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SPDEs and Renormalisation

Lorenzo Zambotti

Abstract We review the main ideas of renormalisation of stochastic partial differen-
tial equations, as they appear in the theory of regularity structures. We discuss in an
informal way noise regularisation, the transformation of canonical-to-renormalised
models, the space of models and the role of the continuity of the solution map.
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Keywords Stochastic Partial Differential Equations, Renormalisation

In the foundational paper [7], Martin Hairer introduced a theory of regularity
structures and applied it to solving two important equations, whose well-posedness
was an open problem. The first part of [7] is truly a theory, in the sense that it can be
applied in the same way to a large class of problems: the second part however, which
deals with two concrete applications, contains more and more ad hoc arguments,
which should be adapted if applied in different contexts. Worse, for many other
interesting equations the approach proposed in [7] becomes impractical, since the
combinatorial complexity can be huge.

Fortunately, the situation has changed recently. The trio of papers

• Martin Hairer (2014),
A theory of regularity structures, Inventiones Math., [7]

• Yvain Bruned, M.H., L.Z. (2016),
Algebraic renormalisation of regularity structures, arXiv, [2]

• Ajay Chandra, M.H. (2016),
An analytic BPHZ theorem for regulariy structures, arXiv, [3]

now gives a completely automatic black box for obtaining local existence and unique-
ness theorems for a wide class of SPDEs. Prominent examples are the following:
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(KPZ) ∂tu = ∆u+(∂xu)2 +ξ , x ∈ R,

(PAM) ∂tu = ∆u+uξ , x ∈ R2,

(Φ4
3 ) ∂tu = ∆u−u3 +ξ , x ∈ R3,

for ξ a space time white noise (only depending in space for PAM).
Each of these equations contains a product between a distribution (generalised

function) and another distribution or, in the case of PAM, a function without a
sufficient regularity. In order to put the problem in a more general context, note
that if T ∈S ′(Rd) is a tempered distribution and ψ ∈S (Rd), then we can define
canonically the product ψT = T ψ ∈S ′(Rd) by

ψT (ϕ) = T ψ(ϕ) := T (ψϕ), ϕ ∈S (Rd).

The products appearing in the above equations can not be defined in this way since
ψ is not expected to belong to S (Rd).

Therefore, even with polynomial non-linearities, we do not know how to properly
multiply such (random) distributions. The randomness here is in fact not crucial,
since the problems are the same if we consider ξ as a deterministic distribution with
sufficiently low regularity.

In classical stochastic calculus we have a similar problem in the definition of
stochastic integrals. If (Bt)t≥0 is a Brownian motion and (At)t≥0 a smooth process,
then we can define canonically by means of a simple integration by parts∫ t

0
As dBs := AtBt −

∫ t

0
Bs Ȧs ds, t ≥ 0.

However we have several possible extensions of this definition to a larger class of
non-smooth A (Itô, Stratonovich...). This is related to the fact that, for A a generic
process such that the Itô integral is well defined, the map B→ ∫ •

0 As dBs is measurable
but not continuous.

This is the starting point of the Rough Paths theory, initiated by Terry Lyons
[9] and later expanded by, among others, Massimiliano Gubinelli, whose ideas on
controlled [4] and branched [5] rough paths have much inspired Martin Hairer in the
elaboration of Regularity Structures.

Lack of continuity of stochastic integrals with respect to trajectories of the un-
derlying BM has relevant consequences when one looks for approximations by
noise-regularisation, as can be already seen in the case of SDEs. Let us consider for
example the ODE in Rd

d
dt

xε = b(xε)+ f (xε)
dBε

dt
(1)
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where Bε is a smooth approximation of a Brownian motion B and b, f are smooth
coefficients. Then the Wong-Zakai Theorem [11, 12] states that, as ε → 0, we have
xε → x, solution to the Stratonovich SDE

dx = b(x)dt + f (x)◦ dB.

In order to obtain the Itô SDE in the limit, one has to define rather

d
dt

x̂ε = b(x̂ε)−
1
2

D f (x̂ε) f (x̂ε)+ f (x̂ε)
dBε

dt
(2)

and in this case, as ε → 0, we have x̂ε → x̂, solution to

dx̂ = b(x̂)dt + f (x̂)dB. (3)

Note that this is already an example of a ”renormalised” equation: although there is
no diverging quantity, we have to modify the regularised equation (1) if we want to
obtain in the limit the Itô SDE (3). In other words, if we want to approximate (3), the
correct choice is the less intuitive (2), rather than (1).

The deep reason for that, if any, is that the ”product” f (x̂)dB is less intuitive than
we would like to think, and it has to be properly interpreted if we want to approximate
it with smoother distributions.

Let us go back now to SPDEs. Let ξε = ρε ∗ ξ be a regularisation of ξ , with
(ρε)ε>0 is a family of mollifiers, and let uε solve

∂tuε = ∆uε +F(uε ,∇uε ,ξε)

where F is a non-linear function from a certain class, which includes the three
equations above. The question is of course: what happens as ε → 0 ? In order to
control this limit, we need a topology such that

1. the map ξε 7→ uε is continuous
2. ξε → ξ as ε → 0.

The first point requires the topology to be ”strong”, while the second one requires it
to be ”weak”. In fact, no simple solution seems to be available if the regularity of ξ

is sufficiently low. The analytic part of the theory of Regularity Structures (RS) gives
a framework to solve this problem, by constructing, for a given equation,

• a space of Models M endowed with a metric d
• a canonical lift of every smooth ξε to a model Xε ∈M
• a continuous function Φ : M →S ′(Rd) such that uε = Φ(Xε) solves the regu-

larised equation
∂tuε = ∆uε +F(uε ,∇uε ,ξε).

Roughly speaking, the model Xε ∈M contains a finite number of explicit products
which are relevant to the given equation. By simplifying a lot, we can say that
convergence in (M ,d) means convergence of all these objects as distributions. For
instance Xε ∈M can contain
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ξε(G∗ξε)

(with G the heat kernel). These products can be ill-defined in the limit ε → 0, e.g.

E[ξε(G∗ξε)] = ρε ∗G∗ρε(0)→ G(0) = +∞.

Therefore in general Xε does not converge in (M ,d) as ε → 0.

The RS theory identifies a class of equations, called subcritical, for which it is
enough to modify a finite number of products in order to obtain a convergent lift
X̂ε ∈M of ξε . For instance

ξε(G∗ξε)→ ξε(G∗ξε)−E[ξε(G∗ξε)]. (4)

The model X̂ε ∈M contains all these modified (renormalised) products. Then we
define the renormalised solution by ûε := Φ(X̂ε).

One can summarize the procedure into three steps:

• Analytic step: Construction of the space of models (M ,d) and continuity of the
solution map Φ : M →S ′(Rd), [7]

• Algebraic step: Renormalisation of the canonical model Xε → X̂ε ∈M , [2]
• Probabilistic step: Convergence a.s. of the renormalised model X̂ε to X̂ in (M ,d),

[3].

The final result is a renormalised solution û := Φ(X̂), which is also the unique
solution of a fixed point problem. This works for very general noises, far beyond the
Gaussian case.

The Wong-Zakai result for SPDEs is much more subtle than for SDEs [8]: if

∂tuε = ∂
2
x uε +H(uε)+F(uε)ξε , x ∈ R, (5)

then uε = Φ(Xε) does not converge in general and, in order to obtain in the limit the
correct Itô SPDE, it is necessary to renormalise the equation and study

∂t ûε = ∂
2
x ûε + H̄(ûε)−Cε F ′(ûε)F(ûε)+F(ûε)ξε (6)

where Cε = E[ξε(G∗ξε)] = ε−1c0,

H̄ := H + c1F ′F3 + c2F ′′F ′F2,

and {c0,c1,c2} are constants depending on the mollifier ρ used in the noise-
regularisation. It turns out that ûε = Φ(X̂ε), and the limit û := Φ(X̂) solves the
Itô SPDE

dû = (∂ 2
x û+H(û))dt +F(û)dWt , (7)

where W is the martingale measure associated with ξ , in the spirit of [10].
Therefore, the Wong-Zakai result for SPDEs is that the correct approximation

to (7) is not (5) but (6). The Stratonovich integral with respect to W is not well-
defined, since the covariation between F(û) and W is infinite, which explains the
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Φ

S ′(Rd) S ′(Rd)

M

Fig. 1 In this figure we show the factorisation of the map ξε 7→ uε into ξε 7→ Xε 7→Φ(Xε ) = uε .
We also see that in the space of models M we have several possible lifts of ξε ∈S ′(Rd), e.g. the
canonical model Xε and the renormalised model X̂ε ; it is the latter that converges to a model X̂,
thus providing a lift of ξ . Note that ûε = Φ(X̂ε ) and û = Φ(X̂).

diverging constant Cε in (6). The renormalisation procedure should not be seen as a
”modification of the equation” but as a choice of the correct equation.

It is very interesting to note that there is nothing singular in the SPDE (7). The
convergence of ûε to û is however far from simple and requires the full power of the
RS theory [8].

Another important point is the following: the final aim is to renormalise the
unknown solution uε = Φ(Xε). One of the main ideas of the RS theory is that, for
this, it is enough to renormalise the finitely many explicit products defining the model
Xε , and this can be done following [2]. Then [3] shows that the renormalised model
X̂ε converges to X̂ in (M ,d). Continuity of the solution map Φ : M →S ′(Rd)
yields convergence of the renormalised solution ûε = Φ(X̂ε) to û = Φ(X̂) [7].

For instance, let us consider the regularised version of KPZ:

∂tuε = ∂
2
x uε +(∂xuε)

2 +ξε . (8)

The renormalised version is

∂t ûε = ∂
2
x ûε +(∂xûε)

2−Cε +ξε (9)

with
Cε = E

[
(∂xG∗ξε)

2
]
∼ 1

ε
.
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The first mathematical paper on KPZ is [1], where the solution is constructed by the
Hopf-Cole transform, namely the simple remark that zε := exp(ûε) solves the linear
equation

∂tzε = ∂
2
x zε + zε ξε . (10)

It was not until [6] that a direct approach to (8)-(9) was obtained. The reason why
mathematicians have been at loss with this equation for so long, is of course that it
is not clear at all how one should handle the term (∂xûε)

2−Cε as ε → 0. Well, now
we know that it is enough to handle the convergence as a distribution of the explicit
function

(∂xG∗ξε)
2−E[(∂xG∗ξε)

2] (11)

which is the renormalised version of (∂xG∗ξε)
2, plus a few other terms which are

less evident from the equation, and then the continuity of the solution map Φ does
the rest of the job.

The Hopf-Cole tranform shows that, as discussed above for (5)-(6), (9) is not
merely the renormalisation of (8), it is rather the correct equation approximating
KPZ. Indeed, zε = exp(ûε) converges to the solution z of the linear Itô SPDE

dz = ∂
2
x z dt + zdWt

while exp(uε) does not converge.

Finally, let us notice that the two examples of renormalised products we have
discussed in (4)-(11) are simply given by substraction of a constant. This might
give the impression that the renormalisation procedure reduces to a mere centering.
Although this is partly true, it should be emphasised that the transformation from Xε

to X̂ε is described in [2] by the action on M of a renormalisation group which is in
general non-linear and non-commutative.

References

1. L. Bertini, G. Lorenzo (1997), Stochastic Burgers and KPZ equations from particle systems.
Comm. Math. Phys. 183, no. 3, 571–607.

2. Y. Bruned, M. Hairer, L. Zambotti (2016), Algebraic renormalisation of regularity structures,
arXiv:1610.08468.

3. A. Chandra, M. Hairer (2016), An analytic BPHZ theorem for regulariy structures,
arXiv:1612.08138.

4. M. Gubinelli (2004), Controlling rough paths. J. Funct. Anal. 216, no. 1, 86–140.
5. M. Gubinelli (2010), Ramification of rough paths. J. Differential Equations 248, no. 4, 693–

721.
6. M. Hairer, Solving the KPZ equation. Ann. of Math. (2) 178 (2013), no. 2, 559–664.
7. M. Hairer (2014), A theory of regularity structures. Invent. Math. 198, no. 2, 269–504.
8. M. Hairer, E. Pardoux (2015), A Wong-Zakai theorem for stochastic PDEs. J. Math. Soc. Japan

67, no. 4, 1551–1604.
9. T.J. Lyons (1998), Differential equations driven by rough signals. Rev. Mat. Iberoamericana

14, no. 2, 215–310.



SPDEs and Renormalisation 7

10. J. B. Walsh (1986), An introduction to stochastic partial differential equations. École d’été de
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