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Genome-wide study of DNA methylation shows alterations in 
metabolic, inflammatory, and cholesterol pathways in ALS

A full list of authors and affiliations appears at the end of the article.

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with an estimated 

heritability between 40 and 50%. DNA methylation patterns can serve as proxies of (past) 

exposures and disease progression, as well as providing a potential mechanism that mediates 

genetic or environmental risk. Here, we present a blood-based epigenome-wide association study 

meta-analysis in 9706 samples passing stringent quality control (6763 patients, 2943 controls). 

We identified a total of 45 differentially methylated positions (DMPs) annotated to 42 genes, 

which are enriched for pathways and traits related to metabolism, cholesterol biosynthesis, and 

immunity. We then tested 39 DNA methylation–based proxies of putative ALS risk factors and 

found that high-density lipoprotein cholesterol, body mass index, white blood cell proportions, and 

alcohol intake were independently associated with ALS. Integration of these results with our latest 

genome-wide association study showed that cholesterol biosynthesis was potentially causally 

related to ALS. Last, DNA methylation at several DMPs and blood cell proportion estimates 

derived from DNA methylation data were associated with survival rate in patients, suggesting 

that they might represent indicators of underlying disease processes potentially amenable to 

therapeutic interventions.

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by 

progressive degeneration of motor neurons in the brain and spinal cord (1). The disease 

affects about 1 in 350 people, with death typically occurring within 2 to 5 years after onset. 

The heritability of ALS is estimated to be around 50% (2), showing that a considerable 

portion of the risk could be conferred by environmental and lifestyle risk factors. However, 

the identification of these factors has proven difficult because of several challenges such as 

recall and measurement bias, resulting in a large body of literature with conflicting results 

and only a few established factors related to ALS risk or patient survival (3–6). Epigenetic 

patterns, which act at the interface between genes and environment, can serve as proxies of 

(past) exposures, therefore enabling the study of these exposures and putative risk factors. 

Moreover, the identification of ALS-associated epigenetic factors could provide insights into 

disease etiology and disease processes.

DNA methylation is one of the best characterized and most stable epigenetic modifications 

and plays an important role in gene regulation, genomic stability, and genomic imprinting 

(7–9). The development of standardized assays for quantifying DNA methylation has 

enabled the systematic analysis of associations between methylomic variation and a wide 

range of human diseases, including cancer, schizophrenia, and various neurodegenerative 
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diseases (10, 11). DNA methylation in whole blood captures a wide range of putative ALS 

risk factors at a molecular level, including smoking, alcohol intake, body mass index (BMI), 

biological age, and various metabolic and inflammatory proteins (12–18). Leveraging DNA 

methylation as proxies for these risk factors offers several advantages because it is (i) not 

prone to recall bias (relevant for smoking and alcohol), (ii) may capture information not 

(accurately) captured by the self-report (such as passive and past smoking) and provides 

a quantifiable measure (19), and (iii) is relatively stable in the short term [especially 

relevant for immunological proteins (18)]. Moreover, many risk factor studies have been 

conducted in small samples (3, 6), whereas our large DNA methylation study can provide a 

well-powered alternative that jointly considers the molecular correlates of many risk factors. 

We, therefore, performed a blood-based DNA methylation study of ALS incorporating 9706 

samples that passed stringent quality control.

RESULTS

Epigenome-wide association study meta-analysis of ALS identifies 45 DMPs

We quantified genome-wide DNA methylation in whole blood from 10,462 individuals 

using the Illumina HumanMethylation450 (450 k) array (6275 samples) and the 

Illumina MethylationEPIC (EPIC) array (4187 samples). We merged individual-level DNA 

methylation array data from 14 countries into four strata (MinE 450 K, MinE EPIC, AUS1, 

and AUS2; see Materials and Methods and fig. S1). A total of 6763 patients with ALS 

and 2943 control individuals passed our stringent quality control, which was followed by 

normalization of signal intensities in each stratum (Table 1, data file S1, and tables S1 to 

S5). Samples excluded from our analyses did not show different demographic or clinical 

characteristics compared to the subset selected for analyses (data file S2).

We performed an epigenome-wide association study (EWAS) in each of the four strata using 

two methods to adjust for known and unknown confounders. First, we used a linear model 

adjusting for known confounders and a calibrated number of principal components (PCs) 

to adjust for unknown confounding factors (fig. S2), followed by correction for residual 

bias and inflation in test statistics using bacon (hereafter referred to as the LB model) (20). 

Second, we used MOA (mixed linear model–based omic association) as implemented in the 

OSCA software in which the random effect of total genome-wide DNA methylation captures 

the correlation structure between probes and directly controls for the genomic inflation (21). 

The MOA algorithm did not converge for the AUS2 stratum, resulting in a total sample size 

of 9459 for the MOA results. Test statistics across strata were combined using an inverse 

variance-weighted (IVW) fixed-effects meta-analysis (22). Inflation of the test statistics was 

well controlled in both the LB (λ = 1.046; Fig. 1) and the MOA results, respectively (λ = 

0.984; Fig. 1), and we observed little heterogeneity between strata (figs. S3 to S5). Various 

sensitivity analyses indicated that the results were robust to changes in analysis strategy, 

including adjustment for population stratification (10 genetic PCs), using M values instead 

of β values, using functional normalization (23) instead of dasen (24), and excluding specific 

strata or experimental batches (figs. S6 to S8). Last, application of a method that we recently 

described (25) led to the removal of likely cross-hybridizing probes, including four probes 

that showed high homology to the C9orf72 repeat locus (fig. S9). In total, 724,712 positions 
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passed quality control and were included in the meta-analysis. Of these, 332,066 were 

specific to the EPIC array, and 26,367 were specific to the 450 k array, respectively.

The LB meta-analysis resulted in 44 differentially methylated positions (DMPs) (P < 9 × 

10−8; Fig. 1, A and B, Table 2, fig. S10, and data file S3), and the MOA meta-analysis 

resulted in 11 significant DMPs (P < 9 × 10−8; Fig. 1, C and D, and data file S4) (26). 

The MOA DMPs comprised a subset of the LB DMPs, with the exception of cg01589155, 

which is annotated to the C9orf72 locus; this site was significant in MOA (P = 1.51 × 

10−8) and just below the significance threshold in the LB results (P = 2.59 × 10−7) (fig. 

S11). Effect sizes were generally small, and we observed both hypermethylated (51%) and 

hypomethylated (49%) DMPs associated with ALS (Fig. 1, B and D). On the basis of 

the nearest gene mapping, these DMPs were annotated to 42 unique genes. In addition, 

we annotated each site with cis-eQTMs (cis expression quantitative trait methylations) in 

blood calculated in an external dataset [six Dutch biobanks included in Biobanking and 

BioMolecular Resources Research Infrastructure (BBMRI) (27)]. This revealed that DNA 

methylation at 18 sites was significantly associated with the expression of at least one 

nearby gene [false discovery rate (FDR) < 0.05], which included the nearest gene in 14 

of 18 sites (Table 2 and data file S5). The DMPs included multiple colocalized positions 

(<250 kb), including four DMPs in ZFPM1, two DMPs in C9orf72, two DMPs in SGSM2, 

two DMPs in TTC38, two DMPs near LCK, and two DMPs in and near GPR97. Most of 

the colocalized DMPs were highly correlated (|r| > 0.25), and we also found several distant 

DMPs to be highly correlated (figs. S12 and S13).

Sensitivity analyses indicate that ALS-associated differential methylation is not driven by 
genetic variation in cis or trans, riluzole use, or C9orf72 status

We performed sensitivity analyses to evaluate whether our results were driven by known 

biological factors associated with ALS or by genetic variation. First, we examined the 

effects of the C9orf72 repeat expansion by performing an EWAS meta-analysis excluding 

371 carriers of this mutation. Overall, the results were highly correlated (fig. S14), except 

for cg01589155 and cg23074747 (located within the C9orf72 repeat and in a CpG island 

just upstream of the repeat, respectively), which were strongly driven by C9orf72 carrier 

status. Second, to delineate whether DMPs were influenced by riluzole use, we performed 

an EWAS on riluzole use in patients with ALS (N users = 1803, N nonusers = 451), finding 

no evidence of shared signals between the ALS EWAS and the riluzole EWAS (fig. S15). 

Last, we investigated whether results were driven by genetic variation. For each DMP, we 

iteratively adjusted for all genetic variants in cis (<250 kb, including variants overlapping 

the CpG site or probe) as detected in our overlapping whole-genome sequencing (WGS) 

data (28) (NALS = 5755; Ncontrols = 2184) and blood trans methylation quantitative trait 

loci (trans-mQTLs)s as reported in the Genetics of DNA Methylation Consortium (GoDMC) 

database (http://mqtldb.godmc.org.uk). We found no evidence that the DMPs were driven by 

either genetic variants in cis or in trans (fig. S16).
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Enrichment analyses of genes annotated to ALS-associated differential DNA methylation 
implicate metabolic, inflammatory, and cholesterol pathways

Gene set analysis—To characterize the EWAS results, we performed gene set enrichment 

analyses based on both nearest genes and cis-eQTMs annotated to each tested position 

(29, 30). We considered both the default threshold used in the methylGSA package (P < 

0.001) and the stringent genome-wide significance threshold (9 × 10−8) to select DMPs for 

enrichment analyses.

We identified two main categories of enriched pathways: First, in both the LB and MOA 

results, we identified cholesterol/steroid biosynthesis–related pathways. These included the 

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway steroid biosynthesis and the 

gene ontology (GO) pathway cholesterol biosynthetic process, sterol biosynthetic process, 

organic hydroxy compound biosynthetic process, and secondary alcohol biosynthetic 

process, which were enriched among the MOA results (Table 3). In addition, we found 

that these and related pathways were enriched among annotated cis-eQTMs in both the 

LB and MOA results (table S5). The enrichments were mainly driven by four DMPs: 

three covarying DMPs in DHCR24 (cg17901584), MSMO1 (cg05119988), and ABCG1 
(cg06500161) (figs. S12 and S13) and a DMP in SLC7A11 (cg06690548). Of these, 

cg17901584, cg05119988, and cg06500161 were strongly associated with the expression 

of the nearest gene in blood (DHCR24, MSMO1, and ABCG1, respectively; Table 2 and 

data file S5).

Second, the immune-related KEGG pathways cytokine–cytokine receptor interaction and 

natural killer (NK) cell–mediated cytotoxicity were enriched in the LB results (at P < 0.001) 

but not in the MOA results (Table 3).

EWAS database enrichments—To further characterize the results, we assessed whether 

the DMPs overlapped with trait-associated positions reported in publicly available EWAS 

databases (31, 32). For the LB results, we found a significant overlap (FDR < 0.05) with 23 

traits in the MRC Integrative Epidemiology Unit (IEU) database (Fig. 2A and Table 4) and 

20 traits in the National Genomics Data Center (NGDC) database (fig. S17 and data files S6 

and S7), with a total of 23 of 44 DMPs overlapping with one or more enriched traits. For the 

MOA results, we found a significant overlap (FDR < 0.05) with 20 traits in the MRC-IEU 

database (fig. S18) and 14 traits in the NGDC database (fig. S19), with a total of 8 of 11 

DMPs overlapping with one or more of the enriched traits.

Among the strongest enrichments in the MRC-IEU database (all results shown in data 

files S6 and S7) were BMI, total serum immunoglubulin E (IgE) (only enriched among 

the LB results), (serum) triglycerides, waist circumference, and high-density lipoprotein 

cholesterol (HDL-c), of which all showed effect directions opposite to those found for ALS, 

except for HDL-c (Table 4). Using the Louvain clustering algorithm (33), we found that 

the overlapping traits clustered into two (MOA) to three (LB) clusters. These included two 

connected cholesterol-related (including HDL-c and triglycerides) and metabolism-related 

(including BMI and alcohol consumption) clusters, which were identified in the results 

from both EWAS methods. In addition, in the LB results, we identified an inflammation-

related trait cluster that included traits such as total serum IgE and atopy. We found that 

Hop et al. Page 5

Sci Transl Med. Author manuscript; available in PMC 2023 March 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



this inflammation-related cluster was independent of the other clusters, as indicated by 

iterative analyses presented in Fig. 2B, showing that only the immune-related traits remained 

significant (P < 0.05) after excluding BMI-related probes (figs. S17 to S19).

Polymethylation scores for BMI, HDL-c, alcohol intake, and white blood cell proportions 
are associated with ALS

To gain further insight into potential intermediate phenotypes associated with ALS, we used 

39 published polymethylation scores (PMSs) as proxies for various traits and exposures, 

including BMI, HDL-c, low-density lipoprotein cholesterol (LDL-c), total cholesterol, 

alcohol consumption, smoking, white blood cell (WBC) proportions [CD4T, CD8T, 

monocytes, granulocytes, and NK cells], biological age, and a collection of immunological 

and neurological proteins (12–18, 34, 35).

First, we performed a validation analysis for each of the PMSs for which we had relevant 

clinical/exposure data available (see Materials and Methods and table S4). We selected 

PMSs with an explained variance of ≥5%, as indicated by an incremental R2 between the 

null model (including known covariates and control probe PCs) and the model including the 

respective PMS (Fig. 3A). Two PMSs that were included in the validation analysis did not 

meet the implemented threshold of ≥5% (LDL-c and total cholesterol).

We found that PMSs for HDL-c, monocyte cell proportion, and granulocyte cell proportion 

were positively associated with ALS (P < 1.3 × 10−3; Fig. 3, B and C, and data file S8), 

and the PMSs for alcohol intake, BMI, and the other WBC proportions (CD4T, CD8T, 

NK, and B cells) were negatively associated with ALS, a result that reflects the nature of 

proportion data given the positive associations of other cell types (P < 1.3 × 10−3; Fig. 3, 

B and C, and data file S8). Although we did find a significant association for epigenetic 

age acceleration [P = 6.7 × 10−5; clock of Zhang et al. (15) adjusted for chronological 

age], there was significant heterogeneity between strata (Cochran’s Q test P < 0.1/39; data 

file S8), which led us to exclude age acceleration for further consideration. In addition, we 

considered the multitissue clock of Horvath (36) and the clock of Hannum et al. (37), but the 

associations for both did not pass the multiple testing threshold (P = 1.8 × 10−3 and P = 0.23, 

respectively, at a multiple testing threshold of 1.3 × 10−3; fig. S20).

Conditional analyses showed that PMSs HDL-c, BMI, and alcohol were independently 

associated with ALS, although the HDL-c and BMI associations were attenuated after 

mutual adjustment (Fig. 3D and fig. S21). The WBC associations also remained significant 

(P < 1.3 × 10−3) after mutual adjustment for the other PMSs, except for a subset of 

immunological proteins that attenuated the associations (fig. S22). Adjustment for DMPs 

showed that signal is shared between several DMPs and ALS-associated PMSs (fig. 

S23); most notably, the alcohol intake association became not significant (P > 1.3 × 

10−3) upon adjustment for two covarying DMPs in SLC7A11 (cg06690548) and C6orf223 
(cg18120259) (figs. S12 and S13). The HDL-c association became not significant (P > 1.3 

× 10−3) upon adjustment for two covarying DMPs in DHCR24 (cg17901584) and ABCG1 
(cg06500161) (figs. S12 and S13). We assessed whether the associations were primarily 

driven by carriers of the C9orf72 repeat expansion but found no evidence that this was 
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the case (fig. S24) nor were the PMS associations primarily driven by specific strata or 

experimental batches as evidenced by leave-one-out analyses (figs. S25 to S28).

Last, in addition to the PC-adjusted models, we also evaluated less stringent models, 

showing that various immunological and neurological proteins such as C-reactive protein 

(CRP), interleukin-6 (IL-6), transforming growth factor–α (TGF-α), and chemokine 

eotaxin-1 (CCL11) as well as smoking were significantly associated with ALS when PCs 

were excluded (P < 1.3 × 10−3; Fig 3, E and F, and fig. S29).

Survival analyses indicate that WBC proportions and DNA methylation at five ALS-
associated DMPs are associated with disease progression

A total of 5138 patients met the inclusion criteria for the survival analyses (see the “Survival 

analyses” section in Materials and Methods). Comparison of included and excluded patients 

(data file S2) shows that both exhibit characteristics that match population-based studies 

(38). This indicates that we have included a representative sample of patients with the entire 

spectrum of disease characteristics.

We performed multivariate Cox proportional hazards (PHs) meta-analyses on the 45 DMPs 

identified using the MOA and LB models. A total of five DMPs showed a significant 

association with survival after correcting for known confounders and PCs (0.05/45 = p 
< 1.11 × 10−3) and cross-validation between three sensitivity analyses. Effect sizes were 

moderate and showed both shorter and longer survival time between DNA methylation and 

overall survival (data file S9).

All reported positions were not affected by the addition of time-varying effects in the Cox 

PH model or by applying a restricted cubic spline with varying complexity to model the 

baseline log cumulative hazard (fig. S30). Moreover, after adjusting for C9orf72 carrier 

status in the multivariate Cox PH model, the positions (besides the C9orf72 mapped probe) 

remained significantly associated with survival (P < 1.11 × 10−3; fig. S30). Four positions 

showed a significant (FDR < 0.05) cis-eQTM effect with FKBP5, ATP8B2, SPIDR, and 

DHCR24 (Table 5).

We also assessed whether the PMSs were associated with survival, finding that a higher 

proportion of granulocytes was significantly associated with decreased survival and a higher 

proportion of NK cells was associated with increased survival (P < 1.3 × 10−3; Fig. 3, B and 

C, bottom; and data file S10). These associations were robust in sensitivity analyses (figs. 

S31 and S32) and persisted upon adjustment for C9orf72 carrier status (fig. S33).

DISCUSSION

In this study, we present genome-wide DNA methylation data on more than 10,000 

individuals, with extensive clinical data and WGS data available for most of the samples. 

After thorough quality control and extensive sensitivity analyses, we identified a total of 

45 DMPs at which variable DNA methylation is robustly associated with ALS (p < 9 × 

10−8). By using enrichment analyses, PMSs, and survival analyses, we highlight a role 
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for metabolic, inflammatory, and cholesterol pathways and identify WBC proportions and 

several DMPs as potential disease modifiers in ALS.

Genes annotated to DMPs were enriched for pathways related to cholesterol biosynthesis. 

The main drivers of these enrichments include cg17901584 (DHCR24), cg06500161 

(ABCG1), cg05119988 (MSMO1), and cg06690548 (SLC7A11), with DNA methylation 

at the first three positions being associated with expression of their annotated genes in 

blood. These genes are all involved in cholesterol biosynthesis and lipid transport, and 

DNA methylation at these positions has been robustly linked to HDL- and total cholesterol, 

triglyceride concentration, and BMI-related traits such as diabetes and hepatic fat content 

(31, 32). Both cg17901584 (DHCR24) and cg06500161 (ABCG1) are included in the 

HDL-cholesterol PMS and explain a considerable part of the association that we found 

between elevated HDL cholesterol and ALS. Moreover, we identified two covarying probes 

in SGMS2 (sphingomyelin synthase 2), which is of interest given that altered sphingolipid 

synthesis has recently been linked to ALS (39).

cg06690548 (annotated to SLC7A11) has also been previously associated with 

alcohol intake and related factors such as gamma-glutamyl transferase (GGT) and 

phosphatidylethanol (13, 31, 32), and the association between the alcohol PMS and ALS 

was primarily driven by this DMP. Alcohol has been extensively studied in previous 

epidemiological studies of risk factors for ALS with varying results, but a recent review 

suggests that alcohol has a risk-decreasing effect, which is in line with our current results 

(40). Previous work showed that increased DNA methylation at cg06690548 is associated 

with down-regulation of SLC7A11 in brain tissue (41). SLC7A11 encodes xCT, a cystine-

glutamate antiporter that imports cystine while exporting glutamate, the former being an 

essential precursor of glutathione, the major antioxidant in the brain. It is possible, therefore, 

that the association found in SLC7A11—and by extension alcohol as risk factor for ALS—is 

related to two well-established pathologic processes in ALS: glutamate excitotoxicity and/or 

oxidative stress.

Both the EWAS trait enrichments and PMS analyses indicate that lower BMI is associated 

with ALS. The BMI association persisted after adjustment for other PMSs, including those 

for HDL cholesterol and alcohol intake, although these PMSs are not perfect proxies of the 

respective covariates. Lowered BMI throughout the course of the disease (42), as well as 

various other systemic metabolic alterations, including hypermetabolism and hyperlipidemia 

(39, 43), have been reported in patients with ALS and mouse models of the disease. 

Several pathophysiological mechanisms underlying alterations in (lipid) metabolism have 

been implicated, although it is not clear whether these represent a cause or consequence 

of the disease. For example, metabolism may be altered because of mitochondrial defects, 

uncontrolled fasciculations, or increased respiratory effort (43). These findings may be 

connected as patients with ALS may compensate for hypermetabolism by increasing 

energy intake that could in turn lead to hyperlipidemia (43). In addition, the immune 

alterations that we found may be related to these findings, because it has been shown 

that metabolism and the immune system are connected (44). However, the metabolic- and 

cholesterol-related findings were statistically independent of the immune-related findings 

and thus did not support a shared mechanistic pathway. The finding of disrupted metabolic 
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pathways may be a potential avenue for therapeutic intervention, because diet represents a 

modifiable factor and previous studies in patients with ALS and animals suggest that dietary 

intervention could benefit disease prognosis, for example, by compensating for defects in 

lipid metabolism or compensating for increased energy demand or lower BMI (45).

It is important to note that our analyses can say little about causality, and we need to be 

cautious in concluding that these factors represent major risks for the disease. However, 

Mendelian randomization (MR) analyses in our latest genome-wide association study 

(GWAS) (28) indicate that blood cholesterol is causally related to ALS, whereas no causal 

evidence for (among others) BMI, triglycerides, blood pressure, and other metabolic traits 

was found. This shows that the causal role for cholesterol in ALS might be independent 

of other metabolic traits. Although these MR analyses assessed blood cholesterol, neurons 

are thought to use similar molecular mechanisms (46), and the shared genetic susceptibility 

between cholesterol and ALS risk could therefore indicate that cholesterol is also raised in 

the spinal cord and brain. Cholesterol is involved in many crucial processes in the central 

and peripheral nervous system, including membrane fluidity, synapse formation facilitation, 

neurite growth, and long-term potentiation (39). Alternatively, it has been suggested that 

the energetic needs of large motor neurons make it selectively vulnerable for alterations in 

metabolism or could be the source of oxidative stress (47). Moreover, lipid concentration in 

the blood and autophagy are related (48), as illustrated by a recent study showing that high 

cholesterol leads to increased protein aggregation through autophagy impairment in mouse 

models of Alzheimer’s disease (49).

Our results also point toward a role for the immune system in ALS. The EWAS results were 

enriched for immune-related traits including IgE and allergic sensitization; these results 

were independent of predicted WBC proportions. DMPs driving these enrichments included, 

among others, cg06528816 (annotated to TTC7A) and a cluster of three covarying DMPs in 

the ZFPM1 gene, both implicated in immune-related traits such as IgE, asthma, and allergic 

sensitization (31, 32). Our PMS analyses corroborate the role of immunity in ALS because 

we found that WBC proportions were altered in ALS, with a higher ratio of granulocytes 

and a lower ratio of lymphocytes in patients with ALS (CD4T, CD8T, and NK cells). We 

further found that increased granulocyte proportions are associated with worse prognosis, 

whereas NK cell proportions are associated with better prognosis, indicating that WBC 

proportions might have prognostic value. The role of immunity is further supported by our 

observation that various PMSs for various inflammatory proteins including CRP, IL-6, TGF-

α, and CCL11 were elevated in patients with ALS; although these differences remained 

after adjustment for WBC proportions, they disappeared upon adjustment for principal 

components. Our findings are in line with previous studies that identified higher ratios of 

neutrophils and/or granulocytes to lymphocytes in patients with ALS, elevated inflammatory 

proteins, and an association between higher neutrophil proportions and worse prognosis 

(50, 51). Although immune alterations could be part of a systemic aspect of ALS, there is 

evidence that suggests that the peripheral immune system contributes to neuroinflammation, 

the latter being an established phenomenon in ALS as well as other neurodegenerative 

diseases (50). Especially interesting in this regard are recent analyses showing that mast 

cells infiltrate skeletal muscles at the neuromuscular junction and degranulate to help 

recruit neutrophils (50), which prevent reinnervation capacity and may thus be a potential 
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mechanism causing worse prognosis. In line with this, we identified an enrichment for IgE 

(and related traits such as allergy and atopy), which activate mast cells, and found that 

increased proportions of granulocytes were associated with ALS and patient survival. Thus, 

these findings could be of interest for new treatments, especially given that mast cell activity 

can be influenced therapeutically (50).

We do not replicate the recently reported association between epigenetic age acceleration 

and survival (52). In our analyses, we adjusted for sampling age, because it has been shown 

to be crucial when studying epigenetic age acceleration (53), especially given that age of 

onset affects disease progression in ALS (1). As we have shown, both survival and age 

of onset were associated with age acceleration when sampling age was not accounted for, 

but the associations disappeared upon adjustment. In addition, in our case/control analysis, 

we observed substantial heterogeneity among strata; hence, our results do not support an 

unambiguous role for age acceleration in ALS.

We must acknowledge the limitations of our study. First, our cross-sectional design hinders 

inferences about causality. MR analyses presented in our recent GWAS (28) did not find 

evidence for a causal role of the DMPs identified in this study; although this may indicate 

a lack of power, it could also indicate that the results reflect the consequences of disease 

processes rather than causal mechanisms. In that case, the value of the identified DNA 

methylation changes would lie primarily in revealing underlying disease processes in ALS. 

Furthermore, the identified ALS- and survival-associated DNA methylation patterns could 

be of interest as potential starting points for new disease-modifying treatments.

Second, we note that we collected DNA from whole blood rather than from brain tissue. 

Although some blood DNA methylation patterns reflect those in brain tissue more closely 

than others—as previously shown for the DMPs that we identified in the C9orf72 locus 

(54)—DNA methylation is often tissue specific (55). However, in contrast to brain tissue, 

blood DNA methylation is accessible, allowing for sampling close to disease onset and in 

large numbers. Leveraging the large body of literature available on blood DNA methylation 

allowed us to uncover risk factors and pathways related to ALS.

Last, the stringent adjustment for confounding that we applied by using PCs and random 

effects models [OSCA (21)] may have obscured biological signals of interest. For example, 

our results indicate that the additional DMPs identified using the LB algorithm are enriched 

for inflammatory pathways and traits, which corroborates previous findings that suggest 

that uncaptured variation can be explained by cell type heterogeneity and related immune 

processes (56). Similarly, we show that the associations found for various immunological 

proteins such as CRP and IL-6 disappeared upon PC adjustment. This relates to the 

discussion on whether to treat variables such as cell type proportions as nuisance variables 

in an EWAS or view them as variables that provide valuable information in themselves (57). 

In this study, we therefore struck a balance by opting for a two-way approach, combining a 

stringently corrected EWAS with a more targeted approach where we studied “confounders” 

such as WBC proportions, smoking, and BMI as outcomes of interest, assessing them with 

both stringent (including PCs) and more lenient models.
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MATERIALS AND METHODS

Study design

This study aimed to identify differential DNA methylation in patients diagnosed with 

definite, probable, and probable laboratory-supported ALS according to the revised El 

Escorial Criteria (58). First, we implemented a comprehensive pipeline tailored to large-

scale epigenome-wide studies to identify individually methylated positions in 6763 patients 

with ALS and 2943 controls without motor neuron diseases. We explored the biological 

meaning of the results by performing gene set enrichment analyses and by overlapping our 

results with trait-associated positions reported in publicly available EWAS databases. Power 

analysis calculated with the EPIC array online tool (26) showed that for 96.6% of sites, 

we had >80% power to detect a mean DNA methylation difference of 1% using the default 

significance threshold (P < 9 × 10−8). Second, we applied 39 DNA methylation–based 

proxies of putative ALS risk factors. Last, we leveraged clinical data to perform survival 

analysis and reveal indicators of disease progression.

Samples were collected across 14 countries (2:1 case/control ratio). Population-based 

controls were matched for age, sex, and geographical region in a 1:2 ratio and not screened 

for (subclinical) signs of ALS. Experimental batches were processed in the same laboratory 

and sequenced in the same series depicting the origin of each DNA sample, resulting in 

44 independent batches after quality control. Strata, for analyses, were defined as samples 

within the Project MinE sequencing consortium stratified by array technology (MinE 450 

k and MinE EPIC), and the external Australian data were stratified into two strata based 

on differences in signal intensities (AUS1 and AUS2) (see Supplementary Materials and 

Methods “QC and normalization” section, fig. S1, and QC figure 50 for more details).

DNA methylation was quantified using Illumina 450 k and EPIC arrays. We applied 

extensive quality control leading to the exclusion of 756 (7.2%) samples (based on several 

technical metrics, relatedness, genotype concordance, and sex concordance) and 175,134 

(24%) probes (based on technical metrics, cross-reactivity, and overlap with common single-

nucleotide polymorphisms). For further details on cohorts and QC, see Supplementary 

Materials and Methods. The investigators were not blinded to the experimental conditions 

during experiments and the analyses.

Statistical analysis

Epigenome-wide association study—Two approaches were used to perform EWAS 

analyses:

1. Linear regression was performed at each site, testing for an association between 

DNA methylation β values and case-control status, adjusting for the following 

fixed covariates: sex, experimental batch, predicted age, estimated WBC, 30 

control probe PCs, and m array-wide residual PCs (see Supplementary Materials 

and Methods). The number of array-wide PCs (m) was optimized in each stratum 

by evaluating the sample-size normalized inflation factors (λ1000). The number 

of PCs (m) were chosen so that for each stratum, λ1000 ≤ 1.15 (m is 30, 15, 25, 

and 30 for the MinE 450 k, MinE EPIC, AUS1, and AUS2 strata, respectively). 
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We then corrected for remaining inflation and/or bias in test statistics of each 

stratum using the bacon algorithm (20). Hereafter, we refer to this model as the 

LB model.

2. Mixed linear model analyses were performed using the MOA algorithm 

implemented in the OSCA software (v0.45) (21). This method tests for an 

association between case-control status and DNA methylation at a given 

position, adjusting for both fixed effects (we included predicted age, sex, and 

experimental batch) and a random genome-wide DNA methylation factor per 

person with variance-covariance matrix between individuals built from genome-

wide DNA methylation sites (11, 21, 59).

For both the linear model and MOA results, test statistics across strata were combined using 

an IVW fixed-effects meta-analysis (22). Positions with a two-tailed P value of <9 × 10−8 

were considered genome-wide significant and termed DMPs (26). DMPs were considered 

significantly heterogeneous when Cochran’s Q P values < 0.1 (corrected for the number of 

DMPs).

Cis-eQTM analyses—For each position, we tested for an association between DNA 

methylation and gene expression of genes in cis (<250 kb) using linear regression, adjusting 

for age, sex, strata, WBC composition, and 20 PCs as fixed effects (10 PCs derived 

from gene expression data and 10 PCs derived from the DNA methylation data) (27). We 

corrected the test statistics for bias and inflation (estimated on the basis of the association 

between DNA methylation and expression of all genes using the bacon algorithm). For 

each site, two-tailed P values were corrected for the number of tested genes using FDR 

correction.

Correlation analyses—β values were first adjusted for the covariates used in the LB 

algorithm; pairwise correlations were calculated among the residuals of this regression using 

Pearson’s correlation coefficient. Correlations were calculated per stratum (within ALS 

cases) and combined in an IVW meta-analysis of Fisher’s z-transformed correlation values 

(22).

Enrichment analyses—Gene set analyses were performed using the Wallenius’ 

noncentral hypergeometric distribution (29, 30). This method takes into account that the 

number of CpGs assigned to each gene differs by accounting for the probability of a gene 

being selected using Wallenius’ noncentral hypergeometric distribution. Two-tailed Fisher’s 

exact tests were used for trait enrichment analyses. Resulting P values from the enrichment 

analyses were corrected for multiple testing using FDR correction. The filtering procedure 

for gene sets and traits and the backgrounds used are described in Supplementary Materials 

and Methods.

PMS analyses—Incremental R2 estimates from linear regression were used to determine 

whether the PMS increased the predictive ability above and beyond that of the null model 

that included the phenotype measure as the dependent variable and case-control status, 

predicted age, sex, experimental batch, WBC, and 30 control probe PCs as independent 

variables. For each stratum, we tested for an association between the PMS and case/control 
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status using logistic regression. Sex, predicted age, WBC, experimental batch, 30 control 

probe PCs, and m array-wide PCs (see the “Epigenome-wide association study” section) 

were included as fixed covariates for all PMSs except for DNA methylation age and WBC 

proportions. For DNA methylation age, we additionally adjusted for chronological age 

(representing age acceleration). For the WBC PMSs, we did not adjust for array-wide 

PCs because these essentially represent WBC proportions (56). Strata test statistics were 

combined using an IVW fixed-effects meta-analysis (22). We corrected for the number of 

PMSs tested using the Bonferroni correction [two-tailed P value of <1.3 × 10−3 (0.05/39)]. 

PMSs were considered significantly heterogeneous when Cochran’s Q P values < 2.3 × 10−3 

(0.01/39).

Survival analyses—We used a multivariate Cox PH regression model to test for 

an association between survival and DMPs and PMSs, adjusting for predicted age, 

sex, experimental batch, WBC, 30 control probe PCs, and m array-wide PCs (see the 

“Epigenome-wide association study” section). The PH assumption of the Cox model was 

checked using Schoenfeld and martingale residuals. In addition, the Royston-Parmar spline 

model was performed using the flexsurvspline function from the R package flexsurv. Model 

complexity was assessed by the addition of up to five knots compared to one single knot. 

Test statistics were combined using IVW fixed-effects meta-analysis. We corrected for the 

number of tests using the Bonferroni correction (two-tailed P < 1.11 × 10−3 for DMPs and 

two-tailed P < 1.3 × 10−3 for PMSs). Positions were considered significantly heterogeneous 

when Cochran’s Q P values < 0.1 (corrected for the number of tests performed).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. EWAS meta-analysis.
EWAS on 6763 patients and 2943 controls. (A and C) Manhattan plot comparing (A) LB 

(linear model + bacon) and (C) OSCA MOA association P values [−log10(P), y axis] and 

genomic location (x axis). The dashed line indicates the genome-wide significance threshold 

(9 × 10−8). Sites were annotated with the nearest protein-coding gene in ensembl [some gene 

labels in (A) could not be clearly displayed; all labels are presented in fig. S10]. (B and 

D) Volcano plots showing (B) LB and (D) OSCA MOA estimated effect sizes (x axis) and 

association P values [−log10(P), y axis]. Ninety-five percent confidence intervals are shown 

for DMPs, and the nearest genes are shown for the top 10 DMPs identified with the LB 

algorithm and for all DMPs identified with the MOA algorithm. (E and F) Quantile-quantile 

plot showing observed (E) LB and (F) OSCA MOA P values [−log10(P), y axis] against the 

expected distribution under the null (x axis).
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Fig. 2. EWAS database enrichments.
Significant overlap (Fisher’s exact test, FDR < 0.05) between traits included in the MRC-

IEU EWAS database and ALS-associated positions identified using the LB model. (A) 

Network showing the traits that significantly (FDR < 0.05) overlap with the ALS-associated 

positions. Nodes indicate the overlap between ALS-associated positions and positions 

associated with indicated traits, with larger nodes indicating more overlap, and lighter 

shades of blue indicating stronger associations. Edges indicate probe overlap between the 

traits, with thicker lines indicating more overlapping probes. Colored surfaces indicate the 

clusters (cholesterol, metabolic, and inflammatory) identified using the Louvain clustering 

algorithm. (B) Identification of independent clusters of traits. The first iteration shows 

the traits that significantly overlap with the ALS-associated probes at FDR < 0.05. In 

subsequent iterations, the probes belonging to the trait with the lowest-enrichment P 
value were excluded, and enrichment tests were performed using the remaining traits. 

This algorithm was repeated, retaining traits that were nominally significant (P < 0.05, 

indicated in bold), until at most one trait remained nominally significant. At the third 

iteration, no traits remained nominally significant (P < 0.05), showing that both BMI 

and related traits (including triglycerides and HDL-c) and IgE and related traits (atopy) 

show independent overlap with the ALS-associated positions. IgE, total serum IgE; TG, 

triglycerides; sTG, serum triglycerides; WC, waist circumference; sHDL-c, serum HDL-c: 

HW, hypertriglyceridemic waist; FG, fasting glucose; AF, atrial fibrillation; BMIc, BMI 

change; PL, postprandial lipemia; GGT, gamma-glutamyl transferase; fINS, fasting insulin; 

AC, alcohol consumption per day; 2hINS, 2-hour insulin; ATP, atopy; sIgE, high serum IgE; 

pAN, plasma adiponectin; T2D, type 2 diabetes; CKD, chronic kidney disease; HOMA-IR, 

homeostatic Model Assessment of Insulin Resistance.
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Fig. 3. Polymethylation score analyses on disease risk and patient survival.
Polymethylation scores (PMSs) were determined as proxies for various traits, exposures, 

proteins, and WBC proportions, calculated as weighted sums based on probes and 

weights derived from published papers, respectively. Case-control association analyses were 

performed on 6763 patients and 2943 controls; survival analyses were performed within 

5162 patients. (A) Explained variance of PMSs calculated in samples for which both DNA 

methylation data and biomarker/clinical data were available (N = 800 of 2000). Reduced R2 

represents the variance explained by the null model, whereas the incremental R2 represents 

the additional variance explained by the PMS over the null model. Last, the explained 

variance of the univariate model of the respective PMS is displayed (see Materials and 

Methods). The asterisk indicates that the PMS was used in the association tests. (B and C) 

The top panel shows association P values from logistic regression [−log10(P), y axis] for 

each PMS (x axis). (B) WBC proportions and (C) various traits and exposures, colored by 

whether a higher score is associated with increased (black) or decreased (gray) disease risk. 

The bottom panel shows the Cox PH P values [−log10(P), y axis] for each PMS (x axis), 

colored by whether a higher score is associated with decreased (black) or increased (gray) 

survival, respectively. The dashed line indicates the significance threshold (1.3 × 10−3). (D) 

Original P values [−log10(P), x axis] compared to P values after including all PMSs as fixed 

covariates in the logistic regression model [−log10(P), y axis] for the ALS-associated traits/
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exposures. (E and F) Association P values [−log10(P), y axis] upon incrementally adding 

principal components (PCs) as fixed covariates in the logistic regression model. HGF, 

hepatocyte growth factor; EN.RAGE, extracellular newly identified RAGE-binding protein; 

GDF8, growth/differentiation factor 8; OSM, Oncostatin-M, SKR3, Serine/threonine-protein 

kinase receptor R3; TNFSF14, tumor necrosis factor ligand superfamily member 14; 

VEGFA, vascular endothelial growth factor A; nPCs, number of principal components.
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