PP puts at point y, at time 0. Since the right-hand side of the equation
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does not dependent on the coupling of {ξyt }y∈S for a given t, the same is true for the left hand
side. So the expectation of the Taboo point process at each point in the state space does not
dependent on the coupling of {ξyt }t∈Z,y∈S , for fixed t. Moreover, using Lemma 7.1, the right-
hand side of (28) is equal to the invariant measure of the MC, and this shows that Equation
(7) holds for the mean measure of the Taboo PP.

REMARK 10. Notice that, by Definition 2.5, the point s∗ always belongs to the S-set.
Moreover, the mass that the Taboo PP puts at this point is equal to 1 at all times.

7.1.1. On the Constructibility of the Taboo Point Process. Let vertex (y,0) belongs to
the S-set, the support of the Taboo PP. Then due to Proposition 6.6, τ0(y), is a.s. finite. In
this sense, one can say that the Taboo PP is locally finitely constructible, i.e., the taboo mul-
tiplicity at each vertex of the S-set depends on a finite subtree of the Bridge Graph.
The important question here is whether the Taboo multiplicities are algorithmically con-
structible. A positive answer to this question is equivalent to the possibility of producing a
perfect sample of these two point processes. In general, the answer to this question is un-
known. However, there are some results for the special case, where the MC is stochatically
monotone. These results are given in the following subsection.

7.1.2. Stochastically Monotone Markov Chain. Here it is shown that in the case where
the transition probabilities of the Markov chain are stochastically monotone, the Taboo point
process is algorithmically locally constructible. The following definition is borrowed from
[6].

DEFINITION 7.2. Assume that the state space of the Markov chain {Xn}n∈Z, S , is en-
dowed with a partial order denoted by ≤. The Markov chain is stochastically monotone if its
transition probabilities have the stochastic monotone property. i.e., the probability measures
(P (x, .);x ∈ S), on S are such that P (x′, .) � P (x, .) whenever x′ ≤ x, whereby � means
stochastically less than or equal to.

PROPOSITION 7.3. Assume X = {Xn}n∈Z is a stochastically monotone Markov Chain
on S , and S has the minimum element s0. Moreover, suppose that the Bridge Graph BX is
constructed with the reference point s∗ = s0. Then the TPP is algorithmically locally con-
structible.

PROOF. By a classical coupling argument, there exists a coupling ξt(.) for the driving
sequence {ξxt }, at each time t, such that if y ≤ z, then ξt(y)≤ ξt(z) (See [14] and [7]).
Denote the path that starts from (t0, s

∗), t ∈ Z, by Pt0 = {Pt0t , t≥ t0}. Note that if t0 < t1,
then

{Pt0t1 } ≥ s0 = {Pt1t1 },

and hence, with the monotone coupling argument, the path Pt0 , at each time, remains larger
than or equal to the path Pt1 .
For constructing the Taboo PP, first start trajectories from time −1 and step by step add
trajectories. Due to the monotone coupling and the later argument, each new trajectory that is
added is larger than or coalesces with the pointwise supremum of the trajectories considered
before. So, when a new trajectory is added to the Bridge Graph, the image of this trajectory
might belong to one of the following scenarios:

1. Adds no mass to the S-set,
2. Adds mass to the last point added before,
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3. Creates a new point in the S-set, which is greater than all the points that have been built
in the S-set before.

With this observation, once a new point appears in the S-set, the mass of the Taboo PP for
the points that are less than or equal to this new point is fully determined.

REMARK 11. Consider the random walk defined on the state space N with the following
transition probabilities: for n = 0, the walk stays at 0, with probability 1/2, and move to
state 1 with probability 1/2. For state n ∈ N, n 6= 0, the walk moves to each neighbor of n,
i.e., n+ 1 and n− 1 with probability 1/2. This Markov chain is an example that satisfies the
assumption of the MC in Proposition 2.9.

With this algorithm described above, when a new path is added to the Bridge graph from
time t, it might add a new mass to the S-set or not. So computing the expectation of the time
until a new mass is added to the S-set gives information about the time it takes to construct
the taboo multiplicities locally. This expectation is computed in the following corollary.

LEMMA 7.4. Consider the assumptions of Proposition 7.3 and the algorithm that is pre-
sented in its proof. If Pt1 is a path that adds mass to the S-set, then for all t < t1, Pt does
not intersect the time axis (the state s∗ of the state space) between times t1 and 0.

PROOF. Consider the path Pt0 , with t0 < t1. For all t > t1, Pt0t ≥P
t1
t . Since the path Pt1

adds mass to the S-set; it does not intersect the time axis up to time zero, so the same holds
for the path Pt0 .

COROLLARY 7.5. Under the assumptions of Lemma 7.4, Suppose that t1 and t1−T are
two successive times such that the paths Pt1 , and Pt1−T add mass to the S-set, Then

(25) E[T ] =∞.

PROOF. Since t1 − T < t1, Lemma 7.4 gives that for all t < t1 − T , the path Pt does not
intersect the time axis at time t1. So vertex (t1, s

∗) does not have any descendants before
time t1 − T in BX . Consequently, in the Recurrence Time EFT, the vertex t1 does not have
descendants before vertex t1 − T . So,

(26) E[T ]> E[Number of descendants of t1 in the Recurrence Time EFT].

Note that the backward construction of the Bridge Graph, as mentioned before, starts from
time zero and explores the graph step by step in the past. When it is constructed up to time
t1, the left-hand side of t1, in the Bridge Graph, is not explored yet. So the distribution of
the Bridge Graph before time t1 is the same as the original distribution of the Bridge Graph.
The original distribution in the Recurrence Time EFT, is such that the expectation of the
number of the ∗-descendants of any vertex is infinite. So the right-hand side of Equation (26)
is infinite, and thus E[T ] =∞.

7.2. Potential Dynamics. The second dynamics defined on the null recurrent Bridge
Graph is the Potential Dynamics. Theorem 2.9 states that this dynamics also has at least
one steady state.

PROOF OF THEOREM 2.9. Consider the Potential PP as the initial state of the Potential
Dynamics, where the dynamics is associated to a null recurrent MC. Let y 6= s∗ be a state in
the state space S . The mass that the Potential Dynamics puts at y at time 1, is equal to

(27) MP
1 (y) =

∑
x∈S

π0(x)1{h(x,ξx0 )=y}.
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That is, it is obtained by adding all the masses that enter the state y, via the Bridge Graph’s
edges, from time 0. Since for each x ∈ S , π0(x) is equal to the number of its ∗-descendants,
MP

1 (y) is equal to the number of ∗-descendants of vertex (1, y) in the Bridge Graph, which
is the potential multiplicity of this vertex. The same argument shows that the result holds for
y = s∗, with this difference that s∗ itself should be counted once. So the Potential PP is a
steady-state of the Potential Dynamics.

Theorem 2.10 shows the connection between the steady state of the Potential Dynamics
and the null recurrent MC associated with it. This connection is related to the potential matrix
R of the MC with entries Rxy , where Rxy is the expected number of visiting of the state y
given that the initial state of the MC is the state x. For a recurrent MC, the entries of the
potential matrix are all equal to infinity.

PROOF OF THEOREM 2.10. Let GT be the Recurrence Time EFT (EFF) associated with
BX , and Qt the path that starts from (t, s∗) in BX , where s∗ is the reference point of the
Bridge Graph.
Consider an arbitrary state y in the state space of the MC. Define g[GT , t, t′] = 1, when Qt
passes through the vertex (t′, y). Using the mass transport principle, for each y in the state
space S the following equation holds:

(28) E[
∑
t∈Z

g[GT , t,0]] = E[
∑
t∈Z

g[GT ,0, t]].

The right-hand side of the (28) is the expectation of the number of times that path Q0 inter-
sects the state y, which its expectation is equal to Rs∗y . On the other hand, the left-hand side
of (28) is equal to the expectation of the mass that the Potential PP puts at point y, at time 0.
Since Rs∗y is related to a recurrent MC, the mean measure of the Potential PP at each point
is infinity.

Consider the null recurrent Bridge Graph. Proposition 6.6 states that in this case, for each
(0, y) in the S-set, π0(y) is a.s. finite. So one can consider the algorithmic constructibility of
the Potential PP as the Taboo PP. The same result as Proposition 7.3 is valid for the Potential
PP.

PROPOSITION 7.6. Assume X = {Xn}n∈Z is a stochastically monotone Markov Chain
on S , and S has the minimum element s0. Moreover, suppose that the Bridge Graph BX is
constructed with the reference point s∗ = s0. Then the Potential PP is algorithmically locally
constructible.

PROOF. Consider the backward construction algorithm for the Bridge Graph with the
monotone coupling introduced in the proof of Proposition 7.3. The same argument as in
the proof of Proposition 7.3 shows that, once a new point appears in the S-set, the mass of
thePotential PP for the points that are less than or equal to this new point is fully determined.
So the claim is proved.

REMARK 12. Let X satisfy the assumptions of Proposition 7.6, and BX be its associ-
ated Bridge Graph constructed by the monotonically coupled driven sequence. Although the
same step-by-step backward construction algorithm for the Bridge Graph gives the potential
multiplicities of the point in the S-set, one can consider a faster algorithm for constructing
the potential multiplicities.
For showing this, let (t0, s

∗) and (t1, s
∗), where t0 < t1, be two vertices in the time axis that
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add mass to the same vertex (0, y) in the S-set when the potential multiplicity is considered.
Then all the vertices (ti, s

∗), where t0 < ti < t1, add mass to the potential multiplicity of
(0, y). So, for finding the Potential multiplicity of (0, y), it is sufficient to find the first time
and the last time that add mass to (0, y). So instead of constructing the Bridge Graph step
by step, one can use the exponential search algorithm (see [4]) to find the last time that adds
mass to vertex (0, y). Then use binary search for finding the first time. If T is the position of
the search time, then exponential search takes O(logT ) time to find T . So this new algorithm
for finding the Potential multiplicity is faster than the step-by-step construction.

8. Perfect Sampling of the Taboo and Potential PPs in the Critical Single Server
Queue.

8.1. Loynes’ Theory. This section is focused on the application of the results of the previ-
ous sections to the GI/GI/1 queue and its associated workload Markov Chain [12]. The ser-
vice times {ςn;n ∈ Z} are assumed to be i.i.d. with finite and nonzero mean E[ς]. The inter-
arrival times are i.i.d. and denoted by {υn;n ∈ Z}, with finite and nonzero mean E[υ]. That
is, υn = Tn − Tn−1, where Tn is the arrival time of the n-th customer. Let Wn = W (Tn−)
denote the workload just before time Tn, which is the amount of service remaining to be done
by the server at that time. This workload process satisfies the equation

(29) Wn+1 = (Wn + ςn − υn)+, ∀n ∈ Z,

where (a)+ = max(a,0). Because of the i.i.d. assumptions, (29) defines an N-valued Markov
Chain. To avoid degenerate cases, it is assumed below that the variance of ς − υ is non zero
and that {ςn}n and {υn}n are independent, although these assumptions are not essential. The
traffic intensity is ρ= E[ς]

E[υ] . It is well known that when ρ < 1, this Markov Chain is positive
recurrent and when ρ > 1, it is transient. In the critical case, when ρ= 1, it is null recurrent.
In the case where ρ < 1, Loynes’ theory allows one to define a perfect sample from the
stationary distribution [12]. This section extends this theory to the perfect sampling of the
Taboo PP using the algorithm that is provided in Subsection 7.1.2, which applies since this
Markov Chain is stochastically monotone.

The Loynes variable at time n≥ 0, Ln, is the value of the workload at time 0 when starting
the queue empty at time −n, and when coupling the service and inter-arrival times as in the
CFTP algorithm, namely

Ln =

(
max

k=1,...,n

−1∑
l=−n

(ςl − υl)

)+

.

The sequence {Ln}n is non-decreasing.

8.2. Interpretation and Perfect Sampling of the Taboo PP. It is easy to see that MT
0 , the

Taboo PP of this Markov Chain, is simple, and that its support is {Ln}n≥0. Indeed, adding
customers −n in the past leads to a new atom in this PP if and only if this addition creates a
busy period that starts at the arrival of customer −n and lasts until time 0. The Taboo PP at
time 0 is hence equal to

(30) MT
0 = δ0 +

∑
n≥1

δLn
1{Ln >Ln−1}.

It captures the joint structure of the workload strict records in this Loynes type (or CFTP)
construction.
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(b) ς, υ ∼Geo(0.2), and 0≤ i≤ 5000
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(c) ς, υ ∼ Zeta(2.5), and 0≤ i≤ 1000
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Fig 6: Perfect samples of MT in the null recurrent case for two different distributions of inter-arrival
and service times, for two different intervals of the state space.

In the positive recurrent case, the Loynes sequence converges to an a.s. finite limit L∞;
the Taboo PP is then a.s. finite and the supremum value of its support is the perfect sample
L∞ of the steady state workload. In the null recurrent case, it has an infinite support but is
locally finite.

Figure 6 provides perfect samples of the random measure MT
0 restricted to bounded inter-

vals for different inter-arrival and service time distributions. The samples are perfect because
the chain is stochastically monotone.

A corollary of the result on the first moment measure of the Taboo PP is that, in the
recurrent case, the invariant measure of this Markov Chain admits the representation

(31) σ(i) = EMT
0 (i) =

∑
n≥1

P[Ln = i,Ln >Ln−1], ∀i > 0

and σ(0) = 1. The terms in this expression are reminiscent of ladder epochs and heights,
but differ from those in that they bear on the backward rather than the forward workload
sequence.

One can analyze various properties of the Taboo PP using these perfect samples. As Equa-
tion (31) shows, the first moment measure of MT

0 , i.e., its intensity measure, is the invariant
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Fig 7: Estimation of Ki(r) with 1000 samples of MT
0 , for two different values of i, and 0< r ≤ 100.

measure of the workload Markov Chain. Moment measures of order 2 of MT
0 give some in-

formation about the interaction between the points. Using an idea similar to that of the Ripley
K-function in point process theory, one can detect clustering or inhibition in MT

0 by compar-
ing this function to 1, see [15]. For this, consider the following local second-order moment
based function:

Ki(r) =
E[MT

0 (i− r, i+ r)|MT
0 (i) = 1]

E[MT
0 (i− r, i+ r)]

.

This function can be estimated using perfect samples of MT
0 . If the points were distributed

independently, for all i, we would have Ki(r) = 1; this value is used as a benchmark. If
Ki(r) > 1, there is clustering at point i, whereas if Ki(r) < 1, there is inhibition at point i
for radius r. Figure 7 shows estimates of Ki(r) based on a large collection of perfect samples
in some examples of critical queues. As the figures show, there is no general conclusion about
clustering or inhibition of MT

0 in this monotone case. The analyzed examples suggest that
when inter-arrival and service time variances are finite, there is inhibition for small r, and the
value of K(r) tends to 1 for large r (Figures 7a and 7b). In contrast, when inter-arrival and
service time variances are infinite, there is clustering for small r (Figures 7c and 7d).
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8.3. Interpretation and Perfect Sampling of the Potential PP. The potential PP has the
same support as the Taboo PP, but different multiplicities. It is easy to see that if i is an atom
of the Taboo PP, the multiplicity of atom i in the Potential P.P. is the number of epochs that
separate in the backward construction the inclusion of atom i in the Taboo PP, due to an
increase of the Loynes variable, from its last increase (and atom inclusion). That is

(32) MP
0 =

∑
n≥0

δLn
1Ln>max0≤k≤n−1Lk

∑
k≤n

1Ln=Lk

 .

It follows from our general results that, in the null recurrent case, this random measure
is a.s. locally finite, though with an infinite first moment measure, whereas it is not locally
finite in the positive recurrent case. In other words, this Potential PP gives the joint time-
space structure of the records in Loynes’ construction, with the support of this PP describing
the spatial organization of the backward records, as for the Taboo case, and the multiplicities
describing their time separation.

Figure 8 gives a perfect sample of an instance of Potential PP at different scales. This
point process inherits the complex “correlation” structure of the Taboo PP through their com-
mon support. The fact that it has an infinite intensity measure means that, in addition, all its
multiplicities are heavy tailed. These last two properties together with the CFTP space-time
interpretation discussed above contribute making this Potential point process a fascinating
object.

The interpretation of the Potential PP survives in the positive recurrent case, with the
caveat that it is not locally finite. In fact, in this particular case, all atoms except the largest
one have a finite multiplicity, with the same time separation interpretation as above. However,
the largest atom, namely L∞ has an infinite multiplicity as it belongs to the bi-infinite path.

It is easy to check that the expressions (30) and (32) hold beyond the queuing context,
provided the Markov Chain satisfies the stochastic monotonicity assumption.

9. Taboo PP on the Positive Recurrent Bridge Graph.

9.1. Positive Recurrent and Null Recurrent Bridge Graph. The positive recurrent Bridge
Graph is studied in [2]. It is known that the positive recurrent Bridge Graph is a.s. connected
when the driving sequence is totally independent, it is unimodularizable, and in the sense
of the foil classification theorem for unimodular networks, it is I/F . Moreover, the I/F
property of the positive recurrent Bridge Graph gives that this graph contains a unique bi-
recurrent path {βt}t∈Z. A positive recurrent MC, X , has a unique stationary distribution, and
the importance of the bi-infinite path {βt}t∈Z, in its associated Bridge Graph, BX , is that
the intersection of this path with the zero timeline gives a perfect sample of the stationary
distribution of X . On the other hand, in the null recurrent Bridge Graph, it is shown in the
current work that this graph is not connected in general; it can be a tree or forest. Moreover, it
is not unimodularizable in general. However, it “contains” a unimodular random network (the
Recurrence Time EFT/EFF) which allows one to prove some properties of the null recurrent
Bridge Graph. In contrast with the positive recurrent case, in the null recurrent Bridge Graph,
there is no bi-infinite path when it is connected (or under the assumption of Proposition 2.3).
However, there is an analog of the perfect sample of the positive recurrent case, namely the
Taboo PP.

REMARK 13. Of course, there are other ways for constructing a point process that its
intensity is equal to the invariant measure at each point of the state space. For example,
consider a path of the MC, X , starting from an arbitrary state s∗ ∈ S . For each s ∈ S ,
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Fig 8: Perfect samples of MP
0 for Poisson-distributed inter-arrival and service time, for different

scales, the red segments represent the Taboo PP.

consider the number of times this path meets s before going back to s∗. The expectation of
this number for each s ∈ S is equal to ζs, defined in (23), which is equal to the stationary
measure of s. So in each realization of the Markov Chain starting from s∗, this number can be
considered. The advantage of Taboo PP as a technique of sampling is its local constructibility
(at least in the monotone case), as mentioned in Subsection 7.1.1.

One can consider the Taboo PP and its properties in the positive recurrent Bridge Graph.
A question that arises here is that of the relationship between the Taboo PP of a positive
recurrent MC and the classical perfect sample of its stationary distribution.

PROPOSITION 9.1. Consider a positive recurrent MC, X , and its associated Bridge
Graph, BX . Then the S-set of BX is a.s. finite. Moreover, the Taboo multiplicity of every
vertex in the S-set is a.s. finite.

PROOF. In the positive recurrent case, the Bridge Graph is an I/F unimodular network
[3]. Also, the foils in the Bridge graph are its intersection with the vertical timelines. So the
S-set, which is the 0- foil, is a.s. finite.
For proving the second part, note that since BX is I/F , every vertex y ∈BX , which is not on



28

the bi-infinite path, has a.s. finitely many descendants, specially finitely many *-descendants.
To complete the proof, note that, although there are infinitely many ∗-descendants on the
bi-infinite path, only one of them does not return to s∗ before time zero. Hence the bi-infinite
path adds exactly mass one to the S-set.

9.2. Relation between the Taboo PP and Classical Perfect Sampling. The positive re-
current MC, X, has a unique stationary distribution, σ. One can sample from this stationary
distribution with the Coupling from the Past algorithm (See [14]). The Taboo PP also gives
a samples from the stationary distribution, in the sense that the mean measure of the Taboo
PP is the stationary distribution at each point. The relation between these two samplings is
discussed in the next proposition:

PROPOSITION 9.2. Let τ be the Taboo PP of the positive recurrent MC, X . Suppose
that T is a sample of τ . If one biases T with the number of the points (considering the
multiplicities) that belong to it, and chooses a random point from T and denote it by Y , then
Y has the stationary distribution of X .

PROOF. Let τ be the set of all possible outcomes of the Taboo PP. For each T ∈ T , let PT
be the probability that event T occurs, i.e., P(τ = T ). Then for each y ∈ S ,

P(Y = y) =
∑
T∈T

PT ×
m(T )∑

T ′∈T m(T ′)PT ′
× T ({y})

m(T )

=
1∑

T ′∈T m(T ′)PT ′

∑
T∈T

PT × T ({y}) =
E(τ(y))

E(τ(S))
,

where m(T ) is the sum of the multiplicity of the vertices in T , and T ({y}) is the multiplicity
of y in T . Since this probability is proportional to E(τ(y)), and the stationary measure in y,
σ(y), is also proportional to E(τ(y)), P(Y = y) = σ(y).

Given a realization of the Taboo PP, a natural question is whether is it possible to get a
perfect sample of σ from this realization in the classical sense ?
Here is an algorithm for this, under the extra assumption that M exists such that M >
m(T ) ∀T ∈ T .

Algorithm:

1. Generate a sample T from τ .
2. Choose a point Y randomly from T with probability proportional to its multiplicity in T .
3. Accept the point Y with probability m(T )

M .
4. If the point Y is rejected, back to step 1.

By using this algorithm one can write the following equations which shows that the algorithm
gives a sample of stationary distribution of the MC:

P(Y = y) =
∑
T∈T

P (T )× T ({y})
m(T )

× m(T )

M
×
∞∑
n=1

∑
T∈T

P (T )
∑
y∈T

T ({y})
m(T )

(1− m(T )

M
)

n−1

=
E(τ(y))

M
×
∞∑
n=1

(∑
T∈T

P (T )(1− m(T )

M
)

)n−1
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=
E(τ(y))

M
×
∞∑
n=1

(
1−

∑
T∈T

P (T )
m(T )

M

)n−1

=
E(τ(y))

M
×
∞∑
n=1

(
1− E(τ(S))

M

)n−1
=

E(τ(y))

M
× M

E(τ(S))
= σ(y),

where σ is the stationary distribution of the MC, X .

9.3. Dynamics on the Space of Random Measures. So far, two dynamics HT and HP

have been considered on the Bridge Graph. Here, these dynamics are studied on the general
state space, i.e., the space of all integer-valued random measures on S .
In the Bridge Graph (or Doeblin Graph), at each time t, the Taboo PP and Potential PP are
random measures on S . Based on the definitions of HT and HP , each of these measures
at time t depends only on the measure at time t − 1 and ξt−1. So one can consider these
dynamics as MCs on the space of N (S), of all locally finite integer-valued measures on S ,
and study the properties of these MCs to understand the properties of the dynamics in this
more general space.

DEFINITION 9.3. Consider the Taboo/Potential dynamics constructed by a positive (resp.
null) recurrent Markov Chain. The MC, ΦT /ΦP , corresponding to this dynamics is called
positive (resp. null) recurrent Taboo/Potential Markov Chain on N (S).

The first property that one can consider is the existence of stationary measures of the MCs.
It is easy to see that the Taboo PP is a stationary distribution of the positive/null recurrent
Taboo MC. Moreover all finite measures are in the domain of attraction of this stationary
distribution. Also the Potential PP of a null recurrent MC (in the case where it is a.s. finite
at each point), is a stationary distribution of the null recurrent Potential MC. Note that the
Potential PP is not a stationary distribution of the positive recurrent Potential MC. Since the
Potential PP in this case has an infinite mass a.s. at one point. So its support does not belongs
to N (S). So the positive/null recurrent Taboo MC and the null recurrent Potential MC have
stationary distributions. The question that arises here is about the uniqueness of this stationary
distribution, and consequently the irreducibility of these measure-valued MCs. The following
example shows that there is an invariant measure for the Taboo MC which is not the Taboo
PP.

EXAMPLE. Consider the Renewal MC in Definition 3.1. Consider the Taboo MC of this
MC. This measure-valued MC is called the Renewal Taboo MC, denoted by {ΦT,R

n }. In
both cases where the Renewal MC is positive recurrent and null recurrent, the Taboo PP is
a stationary distribution of this Renewal Taboo MC. Moreover, any finite measure is in the
domain of attraction of this distribution.
First, consider the null recurrent case. Denote the Taboo PP by τRen. Consider the following
measure on N:

(33) ΦT,R
0 =

∑
k∈N

1k.

Select this as the initial state of the MC {ΦT,R
n }. Then

(34) lim
n→∞

ΦT,R
n = τRen +

∑
k∈N

1k.
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The same equality holds for the positive recurrent case, when the Renewal Taboo MC starts
with the same initial state ΦT,R

0 .

For the null recurrent Potential MC, with the same proof as in Example 9.3, one can show
that considering the null recurrent Potential MC constructed by the null Renewal MC and
starting from the (33) measure, the limit distribution is different from the Potential PP. So
with the same argument, in the Renewal example, the null recurrent Potential MC does not
have unique limiting distribution. So the positive recurrent and null recurrent Taboo MC and
the null recurrent Potential MC cannot be irreducible.

REMARK 14. Note that N (S) is a topological (Polish) space [9] that is not countable.
So the concepts and notation of MCs on topological state spaces in [13] have to be used for
considering the properties of these measure-valued MCs. For example the classical definition
of irreducibility has to be replaced by ψ− irreducibility. This definition is with respect to a
measure ψ on the state space of the Markov Chain, namelyM(S).

10. Appendix.

10.1. Proof of Proposition 4.2. Before going through the proof of this proposition, first
Definition 10.1 and Lemma 10.2 , borrowed from [10], are discussed. This last lemma gives
the main idea of the proof of Proposition 4.2.

DEFINITION 10.1. Let µ,ν, and γ be given probability measures on Z. Consider the
Markov Chain {Yn} with values in Z such that Y0 = y and it has following transition proba-
bilities:

(35) P (Yn+1 = k|Yn = j) =


µ(k− j) if j < 0

ν(k− j) if j > 0

γ = αµ(k) + βν(k) if j = 0 ,

where α,β ≥ 0 and α+ β = 1. This Markov Chain is an ordinary random walk on Z with
jump distribution µ in the positive integers, distribution ν in the negative integers, and γ at 0.
This random walk will be referred to as the oscillating random walk on Z.
The particular case where ν(i) = µ(−i) is called the anti-symmetric oscillating random
walk . If moreover µ(j) = 0 for j < 0, then it is called the one-sided anti-symmetric case.

The following lemma from [10] will be used to study the recurrence and transience prop-
erty of the oscillating random walk.

LEMMA 10.2. Consider the one-sided antisymmetric oscillating random walk {Yn} on
Z. Then a sufficient condition for zero to be recurrent is that

(36)
∞∑
j=n

µ(j) =O(n−
1

2 ) as n→∞.

A sufficient condition for zero to be transient is

(37) µ(n)∼ cn−1−ε as n→∞,

where c and ε denote positive constants, ε < 1
2 .
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PROOF OF PROPOSITION 4.2. Consider two independent i.i.d. random sequences

{Xi}i∈N∗ ,& {Xi} ∼ η

{X ′i}i∈N∗ ,& {X ′i} ∼ η

and two random walks on Z with jumps {Xi} and {X ′i} respectively, with two arbitrary
different starting points X0 and X ′0, namely,

(38) Sl =

l∑
i=0

{Xi} S′l =

l∑
i=0

{X ′i}.

The paths created by these two random walks are two paths in Gη starting from the two ver-
tices X0 and X ′0. For checking the connectedness of Gη , it is needed to check whether these
two random walks meet each other in finite time a.s. or not. To this end, the MC {Zn}n∈N
will be considered. ForX0 <X ′0 define Z0 =X ′0−X0. Moreover fix the S′l atX ′0 and define
Zi, the difference between X ′0 and Xi up to the time that Xi passes X ′0, i.e.,

Zi =X ′0 −Xi, for 0< i≤ t1,

where t1 is the first t such that Xt >X ′0. Then fix Sl at Xt1 and look at the next steps of S′l.
For i > t1 define Zi, the difference between Xt1 and X ′i up to the time that X ′i passes Xt1 ,
i.e.,

Zi =X ′i −Xt1 , for t1 < i≤ t2,

where t2 is the first time where X ′t >Xt1 . After that, fix X ′t2 and continue this process. With
this definition, {Zn}n∈N is a random walk on Z which has following transition probability

(39) P (Zn+1 = k|Zn = j) =


qk−j if j < 0 and k > j

qj−k if j ≥ 0 and k < j

0 otherwise ,

where {qi} is the probability defined in (14). Our question about the meeting of the two ran-
dom walks Sl and S′l reduces to understanding whether the state 0 in {Zn}n∈N is recurrent
or not. But {Zn}n∈N is a one sided antisymmetric oscillating random walk where µ(j) in
(35) is equal to qj and β = 1. So

∞∑
j=n

qj =

∞∑
j=n

c1
jα+1

,

which is O(n−
1

2 ), as n→∞, when α ≥ 1
2 . So using Lemma 10.2, one can conclude that

{Zn} is recurrent when α ≥ 1
2 , and it is transient when α < 1

2 . So the two random walks
{Sl} and {S′l} will meet each other a.s. when 1

2 ≤ α < 1 and, in this case, Gη is a Renewal
EFT. Correspondingly, when α< 1

2 , Gξ is a Renewal EFF.
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