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Abstract. In whole slide imaging, commonly used staining techniques
based on hematoxylin and eosin (H&E) and immunohistochemistry (IHC)
stains accentuate different aspects of the tissue landscape. In the case of
detecting metastases, IHC provides a distinct readout that is readily
interpretable by pathologists. IHC, however, is a more expensive ap-
proach and not available at all medical centers. Virtually generating
IHC images from H&E using deep neural networks thus becomes an
attractive alternative. Deep generative models such as CycleGANs learn
a semantically-consistent mapping between two image domains, while
emulating the textural properties of each domain. They are therefore
a suitable choice for stain transfer applications. However, they remain
fully unsupervised, and possess no mechanism for enforcing biological
consistency in stain transfer. In this paper, we propose an extension to
CycleGANs in the form of a region of interest discriminator. This al-
lows the CycleGAN to learn from unpaired datasets where, in addition,
there is a partial annotation of objects for which one wishes to enforce
consistency. We present a use case on whole slide images, where an IHC
stain provides an experimentally generated signal for metastatic cells.
We demonstrate the superiority of our approach over prior art in stain
transfer on histopathology tiles over two datasets. Our code and model
are available at https://github.com/jcboyd/miccai2022-roigan.
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1 Introduction

The use of histopathological whole slide images (WSI) is considered the gold
standard for the diagnosis and prognosis of cancer patients. These slides contain
biopsies of pathological tissue from patients and are typically stained in order
to highlight different tissue structures. One of the most common tissue staining
⋆ These authors contributed equally to this work.
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(a) HES (b) IHC

Fig. 1: Stain transfer translates between unpaired HES (a) and IHC (b) tiles
(Gustave Roussy dataset). Cancer cells visible in IHC by the golden DAB stain.

protocols is hematoxylin and eosin staining (H&E), sometimes augmented with
saffron (HES) (Figure 1a). Under the H&E protocol, the hematoxylin compo-
nent stains cell nuclei with a purple-blue color, while the eosin component stains
the extracellular matrix and cytoplasm in pink [20]. Another common staining
is based on immunohistochemistry (IHC) (Figure 1b). This staining involves the
process of selectively identifying proteins in cells and highlighting them using a
chromogen. One of the most common IHC stains is based on hematoxylin to-
gether with the diaminobenzidine (DAB) chromogen forming an H-DAB stain.
Under this protocol, different staining configurations can be used, targeting dif-
ferent cell proteins (e.g., Ki67, HER2, hormone receptors). The resulting stained
tissue can provide a distinct readout, for example with AE1/AE3, in which DAB
localises on cancer cell membranes. In the case of breast cancer, the presence of
metastatic cells in the axillary lymph nodes can greatly affect the prognosis of
a patient. Lymph node status, assessed through the WSI inspection of dissected
sentinel or axillary lymph nodes, is therefore a crucial diagnostic readout. In
cases where the diagnosis is difficult to make (e.g. micro-metastasis or isolated
tumor cells) IHC-stained slides that highlight cancer cells are necessary.

With the recent advances in deep learning, there is a growing interest in auto-
matically processing digitised slides. We present a methodology to computation-
ally transfer from H&E to IHC WSIs. Our main contribution is a region-based
discriminator network within a CycleGAN framework, which utilises automat-
ically extracted regions of interest to improve stain localisation. Unlike fully
supervised schemes, our method learns from unpaired H&E and IHC slides and
produces a stain transfer that can serve as a soft segmentation for metastasis de-
tection. Experiments on two datasets illustrate the success of our method, while
demonstrating that baseline models are unable to reliably localise the DAB stain
and, consequently, cancer cells. To the best of our knowledge, this is the first
work to propose such a region-guided CycleGAN, as well as the first to pro-
vide robust models for stain transfer on the WSI level. Synthesised IHC slides
show the potential of our method as a clinical visualisation tool, as well as in
metastasis segmentation pipelines for diagnosis.
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2 Related Work

Generative adversarial networks (GANs) are a popular family of generative mod-
els in histopathology image analysis [21]. Various types of GANs have been ap-
plied to histopathology images for stain transfer [22], stain normalisation [18,2,1],
cell segmentation [7], data augmentation [4] and representation learning [3]. A
widely used variant of GANs are image-to-image translation networks, such as
pix2pix [23], which learns to translate between image pairs, and CycleGANs [9],
which relax the pairing assumption to enable unpaired and fully unsupervised
image-to-image translation. CycleGANs have been used for stain transfer before,
notably in [22], which augments the CycleGAN training criterion with additional
priors, so as to guide an otherwise unsupervised model.

Region of interest (RoI) information is one possible enrichment to a genera-
tive learning task, in conjunction with attention mechanisms. In [19], a CoGAN-
inspired setup [14] is used for joint generation of global and RoI images. In [17],
pedestrians are edited into predefined scenes using pix2pix, with spatial pyra-
mid pooling in the discriminator for direct scrutiny. Pre-trained R-CNN object
detection systems have been used to propose regions during GAN training in [8],
or as a feature extractor in object-driven GANs [12]. In contrast, we modify the
GAN discriminator itself, and leverage automatically derived RoI data.

3 Method

CycleGANs [23] lend themselves to the task of stain transfer between unpaired
histopathology tiles. These are unsupervised models incorporating two GAN
generators, GXY : X → Y and GY X : Y → X for unpaired image domains
X and Y . In an application of stain transfer between two stains, each stain
represents a different domain. Although both generators are trained, in our case
only one direction of transfer is desired (HES → IHC), and the other generator
may be discarded after training. CycleGAN training is performed according to,

min
GXY ,GY X

max
DX ,DY

LCG = LGAN (DY , G,X, Y ) + LGAN (GXY , DY , X, Y ) (1)

+ λCY CLCY C(GXY , GY X , X, Y ) + λIDLID(GXY , GY X , X, Y ),

which combines least squares adversarial losses [16] LGAN , with PatchGAN
discriminators DX and DY , along with a cycle-consistency loss LCY C to main-
tain pixel-wise consistency back and forth between domains, identity function
losses LID for stability, and λCY C and λID are hand-tuned weights.

3.1 Region of interest discrimination

Image photo-realism is enforced in a CycleGAN by a “PatchGAN” discriminator,

Dpatch : X → {0, 1}h×w, (2)
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Fig. 2: Conventional PatchGAN discriminates over a regular grid of overlapping
receptive fields (a) while a region-based discriminator may discriminate an image
on arbitrarily-sized regions (b).

which consists of a sequence of strided convolutions producing a h× w grid
of outputs, with each grid element discriminating an overlapping patch of the
inputs, as in Figure 2a. The output grid is compared element-wise with a grid of
ground truth labels. As will be quantified in Section 5, this purely unsupervised,
standard CycleGAN setup fails to correctly localise DAB in a stain transfer
application. This motivates a new type of discriminator, based on region of
interest discrimination via a region of interest alignment (RoIAlign) layer. The
RoIAlign layer was originally proposed in the Mask R-CNN object detection
system [5], and is a generalisation of the classical MaxPool layer, and a way
of quantising regions of activation maps of arbitrary size into a standardised
dimension. Our proposed RoI discriminator consists of feature extraction layers
f followed by a RoIAlign layer ρ, and a final discrimination layer d, as shown in
Figure 2b. We formalise it as,

Droi : X ×B → {0, 1}k, (3)

for image domain X and bounding box domain B, where k is the number of
bounding boxes. The adversarial loss thus becomes,

LROI(G,Droi, X, Y ) =
1

2
Ex∈X [(Droi(x,B(x))−1)2]+

1

2
Ey∈Y [Droi(G(y),B(y))2]

(4)
that is, a least squares adversarial loss, where the operator B returns the

set of bounding boxes of an image, provided by a previously generated object
library. A pair of RoI discriminators (one for each domain) can then be trained
alongside–or instead of–the PatchGAN discriminators (see Appendix A).

3.2 Library generation for region-based discrimination

To train our proposed region-based discriminator, we build a bounding box li-
brary by localising cancer and normal cells using an automatic image processing
pipeline (see Appendix B). All input tiles (see Section 4) are first decomposed
into their hematoxylin-eosin-DAB components. The expert annotations available
for H&E slides identify cancerous regions that may nevertheless contain many
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interspersed healthy cells. Blob detection applied directly on the HES images is
thus prone to false positives, precisely when precision is more important to our
downstream algorithm than recall. To mitigate this effect, we apply a Laplacian
of Gaussian (LoG) filter (σ = {1, 2}). We then construct a graph of healthy cells
where connectivity is determined by a manual threshold (25 pixels) on Euclidean
distance between detected cells. Graph connected components constitute healthy
cell clusters, and the convex hull of each cluster is zeroed-out of the expert an-
notation. In a final step, a second pass of blob detection (σ = {10, . . . , 12}) is
applied to detect the larger, dimmer cancer cells in the unmasked regions. In the
case of IHC tiles, we instead perform an Otsu threshold on the DAB channel to
isolate the cancerous sub-regions. Cancer cell nuclei feature as elliptical disconti-
nuities in the binarised DAB stain, and can again be detected using a LoG filter
(σ = {7, . . . , 10}). Smaller blobs (σ = {1, . . . , 3}) outside the segmented region
are taken to be normal cells. The library, consisting of over 100k cell bounding
boxes, is then used for the training of the RoI discriminator.

3.3 Implementation and training details

In each experiment, the two CycleGAN generators follow the architecture of a
baseline approach [22], itself based on a network proposed for style transfer [10].
The tile inputs are of size 256× 256 with three (RGB) channels. The generators
consist first of strided convolutions to lower the resolution. A sequence of resid-
ual blocks [6] of tunable length is then applied. We benchmark 6 and 9 residual
blocks. Following this, fractionally-strided convolutions restore the input resolu-
tion. The PatchGAN discriminators consist of a standard sequence of five strided
convolutions and an output layer. This reduces the input to a 8× 8 patch-wise
prediction. This architecture, hereafter referred to as CycleGAN 8× 8, in refer-
ence to the discriminator output size, is trained according to Equation 1. The
baselines and proposed model are all modifications of this core baseline.

Given that our proposed discriminators have a selective receptive field, we
control for the receptive field size of the PatchGAN discriminators by modifying
the stride of their convolutions. We modify the stride of the first layer from 2 to
1 in baseline CycleGAN 16 × 16, doubling the patch output size, and the first
two layers in baseline CycleGAN 32×32, doubling again. We also implement the
conditional CycleGAN model [22]. This introduces two additional networks of its
own, which are used to classify tiles in each domain. Here, Equation 1 is supple-
mented with classification and cycle classification losses for the new networks, as
well as novel photo-realism and structural similarity losses. Exceptionally, due
to the speed and memory constraints of the photo-realism loss, we train this
baseline with batch size 2. In addition, we test a plain conditional CycleGAN
without these additional losses.

For our proposed model, the RoI discriminator resembles the PatchGAN,
with four stride-2 feature convolutions f , followed by a RoIAlign layer ρ, and a
final discrimination layer d. Without loss of generality, we restrict cell bounding
box dimension to 48 × 48, centered on the library nuclei. Although the cell
populations in each tile are often imbalanced, we sample balanced numbers of
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positives and negatives with replacement, whenever available, equaling k = 8
bounding boxes per tile, and we skip tiles containing no library cells. All model
weights are randomly initialised and all models use the Adam optimiser [11] with
maximum learning rate 2-e4 and (β0, β1) = (0.5, 0.999). Models were trained for
20 epochs with a batch size of 8 randomly sampled tiles, consuming roughly two
hours of processing time per model on an NVIDIA Tesla V100 GPU.

4 Datasets

To benchmark our method, we conducted experiments on two breast cancer
datasets. One dataset was provided by the Gustave Roussy (GR) Institute con-
sisting of 205 WSIs, corresponding to sentinel lymph node sections for patients
of breast cancer. Each lymph node was imaged with both HES and cytokeratin
AE1/AE3 IHC. Although the two stainings are performed on closely situated sec-
tions of tissue, the lack of precise alignment implies an unpaired image dataset.
Metastatic regions of the HES slides were annotated with bounding contours
by two expert pathologists. The dataset comprises cases of micro- and macro-
metastases (resp. 0.2mm-2mm and ≥ 2mm tumours), as well as negative cases.
Non-overlapping tiles of size 256×256 pixels were extracted at a magnification of
20x from the segmented tissue regions of WSIs using CLAM [15]. For HES slides,
the expert annotation is used to extract balanced samples of positive (metastatic
tissue) and negative (normal tissue) tiles whereas, for IHC, the thresholded DAB
stain substitutes as an experimentally-generated annotation.

CAMELYON16 [13] consists of 1399 hematoxylin-eosin-stained (H&E) slides.
Among these, 111 slides were annotated in a fashion similar to the GR dataset.
We processed and sampled tiles from these slides in the same way, yielding a
dataset of 12000 tiles. Note that this dataset features a slightly different imaging
modality, and furthermore contains no IHC slides. Nevertheless, we found that
IHC tiles from the GR dataset were fully compatible with CAMELYON16 during
model training (provided the imaging magnification), demonstrating that one
can combine datasets of different origin for stain transfer.

5 Experimental results

5.1 Tile-level quantitative results

Our primary means of evaluating model performance is with the expert H&E
annotations. This provides a good first approximation to the locations of the
cancer cells, and where the DAB should appear once the stain transfer has
been performed, even though annotation contours often bisect healthy tissue
regions or otherwise contain normal cells. For each of our trained generators,
we first produce the IHC stain for each of a set of 500 held-out test H&E tiles.
We visualise samples of these in Figure 3 for both the proposed model and
the baseline CycleGAN 8 × 8, alongside the annotation. One may observe the
accuracy of our proposed model in localising the DAB stain. Although we observe
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(a) Input images (b) Annotation

(c) CycleGAN (d) Region-guided CycleGAN

Fig. 3: Sample H&E tiles from the GR dataset (a); with corresponding ground
truth annotation masks (b); baseline CycleGAN stain transfer (c); and proposed
region-guided stain transfer (d).

a weak correlation between positive tiles and the presence of DAB, the baseline
CycleGAN systematically misplaces the DAB stain. This localisation problem
was observed across all competing models. We hypothesise our proposed model
profits from the object-level supervision, with our proposed RoI discriminator
performing discrimination directly centered on cells.

In pursuing a quantitative evaluation, we obtain a binary mask for each syn-
thesised DAB stain in the same manner as was performed in Section 3.2 for
real IHC tiles. This mask is then compared with the ground truth annotation
by DICE similarity and balanced accuracy (BAC), and we report the mean and
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GR Dataset CAMEYLON16
Model DICE BAC DICE BAC

CycleGAN (8× 8) 0.442± 0.370 0.490± 0.103 0.415± 0.372 0.501± 0.091

CycleGAN (16× 16) 0.365± 0.330 0.520± 0.125 0.388± 0.349 0.502± 0.091

CycleGAN (32× 32) 0.384± 0.324 0.511± 0.130 0.403± 0.358 0.503± 0.100

Conditional CycleGAN 0.341± 0.328 0.488± 0.120 0.412± 0.366 0.501± 0.100

Xu et al. (2019) [22] 0.325± 0.310 0.474± 0.107 0.260± 0.257 0.498± 0.115

Proposed 0.536± 0.360 0.634± 0.221 0.533± 0.371 0.615± 0.197

Table 1: DICE similarity and balanced accuracy (BAC) for all baselines and
proposed model for GR dataset and CAMELYON16. Each entry reads mean ±
std. Best results in bold.

standard deviation for each metric across all test tiles in Table 1. We emphasise
the ground truth is approximate, as it is intended to capture metastatic regions
at a macro level, and often does not exclude healthy sub-regions. For each model,
we select the best performing instance in a grid search over the number of gen-
erator residual blocks (6, 9), and λcyc = {1, 10, 30}. Models generally performed
better with 6 residual blocks, and with the standard λCY C = 10. Our proposed
model performs significantly better for λCY C = 30, however, seemingly to com-
pensate for the weight of the additional discriminators. We nevertheless note the
superiority of our proposed model over all baselines, with 0.536 DICE and 0.634
BAC on the GR dataset, and 0.533 DICE and 0.615 BAC on CAMELYON16.
Among the baselines, we observe that changing the discriminator outputs (16×16
and 8×8) can have a positive effect on BAC, but ultimately falls short on DICE.
On the other hand, the conditional CycleGANs do not show improvement over
the plain baselines. Finally, we observe that our high performance is sustained
on CAMELYON16, even though in the absence of a IHC data, GR IHC tiles, of
different clinical origin, were used as surrogate.

5.2 Slide-level qualitative results

We further explore the capabilities of our method by generating whole slide
outputs, as shown for a macrometastatic case (Appendix C, Figure 3a, b, and
c) and negative case (Appendix C, Figure 3d, e, and f) from the GR dataset.
One may observe that the HES and IHC ground truth slides are unregistered.
Here, the model is applied tile-by-tile and the outputs are recombined to produce
slide thumbnails. Inference times were 22s for Appendix C Figure 3b and 14s for
Appendix C Figure 3e. We observe the overall consistency of our model outputs
with the IHC ground truth. However, false positives, indicated by misplaced
DAB signal, remain a problem for our model, and attenuating these will be the
subject of future work. Surprisingly, though these test slides belong to the GR
dataset, we found the model trained on CAMELYON16 data produced outputs
(pictured) at least comparable to those from the GR model, indicating a readily
transferable method.
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6 Discussion

In this paper we have demonstrated a systematic localisation problem with unsu-
pervised CycleGANs for stain transfer in histopathology tiles, and proposed an
improved method using a region-based discriminator, leveraging a library of cell
interest regions. We have further shown how datasets of different clinical origin
may be successfully combined for learning stain transfer models. The proposed
pipeline is a semi-automatic means for extracting additional supervision “for
free”, greatly improving the unsupervised baseline. Although for H&E data, we
still rely on an expert annotation, our experiments revealed exciting possibilities
for further automation. Firstly, due to a parsimonious design (only assumptions
about cell size and clustering are made), the library building pipeline was equally
applicable to both datasets and would likely generalise to others. Secondly, we
found datasets could be combined and that a model trained on CAMELYON16
H&E transfers well to the GR dataset. In the latter case, only annotations from
CAMELYON16 have been used, implying reusability of a library once computed
on CAMELYON16, a free resource.
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