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Common and rare variant association analyses 
in amyotrophic lateral sclerosis identify 15 risk 
loci with distinct genetic architectures and 
neuron-specific biology
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet 
need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 
patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome 
sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset 
(MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, 
short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenera-
tive spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk 
factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The 
combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and 
provides evidence for cell-autonomous disease initiation in glutamatergic neurons.

ALS is a fatal neurodegenerative disease affecting one in 350 
individuals. Due to degeneration of both upper and lower 
motor neurons, patients suffer from progressive paralysis, 

ultimately leading to respiratory failure within 3–5 years after dis-
ease onset1. In ~10% of patients with ALS, there is a clear family 
history for ALS, suggesting a strong genetic predisposition, and cur-
rently a pathogenic mutation can be found in more than half of these 
cases2. On the other hand, apparently sporadic ALS is considered a 
complex trait for which heritability is estimated at 40–50% (refs. 3,4). 
There is no widely accepted definition of familial or sporadic ALS5, 
and they are likely to represent the ends of a spectrum with over-
lapping genetic architectures for which the same genes have been 
implicated in both familial and sporadic disease6–11. To date, par-
tially overlapping GWASs have identified up to six genome-wide 
significant loci, explaining a small proportion of the genetic sus-
ceptibility to ALS11–16. Indeed, some of these loci found in GWASs 
harbor rare variants with large effects also present in familial cases 
(for example, C9orf72 and TBK1)6,17,18. For other loci, the role of rare 
variants remains unknown.

While ALS is referred to as a motor neuron disease, cognitive 
and behavioral changes are observed in up to 50% of patients, some-
times leading to frontotemporal dementia (FTD). The overlap with 
FTD is clearly illustrated by the pathogenic hexanucleotide repeat 
expansion in C9orf72, which causes familial ALS and/or FTD17,18 
and the genome-wide genetic correlation between ALS and FTD19. 
Further expanding the ALS–FTD spectrum, a genetic correlation 
with progressive supranuclear palsy (PSP) has been described20. 
Shared pathogenic mechanisms between ALS and other neurode-
generative diseases, including common diseases such as Alzheimer’s 
disease (AD) and Parkinson’s disease (PD), can further reveal ALS 
pathophysiology and inform new therapeutic strategies.

Here, we combine new and existing individual-level geno-
type data in the largest GWAS of ALS to date. We present a com-
prehensive screen for pathogenic rare variants and short tandem 
repeat (STR) expansions as well as regulatory effects observed in 

brain cortex-derived RNA sequencing (RNA-seq) and methylation  
datasets to prioritize causal genes within ALS-risk loci. Furthermore, 
we reveal similarities and differences between ALS and other 
neurodegenerative diseases as well as the biological processes in 
disease-relevant tissues and cell types that affect ALS risk.

Results
Cross-ancestry meta-analysis reveals 15 risk loci for ALS. To gen-
erate the largest GWAS of ALS to date, we merged individual-level 
genotype data from 117 cohorts into six strata matched by geno-
typing platform. A total of 27,205 patients with ALS and 110,881 
control participants of European ancestries passed quality control 
(including 6,374 newly genotyped cases and 22,526 control partici-
pants; Methods and Supplementary Tables 1 and 2). Patients were 
not selected for a family history of ALS. Through meta-analysis of 
these six strata, we obtained association statistics for 10,461,755 
variants down to a minor allele frequency (MAF) of 0.1% in the 
Haplotype Reference Consortium resource21. We observed mod-
erate inflation of the test statistics (λGC = 1.12, λ1000 = 1.003), and 
linkage disequilibrium (LD) score regression yielded an intercept 
of 1.029 (s.e. = 0.0073), indicating that the majority of inflation was 
due to the polygenic signal in ALS (LD score regression (LDSC): 
h2l  = 0.028, s.e. = 0.003, K = 350−1, P = 5.5 × 10−21). The European 
ancestry analysis identified 12 loci reaching genome-wide signifi-
cance (P < 5.0 × 10−8; Extended Data Fig. 1). For nine loci, the top 
SNP or a strong LD proxy (r2 = 0.996) was present in GWAS of ALS 
in Asian ancestries (2,407 patients with ALS and 11,775 control 
participants)15,16, and all showed a consistent direction of effects 
(Pbinom = 2.0 × 10−3). The three SNPs that were not present in the Asian 
ancestry GWAS were low-frequency variants (MAF of 0.6–1.6% in 
European ancestries, Table 1). The genetic overlap between ALS 
risk in European and Asian ancestries resulted in a trans-ancestry 
genetic correlation of 0.57 (s.e. = 0.28) for genetic effect and  
0.58 (s.e. = 0.30) for genetic impact, which were not statistically sig-
nificantly different from unity (P = 0.13 and P = 0.16, respectively). 

NatuRe GeNetiCs | VOL 53 | December 2021 | 1636–1648 | www.nature.com/naturegenetics1636

http://crossmark.crossref.org/dialog/?doi=10.1038/s41588-021-00973-1&domain=pdf
http://www.nature.com/naturegenetics


ArticlesNATurE GENETicS

also the most likely causal mechanism for rs75087725 (CFAP410, 
formerly C21orf2, p.V58L; Supplementary Fig. 15), as the GWAS 
variant is a missense variant; no evidence for other mechanisms 
including repeat expansions or eQTL or mQTL effects was observed 
within this locus, and CFAP410 itself is known to directly inter-
act with NEK1, another ALS gene6,28. These three loci illustrate  
the power of large-scale GWASs combined with large imputation 
panels to directly identify low-frequency causal variants that confer 
disease risk.

Second, SNPs can tag a highly pathogenic repeat expansion, as 
was observed for rs2453555 (C9orf72) and the known GGGGCC 
hexanucleotide repeat in this locus (Supplementary Fig. 7). 
Conditional analysis revealed no residual signal after condition-
ing on the repeat expansion, which was in LD with the top SNP 
(r2 = 0.14, |D′| = 0.99, MAFSNP = 0.25, MAFSTR = 0.047). Besides the 
repeat expansion, both eQTL and mQTL analyses point to C9orf72 
(Supplementary Fig. 7). The HEIDI (heterogeneity in dependent 
instruments) outlier test, however, rejected the null hypothesis that 
gene expression or methylation mediated the causal effect of the 
associated SNP (PHEIDI,eQTL = 3.7 × 10−23 and PHEIDI,mQTL = 4.1 × 10−7). 
This is in line with the idea that pathogenic repeat expansion is the 
causal variant in this locus and that eQTL and mQTL effects do 
not mediate a causal effect. We found no similar pathogenic repeat 
expansions that fully explained the SNP association signal in the 
other genome-wide significant loci.

Third, in two loci (rs62333164 in NEK1 and rs4075094 in TBK1), 
common and rare variants converged to the same gene, which are 
known ALS-risk genes6,8. For both loci, the rare variant burden 
association was conditionally independent from the top SNP that 
was included in the GWAS (Supplementary Figs. 2 and 9). Here, 
eQTL and mQTL analyses indicated that the risk-increasing effects 
of the common variants were mediated through both eQTL and 
mQTL effects on NEK1 and TBK1. Furthermore, a polymorphic 
STR downstream of NEK1 was associated with increased ALS risk 
(motif, TTTA; threshold = 10 repeat units, expanded allele fre-
quency = 0.51, P = 5.2 × 10−5, false discovery rate (FDR) = 4.7 × 10−4; 
Extended Data Fig. 4). This polymorphic repeat was in LD with the 
top associated SNP within this locus (r2 = 0.24, |D′| = 0.70). There 
was no statistically significant association for the top SNP in the 
WGS data to reliably determine its independent contribution to 
ALS risk.

Lastly, the fourth group contains seven remaining loci for which 
there was no direct link to a causal gene through coding variants or 
repeat expansions. Here, we investigated regulatory effects of the 
associated SNPs on target genes acting as either eQTL or mQTL. 
Single genes were prioritized by SMR using both mQTL and eQTL 
for rs2985994 (COG3; Supplementary Fig. 10), rs229243 (SCFD1; 
Supplementary Fig. 11) and rs517339 (ERGIC1; Supplementary Fig. 
4). In other loci, both methods prioritized multiple genes, such as 
rs631312 (MOBP and RPSA; Supplementary Fig. 1) and rs10463311 
(GPX3 and TNIP1; Supplementary Fig. 3). Aside from the priori-
tized genes, each of these loci harbored multiple genes that were not 
prioritized by any method and are therefore less likely to contribute 
to ALS risk.

For two loci, no gene was prioritized with these approaches. 
Within the UNC13A locus (rs12608932; Supplementary Fig. 12), 
recent studies illustrate that the genome-wide significant SNPs act 
as splicing quantitative trait loci conditional on dysfunction of TAR 
DNA-binding protein (TDP)-43, resulting in inclusion of a cryptic 
exon in UNC13A29,30. Furthermore, we could not prioritize a specific 
gene in the HLA locus (rs9275477; Supplementary Fig. 5).

Genetic modifiers of ALS disease progression. We investigated 
whether genetic risk factors for ALS also act as disease modifiers 
that affect disease onset and progression. Genotypes for the 15 
genome-wide significant SNPs, PRSs and the rare variant burden 

We therefore performed a cross-ancestry meta-analysis totaling 
29,612 cases and 122,656 controls, which revealed three additional 
loci, totaling 15 genome-wide significant risk loci for ALS risk (Fig. 1,  
Table 1 and Supplementary Tables 4–18). Conditional and joint 
analysis did not identify secondary signals within these loci.

Of these findings, eight loci have been reported in previ-
ous GWASs (C9orf72, UNC13A, SCFD1, MOBP–RPSA, KIF5A, 
CFAP410, GPX3–TNIP1 and TBK1)11,14,15. The rs80265967 vari-
ant corresponds to the p.D90A mutation in SOD1 previously 
identified in a Finnish ALS cohort enriched for familial ALS13. 
Interestingly, we observed a genome-wide significant common 
variant association signal within the NEK1 locus, which was pre-
viously shown to harbor rare variants associated with ALS8. The 
recently reported association at the ACSL5–ZDHHC6 locus16,22 did 
not reach the threshold for genome-wide significance (rs58854276, 
PEUR = 5.4 × 10−5, PASN = 4.9 × 10−7, Pcomb = 6.5 × 10−8; Supplementary 
Table 19), despite the fact that our analysis includes all data from the 
original discovery studies.

Rare variant gene-based association analyses in ALS. To assess 
a general pattern of underlying architectures that link associated 
SNPs to causal genes, we first tested for annotation-specific enrich-
ment using stratified LDSC. This revealed that 5′ UTR regions as 
well as coding regions in the genome and those annotated as con-
served were most enriched for ALS-associated SNPs (Extended 
Data Fig. 2). Subsequently, we investigated how rare, coding variants 
contributed to ALS risk by generating a whole-genome sequenc-
ing (WGS) dataset of patients with ALS (n = 6,538) and control 
participants (n = 2,415), which is a subset of the common vari-
ant GWAS cohort. The exome-wide association analysis included 
transcript-level rare variant burden testing for different models of 
allele-frequency thresholds and variant annotations (Methods). 
This identified NEK1 as the strongest associated gene (minimal 
P = 4.9 × 10−8 for disruptive and damaging variants at MAF < 0.005), 
which was the only gene to pass the exome-wide significance 
thresholds (0.05 ÷ 17,994 = 2.8 × 10−6 and 0.05 ÷ 58,058 = 8.6 × 10−7 
for number of genes and protein-coding transcripts, respectively; 
Supplementary Table 20). This association was independent from 
the previously reported increased rare variant burden in selected 
patients with ‘familial ALS’ (ref. 8) who were not included in this 
study. Polygenic risk score (PRS) analyses did not illustrate a dif-
ference in PRSs in patients carrying rare variants in ALS-risk genes 
(SOD1, C9orf72 repeat expansion, TARDBP, FUS, NEK1, TBK1 and 
CFAP410) compared to all patients with ALS (Extended Data Fig. 3).  
Although power was limited, this is compatible with a scenario in 
which the genetic risk of ALS in these patients is a sum of rare vari-
ants in ALS genes and other (common) genetic variation.

Gene prioritization shows locus-specific underlying architec-
tures. To assess whether rare variant associations could drive the 
common variant signals at the 15 genome-wide significant loci, we 
combined the common and rare variant analyses to prioritize genes 
within these loci. The SNP effects on gene expression were assessed 
by summary-based Mendelian randomization (MR) (SMR) in blood 
(eQTLGen23, n = 31,648) and a new brain cortex-derived eQTL 
dataset (MetaBrain24, n = 2,970). Finally, we analyzed methylation 
quantitative trait loci (mQTL) by SMR in blood-derived (n = 2,082) 
and brain-derived (n = 522) mQTL datasets25–27. Through these 
multi-layered gene-prioritization strategies, we classified each locus 
into one of four classes of most likely underlying genetic architec-
ture to prioritize the causal gene (Supplementary Figs. 1–15).

First, in three GWAS loci, the strongest associated SNP was a 
low-frequency coding variant that was nominated as the causal vari-
ant. This was the case for rs80265967 (SOD1, p.D90A; Supplementary 
Fig. 14) and rs113247976 (KIF5A, p.P986L; Supplementary Fig. 8),  
which are coding variants in known ALS-risk genes. This was 
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for SOD1, C9orf72 (repeat expansion status), TARDBP, FUS, NEK1, 
TBK1 and CFAP410 were obtained for all individuals with WGS for 
whom the complete core clinical data (sex, age at onset, site of onset, 
survival, time to censoring) were available (n = 6,095). Association 
analyses with survival and age at onset showed that common vari-
ants had a limited effect on survival (Fig. 2a) and age at onset  
(Fig. 2b) but confirmed the association between faster disease  
progression for the UNC13A risk allele (rs12608932, hazard 
ratio (HR) = 1.10, 95% confidence interval (CI) = 1.05–1.15, 
P = 1.2 × 10−4) and slower disease progression in patients with the 
SOD1 p.D90A mutation (rs80265967, HR = 0.35, 95% CI = 0.16–
0.77, P = 8.4 × 10−4). This limited effect of common genetic risk fac-
tors for ALS susceptibility on disease progression was reflected in 
the PRS analyses in which we found no effect of the full-genome 
PRS on survival (HR = 1.02, 95% CI = 0.98–1.06, P = 0.28) or age at 
onset (b = 0.10, s.e. = 0.21, P = 0.64). Analyses of rare variants con-
firmed faster disease progression in patients with the C9orf72 repeat 
expansion (HR = 1.45, 95% CI = 1.28–1.65, P = 1.2 × 10−8) with an 
earlier age at onset (b = −2.62, s.e. = 0.77, P = 6.4 × 10−4).

Locus-specific sharing of risk loci between ALS and neurode-
generative diseases. To investigate the pleiotropic properties of 
ALS-associated variants and shared genetic risk with other brain 
diseases, we estimated genetic correlations between neurodegenera-
tive diseases, psychiatric traits, cerebrovascular diseases and mul-
tiple sclerosis (Extended Data Fig. 5). This showed strong genetic 
correlations among neurodegenerative diseases. Bivariate LDSC 
confirmed a statistically significant genetic correlation between ALS 
and PSP (rg = 0.44, s.e. = 0.11, P = 1.0 × 10−4) as previously reported20 
and also revealed a significant genetic correlation between ALS and 
AD (rg = 0.31, s.e. = 0.12, P = 9.6 × 10−3) as well as between ALS and 
PD (rg = 0.16, s.e. = 0.061, P = 0.011; Fig. 3a). The point estimate for 
the genetic correlation between ALS and FTD was high (rg = 0.59, 
s.e. = 0.41, P = 0.15) but not statistically significant due to the lim-
ited size of the FTD GWAS (3,526 cases and 9,402 controls). Thus, 
power to detect a genetic correlation between ALS and FTD using 
LDSC was limited.

Patterns of sharing disease-associated genetic variants appeared 
to be locus specific (Fig. 3b and Supplementary Table 21). To assess 
whether two traits shared a common signal, indicating shared causal 
variants, we performed colocalization analyses for all loci meeting 
P < 5 × 10−5 in any of the GWASs of neurodegenerative diseases 
(n = 161 loci). This revealed a shared signal in the MOBP–RPSA 
locus between ALS, PSP and corticobasal degeneration (CBD) as 
well as a shared signal in the UNC13A locus between ALS and FTD 
(posterior probability, PPH4 > 95%; Extended Data Fig. 6). For the 
HLA locus, there was evidence for a shared causal variant between 
ALS and PD (PPH4 = 88%) but no conclusive evidence for ALS and 
AD (PPH4 = 51% for a shared causal variant and PPH3 = 49% for 
independent signals in both traits).

Furthermore, colocalization analyses identified two additional 
shared loci that were not genome-wide significant in the ALS GWAS: 
between ALS and PD at the GAK locus (rs34311866, PPH4 = 99%) 
and between ALS and AD at the TSPOAP1-AS1locus (rs2632516, 
PPH4 = 90%). Of note, the association at TSPOAP1-AS1 was not 
genome-wide significant in the GWAS of clinically diagnosed AD 
(P = 3.7 × 10−7) either but was identified in the larger AD-by-proxy 
GWAS31. For FTD subtypes, C9orf72 showed a colocalization  
signal for a shared causal variant between ALS and the motor  
neuron disease subtype of FTD (mndFTD, PPH4 = 93%; Extended 
Data Figs. 6 and 7).

Enrichment of glutamatergic neurons indicates cell-autonomous 
processes in ALS susceptibility. To find tissues and cell types for 
which gene expression profiles were enriched for genes within 
ALS-risk loci, we first combined gene-based association statistics Ta
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calculated using MAGMA32 with gene expression patterns from the 
Genotype–Tissue Expression (GTEx) project (version 8) in a gene 
set enrichment analysis using FUMA33. We observed a significant 
enrichment in genes expressed in brain tissues across multiple brain 
regions but not in peripheral nervous tissue or muscle. Whereas 
this pattern roughly resembled the enrichments observed in PD 
and psychiatric traits, it was strikingly different from that reported31 
and observed in AD in which blood, lung and spleen were mostly 
enriched, resembling the pattern observed in multiple sclerosis, 
which is a typical immune-mediated brain disease (Fig. 4a and full 
results in Supplementary Fig. 16 and Extended Data Fig. 8a). We  
subsequently queried single-cell RNA-seq datasets of human- 
derived brain samples to further specify brain-specific enriched cell 
types using the cell type analysis module in FUMA34. This showed 
significant enrichment for neurons but not for microglia or astro-
cytes (Fig. 4b). Further subtyping of these neurons illustrated that 
genes expressed in glutamatergic neurons were mostly enriched for 
genes within the ALS-associated risk loci. Again, this contrasted 
with AD, which showed specific enrichment of microglia, similar 
to multiple sclerosis (Extended Data Fig. 8b). In single-cell RNA-seq 
data obtained from brain tissues in mice, a similar pattern was 
observed showing neuron-specific enrichment in ALS and PD but 
microglia in AD (Extended Data Fig. 9). Together, this indicates 
that susceptibility to neurodegeneration in ALS is mainly driven  
by neuron-specific pathology and not by immune-related tissues 
and microglia.

Brain-specific coexpression networks improve detection of 
ALS-relevant pathways. To determine which processes were mostly 
enriched in ALS, we performed enrichment analyses that com-
bined gene-based association statistics with gene coexpression pat-
terns obtained from either multi-tissue transcriptome datasets35 or 

RNA-seq data from brain cortex samples (MetaBrain24). To validate  
this approach, we first tested for enrichment of human phenotype 
ontology (HPO) terms that are linked to well-established disease 
genes in the Online Mendelian Inheritance in Man (OMIM) and 
Orphanet catalogs. Using the multi-tissue coexpression matrix, we 
found no enriched HPO terms after Bonferroni correction for mul-
tiple testing. Using the brain-specific coexpression matrix, however, 
we found a strong enrichment of HPO terms that are related to ALS 
or neurodegenerative diseases in general, including ‘cerebral cortical  
atrophy’ (P = 1.8 × 10−8), ‘abnormal nervous system electrophysiol-
ogy’ (P = 4.1 × 10−7) and ‘distal amyotrophy’ (P = 8.6 × 10−7; full list 
in Supplementary Table 22). In general, HPO terms in the neurologi-
cal branch (‘abnormality of the nervous system’) showed an increase 
in enrichment statistics in ALS when using the brain-specific coex-
pression matrix compared to the multi-tissue dataset (Extended 
Data Fig. 10), which illustrates the benefit of the brain-specific 
coexpression matrix. Subsequently, we tested for enriched bio-
logical processes using reactome and gene ontology terms. Again, 
using the multi-tissue expression profiles, we found that no reac-
tome annotations were enriched. Leveraging the brain-specific 
coexpression networks, we identified vesicle-mediated transport 
(‘membrane trafficking’, P = 4.2 × 10−6, ‘intra-Golgi and retrograde 
Golgi-to-endoplasmic reticulum (ER) trafficking’, P = 1.4 × 10−5) and 
autophagy (‘macroautophagy’, P = 3.2 × 10−5) as enriched processes 
after Bonferroni correction for multiple testing (Supplementary 
Table 23). The subsequently identified enriched gene ontology 
terms were all related to vesicle-mediated transport or autophagy 
(Supplementary Tables 24 and 25).

MR analyses are in line with a causal relationship between cho-
lesterol levels and ALS. From previous observational case–control 
studies and our blood-based methylome-wide study36, numerous 
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non-genetic risk factors have been implicated in ALS. Here, we studied  
a selection of those putative risk factors through causal inference in an 
MR framework37. We selected 22 risk factors for which robust genetic 
predictors were available including body mass index, smoking,  
alcohol consumption, physical activity, cholesterol-related traits, 
cardiovascular diseases and inflammatory markers (Supplementary 
Table 26). These analyses provided the strongest evidence that  
cholesterol levels were causally related to ALS risk (bweighted median =  
0.15, s.e. = 0.04, P = 3.2 × 10−4; Fig. 5a and full results in Supple-
mentary Table 27). These results were robust to removal of outli-
ers through radial MR analysis38, and we observed no evidence for 

reverse causality (Supplementary Tables 28 and 29). Importantly, 
ascertainment bias can lead to the selection of more highly edu-
cated control participants39 compared to patients with ALS who are 
mostly ascertained through the clinic. In line with control partici-
pants having higher education, MR analyses indicated a negative 
effect for years of schooling on ALS risk (inverse-variance-weighted 
PIVW = 2.0 × 10−4; Fig. 5b). As a result, years of schooling can act as 
a confounder for the observed risk-increasing effect of higher total 
cholesterol levels through ascertainment bias. To correct for this 
potential confounding, we applied multivariate MR analyses includ-
ing both years of schooling and total cholesterol levels. The results for  
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total cholesterol were robust in the multivariate analyses, suggesting  
a causal role for total cholesterol levels on ALS susceptibility 
(Supplementary Table 30).

Discussion
In summary, in the largest GWAS on ALS to date including 29,612 
patients with ALS and 122,656 control participants, we identified 
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15 risk loci contributing to ALS risk. Through in-depth analysis of 
these loci incorporating rare variant burden analyses and repeat 
expansion screens in WGS data and blood- and brain-specific 
eQTL and mQTL analyses, we prioritized genes in 13 of the loci. 
Across the spectrum of neurodegenerative diseases, we identified 
a genetic correlation between ALS and AD as well as PD and PSP  
with locus-specific patterns of shared genetic risk across all neuro-
degenerative diseases. Colocalization analysis identified two 
additional loci, GAK and TSPOAP1-AS1, with a high posterior 
probability of shared causal variants between ALS and PD and 
between ALS and AD, respectively. We found glutamatergic neu-
rons as the most enriched cell type in the brain, and brain-specific 
coexpression network enrichment analyses indicated a role for 
vesicle-mediated transport and autophagy in ALS. Finally, causal 
inference of previously described risk factors provides evidence for 
high total cholesterol levels as a causal risk factor for ALS.

The cross-ancestry comparison illustrated similarities in the 
genetic risk factors for ALS in European and East Asian ancestries, 
providing an argument for cross-ancestry studies and to further 
expand ALS GWASs in non-European populations. It is important 
to note that three loci including those that harbor low-frequency 

variants (KIF5A, SOD1 and CFAP410) were not included in the 
East Asian GWAS due to their low MAFs. Therefore, the shared 
genetic risk might not extend to rare genetic variation, for which 
population-specific frequencies have been observed even within 
Europe.

The multi-layered gene-prioritization analyses highlighted four 
different classes of genome-wide significant loci in ALS. First, the 
sample size of this GWAS combined with accurate imputation of 
low-frequency variants directly identified rare coding variants 
that increase ALS risk. These include the known p.D90A muta-
tion in SOD1 (MAF = 0.006) as well as rare variants in KIF5A 
(MAF = 0.016) and CFAP410 (MAF = 0.012) for which, after their 
identification through GWAS, experimental work confirmed their 
direct role in ALS pathophysiology11,28,40. Second, we confirmed that 
the pathogenic C9orf72 repeat expansion is tagged by genome-wide 
significant GWAS SNPs and that no residual signal is left by con-
ditioning the SNP on the repeat expansion. Although more repeat 
expansions are known to affect ALS risk, we found no similar  
loci for which the SNPs tag a highly pathogenic repeat expansion. 
This suggests that highly pathogenic repeat expansions on a stable 
haplotype are merely the exception rather than the rule in ALS. 
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Third, common and rare variant association signals can converge 
on the same gene as observed for NEK1 and TBK1, consistent with 
observations for other traits and diseases41–43. We show that these 
signals are conditionally independent and that the common variants 
act on the same gene through regulatory effects as eQTL or mQTL. 
Fourth, we find evidence for regulatory effects of ALS-associated 
SNPs that act as eQTL or mQTL. These locus-specific architectures 
illustrate the complexity of ALS-associated GWAS loci for which 
not one solution fits all, but instead a multi-layered approach to  
prioritize genes is warranted.

In addition, we find locus-specific patterns of shared effects 
across neurodegenerative diseases. The MOBP locus has previously 
been identified in PSP and ALS, and here we show that indeed both 
diseases as well as CBD are likely to share the same causal variant 
in this locus. The same is true for UNC13A and C9orf72 with FTD 
and mndFTD, respectively. The colocalization analysis with PD 
identified a shared causal variant in the GAK locus, which was not 
found in the ALS GWAS alone. Furthermore, the TSPOAP1-AS1 
locus harbors SNPs associated with ALS and AD risk. Although this 
locus was not significant in either of the GWASs, a larger GWAS 
including AD-by-proxy cases confirmed this as a risk locus for AD. 
This illustrates the power of cross-disorder analyses to leverage the 
shared genetic risk of neurodegenerative diseases.

We aimed to clarify the role of neuron-specific pathology in 
ALS susceptibility as opposed to non-cell-autonomous pathology  
through detailed cell type enrichment analyses. Previous experiments 
have illustrated multiple lines of evidence for non-cell-autonomous 
pathology in microglia, astrocytes and oligodendrocytes, which 
ultimately leads to neurodegeneration in ALS44–46. These experi-
ments have shown that non-cell-autonomous processes, such as 
neuroinflammation, mainly act as modifiers of disease in SOD1 
models of ALS45,46. Here, we show that genes within loci associated 
with ALS susceptibility are specifically expressed in (glutamatergic) 
neurons. This provides evidence for neuron-specific pathology as a 
driver of ALS susceptibility, which is in stark contrast to the signal 
of inflammation-associated tissues and cell types in AD and mul-
tiple sclerosis. It also shows that disease susceptibility and disease 
modification can be distinct processes, which is supported by our 
finding that most genetic susceptibility factors do not have a strong 
effect on survival. This motivates future large-scale genetic studies 
on modifiers of ALS progression, as these can be targets for poten-
tial new treatments for ALS as well.

The subsequent functional enrichment analyses identified that 
membrane trafficking, Golgi-to-ER trafficking and autophagy were 
enriched for genes within ALS-associated loci. These terms and 
their related gene ontology terms of biological processes are all 
related to autophagy and degradation of (misfolded) proteins. This 
corroborates the central hypothesis of impaired protein degrada-
tion leading to aberrant protein aggregation in neurons, which is 
the pathological hallmark of ALS. Our results suggest that this is a 
central mechanism in ALS even in the absence of rare known muta-
tions in genes directly involved in these biological processes such as 
TARDBP, FUS, UBQLN2 and OPTN47.

Based on observational studies and MR analyses, conflicting 
evidence exists for lipid levels including cholesterol as a risk fac-
tor for ALS48–50. Potential selection bias, reverse causality and the 
subtype of cholesterol studied challenge the interpretation of 
these results. Here, we provided support for a causal relationship 
between high total cholesterol levels and ALS independent of  
educational attainment and ruling out reverse orientation of the 
MR effect. The total cholesterol effects were consistent across  
the different MR methods tested, indicating that this finding is 
robust to violation of the ‘no horizontal pleiotropy’ assumption. 
This is in line with our study showing methylation changes associ-
ated with increased cholesterol levels in ALS36. We do not find a clear 
pattern for either low-density lipoprotein (LDL) or high-density 

lipoprotein (HDL) cholesterol subtypes in relation to ALS risk. 
While cholesterol levels are closely related to cardiovascular risk, 
the association between cardiovascular risk and ALS risk remains 
controversial with conflicting reports3,48,51. Interestingly, recent work 
has shown that lipid metabolism and autophagy are closely related52, 
which brings the results of our pathway analyses and MR together. 
Both in vitro and in vivo experiments have shown that autophagy 
regulates lipid homeostasis through lipolysis and that impaired 
autophagy increases triglyceride and cholesterol levels. Conversely, 
high lipid levels were shown to impair autophagy52. Further studies  
on the effect of high cholesterol levels and protein degradation 
through autophagy illustrate that high cholesterol levels decrease 
the fusogenic ability of autophagic vesicles through decreased func-
tion of soluble N-ethylmaleimide-sensitive factor-attachment pro-
tein receptor (SNARE)53,54 and lead to increased protein aggregation 
due to impaired autophagy in mouse models of AD55. Therefore, 
the risk-increasing effect of cholesterol on ALS might be mediated 
through impaired autophagy.

In conclusion, our GWAS identifies 15 risk loci in ALS and illus-
trates locus-specific interplay between common and rare genetic 
variation that helps to prioritize genes for future follow-up studies.  
We show a causal role for cholesterol, which can be linked to 
impaired autophagy as common denominators of neuron-specific 
pathology that drive ALS susceptibility and serve as potential  
targets for therapeutic strategies.
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Methods
Genome-wide association study. Data description. We obtained individual 
genotype-level data for all individuals in the previously published GWAS of ALS in 
European ancestries11,14 and publicly available control datasets including 120,971 
controls genotyped on Illumina platforms. Additionally, 6,374 cases and 22,526 
controls were genotyped on the Illumina OmniExpress and Illumina GSA arrays. 
Details for each cohort are provided in Supplementary Table 1. All patients with 
ALS were diagnosed and ascertained through specialized MND clinics where 
they were diagnosed with ALS according to the (revised) El Escorial Criteria56 
by neurologists specialized in motor neuron diseases. Whole-blood samples 
were drawn for DNA isolation, which were specifically collected for ongoing 
case–control studies of ALS. Both cases with and without a family history for 
ALS and/or dementia were included. Cases were not pre-screened for specific 
ALS-related mutations. Given the late onset and relatively low lifetime risk of ALS, 
controls were not screened for (subclinical) signs of ALS. A detailed description 
of the ascertainment of newly genotyped cases and controls is provided in the 
Supplementary Note. All participants gave written informed consent, and the 
relevant local institutional review boards approved this study (Supplementary 
Note). Cases and controls formed cohorts when they were processed in the same 
laboratory and were genotyped in the same batch, resulting in 117 independent 
cohorts. Summary statistics were obtained for the Asian ancestry GWAS of ALS15,16 
(Supplementary Note).

GWAS quality control and imputation. For each cohort, we first performed 
individual- and variant-level quality control, after which cohorts were merged 
into six strata based on genotyping platform. Subsequent stratum-wise 
quality control was performed, and strata were imputed up to the Haplotype 
Reference Consortium panel (r.1.1 2016) through the Michigan Imputation 
Server21. Full quality-control details are described in the Supplementary Note 
and Supplementary Fig. 17. Numbers of individuals and variants passing each 
quality-control step are described in Supplementary Table 2.

Association testing and meta-analysis. After quality control, a null logistic 
mixed model was fitted using SAIGE57 0.29.1 for each stratum with principal 
component (PC)1–PC20 as covariates. The model was fit on a set of high-quality 
(INFO > 0.95) SNPs pruned with PLINK 1.9 (‘–indep-pairwise 50 25 0.1’) in a 
leave-one-chromosome-out scheme. Subsequently, a SNP-wise logistic mixed 
model including the saddlepoint approximation test was performed using genotype 
dosages with SAIGE. Association statistics for all strata were combined in an IVW 
fixed-effects meta-analysis using METAL58.

Genomic inflation factors were calculated per stratum and for the full 
meta-analysis. To assess any residual confounding due to population stratification 
and artificial structure in the data, we calculated the LDSC59 intercept using SNP 
LD scores calculated in the HapMap3 CEU population.

Cross-ancestry analyses. GWAS summary statistics from two Asian ancestry 
studies were obtained15,16. These summary statistics were meta-analyzed with all 
European ancestry data in strata as described above. To assess genetic correlation 
for ALS in European and Asian ancestries, we used Popcorn60 version 0.9.9. We 
used population-specific LD scores for genetic impact and genetic effect provided 
with the Popcorn software. The regression model (‘–use_regression’) was used to 
estimate genetic correlation. We calculated both the correlation of genetic effects 
(correlation of allelic effect sizes) and genetic impact (correlation of allelic effect 
size adjusted for difference in allele frequencies).

Conditional SNP analysis. Conditional and joint SNP analysis (COJO, GCTA 
version 1.91.1b)61,62 was performed to identify potential secondary GWAS signals 
within a single locus. SNPs with association P ≤ 5 × 10−8 were considered. Controls 
of European ancestry from the Health and Retirement Study (HRS, cohort 65, 
Supplementary Table 1), included in stratum 4 of this study, were used as the LD 
reference panel.

Gene prioritization. Whole-genome sequencing. Sample selection, sequencing and 
data preparation. Patients with ALS and control participants from Project MinE63 
were recruited for WGS. The participating cohorts were not pre-screened for 
ALS-associated mutations and are described in the Supplementary Note. In total, 
228 patients were known to have at least one first- or second-degree relative with 
ALS. A full description of Project MinE and the sequencing and quality-control 
pipeline were described previously64. In summary, the first batch of 2,250 cases 
and control samples was sequenced on the Illumina HiSeq 2000 platform. All 
remaining 7,350 case and control samples were sequenced on the Illumina HiSeq 
X platform. All samples were sequenced to ~35× coverage with 100-bp reads and 
~25× coverage with 150-bp reads for HiSeq 2000 and HiSeq X, respectively. Both 
sequencing sets used PCR-free library preparation. Samples were also genotyped 
on the Illumina 2.5M array. Sequencing data were then aligned to GRCh37 using 
the Isaac Aligner, and variants were called using the Isaac variant caller; both 
the aligner and caller are standard to Illumina’s aligning and calling pipeline. 
Full details of individual- and variant-level quality control are described in the 
Supplementary Note.

Genic burden association analyses. To aggregate rare variants in a genic 
burden test framework, we used a variety of variant filters to allow for different 
genetic architectures of ALS-associated variants per gene as we and others did 
previously64,65. In summary, variants were annotated according to allele-frequency 
threshold (MAF < 0.01 or MAF < 0.005) and predicted variant impact (‘missense’, 
‘damaging’, ‘disruptive’). ‘Disruptive’ variants were those variants classified 
as frameshift, splice site, exon loss, stop gained, start loss and transcription 
ablation by SnpEff66. ‘Damaging’ variants were missense variants predicted to 
be damaging by seven prediction algorithms (SIFT67, PolyPhen-2 (ref. 68), LRT69, 
MutationTaster2 (ref. 70), Mutations Assessor71 and PROVEAN72). ‘Missense’ 
variants were those missense variants that did not meet the ‘damaging’ criteria. All 
combinations of allele-frequency threshold and variant annotations were used to 
test the genic burden on a transcript level in a Firth logistic regression framework 
in which burden was defined as the number of variants per individual. Sex and the 
first 20 PCs were included as covariates. All Ensembl protein-coding transcripts for 
which at least five individuals had a non-zero burden were included in the analysis.

Conditional genic burden analysis. We selected for each gene the protein-coding 
transcripts that were the most strongly associated with ALS across all different 
combinations of MAF and variant-impact thresholds. For these transcripts and 
variants, we applied Firth logistic regression on individuals included in both the 
GWAS and WGS datasets (5,158 cases and 2,167 controls). To assess whether the 
rare variant burden association and the signal from the GWAS were conditionally 
independent, we subsequently included the genotype of the top associated SNP 
within that locus as a covariate.

Short tandem repeat screen. For all individuals who had sequencing results in the 
HiSeq X dataset (5,392 cases, 1,795 controls), we screened all loci harboring SNPs 
associated with ALS meeting genome-wide significance for expansions of known 
and new STRs using ExpansionHunter73 and ExpansionHunter Denovo74.

First, we used ExpansionHunter (version 4.0) to screen for expansions of 
known STRs located within 1 Mb of the top ALS-associated SNP. For this, we used 
the STRs identified from indels in 18 high-quality genomes and the GangSTR 
STR catalog based on STR annotations in the reference genome75. We excluded 
all homopolymers from these catalogs. Repeat length was subsequently regressed 
on case–control status using Firth logistic regression including the first 20 PCs 
as covariates, recoding the STR size to a biallelic variant using a sliding window 
over all observed repeat lengths. To correct for multiple testing across all possible 
thresholds, we applied Benjamini–Hochberg correction per STR.

To screen for extremely long STR expansions (similar to the C9orf72 repeat 
expansion) at loci that were not included in the predefined STR catalogs, 
we applied ExpansionHunter Denovo74. This method aims to only find STR 
expansions that exceed the sequencing read length (>150 bp) by identifying reads 
(mapped, mismapped and unmapped) that contain STR motifs, using their mate 
pairs for de novo mapping to the reference genome.

For all STRs, we calculated LD statistics (r2 and |D′|) between recoded 
repeat genotypes at the optimal threshold and the top associated GWAS SNP. 
Subsequently, we conditioned the SNP association on the repeat genotype in a 
Firth logistic regression.

Summary-based Mendelian randomization. We used multi-SNP SMR76,77 to infer 
the effect of gene expression variation on ALS using eQTL (the association of 
a SNP with expression of a gene) on ALS risk. We chose to apply SMR because 
this method yielded very similar results when compared to S-PrediXcan78 and 
TWAS79 (Supplementary Fig. 18) when applied using GTEx version 7 eQTL, and 
it can be applied to the large relevant eQTL datasets (MetaBrain and eQTLGen) 
without access to individual-level genotype and gene expression data. MetaBrain 
is a harmonized set of 8,727 RNA-seq samples from seven regions of the central 
nervous system from 15 datasets, and we selected eQTL derived from the cortex 
region of the brain in samples of European ancestry (MetaBrain Cortex-EUR 
eQTL, n = 2,970 individuals, n = 6,601 RNA-seq samples) as our instrument 
variable24. European-only ALS summary statistics were used as the outcome. 
To supplement this analysis, we also used eQTL in blood from the eQTLGen 
Consortium, as this is a large available eQTL resource. Samples of European 
ancestry in the HRS (cohort 65 of this GWAS) were used as the LD reference panel. 
SNPs with MAF ≥ 1% in the HRS were included. Further SMR settings were left as 
default, meaning probes with at least one eQTL with P ≤ 5 × 10−8 were included.

We subsequently performed SMR using DNA mQTL data and European-only 
ALS summary statistics. Human prefrontal cortex and whole-blood DNA mQTL 
were generated as part of ongoing analyses by the Complex Disease Epigenomics 
Group at the University of Exeter (https://www.epigenomicslab.com/) using the 
Illumina EPIC HumanMethylation array that quantifies DNAm at >850,000 
sites across the genome25. The prefrontal cortex mQTL dataset was generated 
using DNA-methylation and SNP data from 522 individuals from the Brains for 
Dementia Research cohort26 and includes 4,623,966 cis mQTL (distance between 
quantitative trait locus SNP and DNAm site ≤500 kb) between 1,744,102 SNPs and 
43,337 DNA-methylation sites. The whole-blood mQTL dataset was generated 
using DNAm and SNP data from 2,082 individuals80 and included 30,432,023 
cis mQTL between 4,030,902 SNPs and 167,854 DNA-methylation sites. mQTL 
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reaching the significance threshold P ≤ 1 × 10−10 were taken forward for SMR 
analysis as described by Hannon and colleagues80. To map CpG sites to their 
putative target genes, we used the expression quantitative trait methylation results 
from a paired methylation and gene expression (RNA-seq) study in blood81. For 
CpG sites where no expression quantitative trait methylation was present in this 
dataset, we used positional mapping based on the basal regulatory domains and 
extended regulatory domains as defined in the Genomic Regions Enrichment of 
Annotations Tool (GREAT)82, which is applied in the ‘cpg_to_gene‘ function in the 
CpGtools toolkit83.

Polygenic risk score calculation. PRSs were constructed based on the 15 lead 
SNPs of genome-wide significant loci (15-SNP PRS) or a full-genome-wide model 
(full-genome PRS). For the 15-SNP PRS, the SNP weights were defined as the 
meta-analyzed effect estimates. We used the summary-BayesR framework from the 
Genome-wide Complex Trait Bayesian analysis (GCTB) toolkit84,85 to obtain SNP 
weights for the full-genome PRS based on the European ancestry meta-analysis 
excluding stratum 6. We used the default model parameters and the precalculated 
sparse LD matrix of imputed HapMap3 SNPs in 50,000 random individuals 
included in the UK Biobank of European ancestries. Summary-BayesR SNP effects 
were plotted against marginal SNP effects to rule out potential biased estimates due 
to non-convergence of the MCMC algorithm. Finally, the PRSs for all individuals 
in stratum 6 were calculated using the ‘–score’ function in PLINK and normalized 
to zero mean and unit variance.

Modifier analyses. For 6,095 of the patients with WGS and ALS, core clinical data 
were obtained including sex, site of onset (spinal or bulbar), age at onset (years), 
country of origin and survival, defined as time from disease onset to death, 23 h of 
continuous non-invasive ventilation per day or tracheostomy. Patients who were 
still alive were censored at the last date of follow-up.

The genetic risk factors included SNP genotypes, PRSs, C9orf72 repeat 
expansion status and the number of rare coding mutations in ALS-risk genes 
(SOD1, TARDBP, FUS, NEK1, TBK1 and CFAP410) as obtained from WGS as 
described above.

For survival analyses, the Cox proportional hazards mixed model from the 
‘coxme‘ package in R was used, modeling country of origin as a random effect. 
Fixed-effect covariates included sex, age at onset, site of onset, GWAS stratum 
and PC1–PC5. Violation of the proportional hazards assumption for genotype on 
survival was assessed by inspecting Schoenfeld residuals. For age-at-onset analyses, 
we applied linear regression of age at onset on genotype including sex, site of onset, 
country, GWAS stratum and PC1–PC5 as covariates.

Cross-trait analyses. Datasets and data preparation. GWAS summary statistics 
for clinically diagnosed AD86, PD87, FTD88, CBD89 and PSP20 in individuals of 
European ancestry were obtained. For AD, we used the clinical diagnosis as 
the case definition to avoid spurious genetic correlations that could have been 
introduced through the by-proxy design31, in which by-proxy cases are defined as 
having a parent with AD. Although this is a powerful design for gene discovery and 
the genetic correlation with clinically diagnosed AD is high90, mislabeling by-proxy 
cases when parents suffer from other types of dementia (for example, Lewy body 
dementia, Parkinson’s dementia, FTD or vascular dementia) can lead to spurious 
genetic correlations with ALS and other neurodegenerative diseases. For FTD, 
we primarily used the results of the cross-subtype meta-analysis, which includes 
behavioral variant FTD, semantic dementia FTD, progressive non-fluent aphasia 
FTD and mndFTD. For CBD, allele coding was unavailable, and effect alleles 
were inferred by matching allele frequencies to those observed in the Haplotype 
Reference Consortium. SNPs with MAF > 0.4 were excluded. Because downstream 
methods rely on LD scores or population-specific LD patterns, the European 
ancestry summary statistics from the present study were used for ALS. For sample 
size parameters, effective sample size was calculated as described previously.

Multiple sclerosis summary statistics were obtained from the International 
Multiple Sclerosis Genetics Consortium91. For cerebrovascular diseases, GWAS 
summary statistics were obtained for ischemic stroke (any ischemic stroke)92, 
intracerebral hemorrhage93 and intracranial aneurysm94. For psychiatric traits, 
GWAS summary statistics were obtained from Psychiatric Genomics Consortium 
studies on anorexia nervosa95, obsessive–compulsive disorder96, anxiety disorders 
(anxiety score)97, post-traumatic stress disorder (all European ancestries)98, major 
depressive disorder99, bipolar disorder100, schizophrenia101, Tourette’s syndrome102, 
autism spectrum disorder103 and attention-deficit hyperactivity disorder (European 
ancestries)104.

Genetic correlation. Genome-wide genetic correlation between neurodegenerative 
traits was calculated using LDSC (version 1.0.0)59. Precomputed LD scores of 
European individuals in the 1000 Genomes project for high-quality HapMap3 
SNPs were used (‘eur_w_ld_chr’). A free intercept was modeled to allow for 
potential sample overlap.

Colocalization. Before the colocalization analysis of neurodegenerative diseases,  
we first assessed residual confounding by estimating the LDSC intercept using 
LDSC (version 1.0.0) (ALS, 1.03 (s.e., 0.0073); AD, 1.03 (s.e., 0.013); PD, 0.98  

(s.e., 0.0065); PSP, 1.05 (s.e., 0.0076); CBD, 0.98 (s.e., 0.0073); FTD, 1.00 (s.e., 
0.0071)), showing limited inflation of test statistics due to confounding across these 
studies. For each locus (top SNP ±100 kb) harboring SNPs with an association 
with any of the neurodegenerative diseases (ALS, AD, PD, PSP, CBD, FTD) at 
P < 1 × 10−5, we performed colocalization analysis using the ‘coloc’ package in R105. 
We set the prior probabilities to π1 = 1 × 10−4, π2 = 1 × 10−4 and π12 = 1 × 10−5 for a 
causal variant in trait 1 or trait 2 and a shared causal variant between traits 1 and 
2, respectively. Using the same parameters, we performed colocalization analysis 
for ALS and each of the FTD subtypes (behavioral variant FTD, semantic dementia 
FTD, progressive non-fluent aphasia FTD and mndFTD).

Enrichment analyses. Linkage disequilibrium score regression annotation-specific 
enrichment analysis. We used LDSC (version 1.0.0)59 to calculate SNP-based 
heritability, the LDSC intercept and SNP-based heritability enrichment for 
partitions of the genome. In all LDSC analyses, summary statistics excluding the 
HLA region of only samples of European ancestry were included. LD scores and 
partitioned LD scores provided by LDSC were used for genome-wide and genic 
region-based heritability analyses. The option ‘–overlap-annot’ was used in the 
partitioned heritability analysis to allow for overlapping SNPs between MAF bins. 
SNPs with MAF > 5% were included.

Tissue and cell type enrichment analysis. Tissue and cell type enrichment analyses 
were performed using the GWAS summary statistics of the European ancestry 
meta-analysis and FUMA33 software version 1.3.6a. FUMA performs a genic 
aggregation analysis of GWAS association signals to calculate gene-wise association 
signals using MAGMA version 1.6 and subsequently tests whether tissues and cell 
types are enriched for expression of these genes. For tissue enrichment analysis, 
we used the GTEx version 8 reference set. FDR-corrected P-values <0.05 across all 
tissues (n = 54) were considered statistically significant. For cell type enrichment 
analyses34, we used human-derived single-cell RNA-seq data on major brain 
cell types (GSE67835 without fetal samples106), Allen Brain Atlas cell types107 
for the human-derived major neuronal subtypes and the DropViz108 dataset for 
mouse-derived brain cell types across all brain regions. We applied FDR correction 
for multiple testing within each expression dataset, and FDR-corrected P-values 
<0.05 were considered statistically significant.

Pathway enrichment analysis. We used Downstreamer software24 to identify 
enriched biological pathways and processes. First, gene-based association 
statistics were obtained with the Pascal method109, which aggregates SNP 
association statistics including SNPs up to 10 kb upstream and downstream of 
a gene, accounting for LD using the non-Finnish European individuals from 
the 1000 Genomes Project phase 3 (ref. 110) as a reference. In the Downstreamer 
method, putative core genes are defined as those that are coexpressed with 
disease-associated genes and can therefore be implicated in disease. Coexpression 
networks are based on either a large, multi-tissue transcriptome dataset including 
56,435 genes and 31,499 individuals or brain-specific RNA-seq data obtained from 
the MetaBrain resource. The gene-based association statistics, coexpression matrix 
and gene Z scores per pathway or HPO term are then combined in a generalized 
least-squares regression model to obtain enrichment statistics24. Enrichment 
analyses were performed for reactome, gene ontology and HPO terms using 
multi-tissue or brain-specific transcriptome datasets to calculate the coexpression 
matrix.

The distribution of enrichment Z-score statistics was compared between 
analyses using multi-tissue or brain-specific coexpression matrices. Using the 
‘pyhpo’ module in Python, all HPO terms were assigned to their parent term(s) in 
the ‘phenotypic abnormality’ (HP:0000118) branch, which includes phenotypic 
abnormalities grouped per organ system.

Mendelian randomization. Causal inference through MR analysis was performed 
for 22 exposures for which large-scale GWASs are available and for which there is 
prior evidence for an association with ALS. These include seven behavioral-related 
traits: body mass index (anthropometric)111, years of schooling (educational 
attainment)112, alcoholic drinks per week, age of smoking initiation and cigarettes 
per day from Liu et al.113, days per week of moderate physical activity and days 
per week of vigorous activity from the UK Biobank114; four blood pressure 
traits (coronary artery disease115, stroke92, diastolic blood pressure and systolic 
blood pressure116); seven immune system traits from Vuckovic et al.117 (basophil, 
eosinophil, lymphocyte, monocyte, neutrophil and white blood cell counts) and 
C-reactive protein118; and four lipid traits from Willer et al.119 (HDL cholesterol, 
LDL cholesterol, total cholesterol and triglyceride levels). A full description of the 
included studies is provided in Supplementary Table 26. From these GWASs, SNPs 
to serve as instruments for MR analyses were selected at two different P-value 
cutoffs (P < 5 × 10−8 and P < 5 × 10−5) and then LD clumped to obtain independent 
SNPs. SNP effect estimates on ALS risk were obtained from the European 
ancestry-only GWAS and, if needed, an LD proxy was selected (r2 > 0.8).

After harmonizing effect alleles and excluding palindromic SNPs, we 
performed a series of quality-control steps to avoid biased estimates of causal 
effects, checking for each exposure (1) instrument coverage (>85% overlapping 
SNPs; Supplementary Table 31), (2) instrument strength (F-statistic37,120,121 >10; 
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Supplementary Table 32), (3) distribution and significance of the Wald ratios 
(visual inspection of volcano plots; Supplementary Table 33) and (4) heterogeneity 
across the instrument-exposure effects (Q-statistic at P < 0.05 indicated 
heterogeneity; Supplementary Table 34).

We applied five different MR methods: IVW using the random-effects model, 
MR-Egger and simple mode, weighted median and weighted mode methods. When 
only a single SNP was available, the Wald ratio test was conducted. MR analysis 
was conducted in R using the ‘mr()‘ function in the ‘TwoSampleMR‘ package122.

Subsequently, radial MR analysis was conducted to determine whether Wald 
ratio outliers needed to be removed from the IVW or MR-Egger MR estimates38. 
In addition, we conducted a Q-test to identify outlier SNPs (P < 0.05). These 
outliers were then removed from the original MR analyses (across all five MR 
methods). The radial MR analysis was conducted using the RadialMR R package 
(https://github.com/WSpiller/RadialMR). To determine whether MR effects were 
orientated in the correct direction (from exposure to ALS), we conducted both 
reverse MR123 and Steiger filtering124 on our top MR findings.

Finally, we explored whether the MR effects of our total and LDL cholesterol 
and systolic blood pressure exposures may be confounded by the effect we 
observed for years of schooling by conducting multivariate MR analysis125. 
Conditional F- and Q-statistics were calculated using the ‘MVMR‘ package126 in R.

Statistical analyses. All presented P-values correspond to two-sided P-values 
uncorrected for multiple testing unless explicitly stated otherwise.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The GWAS summary statistics generated in this study are publicly available in 
the NHGRI-EBI GWAS Catalog at https://www.ebi.ac.uk/gwas/ (accession IDs 
GCST90027163 and GCST90027164 for cross-ancestry and European ancestry 
meta-analyses, respectively) and through the Project MinE website (https://www.
projectmine.com/research/download-data/). Summary statistics of the rare variant 
burden analyses and eQTL and mQTL SMR analyses are available through the 
Project MinE website. The following publicly available datasets were used in this 
project: the Wellcome Trust Case Control Consortium (https://www.wtccc.org.uk/) 
and dbGaP datasets (phs000101.v3.p1, NIH Genome-Wide Association Studies of 
Amyotrophic Lateral Sclerosis; phs000126.v1.p1, CIDR: Genome Wide Association 
Study in Familial Parkinson Disease (PD); phs000196.v1.p1, Genome-Wide 
Association Study of Parkinson Disease: Genes and Environment; phs000344.
v1.p1, Genome-Wide Association Study of Amyotrophic Lateral Sclerosis in 
Finland; phs000336, a Genome-Wide Association Study of Lung Cancer Risk; 
phs000346, Genome-Wide Association Study for Bladder Cancer Risk; phs000789, 
Collaborative Study of Genes, Nutrients and Metabolites (CSGNM); phs000206, 
Whole Genome Scan for Pancreatic Cancer Risk in the Pancreatic Cancer Cohort 
Consortium and Pancreatic Cancer Case–Control Consortium (PanScan); 
phs000297, eMERGE Network Study of the Genetic Determinants of Resistant 
Hypertension; phs000652, Cohort-Based Genome-Wide Association Study of 
Glioma (GliomaScan); phs000869, Barrett’s and Esophageal Adenocarcinoma 
Genetic Susceptibility Study (BEAGESS); phs000812, the Breast and Prostate 
Cancer Cohort Consortium (BPC3) GWAS of Aggressive Prostate Cancer and 
ER− Breast Cancer; phs000428, Genetics Resource with the HRS; phs000360.v3, 
eMERGE Network Genome-Wide Association Study of Red Cell Indices, White 
Blood Count (WBC) Differential, Diabetic Retinopathy, Height, Serum Lipid 
Levels, Specifically Total Cholesterol, HDL (High Density Lipoprotein), LDL 
(Low Density Lipoprotein), and Triglycerides, and Autoimmune Hypothyroidism; 
phs000893.v1, Genome-Wide Association Study of Endometrial Cancer in 
the Epidemiology of Endometrial Cancer Consortium (E2C2); phs000168.v2, 
National Institute on Aging—Late Onset Alzheimer’s Disease Family Study: 
Genome-Wide Association Study for Susceptibility Loci; phs000092.v1, Study of 
Addiction: Genetics and Environment (SAGE); phs000864.v1, Genomic Predictors 
of Combat Stress Vulnerability and Resilience; phs000170.v2, a Genome-Wide 
Association Study on Cataract and HDL in the Personalized Medicine Research 
Project Cohort; phs000431.v2, IgA Nephropathy GWAS on Individuals of 
European Ancestry (IGANGWAS2); phs000237.v1, Northwestern NUgene Project: 
Type 2 Diabetes; phs000169.v1, Whole Genome Association Study of Visceral 
Adiposity in the Health Aging and Body Composition (Health ABC) Study; 
phs000982.v1, Genetic Analysis of Psoriasis and Psoriatic Arthritis: GWAS of 
Psoriatic Arthritis; phs000289.v2, National Human Genome Research Institute 
(NHGRI) GENEVA Genome-Wide Association Study of Venous Thrombosis 
(GWAS of VTE); phs000634.v1, National Cancer Institute (NCI) Genome Wide 
Association Study (GWAS) of Lung Cancer in Never Smokers; phs000274.v1, 
Genome-Wide Association Study of Celiac Disease; phs001172.v1, National 
Institute of Neurological Disorders and Stroke (NINDS) Parkinson’s Disease; 
phs000389.v1, GEnetics of Nephropathy—an International Effort (GENIE) GWAS 
of Diabetic Nephropathy in the UK GoKinD and All-Ireland Cohorts; phs000460.
v1, Genetics of 24 Hour Urine Composition; phs000138.v2, GWAS for Genetic 
Determinants of Bone Fragility in European–American Premenopausal Women; 
phs000394.v1, Autopsy-Confirmed Parkinson Disease GWAS Consortium 

(APDGC); phs000948.v1, Genetic Discovery and Application in a Clinical Setting: 
Continuing a Partnership (eMERGE Phase II); phs000630.v1, Exome Chip Study of 
NIMH Controls; phs000678.v1, a Family-Based Study of Genes and Environment 
in Young-Onset Breast Cancer; phs000351.v1, National Cancer Institute 
Genome-Wide Association Study of Renal Cell Carcinoma; phs000314.v1, Genetic 
Associations in Idiopathic Talipes Equinovarus (Clubfoot)—GAIT; phs000147.v3, 
Cancer Genetic Markers of Susceptibility (CGEMS) Breast Cancer Genome-wide 
Association Study (GWAS)—Primary Scan: Nurses’ Health Study—Additional 
Cases: Nurses’ Health Study 2; phs000882.v1, National Cancer Institute (NCI) 
Prostate Cancer Genome-Wide Association Study for Uncommon Susceptibility 
Loci (PEGASUS); phs000238.v1, National Eye Institute Glaucoma Human Genetics 
Collaboration (NEIGHBOR) Consortium Glaucoma Genome-Wide Association 
Study; phs000397.v1, National Institute on Aging (NIA) Long Life Family Study 
(LLFS); phs000421.v1, a Genome-Wide Association Study of Fuchs’ Endothelial 
Corneal Dystrophy (FECD); phs000142.v1, a Whole Genome Association Scan 
for Myopia and Glaucoma Endophenotypes using Twin Studies; phs000303.
v1, Genetic Epidemiology of Refractive Error in the KORA (Kooperative 
Gesundheitsforschung in der Region Augsburg) Study; phs000125.v1, CIDR: 
Collaborative Study on the Genetics of Alcoholism Case Control Study; phs001039.
v1, International Age-Related Macular Degeneration Genomics Consortium—
Exome Chip Experiment; phs000187.v1, High Density SNP Association Analysis 
of Melanoma: Case–Control and Outcomes Investigation; phs000101.v5, 
Genome-Wide Association Study of Amyotrophic Lateral Sclerosis; phs002068.
v1.p1, Sporadic ALS Australia Systems Genomics Consortium (SALSA-SGC)). 
Source data are provided with this paper.

Code availability
The following software packages were used for data analyses: R version 3.6.3 with 
additional packages tidyverse version 1.3.0, data.table version 1.14.0, ggplot2 
version 3.3.3, MASS version 7.3.53, SNPRelate version 1.26.0, logistf version 
1.24, coloc version 5.1.0, twoSampleMR version 0.5.6, RadialMR version 1.0, 
MVMR version 0.3, survival version 3.1.8, coxme version 2.2.16 and survminer 
version 0.4.9 (https://www.r-project.org/), Python version 3.7 with additional 
modules pandas version 1.1.3, numpy version 1.18.1, scipy version 1.4.1, 
CpGtools version 1.0.9, matplotlib version 3.1.3, pyliftover version 0.4 and pyhpo 
version 2.5.0 (https://anaconda.org/), GenomeStudio version 2.0 (https://emea.
illumina.com/techniques/microarrays/array-data-analysis-experimental-design/
genomestudio.html), GCTA version 1.93.2beta (https://cnsgenomics.com/
software/gcta/#Overview), EIGENSOFT version 6.1.4 (https://github.com/
DreichLab/EIG), SNPTEST version 2.5.4-beta3 (https://www.well.ox.ac.uk/~gav/
snptest/), PLINK version 1.9 (http://www.cog-genomics.org/plink2), the 
Michigan Imputation Server (https://imputationserver.sph.umich.edu), EAGLE 
version 2.3 through the Michigan Imputation Server (https://imputationserver.
sph.umich.edu), SAIGE version 0.29.1 (https://github.com/weizhouUMICH/
SAIGE), METAL 2011-03-25 (https://genome.sph.umich.edu/wiki/METAL), 
SnpSift 4.3p (https://pcingola.github.io/SnpEff), ANNOVAR version 2017-07-
17 for LRT, Polyphen-2, MutationTaster2, Mutation Assessor, PROVEAN and 
SIFT (https://annovar.openbioinformatics.org/), Polyphen-2 (http://genetics.
bwh.harvard.edu/pph2/), MutationTaster2 (http://www.mutationtaster.org/), 
Mutation Assessor release 3 (http://mutationassessor.org/r3/), PROVEAN version 
1.1 (http://provean.jcvi.org/index.php), SIFT version 6.2.1 (https://sift.bii.a-star.
edu.sg/), SnpEff 4.3p (https://pcingola.github.io/SnpEff), LDSC version 1.0.1 
(https://github.com/bulik/ldsc), ExpansionHunter version 4 (https://github.com/
Illumina/ExpansionHunter), ExpansionHunter Denovo (https://github.com/
Illumina/ExpansionHunterDenovo), SMR (https://cnsgenomics.com/software/
smr/), MAGMA version 1.6 (https://ctg.cncr.nl/software/magma), FUMA 
(https://fuma.ctglab.nl/), FUMA Cell-type (https://fuma.ctglab.nl/celltype), 
summary-BayesR (https://cnsgenomics.com/software/gctb/#SummaryBayesianAlp
habet), S-PrediXcan (https://github.com/hakyimlab/MetaXcan) and TWAS (http://
gusevlab.org/projects/fusion/).
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Extended Data Fig. 1 | Manhattan plot in european ancestries GWas. Genome-wide association statistics obtained by inverse-variance weighted 
meta-analysis of the stratified SAIGe logistic mixed model regression in european ancestry cohorts. Y-axis corresponds to the two-tailed -log10(P-value), 
x-axis corresponds to the genomic coordinates (Grch37). Loci containing a genome-wide significant SNP are highlighted in red. SNP IDs are the top 
associated SNPs in each locus. The dotted horizontal line reflects the threshold for genome-wide significance (P = 5 × 10−8).
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Extended Data Fig. 2 | annotation specific heritability enrichment. enrichment of SNP-based heritability was calculated with LD-score regression. 
Grey dashed line represents no enrichment (enrichment = 1). error bars denote standard error of enrichment estimate. Nominal statistically significant 
enrichment estimates (two-sided P < 0.05) are marked with an asterisk (Conserved_LindbladToh P = 6.5 × 10−5, SuperEnhancer_Hnisz P = 0.014, TFBS_
ENCODE P = 0.017, H3K4me1_peaks_Trynka P = 0.018, Coding_UCSC P = 0.028, H3K9ac_Trynka P = 0.037). The category Conserved_LindbladToh was 
significant after bonferroni correction for multiple testing across all categories (N = 28). Due to the regression framework in LDSc, enrichment estimates 
< 0 are possible (with large standard errors).
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Extended Data Fig. 3 | PRs stratified by rare variant carrier status. Distribution of PrS in controls and ALS patients with or without one or more rare 
variants in ALS risk genes. There was no statistically significant difference in PrS between ALS patients with and without rare variants in ALS risk genes 
(labeled as gene_mut or gene_wt respectively). In total, 5,112 ALS patients and 2,132 controls from stratum 6 with whole-genome sequencing data available 
were included. For SOD1, TARDBP, FUS, NEK1, TBK1, and CFAP410, rare variants were included according to the model that yielded the strongest association 
in the rare variant burden association analyses. For C9orf72, patients with the pathogenic hexanucleotide repeat expansion were compared to those 
without the expansion. The ‘any ALS gene’ groups all patients together with a rare variant in any of the ALS risk genes. P-values for difference in PrS were 
derived by two-tailed logistic regression. The number of ALS patients carrying a rare variant per gene is denoted in the corresponding panel. Intervals for 
boxplots: center = median, box = lower and upper quartile, hinges = median ± 2 * IQr, IQr = interquartile range.
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Extended Data Fig. 4 | NeK1 repeat distribution. The frequency of STr alleles in ALS cases and controls are shown. A repeat length of 11 and longer was 
used as the optimal threshold for disease-associated genotype. The P-value was calculated by Firth logistic regression and FDr correction over all possible 
thresholds. Y-axis shows the allele frequency of repeat lengths. repeat position on Grch37, and repeat motif are shown.
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Extended Data Fig. 5 | Genetic correlations between brain diseases. correlation matrix for genetic correlation estimates obtained from bivariate LD score 
regression. colors correspond to genetic correlation estimates. Strongest clusters appear between neurodegenerative diseases and within the psychiatric 
traits. ALS = amyotrophic lateral sclerosis, FTD = frontotemporal dementia, PSP progressive supranuclear palsy, PD = Parkinson’s disease, cbD = 
corticobasal degeneration, AD = (clinically diagnosed) Alzheimer’s disease, mS = multiple sclerosis, IS = ischemic stroke (any), IcH = intracerebral 
hemorrhage, IA = intracranial aneurysm (any), AN = anorexia nervosa, OcD = obsessive compulsive disorder, Anxiety = anxiety disorder (score),  
PTSD = post-traumatic stress disorder, mDD = major depressive disorder, bIP = bipolar disorder, ScZ = schizophrenia, TS = Tourette’s syndrome,  
ASD = autism spectrum disorder, ADHD = attention-deficit hyperactivity disorder.
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Extended Data Fig. 6 | Colocalization signals. Loci were selected for colocalization analysis when the top associated SNP was associated with any 
neurodegenerative disease at 5 × 10−5. For ALS, the european ancestries meta-analysis was used. bayesian posterior probabilities for a shared variant 
driving risk of both traits (PPH4) are reported below locus names. colors reflect LD between the variant and top associated SNP.
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Extended Data Fig. 7 | Colocalization analysis with FtD subtypes. Top associated SNPs in the ALS GWAS were selected for colocalization analysis 
between ALS and FTD subtypes using cOLOc. In the top panel, point height is the two-sided -log10(P-value) of the top-associated SNP in the ALS GWAS. 
In the bottom panel, association P-values of these SNPs with FTD subtypes are shown by color. The bayesian posterior probability for a shared causal 
variant between traits (PPH4) is depicted by a connection between points.
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Extended Data Fig. 8 | tissue and cell-type enrichment analyses for all brain diseases. Tissue (a) and cell-type (b) enrichment for all included brain 
diseases obtained from two-sided mAGmA linear regression. Only brain diseases with exome-wide significant gene-based mAGmA associations 
(P < 2.7 × 10−6) were suitable for tissue and cell-type enrichment analyses. The color represents enrichment coefficient and size indicates two-sided 
-log10(P-value) of enrichment obtained by the linear regression model in the mAGmA gene-property analysis. Due to the large number of significant genes 
in the gene-based mAGmA analyses for schizophrenia, bipolar disorder and multiple sclerosis the enrichment P-values were truncated at P < 1.0 × 10−5. 
ALS = amyotrophic lateral sclerosis, PD = Parkinson’s disease, AD = Alzheimer’s disease, ADHD = attention-deficit hyperactivity disorder, ASD = autism 
spectrum disorder, TS = Tourette’s syndrome, ScZ = schizophrenia, bIP = bipolar disorder, mDD = major depressive disorder, PTSD = post-traumatic 
stress disorder, Anxiety = anxiety disorder (score), AN = anorexia nervosa, IA intracranial aneurysm (any), IS = ischemic stroke, mS = multiple sclerosis, 
cx = cortex, OPc = oligodendrocyte progenitor cells.
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Extended Data Fig. 9 | Cell-type enrichment analysis in mice. cell-type enrichment analysis using the DropViz single-cell rNA sequencing dataset 
obtained from mice. Similar to the cell-type enrichment analyses there is neuron-specific enrichment in ALS and Parkinson’s disease. In Alzheimer’s 
disease microglia are the most enriched cell-types. The color represents enrichment coefficient and size indicates two-sided -log10(P-value) of enrichment 
obtained by the linear regression model in the mAGmA gene-property analysis. Statistically significant enrichments after correction for multiple testing 
with a false discovery rate (FDr) < 0.05 are marked with an asterisk. ALS = amyotrophic lateral sclerosis, PD = Parkinson’s disease, AD = Alzheimer’s 
disease, cx = cortex.
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Extended Data Fig. 10 | Human phenotype ontology term enrichment. Downstreamer enrichment analyses were performed using the multi-tissue and 
brain-specific co-expression matrix to identify co-regulated ALS-genes. The distribution of enrichment statistics (Z-scores) for all Human phenotype 
ontology (HPO) terms are plotted per HPO parent branch. The multi-tissue analysis indicates enrichment for the neurology parent branch ‘abnormality 
of the nervous system’ (dark-red), although no term passes the bonferroni threshold for multiple testing. The brain-specific analysis illustrates stronger 
enrichment for the neurology parent branch. In total, 58 HPO terms pass the threshold for multiple testing of which 42 are defined within the ‘abnormality 
of the nervous system’ branch.
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