Fact-nets: Towards a Mathematical Framework for Relational Quantum Mechanics - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Foundations of Physics Année : 2023

Fact-nets: Towards a Mathematical Framework for Relational Quantum Mechanics

Résumé

The relational interpretation of quantum mechanics (RQM) has received a growing interest since its first formulation in 1996. Usually presented as an interpretational layer over the usual quantum mechanics formalism, it appears as a philosophical perspective without proper mathematical counterparts. This state of affairs has direct consequences on the scientific debate on RQM which still suffers from misunderstandings and imprecise statements. In an attempt to clarify those debates, the present paper proposes a radical reformulation of the mathematical framework of quantum mechanics which is relational from the start: fact-nets. The core idea is that all statements about the world, facts, are binary entities involving two systems that can be symmetrically thought of as observed and observer. We initiate a study of the fact-nets formalism and outline how it can shed new relational light on some familiar quantum features.

Dates et versions

hal-03939389 , version 1 (14-01-2023)

Identifiants

Citer

Pierre Martin-Dussaud, Titouan Carette, Jan Głowacki, Vaclav Zatloukal, Federico Zalamea. Fact-nets: Towards a Mathematical Framework for Relational Quantum Mechanics. Foundations of Physics, 2023, 53 (1), pp.26. ⟨10.1007/s10701-022-00653-y⟩. ⟨hal-03939389⟩
25 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More