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Safe Reinforcement Learning for Automatic Insulin Delivery in Type I Diabetes

Despite promising performances, reinforcement learning (RL) is only rarely applied when a high level of risk is implied. Glycemia control in type I diabetes is one such example: a variety of RL agents have been shown to accurately regulate insulin delivery and yet no real life application can be seen. For such applications, managing risk is the key. In this paper, we use the evolution strategies algorithm to train a policy network for glycemia control: it has state-of-the-arts results, and recovers, without any a priori knowledge, the basics of insulin therapy and blood sugar management. We propose a way to equip the policy network with an epistemic uncertainty measure which requires no further model training. We illustrate how this epistemic uncertainty estimate can be used to improve the safety of the device, paving the way for real life clinical trials.

Introduction

Reinforcement learning (RL) techniques are able to generate powerful agents on a wide variety of tasks: managing data centers with high energy efficiency [START_REF] Lazic | Data center cooling using model-predictive control[END_REF], playing go or chess at super-human level without prior knowledge [START_REF] Silver | Mastering chess and shogi by self-play with a general reinforcement learning algorithm[END_REF][START_REF] Silver | Mastering the game of go without human knowledge[END_REF], performing autonomous driving [START_REF] Ravi Kiran | Deep reinforcement learning for autonomous driving: A survey[END_REF] or maximizing revenue with real-time advertising [START_REF] Jin | Real-time bidding with multi-agent reinforcement learning in display advertising[END_REF]. Reinforcement learning is gaining in popularity in healthcare as well, under a wide variety of forms: treatment of sepsis, a leading cause of mortality in critical care, via intravenous or maximum vasopressor [START_REF] Raghu | Deep reinforcement learning for sepsis treatment[END_REF], drug regulation in anesthesia [START_REF] Brett L Moore | Reinforcement learning: a novel method for optimal control of propofol-induced hypnosis[END_REF], automated diagnosis e.g. lung nodules classification [START_REF] Magalhães | Application on reinforcement learning for diagnosis based on medical image[END_REF], breast lesion detection [START_REF] Maicas | Deep reinforcement learning for active breast lesion detection from dce-mri[END_REF] or schedule management [START_REF] Mnih | Asynchronous methods for deep reinforcement learning[END_REF]. Among these works, only a handful take realtime decisions which may impact patients health without expert supervision. Most of them are presented as tools to advise practicians, others are purely used to discover knowledge about a process. Indeed, among the 240 machine-learning based systems which obtained a European certificate until 2021, only two were of class III -the class of medical devices which have direct impact on the patient [START_REF] Urs | Approval of artificial intelligence and machine learning-based medical devices in the usa and europe (2015-20): a comparative analysis[END_REF]. Both of them are radiology tools providing critical information based on MRI data, based on supervised learning. Understandably, the promise of very high performances hardly outweighs the remaining risk for life-threatening decisions. Hence, risk and safety are key factors for reinforcement learning success in real life healthcare.

We investigate the use of a reinforcement learning agent for glycemia control on type I diabetes patients. type I diabetes is a pancreas deficiency in insulin production. Insulin is a hormone promoting the absorption of glucose from the blood to the liver. Untreated type I diabetes patients have frequent hyperglycemia (glycemia above 180mg/dL), which may result in long term complications. The treatment involves insulin delivery, through a pen or an insulin pump, adapted to the current glycemia -most of the time measured via a continuous glucose monitoring system (CGM). The treatment should be accurate so as to avoid both hyper and hypoglycemia (glycemia < 70 mg/dL), which may result in short term complications such as coma or even death. Meals induce large increases in glycemia and must be accompanied with a proportioned dose of insuline, called a bolus. Smaller variations of insulin and baseline physiological behaviour are dealt with by adjustement of a basal rate of insulin. To decrease the burden of monitoring the glycemia and manually computing and injecting insulin, closed-loop algorithms [START_REF] Amadou | Diabeloop dblg1 closed-loop system enables patients with type 1 diabetes to significantly improve their glycemic control in real-life situations without serious adverse events: 6-month follow-up[END_REF], also named artificial pancreas, manage automatic insulin delivery with a CGM and an insulin pump. Most of them rely on a proportional-integral-derivative (PID) controller and hard-coded rules to manage critical situations e.g. meals and hypoglycemia risks. Such algorithms take actions which directly impact the patient's health: the insulin is delivered without any confirmation from any diabetologist, nor from the patient himself. Under the European regulation, these devices are class III medical devices. Their safety is extremely critical. These closed-loop already bring substantial improvements to glycemia control, with Time in Range (TIR: percentage of time within 70-180mg/dL glycemia) increasing by 17.2% in [START_REF] Amadou | Diabeloop dblg1 closed-loop system enables patients with type 1 diabetes to significantly improve their glycemic control in real-life situations without serious adverse events: 6-month follow-up[END_REF] up to 69.7%, but there remain hopes for improvements: RL is a promising lead.

Several papers propose reinforcement learning algorithms for glycemia control, reviewed in Section 2. While most of them explore the performances of the agents, none of them propose ways to identify or to correct failure cases of the control. Yet this is absolutely necessary: failure cases may pose direct threats to the patients health. In this paper, we address this issue by proposing an uncertainty measure design that can be plugged on any trained policy network, and a procedure to maintain safe control even when failure cases are identified.

In Section 3.2, we detail how we use the evolution strategy [START_REF] Salimans | Evolution strategies as a scalable alternative to reinforcement learning[END_REF] algorithm to control glycemia in type I diabetes. In Section 3.3, we equip the trained RL agent with an epistemic uncertainty measure adapted from [START_REF] Tagasovska | Single-model uncertainties for deep learning[END_REF]. This method does not require model retraining nor Q-values. It has small computing requirements, allowing for embedded use with limited impact on battery life. In Section 4.1 we illustrate the quality of the obtained control with in silico validation. In Section and 4.2, we show how the trained models recover the typical mechanisms of blood sugar management via insulin -e.g. meal bolus, micro bolus -and how the trained model could be used to improve existing algorithms. Finally in Section 4.3, we illustrate the quality of the method through a series of simulated and real data experiments. Our main contribution is the design of the epistemic uncertainty and its extensive and rigorous testing. Throughout the paper, we put the emphasis on simplicity as we believe it is a key for success and safety in real life.

Related work

RL for glycemia control. In [START_REF] Daskalaki | An actor-critic based controller for glucose regulation in type 1 diabetes[END_REF][START_REF] Daskalaki | Personalized tuning of a reinforcement learning control algorithm for glucose regulation[END_REF], the authors use an actor-critic algorithm to refine hyper-parameters used by another controller (the insulin to carbohydrate ratio, used to calculate meal boluses, and the reference basal used in stable situations). Their controller is a simple basal-bolus controller, they do not disclose overall performances on the control itself. In [START_REF] Zhu | Basal glucose control in type 1 diabetes using deep reinforcement learning: An in silico validation[END_REF], the authors train a deep-Q learning agent to output the basal value for glycemia control. Meal management is done via a traditional meal bolus calculator and any risk of hypoglycemia is dealt with by cutting all insulin. An actor-critic agent to modulate both the insulin sensitivity and the insulin to carbohydrates ratio is proposed in [START_REF] Daskalaki | Model-free machine learning in biomedicine: Feasibility study in type 1 diabetes[END_REF]. Their method is however not suitable for real life applications. Indeed, they suppose that the meal schedule is regular and that meals are announced 30 minutes beforehand -when in general they are announced at best 5 minutes before. Besides, they use exploration on the patient itself: even with safety rules, this is not advisable, and in any case could not be included in real clinical care. In [START_REF] Fox | Reinforcement learning for blood glucose control: Challenges and opportunities[END_REF], the authors use Q-learning algorithms with various architectures -fully connected, convolution and GRU -and report risk indices. This baseline work is promising but far from applicability: meals are not announced and no safety rule is proposed around the RL agent -even in case of pending hypoglycemia. Offline reinforcement learning is another promising line of work, leveraging real data collected from existing controllers. A meal bolus calculator using Deep Deterministic Policy Gradient is proposed in [START_REF] Zhu | An insulin bolus advisor for type 1 diabetes using deep reinforcement learning[END_REF]. In [START_REF] Emerson | Offline reinforcement learning for safer blood glucose control in people with type 1 diabetes[END_REF], the authors investigate the use of conservative Q-learning, Twin Delayed DDPG with Behavioural Cloning and Batch Constrained Deep Q-learning. Their performances, while promising, remain below the state-of-the-art. Finally, model-based reinforcement learning is used for glycemia control and deals with uncertainty in [START_REF] Yamagata | Model-based reinforcement learning for type 1diabetes blood glucose control[END_REF]: here, the authors build a model of glycemia progression under a control and use model predictive control. Finally, the authors of [START_REF] Ngo | Data-driven robust control using reinforcement learning[END_REF] propose to learn uncertainty from the data itself during exploitation to optimise the action. These two last works are promising leads for safe glycemia control although they require additional training and computational resources.

Uncertainty for RL. None of the papers applying RL to glycemia control suggest a safety mechanism on the reinforcement learning -a part from managing imminent hypoglycemia. There are two types of uncertainty: epistemic when it relates to insufficient knowledge about the current state or aleatoric when it relates to irreducible environment stochasticity. Methods have been proposed to measure both in the context of reinforcement learning. In the literature, these attempts mostly focus on improving the training procedure with guided exploration 1 . Most of them rely on estimating the Q-value uncertainty: e.g. in [START_REF] Charpentier | Disentangling epistemic and aleatoric uncertainty in reinforcement learning[END_REF][START_REF] William R Clements | Estimating risk and uncertainty in deep reinforcement learning[END_REF], the authors propose four methods to measure both epistemic and aleatoric uncertainty with adapted architectures to parametrize Q-values. Some model epistemic and aleatoric uncertainty with policy gradient algorithm [START_REF] Depeweg | Modeling epistemic and aleatoric uncertainty with bayesian neural networks and latent variables[END_REF][START_REF] Eriksson | Epistemic risk-sensitive reinforcement learning[END_REF]. All of these methods require to train from scratch or to retrain existing models. With our approach, epistemic uncertainty can be measured from a single deterministic policy model without additional RL training.

Method

In this section, we describe the training of the RL agent and its epistemic uncertainty measure.

Virtual patient simulator

We use an in-house simulator of type I diabetes patients, already used in [START_REF] Sylvain Lachal | Hybrid closed-loop control with ultrarapid lispro compared with standard insulin aspart and faster insulin aspart: An in silico study[END_REF], for training. It is similar to the UVA/PADOVA simulator described in [START_REF] Dalla | The uva/padova type 1 diabetes simulator: new features[END_REF]: the patients states are governed by a set of partial differential equations, which may be Dalla Man equations [START_REF] Dalla | Meal simulation model of the glucose-insulin system[END_REF][START_REF] Dalla | The uva/padova type 1 diabetes simulator: new features[END_REF] or Hovorka equations [START_REF] Hovorka | Partitioning glucose distribution/transport, disposal, and endogenous production during ivgtt[END_REF]. Time is discretized in intervals of 5 minutes, which is the typical rate at which glycemia values can be sampled from a CGM. This simulator offers the possibility to simulate rich patient trajectories, which may contain almost any physiologically possible patient trajectory, among which:

• Various meal sizes and scenarios. Meals are announced 5 minutes before ingestion, in line with observed announcement times from real data.

• Realistic variations of the patients sensitivity to insulin

• Realistic noise of the glycemia signal, as observed with the use of a CGM

• Noise on the meal values, corresponding to mis-estimations by the patients

In fact, the virtual patients feature a voluntarily exaggerated variability, to expose the RL agent to as many pathological cases as possible during training: this is a form of data augmentation for RL.

When an imminent risk of hypoglycemia is detected the simulator overrides any given action and cuts all insulin deliveries. A risk of hypoglycemia occurs when a linear regression on the glycemia indicates a glycemia below 70mg/dL in the next hour. This hypoglycemia safety is primordial, and it is best to view it as part of the environment, rather than an overriding controller, when training the RL agent. The simulation stops either when the virtual patient is estimated to have died from hypo/hyperglycemia (i.e. when the glycemia is below 40mg/dL or above 400 mg/dL) or when reaching a maximum duration (3-10 days in our experiments). This simulator, although a key element of this work, is not the focus of the present paper.

Training

Observation space We make the problem approximately Markovian by feeding the network with a combination of past glycemia values, past insulin deliveries, an estimation of the carbohydrates on board -an exponential decay of the carbohydrates ingested by the patient and meal pre-announcements -as done by the patients using closed-loop systems. An history of glycemia/insulin/carbohydrates of 2-3 hours is considered enough to achieve an excellent control, since it determines with low uncertainty the dynamics of the glycemia in the next 3 hours [START_REF] Hovorka | Partitioning glucose distribution/transport, disposal, and endogenous production during ivgtt[END_REF]. Using recurrent networks to encode the patient state is a possibility, left for future work and explored in [START_REF] Zhu | Basal glucose control in type 1 diabetes using deep reinforcement learning: An in silico validation[END_REF]. Action space The action space is the continuous span of all possible insulin rates in the next five minutes, capped at 60 U/h. This rate is enough to reproduce most observed insulin deliveries in real life, as observed under the DBLG1 closed-loop algorithm [START_REF] Amadou | Diabeloop dblg1 closed-loop system enables patients with type 1 diabetes to significantly improve their glycemic control in real-life situations without serious adverse events: 6-month follow-up[END_REF]. Indeed, a typical meal bolus, ranging from 2 to 10 units, may be delivered in less than 10 minutes by the agent. Note that to provide enough flexibility to the model, we must necessarily allow such large quantities of insulin to be prescribed. Therefore, the action space contains actions which may expose the patients to hypoglycemias. Measuring uncertainty of the RL agent is essential.

Reward We use the reward function described in [START_REF] Zhu | Basal glucose control in type 1 diabetes using deep reinforcement learning: An in silico validation[END_REF], Figure 2, which was obtained by hyperoptimisation on the UVA/PADOVA simulator. It provides a satisfying balance between hyperglycemia and hypoglycemia. Note that, as described in [START_REF] Salimans | Evolution strategies as a scalable alternative to reinforcement learning[END_REF], we accumulate rewards over whole simulated episodes: the time horizon of the learned agent is virtually infinite. In particular, we keep accumulating rewards even in case of hypoglycemia risk, when the model action is overriden by the simulator itself as described in 3.1. This conveys the incentives to the trained model to avoid hypoglycemia situations, on top of the hypoglycemia safety. Additionally, note that this reward function imposes a stronger penalty on hypoglycemia situations that most others found in the literature: this places our RL agents on the safe side hypoglycemia-wise, as can be seen in Section 4.

Algorithm We use the evolution strategies (ES) method described in [START_REF] Mania | Simple random search of static linear policies is competitive for reinforcement learning[END_REF] (algorithm 2 version V1-t on page 6.), which is an extension of the basic random search proposed in [START_REF] Salimans | Evolution strategies as a scalable alternative to reinforcement learning[END_REF]. This method is known for its robustness to hyper-parameters choice and to the RL environment. We do not use a linear policy as in [START_REF] Mania | Simple random search of static linear policies is competitive for reinforcement learning[END_REF], but a standard 2-layer fully connected neural network with tanh activation as policy network as in [START_REF] Salimans | Evolution strategies as a scalable alternative to reinforcement learning[END_REF] -linear policy was not expressive enough to reach good control results. We train on 65 simulated patients with variable weights, insulin sensitivity, meal schedules, digestion speed, following the Hovorka equations. At each iteration, we evaluate the current policy network using 3 simulated episodes of a maximum of 10 days. Each episode has a global random seed which defines the selected patient and its internal parameters -insulin sensitivity pattern, digestion rate, meal schedule etc. We train population models with no patient-level fine-tuning (as can be seen e.g. in [START_REF] Zhu | Basal glucose control in type 1 diabetes using deep reinforcement learning: An in silico validation[END_REF]) since it would require either an off-policy training algorithm -impractical for safety concerns -or a sample-efficient on-policy training procedure which is beyond the scope of this paper.

To the best of our knowledge, this is the first use of the ES algorithm for glycemia control. It is robust and leads to state-of-the-art results on the UVA/PADOVA simulator, as shown in the next section. We will also illustrate how the trained algorithms recover knowledge about insulin-therapy and formulate new ideas for optimal glycemia control.

Uncertainty estimation

If the system is to be deployed in a clinical setting, we must be able to identify failure cases at runtime. We focus in this paper on epistemic uncertainty: identification of patient states for which the RL agent has insufficient knowledge. Aleatoric uncertainty is a less of a concern in our case for two reasons. First, it is well encompassed, and even largely exagerrated, in the simulator. Indeed, the simulated virtual patients exhibit much higher insulin sensitivity variations, meal schedule variations, carbohydrates to glucose ratio variations, meal absorption rates variations and CGM noise and drift than what is observed on real data, by design. Second, the inherent stochasticity of our problem is small compared to usual environments for RL benchmarks (e.g. atari, chess). In our case, it is possible to predict the glycemia 30 min ahead with less than 11 mg/dL average error and with very rare high-risk errors (predicted normoglycemia when hypoglycemia or hyperglycemia) as shown in [START_REF] Li | Convolutional recurrent neural networks for glucose prediction[END_REF]. Therefore, most failure cases of the RL agent will occur in cases of high epistemic uncertainty.

To measure the epistemic uncertainty, we use the orthonormal certificates proposed in [START_REF] Tagasovska | Single-model uncertainties for deep learning[END_REF]. Their formulation is in the context of supervised learning: we adapt this work to online reinforcement learning. Let us denote Φ(x) the d features of the last layer of the trained policy network for an input state x and let us assume that we have a collection of patient states Ω = (x i ) i=1...n . Orthonormal certificates are a set of k (d + 1)-vectors (C ij ) i=1...d+1,j=1,...,k , where k ∈ N, which minimize the loss function:

l(C) = 1 n n i=1 C Φ(x i ) 2 + λ C C -I k (1) 
where

C Φ(x i ) k = d i=1 C ki Φ(x i ) k + C d+1,i
: each orthonormal certificate parametrizes an hyperplane within the space of features. The first term motivates the certificates to parametrize the set of training features (Φ(x i )) i=1...n as its null space, while the second term motivates the certificates to be orthonormal, so as to offer non-redundant criteria. At inference time, we can threshold C Φ(x) 2 to determine if an action is too uncertain, and in that case proceed with a safer controller, as shown on Figure 1. Since it only requires a single-pass through a single RL policy network and through the certificates, it is computationally-efficient. This allows to increase the battery life of the device in real life clinical care.

Ω consists of 10 simulated days per patient, following the same characteristics as during training. Doing so, the orthonormal certificates uncertainty will ensure that any situation too far from what has been seen during training will be considered unsafe. This allows to bridge the gap between simulations and real life: it is a key feature towards the safety of the system. The Orthornormal certificates are fitted using a vanilla stochastic gradient descent on the loss function in equation ( 1) while the policy network is frozen. The analysis of the epistemic uncertainty is conducted in Section 4.3. In particular, we analyse the behaviour of the uncertainty and the performance of the control with respect to perturbations, limits of the simulations, and via out-of-distribution detection.

Results

Performances

The model configurations are described in Appendix A, as well as evidences for the well-known robustness of the augmented random search algorithm trainings. For comparison purposes, we evaluate the performances of the trained models on the FDA-approved UVA/PADOVA simulator [START_REF] Dalla | The uva/padova type 1 diabetes simulator: new features[END_REF] adult and adolescent patients -which pose a greater challenge due to their irregular meal patterns and declarations. These patients states follow the Dalla Man set of equations modelling the glycemia and insulin dynamics, while the training patients followed the Hovorka model. We report time in range (TIR) -fraction of time spent with a glycemia within the normal range 70-180mg/dL -time above range (TAR) -fraction of time above 180mg/dL -time below range (TBR) -fraction of time below 70mg/dL in table 1. Unlike papers cited in this table, the set of UVA/PADOVA patients was not used during training: our measure constitutes a less biased measure of model generalization to different type I diabetes populations.

Our results show state-of-the-art RL control on the glycemia: Time in Range is maximal for both adolescents and adults. Note that there is an obvious trade-off between hypo and hyperglycemia. Hypoglycemia are the greatest short-term threat: our method stands on the conservative side with respect to that risk. This is largely an effect of the reward function used (see Section 3) and of the hypoglycemia risk detection, which cuts insulin deliveries, as described in 3. Figure 2: Left: RL meal management examples. Meal boluses appear clearly, followed by additional insulin if the glycemia remains too high. Right: insulin delivered versus meal size for the RL agent and an usual meal management controller. The RL agent delivers more insulin for small meals and less insulin for large meals: this may improve the design of meal bolus calculators.

Knowledge discovery

Interestingly, our trained RL agents adopt a meal management strategy which is similar to widely accepted clinician recommendations, as shown on Figure 2a. In common practice, shortly before a meal, a patient injects him/herself a large one-shot dose of insulin (2-12 units) called a bolus: the best way to limit the large increase of hyperglycemia occuring due to the carbohydrates ingestion [START_REF] Lutz Heinemann | Insulin pump therapy: what is the evidence for using different types of boluses for coverage of prandial insulin requirements[END_REF]. For all our trained agents, as soon as the meal is announced -in the observation given to the policy network -the policy network immediately recommends a very large insulin rate (up to 60 U par hour) for a short period of time (between 5 and 15 minutes). This can be understood as a meal bolus. The size of this RL bolus varies with the initial glycemia and the meal size. Additionally, the RL agent also tends to follow the meal bolus with a waiting period lasting between ∼ 20 min and ∼ 1 h. This is another known recommendation for type I diabetes: as the effect of the meal bolus may be more or less delayed depending on the meal and patient state, delivering additional insulin too early poses a great risk of hypoglycemia. After this waiting period, the RL agent starts delivering corrective doses of insulins if needed. These fairly large follow up injections, generally called micro-boluses [START_REF] Dana | Do-it-yourself artificial pancreas system and the openaps movement[END_REF], are also recommended for post-meal management. This constitutes a strong validation of the trained agents. We can go a step further and compare insulin amounts in meal management by the RL agent and by an usual meal bolus calculator [START_REF] Zisser | Bolus calculator: a review of four "smart" insulin pumps[END_REF], currently commercialized in the DBLG1. As shown on Figure 2b, the RL agent prescribes, on average, more insulin for small meals. This information may very well lead to improvements on existing controllers.

Safety

For comparison, we train an ensemble of models and use the standard deviation of their predicted actions as a benchmark for epistemic uncertainty [START_REF] Charpentier | Disentangling epistemic and aleatoric uncertainty in reinforcement learning[END_REF]: we trained 3 different policy networks, with different initialisation, simulator seeds and different input states parametrizations. When possible, we compare properties of these uncertainties on real data as well. Our real-data dataset consists of 20 type I diabetes patients, observed between 3 weeks and 6 months. The data was collected during clinical trials NCT02987556 and NCT04190277 using the DBLG1 Diabeloop closed-loop system for glycemia control [START_REF] Benhamou | Closed-loop insulin delivery in adults with type 1 diabetes in real-life conditions: a 12-week multicentre, open-label randomised controlled crossover trial[END_REF]. It amounts to ∼ 300k observations. To provide meaningful comparisons, we systematically rescale the uncertainties between 0 and 1.

Measuring the quality of the obtained epistemic uncertainty is not straightforward. First, we investigate the general properties of the epistemic uncertainty under perturbations. Then we directly evaluate the performances of the safe controller, to measure the impact of the uncertainty on the control itself. In this section, we investigate the behaviour of the epistemic uncertainty provided by the orthonormal certificates through detection of out-of-distribution (OOD) states, perturbations on glycemia signal and actions, and meal sizes.

Uncertainty behaviour

OOD detection. We start by testing the detection of OOD examples as described in [START_REF] Charpentier | Disentangling epistemic and aleatoric uncertainty in reinforcement learning[END_REF]. We measure AUC-ROC scores on the classification of real states versus OOD states (sampled along a Gaussian distribution with same mean and deviation as the real states). Results are shown on Figure 3 for both orthonormal certificates and ensemble, on real data/simulated data vs OOD. The orthonormal certificates epistemic uncertainty allows excellent separation on both real and simulated data vs OOD sample (AUC=0.97 and 0.99). Ensemble epistemic uncertainty is less effective, with AUCs of 0.87 and 0.85 on simulated/real data. This indicates that abnormal patient states will be identified as such during clinical use.

Noisy glycemia. We add Gaussian noise with standard deviation between 0 and 30mg/dL to the glycemia signal sent to the policy network: this simulates imperfect data acquired by the CGM, and is a primary safety and regulatory concern when using the agent in real life. Results are shown on Figure 4 (top) on both simulated and real data, for ensemble and orthonormal certificates. The epistemic uncertainty increases with the noise. Interestingly, the epistemic uncertainty remains low when the noise is below 10 mg/dL: the approximate level of error of modern CGMs [START_REF] Viral | Performance of a factory-calibrated realtime continuous glucose monitoring system utilizing an automated sensor applicator[END_REF]. The ensemble method only shows mild increase with noise values, which would be a concern in real life. Indeed, with a noise deviation of 25mg/dL, the average hypoglycemia of the ensemble of agents increased by 7%: an unacceptable loss, mostly invisible via the ensemble uncertainty. Besides, the ensemble uncertainty is often close to 0 on simulated data: the policy networks tend to propose identical actions in simulations. On real data however, the ensemble uncertainty is never zero. While the ensemble epistemic uncertainty may still be relevant, this difference in distribution on real versus simulated data is such that any validation of the ensemble epistemic uncertainty on simulated data may not reflect its behaviour on real data. Impact of meals. Meals are the largest source of variability in glycemia: different patients have different meal absorption patterns, saturation of insulin activity often occurs with large boluses. There is both a risk of hyper (not enough insulin) and hypoglycemia (too much insulin). We identify the limitations of our RL agent with respect to meal sizes by running simulations with various meal patterns. Figure 4 (bottom) shows the distribution of epistemic uncertainties with increasing meal sizes, during the postprandial period (4h following the meal intake) on real and simulated data. The epistemic uncertainty increases with the meal amount during postprandial periods. With very large meals, most points become epistemically uncertain, as can be expected. Far from meals, the distribution of epistemic uncertainties is almost unchanged (not shown). Ensemble and orthonormal certificates epistemic uncertainty exhibit similar behaviours except for very large meals: the certificates evaluate most meals above 104g as uncertain, while a large proportion of such meals are considered certain by the ensemble method. Therefore, the certificates allow to adopt a more conservative approach.

Action perturbations. As in [START_REF] Charpentier | Disentangling epistemic and aleatoric uncertainty in reinforcement learning[END_REF], we randomly modify the actions proposed by the RL agent along r = r(1 + x) where x ∼ N (0, ε), r is the insulin rate and ε is the scale of the perturbation. This modifcation can only be done during simulations, results are as shown on Figure 5. When the actions are noisy, the epistemic uncertainty tends to increase (although in lower proportions than with meal or glycemia perturbations). This shows the ability of the certificates to identify off-policy glycemia patterns. Such cases may occur when the insulin pump is malfunctionning: occlusion or empty insulin cartridge, or when the patient is in an unusual state, altering the effects of insulin, such as stress or fatigue. Identifying these cases is an important safety feature of the RL agent.

Performance of the safe control

In this section, we look into the performances and robustness of the safe control presented on Fig 1 .   Epistemic uncertainty and Q-values. We compute, on a series of simulated episodes for the adult and adolescent patients, the Q-value for each state -with a discount factor γ = 0.9 -and the corresponding epistemic uncertainty. Results are shown on Figure 6a. We perform the same operation on real data where we estimate the Q-values in two ways: first we compute the Q-value under the behaviour policy -the closed-loop used to collect the data -and second we compute estimated Q-values under the RL agent policy using Fitted Q evaluation (FQE) [START_REF] Le | Batch policy learning under constraints[END_REF]. States with low uncertainty correspond on average, to higher Q-values. While this is not a validation of the epistemic uncertainty per se, it is valuable in our case: resorting to another controller for highly uncertain states should not, on average, eliminate the highest-rewarding states. The performances of the safe RL controller, which entrusts a safer controller with the highly uncertain states, may therefore remain high. Interestingly, estimated Q-values using FQE are higher than the Q-values under the acquisition-agent policy, indicating our RL agent may outperform the behaviour Performance of the safe control. Then, we evaluate the TIR, TAR and TBR metrics with varying thresholds to obtain the performances of the controller described on Figure 1. Our safe controller is a combination of a PID controller outside of meals and a meal bolus calculator for meal management. It is fully explainable and safe, but its overall performances are lower than the RL agent, as shown on Figure 6b. Evaluation is made on the 65 patients used during training. As expected, the performances degrade smoothly with the uncertainty threshold. Finally, we evaluate and show on Figure 7 the performances of the safe control under perturbations: noisy glycemia and noisy actions, following the same design as above. When the perturbations increase, the safe control enables exhibit better performances than the raw RL control, especially for thresholds of 0.09 and 0.12. The choice of operating point can now be made taking into account the safety -measured by indicators throughout this Section -and performances shown here. 7: TIR with varying glycemia noise (left) or varying action perturbation scale (right), for different epistemic uncertainty thresholds. For glycemia perturbations, the safe control outperforms the RL control and allows to save more than 10% TIR. For large action perturbations, the safe control (threshold 0.09 or 0.12) outperforms the RL agent.

Conclusion and perspectives

We showed how evolution strategies could be used for real-time safe glycemia control in type I diabetes via insulin delivery. With no prior knowledge about the disease, the agent recovers, and potentially refines, the principles of meal mangements: meal boluses and following micro boluses. Then we illustrated how orthonormal certificates could be used to compute epistemic uncertainty of the agent. This epistemic uncertainty does not need to estimate Q-values, nor to retrain the existing policy, and it requires a single pass through the policy network. This enables safe usage of the agent in a real clinical setup. The system is now to be tested during a real clinical study. The design of the safe controller, which circumvents uncertain RL agent predictions, should now possess all required regulatory characteristics for real life usage and class III certification.
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 1 Figure 1: Policy network with orthonormal certificates uncertainty. If uncertain, the predicted action is replaced by an action from a safe controller.

Figure 3 :

 3 Figure 3: OOD detection ROC curves.In this section, we investigate the behaviour of the epistemic uncertainty provided by the orthonormal certificates through detection of out-of-distribution (OOD) states, perturbations on glycemia signal and actions, and meal sizes.

Figure 4 :

 4 Figure 4: Distributions of orthonormal certificates (left) and ensemble (right) uncertainty vs increasing noise on the glycemia signal (top) and meal size (bottom). In all cases, uncertainty increases with the size of the perturbation. Orthonormal certificates are more sensitive to glycemia noise, and to very large meals. They also have similar distributions between simulated and real data.

Figure 5 :

 5 Figure 5: Orthonormal certificates/ensemble uncertainty vs action perturbation scale. Orthonormal certificates uncertainties increase, although lightly, with the action noise.

Figure 6 :

 6 Figure 6: Left: Q-values versus average epistemic uncertainty. Uncertainties tend to indicate states which results in lower reward under RL control. Right: performance of the final controller, with varying epistemic uncertainty threshold. Dotted lines indicated raw safe controller performances. The performances vary smoothly between pure RL performances and pure safe controller performances.

Figure

  Figure7: TIR with varying glycemia noise (left) or varying action perturbation scale (right), for different epistemic uncertainty thresholds. For glycemia perturbations, the safe control outperforms the RL control and allows to save more than 10% TIR. For large action perturbations, the safe control (threshold 0.09 or 0.12) outperforms the RL agent.

Table 1 :

 1 Performances, measured on UVA/PADOVA virtual patients. These virtual patients were not used during training and obey a different glycemia model.
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Not a first order concern here: our training procedure is efficient with the standard parameter space exploration of augmented random search. Our problem has smooth dynamics with relatively low stochasticity, low dimensionality -of the observation and of the underlying dynamics -and well-behaved rewards.

Appendix A Training procedure

Optimization hyper-parameters In all of our experiments, the learning rate decreases exponentially from 1e -3 down to 1e -4. We evaluate the performances of any sampled set of weights for the policy network by averaging cumulated rewards over 3 episodes, which last until the death of the simulated patient or up to 10 days. We keep only the top 50 % tested directions to perform the gradient update, as described in [START_REF] Mania | Simple random search of static linear policies is competitive for reinforcement learning[END_REF]. We use a second order approximation for the derivative estimation in all tested directions. We use a standard deviation σ = 0.05 to sample perturbation on the master weights. The gradient step is rescaled by the standard deviation of the corresponding rewards, to reduce updates with uncertain gradient estimates.

Observation space

The observation space in the presented models consists of: We observed a very high robustness across all tested configurations as shown on Figure 8. In fact, as described in [START_REF] Salimans | Evolution strategies as a scalable alternative to reinforcement learning[END_REF], almost no hyper-optimisation was needed to achieve state-of-the-art results. We only ran the following configurations via A/B testing: All trainings were done on a 72 CPU machine using the tricks described in [START_REF] Salimans | Evolution strategies as a scalable alternative to reinforcement learning[END_REF] to minimize overhead. The main bottleneck was the simulation cost for virtual patients, way above the policy network inference cost.