Nithin Mohan

Z Ghassemlooy

Husain A Rahman

Mohammad Ali Khalighi

Software-Defined Networking for Free Space Optical Communication

Keywords: Software defined networks, OpenFlow, Freespace optics

Traditional IP networks lack the flexibility to respond to faults, network reconfiguration, and load changes in an ever-evolving digital society, which we call the Internet. To make matters worse, implementation of network policies requires configuration of each network device in which the control and data planes are coupled together using vendor specific commands. Software defined networking (SDN) is an emerging technology, which decouples the control plane from the data plane to provide flexibility in configuring/reconfiguring a network. In this manuscript, we present a SDN testbed using off-the-shelf components, write and deploy network applications onto the testbed, and demonstrate the functioning of the network application using a free space optical link.

I. INTRODUCTION

Flexibility is a constant challenge for traditional networks, given the limited provisioning application programming interface (APIs), and the fact that most switching hardware and software are proprietary. This latter makes it difficult to change the network configuration when needed. Unlike traditional networking, which is typically hardware-based, software defined networking (SDN) provides much more flexibility and, therefore, implementation simplicity. A typical scenario is when a network operator (e.g., a Telecom company or a broadcasting station) sends data through the free space channel e.g., via free-space optical (FSO) links, where it faces challenges in the form of traffic congestion or cyber-attacks, or technical issues due to environmental or human factors. This necessitates employing redundancy options by offering a different route based on software algorithms [START_REF] Sigmait | What are the differences between SDN and traditional networking[END_REF].

In traditional networking technologies, various modifications can be made to the underlying architecture and devices such as switches, firewalls, and routers, when forwarding or routing data frames, which involve limited efficiency and high maintenance costs. Additionally, a complete overhaul of the Internet architecture (such as replacing IP) is regarded as a daunting task, which is simply not possible in practice [START_REF] Raghavan | Software-defined internet architecture: Decoupling architecture from infrastructure[END_REF][START_REF] Ghodsi | Intelligent design enables architectural evolution[END_REF]. These issues have caused an increase in the IP networks' capital and operating expenditures.

As a network architecture, SDN [START_REF] Mckeown | How SDN will shape networking[END_REF]5] is emerging as a paradigm for overcoming the limitations of the current network infrastructures by enabling (i) increased network control (i.e., centrally) with higher speed and flexibility by adopting machine learning (i.e., artificial intelligence); (ii) customizable network infrastructure; and (iii) robust security using software applications (i.e., decoupling the software from the hardware) [START_REF] Oswald Coker | Software-Defined Networking with OpenFlow -Second Edition[END_REF]. This gives users a greater control and helps operators to manage the entire network virtually throughout the control plane [START_REF] Sigmait | What are the differences between SDN and traditional networking[END_REF]. The popularity of SDN has made companies such as Google, Deutsche Telekom, AT&T among others, to invest in the open networking foundation (ONF) [START_REF]Member Listing -Open Networking Foundation[END_REF] to promote and adopt SDN through open standards development. For example, Google uses an SDN approach to connect its data centers across the globe. Since the deployment of this production network three years ago, the company's operational efficiency has improved, and its costs have significantly decreased [START_REF] Jain | B4: Experience with a globally-deployed software defined wan[END_REF].

On the other hand, the unprecedented growth in handheld smart devices is generating an enormous volume of data to be shifted around effectively and efficiently. The radio frequency (RF) technology with a limited spectrum range (i.e., bandwidth) will not be able to deal with the requirements of transmitting terabits of data in certain applications, thus the need for a complementary wireless technology utilizing the optical spectrum. Optical wireless communication (OWC) covering both the visible and infrared bands, offers a broad spectrum, low power consumption, no electromagnetic interference, higher directionality (i.e., better security), etc. [START_REF] Jahid | A contemporary survey on free space optical communication: Potentials, technical challenges, recent advances and research direction[END_REF]. In particular, FSO systems have been deployed for intersatellite links with data rates reaching beyond a few Gbps [START_REF] Smutny | 5.6 gbps optical intersatellite communication link[END_REF] and satellite-to-ground communications along with terrestrial communications. In the context of sixth generation (6G) and beyond wireless networks, satellite communications could provide ubiquitous Internet services by off-loading or balancing the traffic from the terrestrial cellular networks to a low earth orbit (LEO) constellation, which could act as a potential backhauling solution [START_REF] Guidotti | Satellite-enabled LTE systems in LEO constellations[END_REF]. There, a centralized controller such as SDN could provide delay reductions and flexibility to such future satellite networks. In [START_REF] Papa | Design and Evaluation of Reconfigurable SDN LEO Constellations[END_REF], researchers proposed an SDN-based LEO constellation satellite network. They formulated an optimization problem for the placement of the SDN controller and switch to controller assignment based on topology and traffic variations in both space and time. In [START_REF] Du | Auction Design and Analysis for SDN-Based Traffic Offloading in Hybrid Satellite-Terrestrial Networks[END_REF], an SDN architecture was proposed for spectrum sharing and traffic-offloading in the hybrid satellite to terrestrial network, which would support network resource management. Additionally, an action mechanism was proposed to off-load the traffic between mobile network operators and satellites.

It is expected that networks will remain normal and stable in operation since they have become an instrumental component of many services and businesses. However, there will always be issues, such as network errors, where the cause must be identified, and the system restored as quickly as possible. Understanding the network status on a regular basis is vital for detecting errors and identifying causes. Consider, for example, that the traffic volume of a port on some network device is abnormally high. If the port's traffic volume has not been measured continuously, it is impossible to determine when it became that way. Thus, continuous monitoring of a network's functioning is critical to the smooth operation of services or businesses that rely on it. In this paper, to the best of the authors' knowledge, for the first time we demonstrate the functionality of SDN by implementing a network monitor using a Ryu controller written in Python and deploying it onto the SDN testbed using a FSO link and off-the-shelf components.

The rest of the manuscript is organized as follows. Section II provides the basic building blocks of SDN deployment, Section III describes the experimental testbed and Section IV describes the network application deployment onto the testbed. Lastly, conclusions are presented in Section V.

II. BASICS OF SDN DEPLOYMENT

A typical SDN architecture is composed of (i) applications -Communicating for resource requests or network-based information; (ii) controllers -For routing a data packet utilizing the information from (i) using a northbound API and with the networking devices using the southbound API [START_REF] Kreutz | Software-Defined Networking: A Comprehensive Survey[END_REF]; and (iii) networking devices -For receiving information from (ii).

In an SDN, switches act as forwarding devices with the SDN controller assuming responsibility of the control logic. OpenFlow is the communication protocol used to communicate between the controller and the networking device. An OpenFlow enabled switch contains a flow table and a group table as depicted in Fig. 1, and a communication channel to communicate with the controller. The "Flow tables" contain flow entries, where each entry consists of match fields, counters, and instructions for matching packets. The protocol can add, modify, or delete an entry from the flow tables in response to packets or proactively. Matching is not restricted to the first flow table and may continue to additional flow tables. In the event of no matching packets, the packets are either dropped or a table miss entry flow would determine the path of the packets. Instructions in each flow entry contain actions. These actions may correspond to packet forwarding to a specified port or packet modification [START_REF] Opennetworking | [END_REF].

III. SDN TESTBED

In this section, we introduce the proposed SDN experimental testbed and outline its operation.

A. Experimental Tesbed

The proposed SDN testbed consists of 3 Raspberry Pi4, which act as OpenFlow switches (OF1, OF2 and OF3) as depicted in Fig. 2. OF3 apart from being an OpenFlow switch also acts as an SDN controller. The Raspberry Pis are interconnected with each other using a USB 3.0 connection to the Ethernet adapter. The OpenFlow switches transmit packets through an established FSO link using small form factor (SFP) transceiver modules plugged into the media converters, which are connected to OF1 and the laptop. Each TP-Link SFP media converter (Model: MC220L) can support up to 1000 Mbps in Full-Duplex mode for TX and RX ports respectively. A SFP Laser (Model: SFP1G-ZX-55) is inserted in the media converter, which has a transmit power of 5 dBm while the receiver sensitivity is <-24 dBm. Additional technical descriptions of the components deployed on the testbed are described in Table 1.

B. Ryu Controller

Ryu is a framework for SDN that runs on components and provides well-defined APIs, which allow developers to build powerful network management and control applications. Several protocols can be used by Ryu to manage network devices, including OpenFlow, Netconf, and OF-config. As a result of adopting these types of components, organizations can customize deployments to meet their specific needs; and developers can modify existing components or design their own to ensure the underlying network can meet their applications' changing requirements. Ryu's code was written entirely in Python and is available under the Apache 2.0 license and is open to everyone. Aiming to manage switches and routers, IT administrators write applications that communicate with the Ryu controller. As a result, OpenFlow or other protocols can be used to interact with the forwarding plane (switches and routers) to control how traffic flows through the network. Several OpenFlow switches, such as OpenVswitch and products from Network application interface is developed under the Ryu framework. Ryu is a component-based framework consisting of components and libraries. Components provide interface for control and state monitoring and generates events which are essentially python threads or OS processes.

COMPONENT TECHNICAL DESCRIPTION

Raspberry Pi4

Quad core Cortex-A72 (ARM v8) 64bit SoC @ 1.5GHz

Media converters 1 × Gigabit small form factor (SFP) port.

A. Network Monitor

The fso_traffic_monitor.py application inherits simple_traffic_monitor_13.py application provided by Ryu in which the_flow_stats_reply_handler method is overridden to monitor status of the FSO link. The application periodically (i.e., every second) collects information from the switches to record the number of packets transferred to a device's destination belonging to a particular data path ID.

A data path ID uniquely identifies a switch. A detailed description of the MAC address and data path of all the network devices and connected adapters and laptop is provided in Table 2. The laptop is pinged from OF1. When the link is obstructed, the application prints a warning to check the connection of the FSO link so that the link is up. This is accomplished by comparing the received and transmitted packets from the statistics collected from OF1 and OF2 with the data paths 11 and 22, respectively, see Fig. 3(a andb). Upon detecting a mismatch, a warning message of "connection check" is printed on the screen. Note that, the received packet stops immediately once the obstruction is removed, and the link is up resulting in the warning message being removed from the screen as shown in Fig. 4(a andb). This is accomplished by comparing the received packets before the link is obstructed and the received packets after the obstruction is removed.

B. Firewall

A firewall network application was implemented to prevent communication access to the laptop. As shown in Fig. 5 the application prints out the MAC source and MAC destination of devices interacting with each other. As shown in Fig. 5, when the application detects the laptop's MAC address, access is denied for communication and a message of "Access to Laptop is Denied" is generated.

V. CONCLUSION This paper discussed the aspects of SDN, which presents a unique way of managing complex networks. The aim of SDN is to control and manage network traffic from a centralized controller by decoupling the control plane and the forwarding plane. This enables network administrators' flexibility in choosing network equipment as a single open standard based protocol is used to control and communicate with the hardware. In this paper, we presented two Network applications in Python using the Ryu SDN framework for traffic control and firewall application. An SDN testbed consisting of a FSO link and Raspberry Pis acting as OpenFlow switches was created, and for the first time, to the best of authors' knowledge, network applications were developed using the Ryu framework and deployed onto the SDN testbed.

Fig. 1

 1 Fig. 1 Building blocks of Openflow.

Fig. 2 .Fig. 3 .

 23 Fig. 2. System block diagram of the SDN testbed.

 VI. ACKNOWLEDGEMENTThis work is supported by intensive industrial innovation program northeast, United Kingdom (IIIP NE) -25R17P01847 and is partly funded by the European regional development fund (ERDF). It is also based on work from European Union's Horizon 2020 COST Action CA19111 (NEWFOCUS).

Fig. 5 .Fig. 4 .

 54 Fig. 5. Firewall network application.

Table 1 . COMPONENT DESCRIPTION.

 1

Table 2 . Network specification.

 2

	DEVICE	DATAPATH	MAC ADDRESS	IP ADDRESS
	NAME	ID		
	OF1	11	e4:5f:015f:04:85	192.168.137.40
	OF2	22	e4:5f:015f:04:13	192.168.137.20
	OF3	33	e4:	

5f:015f:04:bf 192.168.137.11 USB1 -00:0a:cd:3e:1e:73 -USB2 -00:0a:cd:3e:1e:9d -Laptop -98:40:bb:37:17:b7 192.168.137.10