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BOUNDED COMPLEXITY, MEAN EQUICONTINUITY AND DISCRETE

SPECTRUM

WEN HUANG, JIAN LI, JEAN-PAUL THOUVENOT, LEIYE XU AND XIANGDONG YE

Abstract. We study dynamical systems which have bounded complexity with respect to
three kinds metrics: the Bowen metric dn, the max-mean metric d̂n and the mean metric
d̄n, both in topological dynamics and ergodic theory.

It is shown that a topological dynamical system (X,T ) has bounded complexity with
respect to dn (resp. d̂n) if and only if it is equicontinuous (resp. equicontinuous in the
mean). However, we construct minimal systems which have bounded complexity with
respect to d̄n but not equicontinuous in the mean.

It turns out that an invariant measure µ on (X,T ) has bounded complexity with respect
to dn if and only if (X,T ) is µ-equicontinuous. Meanwhile, it is shown that µ has bounded
complexity with respect to d̂n if and only if µ has bounded complexity with respect to d̄n
if and only if (X,T ) is µ-mean equicontinuous if and only if it has discrete spectrum.

1. Introduction

Throughout this paper, by a topological dynamical system (t.d.s. for short) we mean a
pair (X,T), where X is a compact metric space with a metric d and T is a continuous map
from X to itself. Let BX be the Borel σ-algebra on X and µ be a probability measure on
(X,BX). We say that µ is an invariant measure for T if for every B ∈ BX , µ(T−1B) = µ(B).

Entropy is a very useful invariant to describe the complexity of a dynamical system
which measures the rate of the exponential growth of the orbits. For some simple systems
(for example dynamical systems with zero entropy) it is useful to consider the complexity
function itself. This kind of considerations can be traced back to the work by Morse
and Hedlund, who studied the complexity function of a subshift and proved that the
boundedness of the function is equivalent to the eventual periodicity of the system (for
progress on the high dimensional analogue see [3]). In [10], Ferenczi studied measure-
theoretic complexity of ergodic systems using α-names of a partition and the Hamming
distance. He proved that when the measure is ergodic, the complexity function is bounded
if and only if the system has discrete spectrum (for the result dealing with non-ergodic
case, see [35]). In [21] Katok introduced a notion using the modified notion of spanning
sets with respect to an invariant measure µ and an error ε, which can be used to define the
complexity function. In [2], Blanchard, Host and Maass studied topological complexity
via the complexity function of an open cover and showed that the complexity function is
bounded for any open cover if and only if the system is equicontinuous.

Recently, in the investigation of the Sarnak’s conjecture, Huang, Wang and Ye [18]
introduced the measure complexity of an invariant measure µ similar to the one introduced
by Katok [21], by using the mean metric instead of the Bowen metric (for discussion and
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results related to mean metric, see also [27, 34]). They showed that if an invariant measure
has discrete spectrum, then the measure complexity with respect to this invariant measure is
bounded. An open question was posed as whether the converse statement holds. Motivated
by this open question and inspired by the discussions in [10, 21, 2, 17, 25, 12, 13, 16],
in this paper, we study topological and measure-theoretic complexity via a sequence of
metrics induced by a metric d, namely the metrics dn, d̂n and d̄n.

To be precise, for n ∈ N, we define three metrics on X as follows. For x, y ∈ X , let

dn(x, y) = max{d(T i x,T i
y) : 0 ≤ i ≤ n − 1}, d̄n(x, y) =

1

n

n−1∑

i=0

d(T i x,T i
y)

and

d̂n(x, y) = max
{
d̄k(x, y) : 1 ≤ k ≤ n

}
.

It is clear that for all x, y ∈ X ,

dn(x, y) ≥ d̂n(x, y) ≥ d̄n(x, y).

For x ∈ X , ε > 0 and a metric ρ on X , let Bρ(x, ε) = {y ∈ X : ρ(x, y) < ε}.We say that
a dynamical system (X,T) has bounded topological complexity with respect to a sequence
of metrics {ρn} if for every ε > 0 there exists a positive integer C such that for each n ∈ N

there are points x1, x2, . . . , xm ∈ X with m ≤ C satisfying X =
⋃m

i=1 Bρn(xi, ε). In this
paper we will focus on the situation when ρn = dn, d̂n and d̄n.

We also study the measure-theoretic complexity of invariant measures. That is, for a
given ε > 0 and an invariant measure µ we consider the measure complexity with respect
to {ρn} with ρn = dn, d̂n and d̄n, defined by

min{m ∈ Z+ : ∃x1, . . . , xm ∈ X, µ(∪m
i=1Bρn(xi, ε)) > 1 − ε}.

As expected, the bounded complexity of a topological dynamical system or a measure
preserving system is related to various notions of equicontinuity.

It is shown that (see Theorem 3.1 and Theorem 3.5) a topological dynamical system
(X,T) has bounded complexity with respect to dn (resp. d̂n) if and only if it is equicontin-
uous (resp. equicontinuous in the mean). At the same time, we construct minimal systems
which have bounded complexity with respect to d̄n but not equicontinuous in the mean,
which are not uniquely ergodic or uniquely ergodic (see Proposition 3.8 and Proposition
3.9).

It turns out that an invariant measure µ on (X,T) has bounded complexity with respect
to dn if and only if (X,T) is µ-equicontinuous (see Theorem 4.1). Meanwhile, it is shown
that µ has bounded complexity with respect to d̂n if and only if µ has bounded complexity
with respect to d̄n if and only if (X,T) is µ-mean equicontinuous if and only if (X,T) is
µ-equicontinuous in the mean if and only if it has discrete spectrum (see Theorem 4.3,
Theorem 4.4 and Theorem 4.7).

The structure of the paper is the following. In Section 2, we recall some basic notions
which we will use in the paper. In Section 3, we prove the topological results for systems
with bounded complexity with respect to three kinds of metrics. In Section 4, we consider
the corresponding results in the measure-theoretical setting. In the Appendix we give
some examples.
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2. Preliminaries

In this section we recall some notions and aspects of dynamical systems which will be
used later.

2.1. General notions. In the article, the sets of integers, nonnegative integers and natural
numbers are denoted by Z, Z+ and N, respectively. We use #(A) to denote the number of
elements of a finite set A.

A t.d.s. (X,T) is transitive if for each pair of non-empty open subsets U and V ,
N(U,V) = {n ∈ Z+ : U∩T−nV , ∅} is infinite; it is totally transitive if (X,Tn) is transitive
for each n ∈ N; and it is weakly mixing if (X × X,T × T) is transitive. We say that x ∈ X

is a transitive point if its orbit Orb(x,T) = {x,T x,T2x, . . .} is dense in X . The set of
transitive points is denoted by Trans(X,T). It is well known that if (X,T) is transitive, then
Trans(X,T) is a dense Gδ subset of X .

A t.d.s. (X,T) is minimal if Trans(X,T) = X , i.e., it contains no proper subsystems.
A point x ∈ X is called a minimal point or almost periodic point if (Orb(x,T),T) is a
minimal subsystem of (X,T).

2.2. Equicontinuity and mean equicontinuity. A t.d.s. (X,T) is called equicontinuous

if for every ε > 0 there is a δ > 0 such that whenever x, y ∈ X with d(x, y) < δ,
d(Tnx,Tn

y) < ε for n = 0, 1, 2, . . . . It is well known that a t.d.s. (X,T) with T being
surjective is equicontinuous if and only if there exists a compatible metric ρ on X such
that T acts on X as an isometry, i.e., ρ(T x,T y) = ρ(x, y) for any x, y ∈ X . Moreover, a
transitive equicontinuous system is conjugate to a minimal rotation on a compact abelian
metric group, and (X,T, µ) has discrete spectrum, where µ is the unique normalized Haar
measure on X .

When studying dynamical systems with discrete spectrum, Fomin [11] introduced a
notion called stable in the mean in the sense of Lyapunov or simply mean-L-stable. A
t.d.s. (X,T) is mean-L-stable if for every ε > 0, there is a δ > 0 such that d(x, y) < δ

implies d(Tnx,Tn
y) < ε for all n ∈ Z+ except a set of upper density less than ε. Fomin

proved that if a minimal system is mean-L-stable then it is uniquely ergodic. Mean-L-stable
systems are also discussed briefly by Oxtoby in [28], and he proved that each transitive
mean-L-stable system is uniquely ergodic. Auslander in [1] systematically studied mean-
L-stable systems, and provided new examples. See Scarpellini [29] for a related work. It
was an open question whether every ergodic invariant measure on a mean-L-stable system
has discrete spectrum [29]. This question was answered affirmatively by Li, Tu and Ye in
[25].

A t.d.s. (X,T) is called mean equicontinuous (resp. equicontinuous in the mean) if
for every ε > 0, there exists a δ > 0 such that whenever x, y ∈ X with d(x, y) < δ,
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lim supn→∞ d̄n(x, y) < ε (resp. d̄n(x, y) < ε for each n ∈ N). It is not hard to show that
a dynamical system is mean equicontinuous if and only if it is mean-L-stable. For works
related to mean equicontinuity, we refer to [25, 7, 13, 14, 26]. We remark that by the result
in [7], a minimal null or tame system is mean equicontinuous. We will show in this paper
that a minimal system is mean equicontinuous if and only if it is equicontinuous in the
mean (for the proof for the general case, see [31]).

2.3. µ-equicontinuity and µ-mean equicontinuity. When studying the chaotic behav-
iors of dynamical systems, Huang, Lu and Ye [17] introduced a notion which connects the
equicontinuity with respect to a subset or a measure.

Following [17], for a t.d.s. (X,T), we say that a subset K of X is equicontinuous if for
every ε > 0, there exists a δ > 0 such that d(Tnx,Tn

y) < ε for all n ∈ Z+ and all x, y ∈ K

with d(x, y) < δ. For an invariant measure µ on (X,T), we say that T is µ-equicontinuous if
for any τ > 0 there exists a T-equicontinuous measurable subset K of X with µ(K) > 1−τ.
It was shown in [17] that if (X,T) is µ-equicontinuous and µ is ergodic then µ has discrete
spectrum. We note that µ-equicontinuity was studied further in [12].

In the process to study mean equicontinuity, the above notions were generalized to mean
equicontinuity with respect to an invariant measure by García-Ramos in [13]. Particularly,
he proved that for an ergodic invariant measure µ, (X,T) is µ-mean equicontinuous if and
only if µ has discrete spectrum. For a different approach, see [24].

2.4. Hausdorff metric. Let K(X) be the hyperspace on X , i.e., the space of non-empty
closed subsets of X equipped with the Hausdorff metric dH defined by

dH(A, B) = max
{
max
x∈A

min
y∈B

d(x, y), max
y∈B

min
x∈A

d(x, y)
}

for A, B ∈ K(X).

As (X, d) is compact, (K(X), dH) is also compact. For n ∈ N, it is easy to see that the map
Xn → K(X), (x1, . . . , xn) 7→ {x1, . . . , xn}, is continuous. Then {A ∈ K(X) : #(A) ≤ n} is
a closed subset of K(X).

2.5. Discrete spectrum. Let (X,T) be an invertible t.d.s., that is, T is a homeomorphism
on X . Let µ be an invariant measure on (X,T) and let L2(µ) = L2(X,BX, µ) for short. An
eigenfunction for µ is some non-zero function f ∈ L2(µ) such that U f := f ◦ T = λ f

for some λ ∈ C. In this case, λ is called the eigenvalue corresponding to f . It is easy to
see every eigenvalue has norm one, that is |λ | = 1. If f ∈ L2(µ) is an eigenfunction, then
{Un f : n ∈ Z} is precompact in L2(µ), that is the closure of {Un f : n ∈ Z} is compact
in L2(µ). Generally, we say that f is almost periodic if {Un f : n ∈ Z} is precompact
in L2(µ). It is well known that the set of all bounded almost periodic functions forms a
U-invariant and conjugation-invariant subalgebra of L2(µ) (denoted by Ac). The set of all
almost periodic functions is just the closure of Ac (denoted by Hc), and is also spanned
by the set of eigenfunctions. The invariant measure µ is said to have discrete spectrum if
L2(µ) is spanned by the set of eigenfunctions, that is Hc = L2(µ). We remark that when
µ is not ergodic, the structure of a system (X,T, µ) with discrete spectrum can be very
complicated, we refer to [23, 8] and the example we provide at the end of Section 4 for
details.
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3. Topological dynamical systems with bounded topological complexity

In this section we will study the topological complexity of dynamical systems with
respect to three kinds of metrics.

3.1. Topological complexity with respect to {dn}. Let (X,T) be a t.d.s. For n ∈ N and
x, y ∈ X , define

dn(x, y) = max{d(T i x,T i
y) : i = 0, 1, . . . , n − 1}.

It is easy to see that for each n ∈ N, dn is a metric on X which is topologically equivalent
to the metric d. Let x ∈ X and ε > 0. The open ball of centre x and radius ε in the metric
dn is

Bdn(x, ε) = {y ∈ X : dn(x, y) < ε} =

n−1⋂

i=0

T−iB(T ix, ε).

Let K be a subset of X , n ∈ N and ε > 0. A subset F of K is said to (n, ε)-span K with

respect to T if for every x ∈ K there exists y ∈ F with dn(x, y) < ε, that is

K ⊂
⋃

x∈F

Bdn(x, ε).

Let spanK(n, ε) denote the smallest cardinality of any (n, ε)-spanning set for K with respect
to K , that is

spanK (n, ε) = min

{
#(F) : F ⊂ K ⊂

⋃

x∈F

Bdn(x, ε)

}
.

We say that a subset K of X has bounded topological complexity with respect to {dn} if
for every ε > 0 there exists a positive integer C = C(ε) such that spanK(n, ε) ≤ C for all
n ≥ 1. If the whole set X has bounded topological complexity with respect to {dn}, we
will say that the dynamical system (X,T) has the property.

We first show that a subset with bounded topological complexity with respect to {dn}

is equivalent to the equicontinuity property.

Theorem 3.1. Let (X,T) be a t.d.s. and K ⊂ X be a compact set. Then K has bounded

topological complexity with respect to {dn} if and only if it is equicontinuous.

Proof. (⇐) Fix ε > 0. By the definition of equicontinuity, there exists δ > 0 such that
d(Tnx,Tn

y) < ε for all n ∈ Z+ and all x, y ∈ K with d(x, y) < δ. By the compactness of K ,
there exists a finite subset F of K such that K ⊂

⋃
x∈F B(x, δ). Then K ⊂

⋃
x∈F Bdn(x, ε)

for all n ≥ 1. So K has bounded topological complexity with respect to {dn}.

(⇒) Assume the contrary that K is not equicontinuous. There exists ε > 0 such
that for any k ≥ 1 there are xk, yk ∈ K and mk ∈ N such that d(xk, yk) <

1
k

and
d(Tmk xk,T

mk yk) ≥ ε. Without loss of generality, we may assume that xk → x0 as k → ∞.
Then we have x0 ∈ K and yk → x0 as k → ∞. For any k ∈ N, by the triangle inequality,
either d(Tmk xk,T

mk x0) ≥
ε
2 or d(Tmk yk,T

mk x0) ≥
ε
2 . Without loss of generality, we always

have d(Tmk xk,T
mk x0) ≥

ε
2 for all k ∈ N. Then dmk+1(x0, xk ) ≥ ε/2 for all k ∈ N.

As K has bounded topological complexity with respect to {dn}, for the constant ε/6,
there exists C > 0 such that for every n ≥ 1 there exists a subset Fn of K with #(Fn) ≤ C

such that K ⊂
⋃

x∈Fn
Bdn(x, ε/6). We view {Fn} as a sequence in the hyperspace K(X). By

the compactness of K(X), there is a subsequence Fni → F as i → ∞ in the Hausdorff metric
dH . As Fn ⊂ K and K is compact, we have F ⊂ K . By the fact {A ∈ K(X) : #(A) ≤ C} is
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closed, we have #(F) ≤ C. For any i ∈ N and any x ∈ K , there exists zni ∈ Fni such that
dni (x, zni) < ε/6. Without loss of generality, assume that zni → z as i → ∞. Then z ∈ F.
As the sequence {dn} of metrics is increasing, that is dn(u, v) ≤ dn+1(u, v) for all u, v ∈ X

and n ∈ N, we have dni(x, zn j
) ≤ dn j

(x, zn j
) < ε for all j ≥ i. Letting j go to infinity, we

get dni (x, z) ≤ ε/6. This implies that

K ⊂
⋃

z∈F

{x ∈ K : dni (x, z) ≤ ε/6}

for all ni. By the monotonicity of {dn}, we have

K ⊂
⋃

z∈F

{x ∈ K : dn(x, z) ≤ ε/6}

for all n ∈ N. Enumerate F as {z1, . . . , zm} and let

K j =

∞⋂

n=1

{x ∈ K : dn(x, z j) ≤ ε/6}

for j = 1, . . . ,m. Then each Ki is a closed set. By the monotonicity of {dn}, we have
K =

⋃m
j=1 K j .

For the sequence {xk } in K , passing to a subsequence if necessary we assume that the
sequence {xk } is in the same K j . As K j is closed, x0 is also in K j . Note that for any
u, v ∈ K j and any n ≥ 1, dn(u, v) ≤ dn(u, z j) + dn(z j, v) ≤ ε/3. Particularly, we have
dmk+1(x0, xk) ≤ ε/3 for any k ∈ N, which is a contradiction. �

Remark 3.2. In the definition of (n, ε)-spanning set F of K , we require F to be a subset
of K . In fact we can define

span′K(n, ε) = min{#(F) : F ⊂ X and K ⊂
⋃

x∈F

Bdn(x, ε)}.

It is clear that spanK (n, 2ε) ≤ span′
K
(n, ε) ≤ spanK (n, ε). So Proposition 3.1 still holds if

in the definition of topological complexity with respect to {dn} we replace spanK (n, ε) by
span′

K
(n, ε).

Corollary 3.3. A dynamical system (X,T) is equicontinuous if and only if for every ε > 0
there exists a positive integer C such that spanX (n, ε) ≤ C for all n ≥ 1.

Remark 3.4. It is shown in [2] that the complexity defined by using the open covers is
bounded if and only if the system is equicontinuous. In fact, we can prove Corollary 3.3
by using this result and the the fact that [33, Theorem 7.7] if α is an open cover of X with
Lebesgue number δ then

N(∨n−1
i=0 T−iα) ≤ spanX(n, δ/2).

3.2. Topological complexity with respect to {d̂n}. For n ∈ N and x, y ∈ X , define

d̂n(x, y) = max
{1

k

k−1∑

i=0

d(T ix,T i
y) : k = 1, 2, . . . , n

}
.

It is easy to see that for each n ∈ N, d̂n is a metric on X which is topologically equivalent
to the metric d. For x ∈ X and ε > 0, let Bd̂n

(x, ε) = {y ∈ X : d̂n(x, y) < ε}. Let K be a
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subset of X . For n ∈ N and ε > 0, define

ŝpanK (n, ε) = min

{
#(F) : F ⊂ K ⊂

⋃

x∈F

Bd̂n
(x, ε)

}
.

We say that a subset K of X has bounded topological complexity with respect to {d̂n} if
for every ε > 0 there exists a positive integer C = C(ε) such that ŝpanK(n, ε) ≤ C for all
n ≥ 1.

As d̂n(x, y) ≤ dn(x, y) for all n ∈ N and x, y ∈ X , if K has bounded topological
complexity with respect to {dn} then it is also bounded topological complexity with
respect to {d̂n}. We say that a subset K of X is equicontinuous in the mean if for every
ε > 0, there exists a δ > 0 such that d̂n(x, y) < ε for all n ∈ Z+ and all x, y ∈ K with
d(x, y) < δ.

The following result follows the same lines in Theorem 3.1, just replace the distance dn

by d̂n, as the sequence {d̂n} of metrics is also increasing.

Theorem 3.5. Let (X,T) be a t.d.s. and K be a compact subset of X . Then K has bounded

topological complexity with respect to d̂n if and only if it is equicontinuous in the mean.

We say that a subset K of X is mean equicontinuous if for every ε > 0, there exists a
δ > 0 such that

lim sup
n→∞

1

n

n−1∑

i=0

d(T i x,T i
y) < ε

for all x, y ∈ K with d(x, y) < δ. If X is mean equicontinuous then we say that (X,T) is
mean equicontinuous. It is clear that if K is equicontinuous in the mean then it is mean
equicontinuous. We can show that for minimal systems they are equivalent.

Proposition 3.6. Let (X,T) be a minimal t.d.s. Then (X,T) is mean equicontinuous if and

only if equicontinuous in the mean.

Proof. It is clear that equicontinuity in the mean implies mean equicontinuity.
Assume that (X,T) is mean equicontinuous. For each ε > 0 there is δ1 > 0 such that if

d(x, y) < δ1 then

lim sup
n→∞

1

n

n−1∑

i=0

d(T i x,T i
y) <

ε

8
.

Fix z ∈ X . For each N ∈ N, let

AN =

{
x ∈ B(z, δ1/2) :

1

n

n−1∑

i=0

d(T i x,T iz) ≤
ε

4
, n = N, N + 1, . . .

}
.

Then AN is closed and B(z, δ1/2) =
⋃∞

N=1 AN . By the Baire Category Theorem, there is
N1 ∈ N such that AN1 contains an open subset U of X . By the minimality we know that
there is N2 ∈ N with

⋃N2−1
i=0 T−iU = X . Let δ2 be the Lebesgue number of the open cover

{T−iU : 0 ≤ i ≤ N2 − 1} of X . Let N = max{N1, 2N2}. By the continuity of T , there
exists δ3 > 0 such that if d(x, y) < δ3 implies that d(T ix,T i

y) < ε4 for any 0 ≤ i ≤ N . Put
δ = min{δ2, δ3}. Let x, y ∈ X with d(x, y) < δ and n ∈ N. If n ≤ N , then

1

n

n−1∑

i=0

d(T i x,T i
y) ≤

1

n
· n ·
ε

4
< ε.
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If n > N , there exists 0 ≤ i0 ≤ N2 − 1 such that x, y ∈ T−i0U, i.e., T i0 x,T i0y ∈ U, and then

1

n

n−1∑

i=0

d(T ix,T i
y) ≤

1

n

i0−1∑

i=0

d(T i x,T i
y) +

1

n

n−1∑

i=0

d(T iT i0 x,T iT i0y)

≤
ε

4
+

1

n

n−1∑

i=0

d(T iT i0 x,T iz) +
1

n

n−1∑

i=0

d(T iT i0 x,T iz)

≤
ε

4
+

ε

4
+

ε

4
< ε.

Therefore d̂n(x, y) < ε for all n ∈ Z+. This implies that (X,T) is equicontinuous in the
mean. �

Remark 3.7. When this paper was finished, we became aware of the work of [31] that
Qiu and Zhao can show that in general a t.d.s. is mean equicontinuous if and only if it is
equicontinuous in the mean.

3.3. Topological complexity with respect to {d̄n}. For n ∈ N and x, y ∈ X , define

d̄n(x, y) =
1

n

n−1∑

i=0

d(T i x,T i
y).

It is easy to see that for each n ∈ N, d̄n is a metric on X which is topologically equivalent
to the metric d. For x ∈ X and ε > 0, let Bd̄n

(x, ε) = {y ∈ X : d̄n(x, y) < ε}. For n ∈ N

and ε > 0, define

spanK (n, ε) = min

{
#(F) : F ⊂ K ⊂

⋃

x∈F

Bd̄n
(x, ε)

}
.

We say that a subset K of X has bounded topological complexity with respect to {d̄n} if
for every ε > 0 there exists a positive integer C = C(ε) such that spanK(n, ε) ≤ C for all
n ≥ 1.

As d̄n(x, y) ≤ d̂n(x, y) for all n ∈ N and x, y ∈ X , if K has bounded topological
complexity with respect to {d̂n} then it also has bounded topological complexity with
respect to {d̄n}. Intuitively, dynamical systems with bounded topological complexity with
respect to {d̄n} have similar properties of ones with respect to {d̂n} or {dn}. But we will
see that this is far from being true. The key point is that the sequence {d̄n} of metrics
may be not monotonous. If a dynamical system has bounded topological complexity with
respect to {d̄n}, then by Theorem 4.7 in next section, every invariant measure has discrete
spectrum. So it is simple in the measure-theoretic sense. But we have the following
proposition which is a surprise in some sense. Since the construction is somewhat long
and complicated, we move it to the Appendix.

Proposition 3.8. There is a distal, non-equicontinuous, non-uniquely ergodic, minimal

system, which has bounded topological complexity with respect to {d̄n}.

We can modify the example in Proposition 3.8 to be uniquely ergodic and also present
the construction in the Appendix.

Proposition 3.9. There is a distal, non-equicontinuous, uniquely ergodic, minimal system,

which has bounded topological complexity with respect to {d̄n}.
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Remark 3.10. As each distal mean equicontinuous minimal system is equicontinuous, the
systems constructed in Propositions 3.8 and 3.9 are not mean equicontinuous.

We have a natural question.

Question 1. Is there a non-trivial weakly mixing, even strongly mixing minimal system
with bounded topological complexity with respect to {d̄n}?

We are just informed by Huang and Xu [19] the above question has an affirmative answer
for weakly mixing minimal systems. The question if there is a non-trivial strongly mixing
minimal system with bounded topological complexity with respect to {d̄n} is still open.

4. Invariant measures with bounded measure-theoretic complexity

In this section, we will study the measure-theoretic complexity of invariant (Borel
probability) measures with respect to three kinds of metrics.

4.1. Measure-theoretic complexity with respect to {dn}. Let (X,T) be a t.d.s. and µ be
an invariant measure on (X,T). For n ∈ N and ε > 0, let

spanµ(n, ε) = min

{
#(F) : F ⊂ X and µ

(⋃

x∈F

Bdn(x, ε)

)
> 1 − ε

}
.

Recall that this is the same notion defined in [21] by Katok. We say that µ has bounded

complexity with respect to {dn} if for every ε > 0 there exists a positive integer C = C(ε)

such that spanµ(n, ε) ≤ C for all n ≥ 1.
We will show that an invariant measure with bounded complexity with respect to {dn}

is equivalent to the µ-equicontinuity property.

Theorem 4.1. Let (X,T) be a t.d.s. and µ be an invariant measure on (X,T). Then µ has

bounded complexity with respect to {dn} if and only if T is µ-equicontinuous.

Proof. (⇐) First assume that (X,T) is µ-equicontinuous. Fix ε > 0. There exists a
T-equicontinuous measurable subset K of X with µ(K) > 1 − ε. As the measure µ is
regular, we can require the set K to be compact. Now the result follows from Theorem 3.1,
as spanµ(n, ε) ≤ spanK (n, ε).

(⇒) For any τ > 0, we need to find a T-equicontinuous set K with µ(K) > 1 − τ. Now
fix τ > 0. As µ has bounded complexity with respect to {dn}, for any M > 0, there exists
C = CM > 0 such that for every n ≥ 1 there exists a subset Fn of X with #(Fn) ≤ C such
that

µ

( ⋃

x∈Fn

Bdn

(
x, 1

M

))
> 1 −

τ

2M+2
.

As the measure µ is regular, pick a compact subset Kn of
⋃

x∈Fn
Bdn(x,

1
M
) with µ(Kn) >

1 − τ
2M+2 . Without loss of generality, assume that Fn → FM , Kn → KM as n → ∞ in the

Hausdorff metric. Then #(FM ) ≤ C. As Kn is closed,

µ(KM) ≥ lim sup
n→∞

µ(Kn) ≥ 1 −
τ

2M+2
.

For any x ∈ KM and n ∈ N, there exists an N > 0 such that for any k > N there exists
xk ∈ Kk and yk ∈ Fk such that dn(x, xk) <

1
M

and dk(xk, yk) <
1
M

. Without loss of
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generality, assume that yk → y as k → ∞. Then y ∈ FM . By the monotonicity of {dn},
we have

dn(x, yk) ≤ dn(x, xk) + dn(xk, yk) ≤ dn(x, xk) + dk(xk, yk ) ≤
2
M
.

Letting k go to infinity, one has dn(x, y) ≤ 2
M

. Then KM ⊂
⋃

x∈FM
Bdn(x,

3
M
) and

spanKM
(n, 3

M
) ≤ #(FM ) ≤ CM .

Let K =
⋂∞

M=1 KM . Then µ(K) > 1 − τ and for any M ≥ 1,

spanK (n,
3
M
) ≤ spanKM

(n, 3
M
) ≤ CM

for all n ≥ 1. Now by Theorem 3.1, K is T-equicontinuous. This proves that (X,T) is
µ-equicontinuous. �

Remark 4.2. Similar to the observation in Remark 3.4, the open cover version of Theorem
4.1 was proved in [17, Proposition 3.3].

4.2. Measure-theoretic complexity with respect to {d̂n}. For n ∈ N and ε > 0, let

ŝpanµ(n, ε) = min

{
#(F) : F ⊂ X and µ

(⋃

x∈F

Bd̂n
(x, ε)

)
> 1 − ε

}
.

We say that µ has bounded complexity with respect to {d̂n} if for every ε > 0 there exists
a positive integer C = C(ε) such that ŝpanµ(n, ε) ≤ C for all n ≥ 1.

We will show that an invariant measure with bounded complexity with respect to {d̂n}

is equivalent to the following two kinds of measure-theoretic equicontinuity. We say that
T is µ-equicontinuous in the mean if for any τ > 0 there exists a measurable subset K of
X with µ(K) > 1 − τ which is equicontinuous in the mean, and µ-mean equicontinuous if
for any τ > 0 there exists a measurable subset K of X with µ(K) > 1 − τ which is mean
equicontinuous.

Theorem 4.3. Let (X,T) be a t.d.s. and µ be an invariant measure on (X,T). Then the

following statements are equivalent:

(1) µ has bounded complexity with respect to d̂n;

(2) T is µ-equicontinuous in the mean;

(3) T is µ-mean equicontinuous.

Proof. (1) ⇒ (2) Following the proof of Theorem 4.1, we know that for a given τ > 0,
there is a compact subset K such that µ(K) ≥ 1− τ and for any M ≥ 1, ŝpanK (n,

6
M
) ≤ CM

for all n ≥ 1. By Theorem 3.5, K is equicontinuous in the mean. This proves that (X,T)
is µ-equicontinuous in the mean.

(2) ⇒ (3) is obvious.

(3) ⇒ (1) Now assume that (X,T) is µ-mean equicontinuous. Fix ε > 0. Then there is
a compact K = K(ε) ⊂ X such that µ(K) > 1 − 2ε and K is mean equicontinuous. There
exists a δ > 0 such that

lim sup
n→∞

1

n

n−1∑

i=0

d(T ix,T i
y) < ε/4
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for all x, y ∈ K with d(x, y) < δ. As K is compact, there exists a finite subset F of K such
that K ⊂

⋃
x∈F B(x, δ). Enumerate F as {x1, x2, . . . , xm}. For j = 1, . . . ,m and N ∈ N, let

AN (x j ) =

{
y ∈ B(x j, δ) ∩ K :

1

n

n−1∑

i=0

d(T i x j,T
i
y) < ε/2, n = N, N + 1, . . .

}
.

It is easy to see that for each j = 1, . . . ,m, {AN (x j )}
∞
N=1 is an increasing sequence and

B(x j, δ)∩K =
⋃∞

N=1 AN (x j ). Choose N1 ∈ N and a compact subset K1 of AN1(x1) such that
µ(K j) > µ(B(x j, δ) ∩ K) − ε

2m
. Choose N2 ∈ N and a compact subset K2 of AN2(x2) such

that K1∩K2 = ∅ and µ(K1∪K2) > µ((B(x1, δ)∪B(x2, δ))∩K)− 2ε
2m

. By induction, we can
choose compact subsets K j of ANj

(x j ) for j = 1, . . . ,m with µ(
⋃m

j=1 K j ) > µ(K)− ε2 > 1−ε
and Ki ∩ K j = ∅ for 1 ≤ i < j ≤ m.

Let K0 =
⋃m

j=1 K j and N0 = max{Nj : j = 1, 2, . . . ,m}. There exists δ1 > 0 such that
for every x, y ∈ K with d(x, y) < δ1 there exists j ∈ {1, 2, . . . ,m} with x, y ∈ K j . By
the continuity of T , there exists δ2 > 0 such that dN (x, y) < ε for every x, y ∈ X with
d(x, y) < δ2. Let δ3 = min{δ1, δ2}. By the compactness of K0, there exists a finite subset
H of K0 such that H ⊂

⋃
x∈H B(x, δ3). Fix n ≥ 1 and y ∈ K0. There exists x ∈ H

with d(x, y) < δ3. If n < N0, then d̂n(x, y) ≤ dN0(x, y) < ε. If n ≥ N0, there exists
j ∈ {1, 2, . . . ,m} with x, y ∈ K j ⊂ ANj

(x j ). By the construction of ANj
(x j) and n ≥ Nj ,

1

n

n−1∑

i=0

d(T i x,T i
y) ≤

1

n

n−1∑

i=0

d(T i x,T ix j ) +
1

n

n−1∑

i=0

d(T i x j,T
i
y) < ε/2 + ε/2 = ε.

For any n ≥ 1, we have d̂n(x, y) < ε. Then

K0 ⊂
⋃

x∈H

Bd̂n
(x, ε)

and

µ

(⋃

x∈H

Bd̂n
(x, ε)

)
≥ µ(K0) > 1 − ε.

This implies that ŝpanµ(n, ε) ≤ #(H) for all n ≥ 1. Then µ has bounded complexity with

respect to {d̂n}. �

4.3. Measure-theoretic complexity with respect to {d̄n}. For n ∈ N, ε > 0, let

spanµ(n, ε) = min

{
#(F) : F ⊂ X and µ

(⋃

x∈F

Bd̄n
(x, ε)

)
> 1 − ε

}
.

We say that µ has bounded complexity with respect to {d̄n} if for every ε > 0 there exists
a positive integer C = C(ε) such that spanµ(n, ε) ≤ C for all n ≥ 1.

Unlike the topological case, we can prove that bounded measure-theoretic complexity
with respect {d̄n} and {d̂n} are equivalent.

Theorem 4.4. Let (X,T) be a t.d.s. and µ be an invariant measure on (X,T). Then µ

has bounded complexity with respect to {d̄n} if and only if it has bounded complexity with

respect to {d̂n}.

Proof. It is clear that if µ has has bounded complexity with respect to {d̂n} then by
definition it also has has bounded complexity with respect to {d̄n}.
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Now assume that µ has bounded complexity with respect to {d̄n}. Let ε > 0. There is
C = C(ε) such that for any n ∈ N, there is Fn ∈ X with #(Fn) ≤ C such that

µ

( ⋃

x∈Fn

Bd̄n
(x, ε/8)

)
> 1 − ε/8.

By the Birkhoff pointwise ergodic theorem for µ × µ a.e. (x, y) ∈ X2

d̄N (x, y) =
1

N

N−1∑

i=0

d(T i x,T i
y) → d∗(x, y).

So for a given 0 < r < min{1, ε2C
}, by the Egorov’s theorem there are R ⊂ X2 with

µ × µ(R) > 1 − r2 and N0 ∈ N such that if (x, y) ∈ R then

|d̄n(x, y) − d̄N0(x, y)| < r, for n ≥ N0.

By the Fubini’s theorem there is A ⊂ X such that µ(A) > 1 − r and for any x ∈ A,
µ(Rx) > 1 − r , where

Rx = {y ∈ X : (x, y) ∈ R}.

Enumerate FN0 = {x1, x2, . . . , xm}. Then m ≤ C. Let I = {1 ≤ i ≤ m : A∩Bd̄N0
(xi, ε/8) ,

∅}. Denote #(I) = m′. Then 1 ≤ m′ ≤ m. For each i ∈ I, pick yi ∈ A ∩ Bd̄N0
(xi, ε/8).

Then we have Bd̄N0
(xi, ε/8) ⊂ Bd̄N0

(yi, ε/4) for all i ∈ I. As

µ

(
A ∩

⋂

i∈I

Ryi
∩

⋃

x∈FN0

Bd̄N0
(x, ε/8)

)
≥ 1 − r − m′r − ε/8 > 1 − ε,

choose a compact subset

K ⊂ A ∩
⋂

i∈I

Ryi
∩

⋃

x∈FN0

Bd̄N0
(x, ε/8)

with µ(K) > 1 − ε. If x ∈ K , there exists i ∈ I such that x ∈ Ryi
∩ Bd̄N0

(yi, ε/4). Then

(yi, x) ∈ R. By the construction of R, for any n ≥ N0,

d̄n(x, yi) = d̄n(yi, x) ≤ d̄N0(yi, x) + r < ε/4 + r < ε/2.

Let δ1 > 0 be a Lebesgue number of the open cover of K by {K ∩Bd̄N0
(yi, ε/4) : i ∈ I}. By

the continuity of T , there exists 0 < δ < δ1 such that if d(x1, x2) < δ then dN0(x1, x2) < ε.
Let x1, x2 ∈ K with d(x1, x2) < δ. There is i ∈ I such that x1, x2 ∈ Ayi

∩ Bd̄N0
(yi, ε/4). Fix

n ≥ 1. If n < N0, d̄n(x1, x2) ≤ dN0(x1, x2) < ε. If n ≥ N0,

d̄n(x1, x2) ≤ d̄n(x1, yi) + d̄n(x2, yi) < ε/2 + 2r < ε.

Then d̂n(x1, x2) < ε for all n ≥ 1. By the compactness of K , there exists a finite subset H

of K such that K ⊂
⋃

x∈H B(x, δ). For any n ≥ 1, we have

K ⊂
⋃

x∈H

Bd̂n
(x, ε)

and then

µ

(⋃

x∈H

Bd̂n
(x, ε)

)
≥ µ(K) > 1 − ε.
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This implies that ŝpanµ(n, ε) ≤ #(H) for all n ≥ 1. Then µ has bounded complexity with

respect to {d̂n}. �

We can restate Proposition 4.1 of [18] as follows.

Proposition 4.5. Let (X,T) be an invertible t.d.s. and µ be an invariant measure on (X,T).

If µ has discrete spectrum, then it has bounded complexity with respect to {d̄n}.

It is conjectured in [18] that the converse of Proposition 4.5 is also true. If µ is ergodic,
by [13, Corollary 39], we know that µ has discrete spectrum and if and only if µ is mean
equicontinuous. So by Theorem 4.3, if an ergodic measure µ has bounded complexity
with respect to {d̄n}, then it has discrete spectrum. We will show in Theorem 4.7 that that
in general the converse of Proposition 4.5 is also true.

The following result was proved in [24, Theorem 2.7], see also [13, Corollary 39]. Here
we provide a different direct proof.

Proposition 4.6. Let (X,T) be a t.d.s. and µ be an ergodic invariant measure on (X,T).

If µ does not have discrete spectrum, then there exists α > 0 such that for µ × µ-almost

every pair (x, y) ∈ X × X ,

lim inf
n→∞

1

n

n−1∑

i=0

d(T i x,T i
y) > α.

Proof. Let Bµ be the completion of the Borel σ-algebra BX of X with respect to µ.
Corresponding to the discrete part of the spectrum of the action of T , there exists a compact
metric abelian group (G,+) with Haar measure ν, an element τ of G such that (G,Bν, ν, S)
is the Kronecker factor of (X,Bµ, µ,T) with an associated factor map π : X → G, where
Bν be the completion of the Borel σ-algebra of G with respect to ν and S is the translation
by τ on G.

Let µ =
∫

G
µzdν(z) be the disintegration of the measure µ over ν. For s ∈ G, let

λs =

∫

G

µz × µz+s dν(z).

It is a classical result (see e.g. [15, §4.3.1 Theorem 18]) that there is G0 ⊂ G with
ν(G0) = 1 such that for every s ∈ G0, the system (X × X, λs,T × T) is ergodic and

µ × µ =

∫

G

λs dν(s)

is the ergodic decomposition µ × µ under T × T .
By the Birkhoff ergodic theorem, the limit

lim
n→+∞

d̄n(x, y)

exists and equals to ∫

X×X

d(x1, x2) dλs(x1, x2)

for some s = s(x, y) ∈ G0 for µ × µ-a.e. (x, y) ∈ X2.
Now it is sufficient to show that if (X,Bµ, µ,T) does not have discrete spectrum, then

there exists α > 0 such that
∫

X×X
d(x1, x2) dλs(x1, x2) ≥ α for all s ∈ G0.
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As X is compact, pick a countable dense subset {yn : n ∈ N} in X . For z ∈ G,

c(z) := inf
n∈N

∫

X

d(x, yn) dµz(x).

It is clear that c(z) > 0 if and only if µz is not a Dirac measure. Moreover, c(·) is a
non-negative measurable function on G. Put

α :=

∫

G

c(z) dν(z).

Since (X,Bµ, µ,T) is ergodic and does not have discrete spectrum, by Rohlin’s theorem
µz is not a Dirac measure for ν-a.e. z ∈ G. This means that c(z) > 0 for ν-a.e. z ∈ G

and thus α > 0. For each y ∈ X , there exists a subsequence {ni} such that yni → y as
i → ∞. Then for each x ∈ X , d(x, yni ) → d(x, y) as i → ∞. By the Lebesgue dominated
convergence theorem, for each z ∈ G0,∫

X

d(x, y) dµz(x) = lim
i→∞

∫

X

d(x, yni ) dµz(x) ≥ c(z).

Thus, for each s ∈ G0,∫

X×X

d(x1, x2) dλs(x1, x2) =

∫

G

(∫

X×X

d(x, y) dµz × µz+s(x, y)
)
dν(z)

=

∫

G

(∫

X

(∫

X

d(x, y) dµz(x)
)

dµz+s(y)
)

dν(z)

≥

∫

G

∫

X

c(z)dµz+s(y) dν(z)

=

∫

G

c(z) dν(z) = α > 0.

This finishes the proof. �

Now we are able to show the converse of Proposition 4.5.

Theorem 4.7. Let (X,T) be an invertible t.d.s. and µ be an invariant measure on (X,T).

If µ has bounded complexity with respect to {d̄n}, then it has discrete spectrum.

Proof. Let A be the collection of points z ∈ X which are generic to some ergodic measure,
that is, for each z ∈ A, 1

n

∑n−1
i=0 δT iz → µz as n → ∞ and µz is ergodic. Then A is

measurable and µ(A) = 1. We first prove the following Claim.

Claim 1: µz has discrete spectrum for µ-a.e. z ∈ A.

Proof of the Claim 1. Let A1 = {z ∈ A : µz does not has discrete spectrum}. We need to
prove that A1 is measurable and has zero µ-measure. The ergodic decomposition of µ can
be expressed as µ =

∫
A
µz dµ(z) (see e.g. [30, Theorem 6.4]). For k ∈ N and z ∈ A, put

Fk(z) = µz × µz

({
(x, y) ∈ X × X : lim inf

n→∞

1

n

n−1∑

i=0

d(T i x,T i
y) >

1

k

})
.

As
∫

A
µz × µzdµ(z) is an invariant measure on (X × X,T × T), for each k ∈ N, Fk is

a measurable function on A. By Theorem 4.6, we know that µz does not have discrete
spectrum if and only if there exists k ∈ N such that Fk(z) = 1. Then A1 =

⋃
k∈N{z ∈

A : Fk (z) = 1} and it is measurable. Now it is sufficient to prove µ(G1) = 0. If not,
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then µ(A1) > 0 and there exists k ∈ N such that µ({z ∈ A : Fk(z) = 1}) > 0. Let
A2 = {z ∈ A : Fk(z) = 1} and put r = µ(A2). Then for every z ∈ A2 and for µz × µz-a.e.
(x, y) ∈ X × X ,

(1) lim inf
n→∞

1

n

n−1∑

i=0

d(T i x,T i
y) >

1

k
.

By Theorems 4.3 and 4.4, (X,T) is µ-mean equicontinuous. Then there exists M ⊂ X

with µ(M) > 1 − r2

4 such that M is mean equicontinuous. By regularity of µ, we can
assume that M is compact and M ⊂ A. Let A3 = {z ∈ A : µz(M) > 1 − r

2}. Then A3 is
measurable, as µ =

∫
A
µz dµ(z) is the ergodic decomposition of µ. We have

1 −
r2

4
< µ(M) =

∫

A

µz(M) dµ(z) ≤

∫

A3

µz(M) dµ(z) +

∫

A\A3

µz(M) dµ(z)

≤ µ(A3) + (1 − µ(A3))(1 −
r

2
),

which implies that µ(A3) > 1 − r
2 . Then µ(A2 ∩ A3) > r + (1 − r

2) − 1 = r
2 > 0. Pick

z ∈ A2∩ A3. As M is mean equicontinuous, there exists a δ > 0 such that for any x, y ∈ M

with d(x, y) < δ,

lim sup
n→∞

1

n

n−1∑

i=0

d(T i x,T i
y) <

1

k
.

As M is compact, there exists a finite open cover {U1,U2, . . . ,Um} of M with diameter
less than δ. Since z ∈ A3, µz(M) > 1 − r

2 . Then there exists i ∈ {1, . . . ,m} such that
µz(Ui) > 0 and also µz × µz(Ui) > 0. Note that the diameter of Ui is less than δ, so for
any x, y ∈ Ui,

lim sup
n→∞

1

n

n−1∑

i=0

d(T i x,T i
y) <

1

k
,

which contradicts to (1). This ends the proof of Claim 1. �

Let
A0 = {z ∈ A : µz has discrete spectrum}.

By Claim 1, we have µ(A0) = 1. Let f ∈ C(X) be a Lipschitz continuous function on X .
Then there exists C > 0 such that | f (x) − f (y)| ≤ Cd(x, y) for all x, y ∈ X .

Recall that the associated operator U : L2(µ) → L2(µ) is defined by U f = f ◦ T for all
f ∈ L2(µ). Inspired by the idea of [29, Theorem 1], we have the following Claim.

Claim 2: For any τ > 0, there exists M∗ ∈ B with µ(M∗) > 1 − τ such that f · 1M∗ is
almost periodic, i.e., {Un( f · 1M∗) : n ∈ Z} is precompact in L2(µ).

Proof of the Claim 2. By Theorems 4.3 and 4.4, (X,T) is µ-mean equicontinuous. Fix
a constant τ > 0. Then there exists M ⊂ X with µ(M) > 1 − τ such that M is mean
equicontinuous. Let M∗

=

⋃
n∈Z T−nM . To show that f · 1M∗ is almost periodic, we only

need to prove for any sequence {tn} in Z there exists a subsequence {sn} of {tn} such that
{Usn( f · 1M∗)} is a Cauchy sequence in L2(µ).

By regularity of µ, we can assume that M is compact and M ⊂ A0. Choose a countable
dense subset {zm} in M . As µz1 has discrete spectrum, there exists a subsequence {tn,1}

of {tn} such that {Utn,1 f : n ∈ N} is a Cauchy sequence in L2(µz1). Inductively assume
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that for each i ≤ m − 1 we have defined {tn,i} (which is a subsequence of {tn,i−1}) such
that {Utn,i f : n ∈ N} is a Cauchy sequence in L2(µzi ). As µzm has discrete spectrum, there
exists a subsequence {tn,m} of {tn,m−1} such that {Utn,m f : n ∈ N} is a Cauchy sequence in
L2(µzm). Let sn = tn,n for n ≥ 1. By the usual diagonal procedure, {Usn f : n ∈ N} is a
Cauchy sequence in L2(µzm) for all m ≥ 1.

Fix ε > 0. As M is mean equicontinuous in (X,T), there exists δ > 0 such that for any
x, y ∈ M with d(x, y) < δ,

lim sup
n→∞

1

n

n−1∑

i=0

(
d(T i x,T i

y)
)2
< ε.

Fix z ∈ M . There exists m ∈ N such that d(z, zm) < δ. For any j , k ∈ N,

‖Usj f − Usk f ‖2
L2(µz )

=

∫

X

|Usj f − Usk f |2 dµz = lim
n→∞

1

n

n−1∑

i=0

| f (T sj+iz) − f (T sk+iz)|2

≤ C2 lim
n→∞

1

n

n−1∑

i=0

(
d(T sj+iz,T sk+iz)

)2

≤ C2

(
lim sup

n→∞

1

n

n−1∑

i=0

(
d(T sj+iz,T sj+izm)

)2

+ lim sup
n→∞

1

n

n−1∑

i=0

(
d(T sk+iz,T sk+izm)

)2

+ lim
n→∞

1

n

n−1∑

i=0

(
d(T sj+izm,T

sj+izm)
)2

)

≤ C2
(
2ε + ‖Usj f − Usk f ‖2

L2(µzm )

)
.

As {Usn f : n ∈ N} is a Cauchy sequence in L2(µzm) for all m ≥ 1, {Usn f : n ∈ N} is also
a Cauchy sequence in L2(µz). Then for each z ∈ M ,

lim
N→∞

sup
j,k≥N

∫

X

|Usj f − Usk f |2 dµz = 0.

For each y ∈ M∗, there exists n ∈ Z and z ∈ M such that Tnz = y. Then µz = µy. For
z ∈ M∗, put

fN (z) = sup
j,k≥N

∫

X

|Usj f − Usk f |2 dµz .

By the dominated convergence theorem,

(2) lim
N→∞

∫

M∗

fN(z) dµ(z) =

∫

M∗

lim
N→∞

fN(x) dµ(z) = 0.
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It is easy to see that

sup
j,k≥N

∫

M∗

∫

X

|Usj f − Usk f |2 dµz dµ(z) ≤

∫

M∗

(
sup

j,k≥N

∫

X

|Usj f − Usk f |2 dµz

)
dµ(z)

=

∫

M∗

fN(z) dµ(z),

from where we deduce

lim
N→∞

(
sup

j,k≥N

∫

M∗

∫

X

|Usj f − Usk f |2 dµz dµ(z)

)
= 0 by (2).

As
∫

M∗ g dµ =
∫

M∗(
∫
g dµz) dµ(z) for any g ∈ L2(µ) we have

lim
N→∞

(
sup

j,k≥N

∫

M∗

|Usj f − Usk f |2 dµ(z)

)
= 0.

Note that T(M∗) = M∗, so
∫

M∗

|Usj f − Usk f |2 dµ(z) =

∫
|Usj ( f · 1M∗) − Usk ( f · 1M∗)|2 dµ.

Thus {Usn ( f · 1M∗)} is a Cauchy sequence in L2(µ), which ends the proof of Claim 2. �

Note that The collection of almost periodic functions g is closed in L2(µ). As the
measure of M∗ in Claim 2 can be arbitrary close to 1, f is also an almost periodic function
in L2(µ). As the collection of Lipschitz continuous functions in dense in C(X) (see e.g.
[5, Theorem 11.2.4.]) and C(X) is dense in L2(µ), then for every function g ∈ L2(µ) is
almost periodic in L2(µ), that is µ has discrete spectrum. �

Remark 4.8. After we have finished this paper, Nhan-Phu Chung informed us that The-
orem 4.7 was also proved in [32, Theorem 3.2] with a different method. Note that an
invariant measure µ has bounded complexity with respect to {d̄n} in our sense if and only
if every ε > 0, the scaling sequences with respect to µ and d are bounded as in [32,
Definition 3.1]. It should be noticed that in the introduction of [32] it requires a mild
condition that the standard (Lebesgue) space (X, µ) is non-atomic.

In Theorem 4.7, we show that if an invariant measure µ of a t.d.s. (X,T) has bounded
complexity with respect to {d̄n}, then almost all the ergodic components in the ergodic
decomposition of µ have discrete spectrum. In the following remark we provide an
example which shows that it may happen there are uncountably many pairwise non-
isomorphic ergodic components in the ergodic decomposition, and the set of unions of all
eigenvalues of the ergodic components are countable.

Remark 4.9. The space X is the product {0, 1}N × (S1)N. Let {τi : i ∈ N} be a family of
irrational numbers independent over the rational numbers. The measure µ is the product
of the Bernoulli measure (1

2,
1
2) on {0, 1}N and the product measure λN on (S1)N, where

each coordinate is equipped with the Lebesgue measure λ.
The transformationT : X → X is defined in the following way: letω = (ωi)i≥1 ∈ {0, 1}N

and w = (w)i≥1 ∈ (S1)N. Define T(ω,w) = (ω,w′), where (w′)i = wi if ωi = 0 and
(w′)i = Tiwi if ωi = 1, where Ti is the translation by τi on (S1)i. It is easy to see that
{ω} × (S1)N is T-invariant for any ω ∈ {0, 1}N.
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Let the distance on X be the sum of the distances

d1(ω, ω
′) =

∑

i≥1

1

2i
| ωi − ω

′
i | and d2(s, s

′) =
∑

i≥1

1

2i
d′(si, s

′
i),

where d′ is the distance on the circle S1, so that d((ω, s), (ω′, s′)) = d1(ω, ω
′) + d2(s, s

′).
It is not difficult to see that T has bounded complexity with respect to {d̄n}. Note that

the ergodic components are {ω} × (w′,Πi |ωi=1(S
1)i), where w

′ ∈ Πi |ωi=0(S
1)i .

Remark 4.10. Assume that (X,T) is a minimal system with bounded complexity with
respect to {d̄n} for an invariant measure µ. It is interesting to know whether almost all
the ergodic measures in the ergodic decomposition of µ are isomorphic. After the first
draft version of this paper was finished, Cyr and Kra informed us in [4] that there exists
an example dose not satisfy the condition, see Proposition B.1 in Appendix B.

Appendix A. Two examples

The aim of this appendix is to construct two examples announced in Section 3. We
remark that the measure complexity for a minimal distal system can be very complicated,
see for example [20].

A.1. The construction of the system in Proposition 3.8. We view the unit circle T as
R/Z and also as [0, 1) (mod 1). For a ∈ Rwe let ‖a‖ = min{|a−z | : z ∈ Z} which induces
a distance on T. Let α ∈ R \ Q be an irrational number and Rα : T → T, x → x + α the
rotation on T by α. In this subsection we will construct a skew product map T : T2 → T2

with T(x, y) = (x + α, y + h(x)) for any x, y ∈ T, where h : T→ R is continuous and will
be defined below.

The general idea to construct h is the following. First we choose some disjoint intervals
(see (3)) in T and define h1 : T→ R such that h1 takes positive values in some intervals,
negative values in the rest intervals and zero in rest points (see (10) below). This results
that

∑n−1
i=0 h1(R

i
αx) is small under some conditions (see Lemmas A.1 and A.2). Then we

choose smaller disjoint intervals (see (7)) in T and define h2 : T → R such that h2 takes
smaller positive values in some intervals, smaller negative values in the rest intervals and
zero in the rest pionts. We do this for each hk and finally we put h =

∑∞
k=1 hk . Note that for

n ∈ N and x, y ∈ T, Tn(x, y) =
(
Rn
αx, y +

∑n−1
i=0 h(Ri

αx)
)
. When calculating

∑n−1
i=0 h(Ri

αx),

we only need to take care
∑n−1

i=0 (
∑k

j=1 h j)(R
i
αx) when k large enough (see (15)). By careful

choosing hk we can show the minimality, non-equicontinuity and non-unique ergodicity.
Now let us begin the construction.

Let η = 1
100 , M1 = 10 and N1 = 10M1. As α is irrational, the two-side orbit {nα : n ∈ Z}

of 0 under the rotation Rα are pairwise distinct. Choose δ1 > 0 small enough such that
the intervals

[iα − δ1, iα + δ1], i = −1, 0, 1, · · · , 2N1

are pairwise disjoint on T. Put

(3) E1 =

2N1−1⋃

i=0

[iα − δ1, iα + δ1],

and
F1 = {iα − δ1, iα + δ1 : i = 0, 1, · · · , 2N1 − 1}.
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The total length of intervals in E1 is 4N1δ1. Shrinking δ1 if necessary, we can require
4N1δ1 < η/2. Put

l1 = min{‖x − y‖ : x, y ∈ F1, x , y}

and γ0 = 2l1.
For k = 2, 3, 4, · · · , we will define Mk, Nk, δk, Ek, Fk, lk and γk−1 by induction. Assume

that Mk−1, Nk−1, δk−1, Ek−1, Fk−1, lk−1 and γk−2 have been defined such that the total length
of intervals in Ek−1 is less than η

2k−1 . As Rα is uniquely ergodic on T, choose Mk > Nk−1

large enough such that for any x, y ∈ T, one has

(4) {0 ≤ i ≤ Mk − 1: Ri
αx ∈ (y, y + lk−1)} , ∅.

and for any n ≥ Mk and any x ∈ T,

(5)
1

n
#({0 ≤ i ≤ n − 1: Ri

αx ∈ Ek−1}) <
η

2k−1
.

Let Nk = 10k Mk . Choose δk > 0 small enough such that

{iα ± δk : i = 0, 1, 2, · · · , 2Nk − 1} ∩ Fk−1 = ∅,

and

[iα − δk, iα + δk], i = −1, 0, 1, · · · , 2Nk

are pairwise disjoint intervals on T. Choose 0 < γk−1 < δk−1 small enough such that

[iα − γk−1, iα + γk−1], −2Nk ≤ i ≤ 2Nk + 2Nk−1(6)

are pairwise disjoint intervals on T. Put

(7) Ek =

2Nk−1⋃

i=0

[iα − δk, iα + δk]

and

(8) Fk = Fk−1 ∪ {iα + δk, iα − δk : i = 0, 1, · · · , 2Nk − 1}

The total length of intervals in Ek is 4Nkδk . Shrinking δk if necessary, we can require
4Nkδk <

η

2k
. Let

lk = min

({
‖x − y‖ : x, y ∈ Fk, x , y

}
∪

{ γi

2k2
: i = 1, 2, · · · , k − 1

})
.(9)

This finishes the induction.

For each k ∈ N, define h∗
k
, hk : R→ [−1/2, 1/2) such that

h∗
k(x) =

{
1

Nk
(1 − | x−m

γk
|), for x ∈ [m − γk,m + γk] with m ∈ Z,

0, otherwise,

and

hk(x) =

Nk−1∑

i=0

h∗
k(x − iα) −

2Nk−1∑

i=Nk

h∗
k(x − iα).
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As the intervals in Ek are pairwise disjoint and γk < δk , it is easy to check that for any
x ∈ R,

hk(x) =




h∗
k
(x − iα), if x ∈ [iα − γk, iα + γk] (mod 1), i = 0, 1, 2, · · · , Nk − 1,

−h∗
k
(x − iα), if x ∈ [iα − γk, iα + γk] (mod 1), i = Nk, · · · , 2Nk − 1,

0, otherwise.

(10)

In particular, hk(x) = 0 for x < Ek (mod 1),

hk(iα) =

{
1

Nk
, for i = 0, 1, . . . , Nk − 1,

− 1
Nk
, for i = Nk, Nk + 1, . . . , 2Nk − 1,

and for any z ∈ [−δx, δx],

(11)
2Nk−1∑

s=0

hk(R
s
αz) = 0.

It is also easy to see that for any x ∈ R,

(12) |hk(x)| ≤
1

Nk

=

1

10k Mk

<
1

10k
,

and hk is Lipschitz continuous with a Lipschitz constant 1
Nkγk

, that is, for any x, y ∈ R,

(13) |hk(x) − hk(y)| ≤
1

Nkγk

|x − y |.

For any x ∈ R, we have hk(x + 1) = hk(x), so we can regard hk as a function from T to R.
Now, define h : T→ R as for each x ∈ T

h(x) =

∞∑

k=1

hk(x).

It is easy to see that h is continuous since
∞∑

k=1

|hk(x)| ≤

∞∑

k=1

1

10k
<

1

2
.

For k ≥ 1, we set

(14) h1,k(x) =

k∑

i=1

hi(x) and hk,∞(x) =

∞∑

i=k

hi(x).

Then
h(x) = h1,k(x) + hk+1,∞(x)

and

(15) ‖hk,∞(x)‖ ≤

∞∑

i=k

‖hi(x)‖ ≤

∞∑

i=k

1

10i Mi

≤
1

Mk

∞∑

i=k

1

10i
=

1

Mk

1

9 · 10k−1
<

1

9 · 10k−1
.

Finally, we define a skew product map as follows:

T : T2 → T2, (x, y) 7→ (x + α, y + h(x)).
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It is clear that T is continuous. We will show that the system (T2,T) is as required. By the
definition, it is clear that (T2,T) is distal.

For any real function g on T and x ∈ T, we set H
g

0 ≡ 0 and

H
g

n (x) :=
n−1∑

i=0

g(Ri
αx)

for n ≥ 1. Recall that h(x) =
∑∞

k=1 hk(x), so

Hh
n (x) =

∞∑

i=1

H
hi
n (x) = H

h1,k
n (x) + H

hk+1,∞
n (x).

We choose a compatible metric d on T2 by

d((x1, y1), (x2, y2)) := ‖x1 − x2‖ + ‖y1 − y2‖,

for any (x1, y1), (x2, y2) ∈ T
2. We remark that for n ∈ N and x, y ∈ T

Tn(x, y) =
(
Rn
αx, y +

n−1∑

i=0

h(Ri
αx)

)
= (Rn

αx, y + Hh
n (x)).

To estimate the orbit of (x, y), the key point is to control Hh
n (x). The following two lemmas

will be useful in the estimation.

Lemma A.1. Assume x ∈ T, i ∈ N and m ∈ N. If x, Rm
α x ∈ E c

i
∪ [−δi, δi], then one has

H
hi
m (x) = 0.

Proof. Let J = {0 ≤ j ≤ m − 1 : R
j
αx ∈ [−δi, δi]}. We first claim that

{0 ≤ k ≤ m − 1 : Rk
αx ∈ Ei} =

⋃

j∈J

{ j + l : 0 ≤ l ≤ 2Ni − 1}.

To see this equality firstly we note that if j ∈ J, then R
j
αx ∈ [−δi, δi]. This implies that

R
j+l
α x ∈ [lα−δi, lα+δi] ⊂ Ei for 0 ≤ l ≤ 2Ni−1. Since j ≤ m−1 and Rm

α x ∈ E c
i
∪[δi, δi],

one has j + 2Ni − 1 ≤ m and then { j + l : 0 ≤ l ≤ 2Ni − 1} ⊂ {0, 1, 2, · · · ,m − 1}. Thus,
{0 ≤ k ≤ m − 1 : Rk

αx ∈ Ei} ⊃ ∪ j∈J { j + l : 0 ≤ l ≤ 2Ni − 1}.
Conversely, if k ∈ {0, 1, 2, · · · ,m − 1} with Rk

αx ∈ Ei. This means that Rk
αx ∈ [sα −

δi, sα + δi] for some 0 ≤ s ≤ 2Ni − 1. If k < s, then x ∈ [(s − k)α − δi, (s − k)α + δi],
which contradicts to the assumption x ∈ E c

i
∪ [−δi, δi]. This implies k ≥ s. Hence we

have k − s ∈ J and k ∈ {(k − s) + l : 0 ≤ l ≤ 2Ni − 1}. Thus we get {0 ≤ k ≤ m − 1 :
Rk
αx ∈ Ei} ⊂ ∪ j∈J { j + l : 0 ≤ l ≤ 2Ni − 1}. This proves the claim.
By the claim, we have

H
hi
m (x) =

∑

0≤k≤m−1
Rk
αx<Ei

hi(R
k
αx) +

∑

0≤k≤m−1
Rk
αx∈Ei

hi(R
k
αx)

= 0 +
∑

j∈J

2Ni−1∑

l=0

hi(R
l
α(R

j
αx)) = 0. by (11)

This finishes the proof of Lemma A.1. �
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Lemma A.2. Assume x ∈ T, m, k ∈ N and 1 ≤ j ≤ k − 1. If ‖mα‖ < lk and x, Rm
α x ∈

[iα − δ j, iα + δ j ] for some 0 ≤ i ≤ 2Nj − 1, then one has

‖H
h j

m (x)‖ <
1

k2
.

Proof. First, by (9), one has

lk ≤ min{‖(iα + δk) − ( jα + δk)‖ : 0 ≤ i < j ≤ 2Nk − 1}

= min
0≤r≤2Nk−1

‖rα‖.

Thus, m ≥ 2Nk since ‖mα‖ < lk . Next, by the construction of E j , one has

R
2Nj−i
α x, Rm−i

α x = R
m−2Nj

α (R
2Nj−i
α x) ∈ E c

j ∪ [−δ j, δ j ]

since x, Rm
α x ∈ [iα − δ j, iα + δ j]. By Lemma A.1, one has H

h j

m−2Nj
(R

2Nj−i
α x) = 0 and

H
h j

m (x) = H
h j

2Nj−i
(x) + H

h j

m−2Nj
(R

2Nj−i
α x) + H

h j

i
(Rm−i
α x)

= H
h j

2Nj−i
(x) + H

h j

i
(Rm−i
α x)

= (H
h j

2Nj−i
(x) + H

h j

i
(R−i
α x)) + (H

h j

i
(Rm−i
α x) − H

h j

i
(R−i
α x))

= H
h j

2Nj
(R−i
α x) + (H

h j

i
(Rm−i
α x) − H

h j

i
(R−i
α x)).

Notice that R−i
α x ∈ [−δ j, δ j]. By (11), one has

H
h j

2Nj
(R−i
α x) =

2Nj−1∑

s=0

h j(R
s
α(R

−i
α x)) = 0.

This implies that

‖H
h j

m (x)‖ ≤ ‖H
h j

i
(Rm−i
α x) − H

h j

i
(R−i
α x)‖

≤

i−1∑

s=0

‖h j(R
m−i+s
α x) − h j(R

−i+s
α x)‖

≤ i · lk ·
1

Njγ j

,

where the last inequality follows from (13) and ‖R−i+s
α x − Rm−i+s

α x‖ = ‖mα‖ < lk for
s = 0, 1, 2 · · · , i − 1. Finally, by (9),

‖H
h j

m (x)‖ ≤ 2Nj ·
γ j

2k2
·

1

Njγ j

=

1

k2
.

This finishes the proof of Lemma A.2. �

Proposition A.3. (T2,T) is minimal.

Proof. We need to show every point (x, y) has a dense orbit. Fix (x, y) ∈ T2, 0 < ǫ < 1
and k ∈ N. There exists n1 ∈ N such that R

n1
α x ∈ [−ǫγk, ǫγk]. Let (x1, y1) = Tn1(x, y).

Then x1 = R
n1
α x and ‖x1‖ ≤ ǫγk .

Now fix (x′, y′) ∈ T2. Note that points in Fk−1 divide the unite circle into open arcs
with length not less than lk−1. The collection of these arcs is denoted by Fk−1. There
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exists (a1, a2) ∈ Fk−1 such that x′ ∈ [a1, a2). As (a1, a2) ∩Fk−1 = ∅, either (a1, a2) ⊂ Ek−1

or (a1, a2) ⊂ E c
k−1. If (a1, a2) ⊂ Ek−1, then [a1, a2) ⊂ [ jα − δk−1, jα + δk−1] for some

0 ≤ j ≤ 2Nk−1 − 1, and we take a = jα + δk−1. If (a1, a2) ⊂ E c
k−1, we take a ∈ [a1, a2)

such that x′ ∈ [a, a + lk−1) ⊂ [a1, a2) since the length of [a1, a2) is not less than lk−1. Note
that in any case (a, a + lk−1) is a subset of some (b1, b2) ∈ Fk−1. For any 1 ≤ i ≤ k − 2, as
Fi ⊂ Fk−1, (b1, b2) ∩ Ei = ∅. Then (b1, b2) is either a subset of [ jα − δi, jα + δi] for some
0 ≤ j ≤ 2Ni − 1 or a subset of E c

i
. Summing up the above arguments, one has:

(i) (a, a + lk−1) ⊂ E c
k−1 and min{‖x′ − x′′‖ : x′′ ∈ (a, a + lk−1)} ≤ 2δk−1;

(ii) for all 1 ≤ i ≤ k−2, either (a, a+lk−1) ⊂ [ jα−δi, jα+δi] for some 0 ≤ j ≤ 2Ni−1
or (a, a + lk−1) ⊂ E c

i
.

By (4), there exists an integer n2 ∈ [0,Mk) such that R
n2
α (x1) ∈ (a, a + lk−1). Suppose

y
′ − (y1 + Hh

n2
(x1)) = b (mod 1).

Then b ∈ [0, 1). By (4), there exists an integer n3 ∈ [[10k b]Mk, ([10k b] + 1)Mk) such that
n3 ≥ n2 and R

n3
α (x1) ∈ (a, a + lk−1). Note that n3 < 10k Mk = Nk and

b −
2

10k
≤

([10k b] − 1)Mk

Nk

≤
n3 − n2

Nk

≤
([10k b] + 1)Mk

Nk

≤ b +
2

10k
.

By (i) and Lemma A.1, one has H
hk−1
n3−n2

(R
n2
α x1) = 0. By (ii) and Lemmas A.1 and A.2, one

has

‖H
hi
n3−n2

(R
n2
α x1)‖ <

1

(k − 1)2

for 1 ≤ i ≤ k − 2. Thus, one has

‖y′ − (y1 + Hh
n3
(x1))‖ = ‖y′ − (y1 + Hh

n2
(x1)) − Hh

n3−n2
(R

n2
α x1)‖

=




b −

∞∑

i=k

H
hi
n3−n2

(R
n2
α x1) −

k−2∑

i=1

H
hi
n3−n2

(R
n2
α x1)






≤ ‖b − H
hk
n3−n2

(R
n2
α x1)‖

+

∞∑

i=k+1

‖H
hi
n3−n2

(R
n2
α x1)‖ +

k−2∑

i=1

‖H
hi
n3−n2

(R
n2
α x1)‖

≤ ‖b − H
hk
n3−n2

(n2α)‖ + ‖H
hk
n3−n2

(n2α) − H
hk
n3−n2

(n2α + x1)‖

+

∞∑

i=k+1

n3 − n2

Ni

+ (k − 2) ·
1

(k − 1)2

≤




b − (n3 − n2)
1

Nk




 + ǫ n3 − n2

Nk

+

∞∑

i=k+1

1

10i
+

1

k − 1

≤
3

10k
+ 2ǫ +

1

k − 1
.



24 W. HUANG, J. LI, J. THOUVENOT, L. XU AND X. YE

We deduces

d((x′, y′),Tn3+n1(x, y)) = d((x′, y′),Tn3(x1, y1))

= ‖x′ − R
n3
α x1‖ + ‖y′ − (y1 + Hh

n3
(x1))‖

≤ lk−1 + 2δk−1 +
3

10k
+ 2ǫ +

1

k − 1
.

This implies that (x′, y′) ∈ Orb((x, y),T) if we let k → +∞ and ǫ → 0. Hence (T2,T) is
minimal. �

For 1 ≤ j ≤ k, we let

E j,k =

k⋃

i= j

Ei .

By (5), for any n ≥ Mk+1 and x ∈ T,

(16)
1

n
#({0 ≤ i ≤ n − 1: Ri

αx ∈ E j,k}) <

k∑

i= j

η

2i
<
η

2 j−1
<

1

2
.

Proposition A.4. (T2,T) is not equicontinuous.

Proof. To show that (T2,T) is not equicontinuous, it is sufficient to show that for any
ǫ > 0, there exist (x1, y1), (x2, y2) ∈ T

2 and n ∈ N such that d((x1, y1), (x2, y2)) ≤ ǫ and
d(Tn(x1, y1),T

n(x2, y2)) ≥
1
9 .

Fix ǫ > 0. There exists k ∈ N such that lk + δk < ǫ . Put x′ = δk +
1
2 lk . One has

Ri
αx′ ∈ E c

k
and hk(R

i
αx′) = 0 for i = 0, 1, · · · , Nk − 1. By (16), we can choose integers

n1 ∈ [0,Mk − 1] and n2 ∈ [1
2 Nk − Mk,

1
2 Nk − 1] such that

R
n1
α 0, Rn1

α x′, R
n2
α 0, Rn2

α x′ ∈ E c
1,k−1.

By using Lemma A.1 and the fact R
n1
α x′, R

n2
α x′ ∈ E c

k
, we have

Hh
n2−n1

(R
n1
α 0) = H

h1,k−1
n2−n1

(R
n1
α 0) + H

hk
n2−n1

(R
n1
α 0) + H

hk+1,∞
n2−n1

(R
n1
α 0)

= H
hk
n2−n1

(R
n1
α 0) + H

hk+1,∞
n2−n1

(R
n1
α 0)

= (n2 − n1)
1

Nk

+ H
hk+1,∞
n2−n1

(R
n1
α 0)

and

Hh
n2−n1

(R
n1
α x′) = H

h1,k−1
n2−n1

(R
n1
α x′) + H

hk
n2−n1

(R
n1
α x′) + H

hk+1,∞
n2−n1

(R
n1
α x′)

= H
hk+1,∞
n2−n1

(R
n1
α x′).

Note that 1
2 Nk − 2Mk ≤ n2 − n1 ≤ 1

2 Nk and Nk = 10k Mk , so

2

5
≤ (n2 − n1)

1

Nk

≤
1

2
.
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By (12), we have

‖H
hk+1,∞
n2−n1

(R
n1
α 0) − H

hk+1,∞
n2−n1

(R
n1
α x′)‖ ≤

∞∑

i=k+1

(
‖H

hi
n2−n1

(R
n1
α 0)‖ + ‖H

hi
n2−n1

(R
n1
α x′)‖

)

≤

∞∑

i=k+1

2(n2 − n1)
1

Ni

≤

∞∑

i=k+1

2Nk

Ni

≤ 2
∞∑

i=k+1

1

10i−k
=

2

9
.

Thus,
16

90
≤ ‖Hh

n2−n1
(R

n1
α 0) − Hh

n2−n1
(R

n1
α x′)‖ ≤

65

90
,

and

d(Tn2−n1(R
n1
α 0, 0),Tn2−n1(R

n1
α x′, 0))

= d((R
n2
α 0,Hh

n2−n1
(R

n1
α 0)), (Rn2

α x′,Hh
n2−n1

(R
n1
α x′))

≥ ‖Hh
n2−n1

(R
n1
α 0) − Hh

n2−n1
(R

n1
α x′)‖ ≥

16

90
≥

1

9
with

d((R
n1
α 0, 0), (Rn1

α x′, 0)) = ‖R
n1
α 0 − R

n1
α x′‖ = ‖x′‖ = δk +

1

2
ℓk ≤ ǫ .

This implies that (T2,T) is not equicontinuous. �

Proposition A.5. (T2,T) is not uniquely ergodic.

Proof. Let mT2 be the unique normalized Haar measure on T2. For any mT2-integrable
function f (x, y), by the Fubini’s theorem, one has

∫

T2
f ◦ T(x, y) dmT2 =

∫

T

∫

T

f (Rαx, y + h(x)) dmT(y) dmT(x)

=

∫

T

∫

T

f (Rαx, y) dmT(y) dmT(x)

=

∫

T

∫

T

f (x, y) dmT(y) dmT(x)

=

∫

T2
f (x, y) dmT2 .

Therefore mT2 is T-invariant.
If (T2,T) is uniquely ergodic, then mT2 is the unique invariant measure. We take a

measurable function

f (x, y) = 1T×[0, 12 )
(x, y) − 1T×[ 1

2 ,1)
(x, y).

Note that the boundary of T × [0, 1
2) and T × [1

2, 1) have zero mT2-measure. By unique
ergodicity, we have

lim
n→∞

1

n

n−1∑

i=0

f (T i(x, y)) =

∫

T2
f dmT2 = 0(17)
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for each (x, y) ∈ T2.
For k ≥ 1, put

Ak =

{
s ∈

{ 1

10
Nk,

1

10
Nk + 1, · · · ,

4

10
Nk

}
: Rs
α0 = sα ∈

k−1⋂

j=1

E c
j

}
.

For i ∈ Ak , it is clear that 0, Ri
α0 ∈

⋂k−1
j=1 E c

j
∪ [−δ j, δ j], so we have that by Lemma A.1

Hh
i (0) −

i

Nk

=

∞∑

j=1

H
h j

i
(0) −

i

Nk

=

∞∑

j=k

H
h j

i
(0) −

i

Nk

=

∞∑

j=k+1

H
h j

i
(0)

where in the last equality we use the fact that H
hk
i
(0) =

∑i−1
l=0 hk(R

l
α0) =

i
Nk

by (10). Notice
that

‖H
h j

i
(0)‖ ≤

i−1∑

l=0

‖h j(R
l
α0)‖ ≤

i

Nj

.

Therefore



Hh

i (0) −
i

Nk




 =





∞∑

j=k+1

H
h j

i
(0)




 ≤

∞∑

j=k+1

‖H
h j

i
(0)‖ ≤

∞∑

j=k+1

i

Nj

≤

∞∑

j=k+1

i

10 j Mj

≤

∞∑

j=k+1

1

10 j
<

1

10
.

It is clear that 1
10 ≤ i

Nk
≤ 4

10 . So Hh
i
(0) ∈ [0, 1

2 ) and

f (T i(0, 0)) = f ((iα,Hh
i (0))) = 1.(18)

Put Sk = {0, 1, · · · , 1
2 Nk − 1} and Bk = {s ∈ Sk : Rs

α0 ∈ E1,k−1}, and by the construction
(5)

#(Bk)
1
2 Nk

≤

k−1∑

j=1

η

2 j
< η =

1

100
.

Hence

#(Ak)
1
2 Nk

≥

3
10 Nk − #Bk

1
2 Nk

>
59

100
.

Since f (T i(0, 0)) = 1 for i ∈ Ak and f (T i(0, 0)) ∈ {−1, 1} for i ∈ Sk \ Ak , we have

1
1
2 Nk

1
2 Nk−1∑

i=0

f (T i(0, 0)) =
1

1
2 Nk

(∑

i∈Ak

f (T i(0, 0)) +
∑

i∈Sk\Ak

f (T i(0, 0))
)

≥
1

1
2 Nk

(#(Ak ) − #(Sk \ Ak))

≥
59

100
−

41

100
=

18

100
.
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Thus

lim sup
k→∞

1
1
2 Nk

1
2 Nk−1∑

i=0

f (T i(0, 0)) ≥
18

100
> 0,

which contradicts (17). Therefore (T2,T) is not uniquely ergodic. This completes the
proof. �

For any real function g on T, n ∈ N and x, y ∈ X , we set

d̄
g

n (x, y) :=
1

n

n−1∑

m=0

‖H
g

m(x) − H
g

m(y)‖.

Then for any (x1, y1), (x2, y2) ∈ T
2, we have

d̄n((x1, y1), (x2, y2)) =
1

n

n−1∑

m=0

d((Rm
α x1, y1 + Hh

m(x1)), (R
m
α x2, y1 + Hh

m(x2)))

≤ ‖x1 − x2‖ + ‖y1 − y2‖ + d̄h
n (x1, x2).

The main result of this subsection is as follows.

Proposition A.6. (T2,T) has bounded topological complexity with respect to {d̄n}.

Proof. It is sufficient to show that for any ǫ ∈ (0, 1
100), there exist two constants C(ǫ) > 0

and K(ǫ) ∈ N such that span(n, 17ǫ) ≤ C(ǫ) for any n > K(ǫ).

First, we choose an integer q ∈ N such that
∞∑

i=q+1

η

2i
< ǫ and

1

10q
< ǫ.(19)

Then there exists δ(ǫ) > 0 such that
q∑

i=1

‖H
hi
s (x) − H

hi
s (y)‖ < ǫ,(20)

for any 0 ≤ s ≤ Mq+1 − 1 and any x, y ∈ T with ‖x − y‖ < δ(ǫ).
Put cǫ = ⌈1

ǫ
⌉ and cδ = ⌈ 1

δ(ǫ)
⌉. Let

C(ǫ) = 100c11
ǫ cδ and K(ǫ) = 2Nq+2.

In the following, we are going to show that for any n > K(ǫ) there exists a cover T of T2

(that depends on n), such that

#(T ) ≤ C(ǫ) and d̄n((x1, y1), (x2, y2)) ≤ 17ǫ

for any (x1, y1), (x2, y2) ∈ W ∈ T . This will imply span(n, 17ǫ) ≤ C(ǫ) for any n > K(ǫ).

Now fix an integer n > K(ǫ). There exists a unique integer k ≥ q + 2 such that

2Nk < n ≤ 2Nk+1.

Recall that
h = h1,k−1 + hk + hk+1 + hk+2,∞,

d̄n((x1, y1), (x2, y2)) ≤ ‖x1 − x2‖ + ‖y1 − y2‖ + d̄h
n (x1, x2),
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and
d̄h

n (x1, x2) ≤ d̄
h1,k−1
n (x1, x2) + d̄

hk
n (x1, x2) + d̄

hk+1
n (x1, x2) + d̄

hk+2,∞
n (x1, x2).

We divide the remaining proof into four steps, bounding each term of the sum above.

Step 1: We will construct a finite cover P of T such that

#(P) ≤ cδc
2
ǫ and d̄

h1,k−1
n (x, y) < 6ǫ

for x, y ∈ P ∈ P.

Firstly, for any x ∈ T and ℓ ≥ 2, we define

n∗ℓ(x) = min{i ≥ 0 : Ri
αx ∈ E c

1,ℓ−1} and x∗ℓ = R
n∗
ℓ
(x)
α x.

Clearly, n∗
ℓ
(x) ≤ Mℓ − 1 by (4). By Lemma A.1, if Rm

α x ∈ E c
i

for some 1 ≤ i ≤ ℓ − 1 and

m ≥ Mℓ, one has H
hi
m−n∗

ℓ
(x)
(x∗
ℓ
) = 0 and then

H
hi
m (x) = H

hi
n∗
ℓ
(x)
(x) + H

hi
m−n∗

ℓ
(x)
(x∗ℓ ) = H

hi
n∗
ℓ
(x)
(x).(21)

Next, let

P1 =

{ [ j

cδ
,

j + 1

cδ

)
: 0 ≤ j ≤ cδ − 1

}
,

P2 =

{{
x ∈ T :

q∑

i=1

H
hi
n∗
q+1(x)

(x) ∈
[ j

cǫ
,

j + 1

cǫ

)}
: 0 ≤ j ≤ cǫ − 1

}
,

P3 =

{{
x ∈ T :

k−1∑

i=q+1

H
hi
n∗
k
(x)
(x) ∈

[ j

cǫ
,

j + 1

cǫ

)}
: 0 ≤ j ≤ cǫ − 1

}
.

Put P = P1 ∨ P2 ∨ P3. It is clear that P is a partition of T and #(P) ≤ cδc
2
ǫ .

Fix two points x, y which are in the same atom of P. If there exists m ≥ Mk with
Rm
α x, Rm

α y ∈ E c
q+1,k−1, then by (21) we have for q + 1 ≤ i ≤ k − 1,

H
hi
m (x) = H

hi
n∗
k
(x)
(x) and H

hi
m (y) = H

hi
n∗
k
(y)
(y).

Thus,





k−1∑

i=q+1

(H
hi
m (x) − H

hi
m (y))




 =





k−1∑

i=q+1

(H
hi
n∗
k
(x)
(x) − H

hi
n∗
k
(y)
(y))




 ≤
1

cǫ
≤ ǫ,

as x, y are in the same atom in P3.
By (5) for any z ∈ T,

1

Mq+1
#{0 ≤ i ≤ Mq+1 − 1 : Ri

αz ∈ E c
1,q} ≥ 1 −

∞∑

i=1

η

2i
>

1

2
.

If there exists m ≥ Mk with Rm
α x, Rm

α y ∈ E c
q+1,k−1, then we can find an integer M ∈

[m−Mq+1,m−1] such that RM
α x ∈ E c

1,q and RM
α y ∈ E c

1,q. Note that M ≥ m−Mq+1 > Mq+1.
By (21), for 1 ≤ i ≤ q,

H
hi
M
(x) = H

hi
n∗
q+1(x)

(x) and H
hi
M
(y) = H

hi
n∗
q+1(y)

(y).
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Then





q∑

i=1

(H
hi
M
(x) − H

hi
M
(y))




 =





q∑

i=1

(H
hi
n∗
q+1(x)

(x) − H
hi
n∗
q+1(y)

(y))




 ≤
1

cǫ
≤ ǫ,

as x, y are in the same atom in P2.
As x, y are in the same atom in P1, ‖RM

α x − RM
α y‖ = ‖x − y‖ ≤ 1

cδ
≤ δ(ǫ). Note that

m − M ≤ Mq+1 − 1. By (20) we have





q∑

i=1

H
hi
m−M

(RM
α x) −

q∑

i=1

H
hi
m−M

(RM
α y)




 < ǫ.

Hence, if there exists m ≥ Mk with Rm
α x, Rm

α y ∈ E c
q+1,k−1, then we have



H
h1,k−1
m (x) − H

h1,k−1
m (y)



 ≤





q∑

i=1

(H
hi
m (x) − H

hi
m (y))




 +





k−1∑

i=q+1

(H
hi
m (x) − H

hi
m (y))






≤





q∑

i=1

(H
hi
M
(x) − H

hi
M
(y))






+





q∑

i=1

H
hi
m−M

(RM
α x) −

q∑

i=1

H
hi
m−M

(RM
α y)






+





k−1∑

i=q+1

(H
hi
m (x) − H

hi
m (y))






≤ 3ǫ .

Finally,

d̄
h1,k−1
n (x, y) =

1

n

n−1∑

j=0

‖H
h1,k−1

j
(x) − H

h1,k−1

j
(y)‖

≤
1

n

( ∑

Mk≤ j≤n−1

R
j
αx,R

j
αy∈Ec

q+1,k−1

‖H
h1,k−1

j
(x) − H

h1,k−1

j
(y)‖

+

∑

Mk≤ j≤n−1

R
j
αx∈Eq+1,k−1

1 +
∑

Mk≤ j≤n−1

R
j
αy∈Eq+1,k−1

1 +
∑

0≤ j≤Mk−1

1

)

≤ 3ǫ +
1

n
#({0 ≤ j ≤ n − 1 : R

j
αx ∈ Eq+1,k−1})

+

1

n − 1
#({0 ≤ j ≤ n − 1 : R

j
αy ∈ Eq+1,k−1}) +

Mk

n − 1
< 6ǫ,

where the last inequality follows from (16) and (19).

Step 2: We will construct a finite cover Q of T such that

#(Q) ≤ 10c4
ǫ and d̄

hk
n (x, y) ≤ 4ǫ
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for any x, y ∈ Q ∈ Q.

There are two cases. The first case is n ≤ 2cǫNk . In this case, we put

Q0 = T \

( ⋃

−2cǫ Nk≤i<(2+2cǫ )Nk

[iα − γk, iα + γk]

)
,

and

Qr,s =

⋃

rNk
cǫ

≤i<
(r+1)Nk

ǫ

[
iα +

γk s

c2
ǫ

, iα +
γk(s + 1)

c2
ǫ

]
.

Let
Q = {Q0} ∪

{
Qr,s : −2c2

ǫ ≤ r ≤ (2 + 2cǫ )cǫ − 1,−c2
ǫ ≤ s ≤ c2

ǫ − 1
}
.

It is clear that Q is a cover of T and #(Q) ≤ 2c2
ǫ · 5c2

ǫ =
10c3

ǫ

ǫ
≤ 10c4

ǫ . For x, y ∈ Q0, one

has d̄
hk
n (x, y) = 0 by (10).

Now assume that x, y ∈ Qr,s for some r and s. There exist integers m1,m2 ∈ [
rNk

cǫ
,
(r+1)Nk

cǫ
]

and x1, y1 ∈ [
γk s

c2
ǫ

,
γk (s+1)

c2
ǫ

] such that

x = R
m1
α x1 and y = R

m2
α y1.

Without loss of generality, we can assume that m1 ≤ m2. For any 1 ≤ m ≤ n, one has

‖H
hk
m (x) − H

hk
m (y)‖ =





m−1∑

i=0

(hk(R
i
αx) − hk(R

i
αy))






≤





m1+m−1∑

i=m1

hk(R
i
αx1) −

m2+m−1∑

i=m2

hk(R
i
αy1))






≤





m1+m−1∑

i=m1

hk(R
i
αx1) −

m2+m−1∑

i=m2

hk(R
i
αx1)






+





m2+m−1∑

i=m2

(hk(R
i
αx1) − hk(R

i
αy1))






≤

m2−1∑

i=m1

‖hk(R
i
αx1)‖ +

m2+m−1∑

i=m1+m

‖hk(R
i
αx1)‖ + m ·

γk

c2
ǫ

·
1

Nkγk

≤ 2(m2 − m1)
1

Nk

+ m ·
γk

c2
ǫ

·
1

Nkγk

by (12) and (13)

≤ 4ǫ .

Hence, summing up we obtain

d̄
hk
n (x, y) ≤ 4ǫ, for x, y ∈ Q ∈ Q.

The second case is n > 2cǫNk . In this case, we put

Q0 = T \

( ⋃

0≤i<2Nk

[iα − γk, iα + γk]

)
,
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and

Qr,s =

⋃

rNk
cǫ

≤i<
(r+1)Nk

cǫ

[
iα +

γk s

c2
ǫ

, iα +
γk(s + 1)

c2
ǫ

]
.

Let

Q = {Q0}
⋃{

Qr,s : 0 ≤ r ≤ 2cǫ − 1,−c2
ǫ ≤ s ≤ c2

ǫ − 1
}
.

It is clear that Q is a cover of T and #Q ≤ 10c4
ǫ . Given x, y ∈ Q0, by (6) and (10) one

has

#{0 ≤ m ≤ n − 1 : H
hk
m (x) , 0} ≤ 2Nk

and

#{0 ≤ m ≤ n − 1 : H
hk
m (y) , 0} ≤ 2Nk .

Then by (12)

d̄
hk
n (x, y) ≤

1

n
· 4Nk ≤ 2ǫ .

Now assume that x, y ∈ Qr,s for some r and s. There exist integers m1,m2 ∈ [
rNk

cǫ
,
(r+1)Nk

cǫ
]

and x1, y1 ∈ [
γk s

c2
ǫ

,
γk (s+1)

c2
ǫ

] such that

x = R
m1
α x1 and y = R

m2
α y1.

Without loss of generality, we can assume that m1 ≤ m2. Recall that 2Nk < n ≤ 2Nk+1.
By (6) and (10) one has

hk(R
i
αx1) = hk(R

i
αy1) = 0(22)
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for any 2Nk < i ≤ 2Nk + n ≤ 2Nk + 2Nk+1. For any 1 ≤ m ≤ n, one has

‖H
hk
m (x) − H

hk
m (y)‖ =





m1+m−1∑

i=m1

hk(R
i
αx1) −

m2+m−1∑

i=m2

hk(R
i
αy1))






≤





m1+m−1∑

i=m1

hk(R
i
αx1) −

m2+m−1∑

i=m2

hk(R
i
αx1)






+





m2+m−1∑

i=m2

(hk(R
i
αx1) − hk(R

i
αy1))






≤

m2−1∑

i=m1

‖hk(R
i
αx1)‖ +

m2+m−1∑

i=m1+m

‖hk(R
i
αx1)‖

+





∑

m2≤i≤m2+m−1

(hk(R
i
αx1) − hk(R

i
αy1))






= 2(m2 − m1)
1

Nk

+






∑

m2≤i≤m2+m−1

(hk(R
i
αx1) − hk(R

i
αy1))





 by (12)

= 2(m2 − m1)
1

Nk

+






∑

m2≤i≤m2+m−1
i≤2Nk

(hk(R
i
αx1) − hk(R

i
αy1))





 by (22)

≤ 2(m2 − m1)
1

Nk

+ 2Nk ·
γk

c2
ǫ

·
1

Nkγk

by (13)

≤ 4ǫ .

Hence, summing up we get

d̄
hk
n (x, y) ≤ 4ǫ, for x, y ∈ Q ∈ Q.

Step 3: We will construct a finite cover I of T such that

#(I) ≤ 10c3
ǫ and d̄

hk+1
n (x, y) ≤ 4ǫ

for any x, y ∈ I ∈ I.

Put

I0 = T \

( 2Nk+1⋃

i=−2Nk+1

[iα − γk+1, iα + γk+1]

)
,

and

Ir,s =

⋃

rNk+1
cǫ

≤i<
(r+1)Nk+1

cǫ

[
iα +

γk+1s

c2
ǫ

, iα +
γk+1(s + 1)

c2
ǫ

]
.

Put

I = {I0}
⋃{

Ir,s : −2cǫ ≤ r ≤ 2cǫ − 1,−c2
ǫ ≤ s ≤ c2

ǫ − 1
}
.

It is clear that I is a cover of T and #(I) ≤ 10c3
ǫ . Given x, y ∈ I0, one has d̄

hk+1
n (x, y) = 0

by (10).
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Now assume that x, y ∈ Ir,s for some r and s. There exist integers m1,m2 ∈ [
rNk

cǫ
,
(r+1)Nk

cǫ
]

and x1, y1 ∈ [
γk+1s

c2
ǫ

,
γk+1(s+1)

c2
ǫ

] such that

x = R
m1
α x1 and y = R

m2
α y1.

Without loss of generality, we can assume that m1 ≤ m2. For any 1 ≤ m ≤ n, one has

‖H
hk+1
m (x) − H

hk+1
m (y)‖ =





m−1∑

i=0

(hk+1(R
i
αx) − hk+1(R

i
αy))






≤





m1+m−1∑

i=m1

hk+1(R
i
αx1) −

m2+m−1∑

i=m2

hk+1(R
i
αy1))






≤





m1+m−1∑

i=m1

hk+1(R
i
αx1) −

m2+m−1∑

i=m2

hk+1(R
i
αx1)






+





m2+m−1∑

i=m2

(hk(R
i
αx1) − hk(R

i
αy1))






≤ 2(m2 − m1)
1

Nk+1
+ m ·

γk+1

c2
ǫ

·
1

Nk+1γk+1
by (12) and (13)

≤ 4ǫ .

Hence, summing up we have

d̄
hk+1
n (x, y) ≤ 4ǫ, for x, y ∈ Q ∈ I.

Step 4: We will construct a finite cover T of T2 such that

#(T ) ≤ 100c11
ǫ cδ and d̄n((x1, y1), (x2, y2)) ≤ 17ǫ

for any (x1, y1), (x2, y2) ∈ W ∈ T .

Note that for anyx ∈ T,

‖hk+2,∞(x)‖ ≤

∞∑

i=k+2

1

Ni

≤
2

Nk+2
.

For any x, y ∈ T and 1 ≤ m ≤ n, by (19) and 2Nk < n ≤ 2Nk+1, one has

‖H
hk+2,∞
m (x) − H

hk+2,∞
m (y)‖ =





m−1∑

i=0

(hk+2,∞(R
i
αx) − hk+2,∞(R

i
αy))






≤
m

Nk+2
≤

4Nk+1

Nk+2
< ǫ.

Hence,

d̄
hk+2,∞
n (x, y) < ǫ.(23)

Finally, let S = {[
j

cǫ
,

j+1
cǫ

) : j = 0, 1 · · · , cǫ − 1} and put

T = (S ∨ P ∨ Q ∨ I) × S.
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It is clear that T is a finite cover of T2 with

#(T ) ≤ cǫ · cδc
2
ǫ · 10c4

ǫ · 10c3
ǫ · cǫ = 100c11

ǫ cδ = C(ǫ).

Hence, for (x1, y1), (x2, y2) ∈ W ∈ T , by Steps 1, 2, 3 and (23), one has

d̄h
n (x1, x2) ≤ d̄

h1,k−1
n (x1, x2) + d̄

hk
n (x1, x2) + d̄

hk+1
n (x1, x2) + d̄

hk+2,∞
n (x1, x2)

< 6ǫ + 4ǫ + 4ǫ + ǫ = 15ǫ .

We deduce that

d̄n((x1, y1), (x2, y2)) ≤ ‖x1 − x2‖ + ‖y1 − y2‖ + d̄h
n (x1, x2) < 17ǫ .

This implies span(n, 17ǫ) ≤ C(ǫ) for all n > K(ǫ), which ends the proof. �

A.2. The construction of the system in Proposition 3.9. First we need the following
Furstenberg’s dichotomy result.

Proposition A.7 ([9]). Suppose (Ω0, µ0,T0) is a uniquely ergodic topological dynamical

system with µ0 being the unique ergodic measure, and h : Ω0 → T is a continuous

function. Let T : Ω0 × T be defined by T(x, y) = (T0(x), y + h(x)). Then exactly one of the

following is true:

(1) T is uniquely ergodic and µ0 × mT is the unique invariant measure;

(2) there exists a measurable map g : Ω0 → T and a non-zero integer s such that

s · h(x) = g(T0(x)) − g(x) for µ0-almost every x ∈ Ω0.

Now we modify the example (T2,T) in the previous subsection to be uniquely ergodic.
As (T2,T) is not uniquely ergodic, by Furstenberg’s dichotomy result there is an mT-
measurable function g(x) and a non-zero integer s such that

(24) s · h(x) = g(x + α) − g(x)

for mT-a.e. x ∈ T. We define

φ : T2 → T2, (x, y) 7→ (x, s · y)

and
T̃ : T2 → T2, (x, y) 7→ (x + α, y + s · h(x)).

Then T̃ ◦ φ = φ ◦ T , in other words, the following diagram commutes.

T2 T
//

φ
��

T2

φ
��

T2 T̃
// T2

Take an irrational number β ∈ R such that α and β are rationally independent. Then the
system defined by

Tα,β : T
2 → T2, (x, y) → (x + α, y + β)

is uniquely ergodic and mT2 is the unique invariant measure. Finally, we define

T̃β : T2 → T2, (x, y) 7→ (x + α, y + s · h(x) + β).

We will show that the system (T2, T̃β) is the one we need. It is clear that (T2, T̃β) is distal.

Proposition A.8. (T2, T̃β) is uniquely ergodic and minimal.
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Proof. Let K = {x ∈ T : s ·h(x) = g(x+α)−g(x)} and π : T2 → T2, (x, y) 7→ (x, y−g(x)).
By (24) one has mT(K) = 1. It is easy to see that π : K × T→ K × T is an invertible map
with π ◦ T̃β = Tα,β ◦ π. For each T̃β-invariant measure µ, we have µ(K ×T) = 1 and µ◦ π−1

is Tα,β-invariant. We have µ ◦ π−1
= mT2 since mT2 is the unique invariant probability

measure of Tα,β. Thus, µ = mT2 ◦π. This implies that mT2 ◦π is the only invariant measure
for (T2, T̃β). Moreover, (T2, T̃β) is minimal since the only invariant measure mT2 ◦ π is of
full support. �

Proposition A.9. (T2, T̃β) is not equicontinuous.

Proof. It is sufficient to show for any ǫ > 0, there exist (x1, y1), (x2, y2) ∈ T
2 and a positive

integer n such that d((x1, y1), (x2, y2)) ≤ ǫ and d(T̃n
β
(x1, y1), T̃

n
β
(x2, y2)) ≥

1
200 .

Assuming that 10p ≤ |s | < 10p+1 for some non-negative integer p. Given ǫ > 0, there
exists k ∈ N such that k > p + 10 and lk + δk < ǫ. Put x′ = δk +

1
2 lk . One has Ri

αx′ ∈ E c
k

and hk(R
i
αx′) = 0 for i = 0, 1, 2, · · · , Nk − 1. By (5), for any x ∈ T,

1

Mk

#{0 ≤ i ≤ Mk − 1 : Ri
αx ∈ E c

1,k−1} ≥ 1 −

∞∑

i=1

η

2i
>

1

2
.

Then there are integers n1 ∈ [0,Mk − 1] and n2 ∈ [10k−p−2Mk − Mk, 10k−p−2Mk − 1] such
that R

n1
α 0, Rn1

α x′, R
n2
α 0, Rn2

α x′ ∈ E c
1,k−1. By using Lemma A.1 and the fact R

n1
α x′, R

n2
α x′ ∈ E c

k
,

we have

Hh
n2−n1

(R
n1
α 0) − Hh

n2−n1
(R

n1
α x′) = H

h1,k−1
n2−n1

(R
n1
α 0) − H

h1,k−1
n2−n1

(R
n1
α x′) + H

hk
n2−n1

(R
n1
α 0)

− H
hk
n2−n1

(R
n1
α x′) + H

hk+1,∞
n2−n1

(R
n1
α 0) − H

hk+1,∞
n2−n1

(R
n1
α x′)

= H
hk
n2−n1

(R
n1
α 0) + H

hk+1,∞
n2−n1

(R
n1
α 0) − H

hk+1,∞
n2−n1

(R
n1
α x′)

= (n2 − n1)
1

Nk

+ H
hk+1,∞
n2−n1

(R
n1
α 0) − H

hk+1,∞
n2−n1

(R
n1
α x′).

Moreover, we have

‖H
hk+1,∞
n2−n1

(R
n1
α 0) − H

hk+1,∞
n2−n1

(R
n1
α x′)‖ ≤

∞∑

i=k+1

(|H
hi
n2−n1

(R
n1
α 0)| + |H

hi
n2−n1

(R
n1
α x′)|)

≤

∞∑

i=k+1

2(n2 − n1)
1

10iMi

≤

∞∑

i=k+1

2 · 10k−p−2Mk

10iMi

≤ 2
∞∑

i=k+1

10−p−2

10i−k
=

2

9
· 10−p−2.

Note that 10k−p−2Mk − 2Mk ≤ n2 − n1 ≤ 10k−p−2Mk . One has

|s | · ‖Hh
n2−n1

(R
n1
α 0) − Hh

n2−n1
(R

n1
α x′)‖ ≤ |s | ·

(
10−p−2

+

2

9
· 10−p−2

)
≤

2

10
.

and

|s | · ‖Hh
n2−n1

(R
n1
α 0) − Hh

n2−n1
(R

n1
α x′)‖ ≥ |s | ·

(
10−p−2 −

2

10k
−

2

9
· 10−p−2

)
≥

1

200
.
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Let x1 = R
n1
α 0, x2 = R

n1
α x′, y1 = y2 = 0 and n = n1 − n2. Then

d((x1, y1), (x2, y2)) = ‖R
n1
α 0 − R

n1
α x′‖ = ‖x′‖ = δk +

1

2
ℓk < ǫ.

and

d(T̃n
β (x1, y1),T̃

n
β (x2, y2))

= d
(
(R

n2
α 0, s · Hh

n2−n1
(R

n1
α 0) + (n2 − n1)β),

(R
n2
α x′, s · Hh

n2−n1
(R

n1
α x′) + (n2 − n1)β

)

≥


s · (Hh

n2−n1
(R

n1
α 0) − Hh

n2−n1
(R

n1
α x′))



 ≥
1

200
.

This implies that (T2, T̃β) is not equicontinuous. �

Proposition A.10. (T2, T̃β) has bounded topological complexity with respect to {d̄n}.

Proof. For ǫ > 0, let T , cǫ and cδ be defined in Proposition A.6. Then for (x1, y1), (x2, y2) ∈

W ∈ T , one has

d̄
s·h+β
n (x1, x2) =

1

n

n−1∑

m=0

‖H
sh+β
m (x) − H

sh+β
m (y)‖

=

1

n

n−1∑

m=0

‖sHh
m(x) − sHh

m(y)‖

≤
1

n

n−1∑

m=0

|s | · ‖Hh
m(x) − Hh

m(y)‖

≤ |s | · d̄h
n (x1, x2) ≤ 15|s |ǫ .

and

d̄n((x1, y1), (x2, y2)) ≤ ‖x1 − x2‖ + ‖y1 − y2‖ + d̄h
n (x1, x2) ≤ (15|s | + 2)ǫ .

Hence span(n, (15|s |+2)ǫ) ≤ 100c11
ǫ cδ. Thus (T2, T̃β) has bounded topological complexity

with respect to {d̄n}. �

Appendix B. An Example by Cyr and Kra

We first introduce some concepts. Following [6], by an assignment, we mean a function
Ψ defined on an abstract metrizable Choquet simplex P, whose “value” are measure-
theoretic dynamical systems, i.e., for p ∈ P, Ψ(p) has the form (Xp,Bp, µp,Tp). Two
assignments, Ψ on a simplex P and Ψ′ on a simplex P′, are said to be equivalent if there
exists an affine homeomorphism π : P → P′ of Choquet simplexes such that for every
p ∈ P the systems Ψ(p) and Ψ′(π(p)) are isomorphic as measure-theoretic dynamical
systems. A topological dynamical system (X,T) determines an assignment on the simplex
of T-invariant probability measures by the rule µ→ (X,BX, µ,T), where BX denotes the
collection of Borel sets on X . By [6, Theorem 1] or [22, Theorem 1], we know that if Y

is zero dimensional and (Y, S) has no periodic points, then the assignment determined by
(Y, S) is equivalent to an assignment determined by some minimal system (X,T). If (Y, S)
is invertible, then we can require that (X,T) is also invertible [22]. Applying [6, Theorem
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1] or [22, Theorem 1], there is a minimal system (X,T) whose assignment is equivalent to
that of (Y, S).

Proposition B.1. There exists a minimal system with bounded complexity with respect

to {d̄n} for an invariant measure µ, for which there exist two non-isomorphic ergodic

measures in the ergodic decomposition.

Proof. Pick two Sturmian shifts (Y1, σ) and (Y2, σ) in the full shifts ({0, 1}Z, σ) and
({2, 3}Z, σ) respectively. Then (Y1, σ) and (Y2, σ) are minimal and uniquely ergodic.
Let ν1 and ν2 be the unique invariant measure of (Y1, σ) and (Y2, σ) respectively. Then
both ν1 and ν2 have discrete spectrum. We can require that the spectra of ν1 and ν2 are
different and then ν1 and ν2 are not isomorphic. Let Y = Y1 ∪ Y2 ⊂ {0, 1, 2, 3}Z. It is clear
that Y is zero dimensional and (Y, σ) has no periodic points.

By [6, Theorem 1] or [22, Theorem 1], there is a minimal system (Y, S)whose assignment
is equivalent to that of (Y, σ). This means that (X,T) carries exactly two ergodic measures,
µ1 and µ2, and (X,BX, µi,T) is isomorphic to (Yi,BYi, νi, σ). Let µ = 1

2 µ1 +
1
2 µ2. As both

µ1 and µ2 have discrete spectrum, so is µ. By Proposition 4.5 µ has bounded complexity
with respect to {d̄n}. But the ergodic measures in the ergodic decomposition of µ are µ1

and µ2, which are not isomorphic. �

Remark B.2. It should be noticed that the same idea of construction in Proposition B.1
can be used to provide countably many non-isomorphic ergodic measures in the ergodic
decomposition, but the uncountably many case is still not clear.
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