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The spin Hall effect

Cosimo Gorini
SPEC, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France

(Dated: December 23, 2022)

In metallic systems with spin-orbit coupling a longitudinal charge current may generate a trans-
verse pure spin current; vice-versa an injected pure spin current may result in a transverse charge
current. Such direct and inverse spin Hall effects share the same microscopic origin: intrinsic
band/device structure properties, external factors such as impurities, or a combination of both.
They allow all-electrical manipulation of the electronic spin degrees of freedom,i.e. without mag-
netic elements, and their transverse nature makes them potentially dissipationless. It is customary
to talk of spin Hall effects in plural form, referring to a group of related phenomena typical of
spin-orbit coupled systems of lowered symmetry.

Keywords: Spin-charge conversion, spin currents, spin Hall effects, spin-orbit coupling, spinorbitronics, spin-
tronics, (pseudo)spin-orbit coupled transport

Key points/objectives

• History and definition of the effect(s)

• Phenomenology and concepts: spin-orbit coupling in solids, charge vs. spin currents, bulk vs. edge effects

• Experiments: from low- to room temperature, diversity and complexity of setups

• Theory: the challenge of complexity, competition between different microscopic mechanisms, Onsager reci-
procity

• The broader context: generalisations of the spin Hall effect(s) and suggested further readings

I. INTRODUCTION

A charge-carrying state in a metallic system is a (non-equilibrium) momentum-ordered state of an electronic ensemble:
a collection of quasielectrons1 moving preferentially in a given direction, see Fig. 1 (a). However quasielectrons carry
around their internal spin degrees of freedom, too. For their ensemble to be spin carrying some form of spin order is
needed. There are two basic scenarios:

• Spin order is independent of momentum order. This is the situation in a ferromagnet, where the spins of charge
carriers align with the magnetisation via exchange coupling independently of their orbital motion.

• Spin and momentum orders are correlated. This is possible in the presence of spin-orbit coupling, which quite
generally creates correlations between orbital motion (momentum) and spin.

Consider the second scenario, and to be definite the somewhat special situation sketched in Fig. 1 (b), where quasi-
particles with opposite spin projection along z move in opposite directions. An ensemble of such particles does not
carry any overall charge – the associated charge current is zero, jc = 0 – but it does carry angular momentum: it is a
pure spin-carrying state sustaining a “pure spin current” js 6= 0

jc ≡ q
(
j↑ + j↓

)
= 0 (1)

js ≡ ~
2

(
j↑ − j↓

)
6= 0, (2)

1 I will restrict my discussion to systems where well-defined fermionic quasiparticles exist and make up a Fermi liquid. Words such as
“quasielectron” and “electron” or “quasiparticle” and “particle” will be used interchangeably.
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FIG. 1. Left panel: A charge current jc along x, i.e. an overall spin-unpolarised ensemble of quasielectrons moving in the y
direction. Right panel: A z-polarised pure spin current js flowing along x.

with q the quasiparticle charge and ~ the reduced Planck constant.

In the presence of spin-orbit coupling a transverse js can be generated from a longitudinal jc, or vice-versa, see Fig. 2.
These are respectively the spin Hall effect (sHe)[1, 2] and its reciprocal version, the inverse spin Hall effect (isHe)[3, 4].
The sHe was first predicted by Dyakonov and Perel in 1971 [1] but got his current name only in 1999, when Hirsch [2]
sort of re-discovered it and its fortune really started. The isHe followed a similar path. In the geometry from Fig. 2
one has

jsy = (~/q)θsHejcx, (3)

jcx = (q/~)θisHejsy (4)

with θsHe, θisHe the spin Hall and inverse spin Hall angles. Note that from now on upper (lower) indices will denote
charge/spin (real space) components. The spin Hall/inverse spin Hall angles are crucial quantities used as standard
measure for the spin-charge conversion efficiency of a given setup [5–8]. In Secs. II and IV we will show that their
existence can be expected based on crude but general arguments, while their precise origin and values are extremely
sensitive to the microscopic details of the system.

The sHe and isHe exist also in quantised form. Indeed, the “quantum spin Hall insulator” is the paradigmatic example
of a time-reversal symmetric two-dimensional topologically insulating phase [9]. The latter is a phase of matter which
is insulating in the bulk but hosts two perfectly conducting edge states which are time-reversed partners – up electrons
moving in one direction, down in the opposite. In simple terms, a quantum spin Hall phase can be thought of as
two time-reversed copies of a (time-reversal broken) quantum Hall state. Its existence was confirmed experimentally
in HgCdTe quantum wells in 2007 [10]. I will not discuss it further here, but refer the interested reader to the
Encyclopedia Chapter “Topological Effects”.

(a)
y x

z
(b)

FIG. 2. Left panel: spin Hall effect. An x-flowing charge current is injected, and a z-polarised pure spin current along y is
generated via spin-orbit coupling. Right panel: inverse spin Hall effect, where the role of the spin and charge currents are
exchanged. Note that in the sHe/isHe the charge current, spin current and the spin quantisation axis are all orthogonal to each
other.

The sHe and isHe are nowadays routinely employed in metallic systems to inject and/or read out spin signals via
electrical means, and their technological relevance is rapidly on the rise since the early 2000s [3, 4, 8, 11]. The rest of
the Chapter will focus uniquely on them. In particular I will not discuss the anomalous Hall effects, closely related
phenomena which require however to break time-reversal symmetry [3, 12]. The reader should indeed keep in mind
that the spin Hall effect I will deal with in this Chapter actually belongs to a larger class of phenomena which may



appear whenever quasiparticles with internal structure move in a non-trivial medium, i.e. not just in the vacuum2.

II. PHENOMENOLOGY AND BASIC CONCEPTS

A. The role of spin-orbit coupling

Take an electron moving with velocity v in presence of an electric field E. In its reference frame the electron sees a
velocity-dependent magnetic field

B′(v) = −γv
c
×E, γ =

1√
1− v2/c2

(5)

which couples to its spin s = (~/2)σ, with σ the vector of Pauli matrices, as usual

Hso ∼ s ·B′ ∼ s · (v ×E) . (6)

Here c is the speed of light. This is a primitive derivation of the spin-orbit interaction.
Let us assume that E = −∇Vext comes from an external source, e.g. the (random) electrostatic potential from an
impurity, see Fig. 3 (a). The quasiparticle spin thus couples to a non-homogeneous field B′(v, r), similarly to what
happens in a Stern-Gerlach apparatus. This has various consequences, e.g. it causes spin-flip (Elliot-Yafet) relaxation,
but in particular it results in a spin-dependent force F ∼ −∇ [s ·B′] orthogonal to v

F ↑⊥ = −F ↓⊥ ∼ −∇⊥B′. (7)

This sideway separation of spin-up and spin-down quasiparticles is referred to as Mott skew scattering, and can split
an incoming flux of unpolarised electrons into a transverse pure spin current, i.e. it yields a finite θsHe. It is an
“extrinsic” mechanism requiring the presence of scattering centres [2–4, 13], but a finite θsHe may also have origins
which are “intrinsic” to the device and/or band structure. Consider for example E = −∇Vint(z), with Vint(z) an
internal potential which defines your structure, see Fig. 3 (b). Such a potential breaks z inversion symmetry and
constrains electrons to move in the x-y plane, as in semiconductor quantum wells. One has

Hso ∼ s · (v × ez) . (8)

Now s couples to a homogeneous B′(v) which always points in plane, called a Rashba field [14, 15]. The eigenstates of
the problem are spinors whose quantisation axis depends on their direction of motion. As sketched in Fig. 3 (b), under
an electrical bias one expects spin-momentum correlations to arise leading to a transverse, out-of-plane-polarised spin
current – that is, to a non-vanishing θsHe. Recall that in this intrinsic example inversion symmetry was explicitly
broken. Some form of spatial symmetry-breaking is indeed a requirement of intrinsic scenarios beyond the present
Rashba case [4, 15]. On the other hand time-reversal symmetry is preserved by spin-orbit interaction.
Besides the canonical intrinsic and extrinsic mechanisms just described, other sources for the spin Hall effects include
dynamical couplings with phonons [16, 17] or spin fluctuations [18], the interplay of impurity and magnon scattering
[19], or fluctuations of the Rashba field [20]. Irrespectively of the origin, and just as a normal Hall current, the spin
Hall current is transverse with respect to the drift velocity and thus potentially dissipationless.

B. Size and form of (effective) spin-orbit coupling

Since charge carriers in a metallic system move at the Fermi velocity vF � c, should one expect Hso to be only a
negligible relativistic correction? The answer is “not necessarily”. Electrons in solids do not move in the vacuum, but
constantly get close to ionic cores from the lattice where unscreened very strong electric fields exist, compensating for
their (relativistically) slow velocity. One can indeed show that s-wave Bloch electrons close to the Fermi energy feel
an effective spin-orbit interaction which reads

Hso = λσ ×∇δV · p, (9)

2 In condensed matter one customarily talks of “pseudospin” internal degrees freedom, such as sublattice or valley pseudospin in graphene,
which may give rise to different forms of “pseudospin Hall effect”.
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FIG. 3. Left panel: Electrons with opposite spins are deflected differently by a scattering potential Vext(r). The dashed black
line is the trajectory without spin-orbit corrections. Right panel: Electrons confined to two dimensions by Vint(z). The internal
velocity-dependent field, see Eq. (8), defines the spin quantisation axis, shown with dotted lines. The two electrons are time-
reversed partners, and when driven by an electric field along x their spins will precess around the new (tilted) quantisation
axis, yielding out-of-plane components ±sz shown in blue. The result is a z-polarised spin current in the transverse y direction.

with δV any potential other than that of the host lattice, e.g. δV = Vext or δV = Vint(z) from our previous examples.
While the form of Hso is the same as in the vacuum, the coupling constant λ is an effective Compton wavelength
strongly renormalised by the lattice: λ/λ0 ∼ 106, with λ0 the vacuum Compton wavelength. The standard machinery
behind such renormalization is k · p theory, which, together with some auxiliary techniques (Löwding partitioning,
Schrieffer-Wolff transformation,. . . ), is just a systematic way of building low-energy models starting from the band
structure (Bloch states) of a given lattice – at the simplest level it leads e.g. to the effective mass description of
electrons in solids [4, 15]. Eq. (9) can actually be generalised to

Hso = b(p) · σ, (10)

which looks like Zeeman coupling with a momentum-dependent internal field b(p). The latter defines a momentum
space spin texture – its vectorial image in reciprocal space – of central importance well beyond spin Hall physics3.
This form of effective spin-orbit interaction is valid beyond the two example scenarios previously introduced, and is
the starting point for most discussions of spin-orbit coupled transport phenomena [4, 15]4.

C. A closer look at spin currents

The spin Hall/inverse spin Hall angles, see Eqs. (3), (4), are crucial quantities in spin Hall physics. However to define
them one needs to know exactly what a spin current is, which is not a completely trivial task. Let us see why.
Charge is a conserved quantity respecting the continuity equation

∂tn+∇ · jc = 0, (11)

with n the charge (particle) density and jc = vn the current. In formal terms, this is a consequence of gauge invariance:
charge (particle number) is the conserved quantity associated with the U(1) gauge symmetry of the system – a case
of Noether’s theorem.
A purely orbital Hamiltonian H0 without spin-orbit interaction cannot affect the dynamics of the spin degrees of
freedom: not only charge, but also spin is conserved for H0. Formally H0 is spin-rotation invariant, which for spin
1/2 particles means that it has SU(2) gauge symmetry. Spin conservation yields the continuity equation

∂ts
a +∇ · ja = 0, a = x, y, z, (12)

3 In the presence of b(p) the Hilbert space of the problem is usually equipped with a non-vanishing Berry curvature, with the potential
for hosting non-trivial topological phases

4 There are situations in which an internal field b(p) appears for microscopic reasons which have nothing to do with relativistic spin-orbit
interaction. The field thus couples to some internal pseudospin degree of freedom τ of the low-energy quasiparticles, b(p) · τ . See
comments in the closing of Sec. I.



with sa the density of a-polarised electrons, and ja = vsa the corresponding a-spin current density.
In the presence of spin-orbit coupling, H0 → H = H0 + Hso, spin rotation symmetry is broken and spin is not
conserved anymore. Consider first extrinsic spin-orbit due to diluted impurities. In this case spin is not conserved
during scattering events, but remains so between them. The definition ja = vsa is thus good during flight, but at
each scattering the a-polarised flux may rotate, partially split and lose weight due to spin-flip scattering. The result
is a spin relaxation rate 1/τas , with τas the a-spin lifetime, and some further extrinsic spin torque Γa

ext

∂ts
a +∇ · ja = − s

a

τas
+ Γa

ext. (13)

The extra torque describes spin non-conservation effects beyond simple relaxation, e.g. skew-scattering physics, which
may directly couple spin and charge degrees of freedom.
If intrinsic spin-orbit coupling is present things are more complicated. First, in this case the velocity v = ∂pH does
not in general commute with the spin operator, which is obvious looking at Eq. (10). One can still generalise the spin
current definition by symmetrization

ja =
1

2
{v, sa} , (14)

with {A,B} = AB + BA the anticommutator. However spin is now intrinsically – i.e. everywhere and always – not
conserved, ergo the continuity equation obeyed by such a current must be modified by an intrinsic spin torque Γa

int

∂ts
a +∇ · ja = Γa

int. (15)

The precise form of the torque is fixed by the internal spin-orbit field (10). The intrinsic lack of a conservation law
means that ja, and thus Γa, are not uniquely defined now. This is no fundamental problem, in the sense that not
all physically meaningful currents need be conserved. It can however be a delicate operative problem, as changing
the definition of ja will change the definitions of the spin Hall/inverse spin Hall angles, which is what experiments
typically aim at measuring. Similarly, it will modify the estimates for the spin accumulations generated by the
current, the accumulation being another popular observable. Indeed, it is not alway obvious how (if) local spin
currents somewhere, say in the bulk, are connected with local spin accumulations elsewhere, e.g. at the sample’s edges
[3, 21–24]. These issues are recurringly discussed in the specialised literature [21–31] and can be dealt with in different
ways, for example:

• One can avoid referring to spin currents within the spin-orbit coupled region, and define them only in the
metallic electrodes attached to sample, where Hso is negligible. This is the picture naturally arising in the
Landauer-Büttiker approach to transport [32]. It is often more or less implicitly assumed in phenomenological
discussions of experiments.

• One can focus on spin accumulations, i.e. consider the equation of motion for the spin density without assuming
a given form for the spin currents. The appropriate form of the currents may be derived from the density
equations, notably in the diffusive regime [22, 33–35].

• One can use the non-Abelian gauge properties of the Hamiltonian H, i.e. its spin rotation [SU(2)] properties, to
define spin currents much as colour currents are defined in high-energy physics [29, 36]. This approach removes
any ambiguity from the definition of ja,Γa, but cannot directly be exploited for any form of b(p). I will comment
further on it in Sec. IV.

• One can try to define a conserved spin current by combining ja and Γa [27, 28].

There is arguably no single “best” approach. One should decide which way to go based on the specific physical
situation, and – if the physics allow – on personal tastes. It should also be kept in mind that both extrinsic and
intrinsic processes are present in typical setups, and that they may yield further intrinsic-extrinsic crossed processes,
i.e. the corresponding torques are not simply additive [37, 38]. Moreover – and independently of the spin current
definition – continuity equations like (12), (13) or (15) must be supplemented with appropriate boundary conditions
e.g. at interfaces between different materials or at the egdes of the system, which may yield additional (local) torques
[22, 31, 35, 39–43].

III. EXPERIMENTS

The first spin Hall experiments were performed in the 1970s and 1980s in semiconductors [3], but relatively few got
interested at the time. The business became fashionable in the early 2000s, and the spin Hall effects are nowadays



not only the object of fundamental research [44–48], but also established tools in more application-oriented settings
[11, 49–51]. In fact, while the first experiments were performed at fairly low temperatures (a few to a few tens
of Kelvins) room temperature measurements are routine today, and large spin Hall angles have been reported in
different materials. To give a rough idea of the progression, the spin Hall angle reported in a pioneering experiment
by Valenzuela and Tinkham in 2006 was θsHe ∼ 10−4 in Al at T=4.2K, while less than 10 years later room temperature
measurements in Pt, Ta or W reached θsHe ∼ 10−1 [6, 7, 49, 52, 53].

(a)

VisHe

jyz jx

x

y

z
(b)

jx
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V

FIG. 4. Left panel: A broad spot of circularly polarised light creates a non-equilibrium spin polarisation δsy at a sample’s
surface (shaded region), and a a diffusion spin current jyz ∼ ∂zδsy flows into the 3D bulk. Here the isHe generates a transverse
charge current jx, yielding a finite output voltage VisHe. Setups of this kind were proposed already in the early days of spin
Hall physics [3]. Right panel: In a 2D system the charge current jx from an applied bias V is converted into a spin Hall current
jzy . The resulting spin accumulation at the edges (shaded region) is measured by Kerr rotation of scattered light (red). The
technique was employed in the first experimental observation of the sHe in a 2D electron gas [54], and a similar one in a 2D
hole gas [55]. The connection between bulk spin currents and edge spin accumulations can however be less direct than this
cartoon suggests [3, 22–24, 26].

The numerous experimental schemes available can roughly be divided into three classes.

• Optical setups, historically the first to be used to detect the sHe/isHe, exploit the interaction between polarised
light and the spin of charge carriers. For example, circularly polarised light can be used to generate local
non-equilibrium spin accumulations which later diffuse through the system. The diffusion spin current can
then be converted by the isHe into charge signals measured with standard electrodes, see Fig. 4 (a). On the
other hand, spin accumulations can be measured by circularly polarised electroluminescence or magneto-optical
Kerr and Faraday effects. An example is shown in Fig. 4 (b), where the spin accumulation at the edge of the
system generated by the sHe is measured by the degree of (Kerr) rotation of light scattered off the sample.
All-optical schemes are also employed [56, 57], allowing in particular time-resolved experiments on ultra-short
(THz) timescales [56] – which are not accessible to electronic systems.

• Magneto-electric (spin pumping, spin torque) setups, relying on the interplay between magnetisation and spin
dynamics [58]. Fig. 5 shows a paradigmatic example: a spin current jsin is injected from an out-of-equilibrium
magnetic element, e.g. a (conducting or insulating) magnet driven by microwaves, and converted into a charge
current jcout collected at a normal metallic electrode. The latter can actually be used to run the experiment
under “reverse bias”: jcin is injected, and one measures the torque that the resulting jsout exerts on the adjacent
magnet. The presence of magnetic elements considerably increases the degree of complexity of the overall
system, and may lead to additional effects which are however beyond the scope of this short overview [58, 59].
Time-dependent experiments are also performed, e.g. to measure AC spin Hall effects [60–62].

• All-electrical setups, conceptually probably the simplest. Fig. 6 (a) shows a most basic one, without any
magnetic element: A charge current jcin is injected by a metallic electrode, is converted into a spin signal by the
sHe, and finally re-converted by the isHe into an outgoing jcout collected at some other electrode. A very popular
scheme requiring a magnetic electrode is instead sketched in Fig. 6 (b). Both are non-local – input electrodes
are somewhere, output electrodes elsewhere – a common feature in spin Hall setups [5, 63].
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jsout jcin

FIG. 5. Left panel: Sketch of a spin pumping setup. Microwaves in a ferro-/ferrimagnet FM at frequency ω drive the
magnetisation, M = Mn → M(t) = Mn(t). Its precession injects angular momentum into the underlying spin-orbit coupled
normal metal, generating a spin current js. The latter is converted by the isHe into a charge current jc and ergo a measurable
voltage VisHe, in general with both DC and AC components [61, 62, 64]. Right panel: A reverse-bias scenario, in which a charge
current at frequency ω is injected and converted by the sHe into an AC spin current. The latter exerts a torque on M and
drives its precession. There are numerous DC and AC variations to these schemes, involving many different magneto-resistive
effects modulated by spin-orbit interaction, see Refs. [8 and 11] for an overview.

(a)

V

VisHejcin

js

jcout

(b)

FM
V

VisHe
jcin js

jcout

FIG. 6. Left panel: Hall bar geometry without magnetic elements. The injected charge current jcin is converted into a transverse
spin current js by the sHe. The latter is converted back into a charge current jcout by the isHe in the right arm of the setup,
yielding a finite VisHe. One of the earliest implementations of this setup was used to measure the ballistic sHe in a HgTe
quantum well [65]. Right panel: non-local setup with a ferromagnetic (FM) electrode, shown in dark grey, deposited on top
of a T-shaped metallic film. The injected current jcin is drained to the left contact, since the right metallic arm is at the same
electrochemical potential as the FM electrode. The current jcin is spin polarised, therefore it creates a non-equilibrium spin
accumulation underneath the FM contact, shown by the shaded area. Part of it diffuses towards the right, yielding a pure spin
current js which is then converted by the isHe into a measurable transverse voltage VisHe. The scheme was first employed by
Valenzuela and Tinkham [5].

The boundary between classes is clearly blurred, and mixed techniques are often employed. An important general
observation is that experimental setups – apart perhaps from the simplest all-electrical ones – are fairly complex,
consisting of multiple elements of different nature subject to various kinds of drivings. Paired with the vast number
of spin-charge (or charge-spin) conversion channels available in any given system, this makes for interesting debates
concerning possible microscopic interpretations of experiments5.

5 The spin galvanic and inverse spin galvanic effects are very often crucial “partners” of the spin Hall effects [66–69]. They are another
common channel of spin-charge/charge-spin conversion, discussed in detail in a dedicated Encyclopedia Chapter



IV. THEORY

A. An instructive example and the general framework

The spin Hall effects are non-equilibrium phenomena handled with the usual arsenal of transport theory techniques:
Keldysh formalism, density matrix and semiclassical kinetics, Kubo formula, Landauer-Büttiker formalism . . . . Irre-
spective of the techniques employed, a source of substantial theoretical challenges is complexity. In crude terms, the
Hamiltonian of a spin Hall system requires numerous ingredients, recall the discussion from Sec. III. The resulting
quasiparticle dynamics are in general quite sensitive to the presence/absence of, and competition between, each.
To see this in a concrete way it is instructive to start from the barebone model of an ideal Rashba system

HR =
p2

2m
+
α

~
[pyσ

x − pxσy] , (16)

where m is the effective electron mass and α ∼ ∇Vint(z) the Rashba coupling constant, proportional to the (effective)
electric field confining the electrons to the x-y plane – see the heuristic discussion in Sec. II, Eq. (8).
Given HR, the goal is to compute the frequency-dependent spin Hall conductivity σsHe(ω), defined as

jzy(ω) = σsHe(ω)Ex(ω), (17)

with jzy the z-polarised spin current in the y direction. The standard choice is to take the symmetrised spin current
definition (14) – other choices are possible, recall the discussion from Sec. II, and the consequences will be addressed
below. The spin Hall conductivity can be written in terms of the spin current-charge current Kubo response function

〈〈jzy ; jx〉〉ω ≡ − i
~
∫ t

0

[
jzy(t), jx(0)

]
eiωtdt, with [A,B] = AB−BA the commutator [70]. Since the charge current couples

to the vector potential as j ·A, and Ex(ω) = −iωAx(ω), one has

σsHe(ω) =
〈〈jzy ; jx〉〉ω

iω
. (18)

Once the DC σsHe ≡ limω→0 σ
sHe(ω) is known the spin Hall angle follows

θsHe =
q

~
σsHe

σc
x

, (19)

with σc
x the longitudinal DC charge conductivity. An explicit computation yields the “universal” DC result

σsHe
clean =

e

8π~
, (20)

with the electron charge q = −e < 0. The subscript “clean” highlights that the system is without any defects. Such
a beautiful result, due to the intrinsic Berry phase of electrons on the Rashba Fermi surface, is unfortunately very
fragile. If one adds dirt to the model, i.e. a random impurity potential, HR → HR+Vimp(r), the spin Hall conductivity
exactly vanishes

σsHe
dirty = 0. (21)

The vanishing is diagrammatically subtle: since it comes from vertex corrections, it cannot be guessed by simply
introducing a disorder broadening of the momentum eigenstates in the Kubo response kernel [71–73]. Indeed, it was
overlooked at first in the scientific literature [74]. On the other hand, it is easily understood with kinetic arguments
[75, 76], since the homogeneous continuity equation for the y-spin component reads

∂ts
y = −2mα

~2
jzy︸ ︷︷ ︸

Γy
int

. (22)

At steady state the spin current jzy = 0.
Eq. (21) is as fragile as its clean counterpart (20). If one further adds extrinsic spin-orbit interaction, that is spin-orbit
interaction with the impurity potential, HR → HR +Vimp(r)+λσ×∇Vimp(r) ·p, the spin Hall conductivity is non-zero

σsHe
int+ext 6= 0, (23)



and furthermore depends non-trivially on different system parameters. In particular [37, 38]

σsHe
int+ext 6= σsHe

int + σsHe
ext . (24)

Equivalent results would have been reached starting from the (linear) Dresselhaus model

HD =
p2

2m
+
β

~
[pxσ

x − pyσy] , (25)

where the coupling constant β is now due to bulk inversion asymmetry, i.e. the lack of inversion symmetry of the
underlying crystal, as in zincblend compounds [15].
The lesson to be learned from this example is not that low-energy effective models of Rashba or Dresselhaus type are
unreliable – quite the contrary, they are pillars of spintronics, even if more complex models are often needed e.g. for
precise quantitative comparisons with experiments. It is rather that any effect crucially depending on the coupling
between orbital motion and internal (spin) dynamics is subtler than standard charge-only transport phenomena, even
when their description is based on the simplest models. As a corollary, attacking the problem from different angles –
Kubo vs. kinetics in this case – can be a good idea.
The Rashba and Dresselhaus scenarios just considered are examples of a standard approach to transport widely em-
ployed throughout condensed matter. The latter starts from some low-energy (k ·p) effective model whose parameters
can be computed with ab-initio methods, or left as symmetry-allowed parameters to be estimated by comparison with
experiments. In our case the minimal Hamiltonian for spin 1/2 quasiparticles reads

H = H0 + b(p) · σ + δH (26)

where H0 describes band-bottom (top) free electrons (holes), and b(p) is the effective intrinsic spin-orbit field, see
Eq. (10). Higher-dimensional models (4 x 4, 6 x 6 . . . ) are employed whenever more than a single s-band lie close
to the Fermi energy, which is the case e.g. for graphene [77–80], Pt [81] or typically for holes [4, 15]. On the other
hand there are situations in which the term b(p) is negligible, e.g. in bulk Al or Cu. The last term δH contains all
extra ingredients needed in the specific situation, e.g. exchange coupling with a magnetic texture, extrinsic spin-orbit
coupling, disorder, phonons and so on.
The effective Hamiltonian (26) is used to study non-equilibrium dynamics with whatever analytical and/or numerical
techniques one prefers. The approach is thus very general and flexible. Alternatively, it is also possible to stick to
ab-initio methods and use an atomistic Hamiltonian throughout. In this case one typically relies on Kubo linear
response formalism to compute the relevant transport coefficients, e.g. σsHe [82, 83].

B. Onsager reciprocity and a non-Abelian gauge field point of view

The sHe and isHe connect spin currents, even under time-reversal, with charge currents, odd under time-reversal.
From the general properties of Kubo response functions [70] there follows

〈〈jzy ; jx〉〉ω = −〈〈jx; jzy〉〉ω, (27)

which implies

σsHe = −σisHe. (28)

This is the (linear response) Onsager relation between the sHe and isHe. It is evident that changing the definition
of the spin current changes the value of σsHe and σisHe. This is critical if a direct comparison with experiments is
seeked: what spin current is being excited in the experimental setup? What spin Hall angle are we talking about? As
discussed in Sec. (II) there are numerous ways to remove any ambiguity from such a comparison. In particular, if one
is not interested in local quantities such as conductivities, the problem can be bypassed by considering conductances
between metallic leads without spin-orbit interaction [32]. On the other hand a change of spin current definition does
not break Onsager reciprocity if done consistently, i.e. if the same definition is used to describe both the direct, say
sHe, and reverse bias, say isHe, scenario.
Another source of concern in the early 2000s was that the standard definition of spin currents, Eq. (14), may yield
non-vanishing equilibrium (circulating) currents [25]. Different authors highlighted however that there is nothing
intrinsically unphysical or surprising in this [29, 84]: spin currents are even under time-reversal, so can exist in
equilibrium, and physical systems hosting different kinds of equilibrium currents anyway exist [29, 30, 84, 85]. Indeed,
adopting a non-Abelian gauge field point of view, equilibrium spin currents can be identified with the non-Abelian
analogous of dissipationless Landau paramagnetic currents in solids [29].



The non-Abelian gauge field approach requires to rewrite the spin-orbit interaction in terms of a non-Abelian vector
potential A, i.e. a tensor Aa

i with both spin (a) and real space (i) indices. To be definite, for the Rashba Hamiltonian
(16) one has

HR =
(p + A)

2

2m
+ const. (29)

with Ay
x = −Ax

y = 2mα/~2, while Aa
j = 0 for all other components. The spin current immediately follows from

jai = ∂HR/∂Aa
i . It coincides with the standard definition (14) and generally consists of both transport contributions

and a non-dissipative equilibrium part. Pursuing this route e.g. in a diffusive sample, one obtains in particular a
clear parallel between the standard Hall current jHall in presence of a magnetic field B and the a-polarised spin Hall
current jasHe in presence of a non-Abelian pseudomagnetic field B generated by A [36]

jHall =
qτ

m
j×B → jasHe =

qτ

4m
j×Ba. (30)

The non-Abelian gauge field approach is based on relatively old ideas [86–88], but was recently revived to describe
spin-charge coupled transport in different settings [36, 38, 89–97]. While its merits are evident, one should realise
that a rewriting like Eq. (29) is not always possible. I refer to the relevant literature for details.

V. CONCLUSIONS

The spin Hall effects are a family of transverse transport phenomena appearing in (pseudo)spin-orbit coupled sys-
tems. A good chunk of the theory and experimental background was established in the 1970s-1980s, but the effects
became widely known in condensed matter only starting from the early 2000s, and are nowadays cornerstones of
both fundamental and applied spintronic research. Such a late blooming is probably due in good part to two roughly
contemporary events. First, the widespread realisation of the importance of geometry/topology-related concepts for
Bloch electrons. Since the latter usually require quasiparticles to have an internal structure, this strongly increased
interest for (pseudo)spin-orbit coupled dynamics. Second, technological advances which notably allowed the fabri-
cation of high-quality semiconductor heterostructures, where spin manipulation became possible with a high level
of precision, soon after followed by the discovery and functionalisation of graphene and other materials with strong
(pseudo)spin-orbit interaction.

In this short overview I focused on the core, standard forms of the spin Hall effects, as they exist in normal Fermi
liquids. In this context they are active in a wide range of parameters, from large samples at room temperature –
important for potential applications – down to mesoscopic samples at low temperatures. However they may also
appear in e.g. strongly disordered systems [98], superconductors [99], metallic antiferromagnets [100, 101], as “valley
Hall effects” in different materials [102–104] or in the propagation of magnons [105, 106] and light [107]. They may also
contribute to other transport effects, such as the spin Hall magnetoresistance [108–110]. In short, they are potentially
present in any scenario where transport is due to quasiparticles with some internal structure which couples to a
non-trivial background.

A. Notes on further readings

The literature on the spin Hall effects is vast and ramifies quickly to neighbouring subfields. The bibliography given
here is meant to provide barebone directions to the newcomer, but is by no means exhaustive. Numerous review
articles, each with its own qualities and shortcomings, are available to the interested reader. Refs. [3] and [4] are
both must-read works. Ref. [3] provides in particular a thorough historical overview and excellent phenomenological
discussions, while Ref. [4] offers a high-quality and very compact introduction to the technical background, introducing
also modern topological concepts. I also suggest Ref. [11] for a recent, short and more application-oriented discussion,
and Ref. [111] for its theory part. Finally, Ref. [8] provides an excellent experimental overview.
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