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Abstract
Artificial intelligence (AI) has been a very active research topic over the last years and thoracic imaging has particularly 
benefited from the development of AI and in particular deep learning. We have now entered a phase of adopting AI into clini-
cal practice. The objective of this article was to review the current applications and perspectives of AI in thoracic oncology. 
For pulmonary nodule detection, computer-aided detection (CADe) tools have been commercially available since the early 
2000s. The more recent rise of deep learning and the availability of large annotated lung nodule datasets have allowed the 
development of new CADe tools with fewer false-positive results per examination. Classical machine learning and deep-
learning methods were also used for pulmonary nodule segmentation allowing nodule volumetry and pulmonary nodule 
characterization. For pulmonary nodule characterization, radiomics and deep-learning approaches were used. Data from the 
National Lung Cancer Screening Trial (NLST) allowed the development of several computer-aided diagnostic (CADx) tools 
for diagnosing lung cancer on chest computed tomography. Finally, AI has been used as a means to perform virtual biopsies 
and to predict response to treatment or survival. Thus, many detection, characterization and stratification tools have been 
proposed, some of which are commercially available.

Keywords Artificial intelligence · Deep learning · Diagnostic imaging · Multidetector computed tomography · Lung 
neoplasms

Introduction

The implementation of artificial intelligence (AI)-based 
tools in clinical practice is the next step in the digitization 
of medical imaging. With the breakthrough of deep learning, 

AI has become particularly popular in recent years. After 
the initial hype, during which the peak of inflated expecta-
tions caused some to fear the replacement of radiologists 
by artificial intelligence, we have now entered an adoption 
phase. Thoracic imaging has particularly benefited from 

 * Guillaume Chassagnon 
 guillaume.chassagnon@aphp.fr

 Constance De Margerie-Mellon 
 constance.de-margerie@aphp.fr

 Maria Vakalopoulou 
 maria.vakalopoulou@ecp.fr

 Rafael Marini 
 marinirfsilva@gmail.com

 Trieu-Nghi Hoang-Thi 
 htrieunghi@yahoo.fr

 Marie-Pierre Revel 
 marie-pierre.revel@aphp.fr

 Philippe Soyer 
 philippe.soyer@aphp.fr

1 Department of Radiology, Hôpital Cochin, AP-HP, 27 rue du 
Faubourg Saint-Jacques, 75014 Paris, France

2 Faculté de Médecine, Université Paris Cité, 75006 Paris, 
France

3 Department of Radiology, Hôpital Saint-Louis, AP-HP, 1 
avenue Claude Vellefaux, 75010 Paris, France

4 CentraleSupélec, Mathématiques et Informatique pour la 
Complexité et les Systèmes, Université Paris-Saclay, 3 Rue 
Joliot Curie, 91190 Gif-Sur-Yvette, France

5 TheraPanacea, 7 bis boulevard Bourdon, 75004 Paris, France
6 Department of Diagnostic Imaging, Vinmec Central Park 

Hospital, Ho Chi Minh City, Vietnam

http://orcid.org/0000-0002-5055-1682
http://crossmark.crossref.org/dialog/?doi=10.1007/s11604-022-01359-x&domain=pdf


236 Japanese Journal of Radiology (2023) 41:235–244

1 3

the development of AI and deep learning, and is the most 
frequently targeted area for AI software [1, 2]. Multiple AI-
based tools have been developed, notably for lung segmen-
tation, nodule detection and characterization, but also for 
quantification, characterization and follow-up of interstitial 
lung disease, bronchial disease and COVID-19 [3–7]. The 
objective of this article was to review the current applica-
tions and perspectives of AI in thoracic oncology.

From radiomics to deep learning

Although using very different algorithms, the invention 
of radiomics preceded the use of deep learning in medical 
imaging by only a few years. The term “radiomics” was cor-
responds to a field of medical imaging that aims to extract 
features invisible to the human eye from medical images; 
for tasks such as characterization or prediction [8]. Several 
feature types can be extracted, the most common being his-
togram characteristics, texture parameters and shape param-
eters [9]. The number of extracted features is variable but 
can reach up to more than 2000, leading to high dimension-
ality [10]. Therefore, even if most of them can be correlated 
with the target, an intermediate step of feature selection is 
often conducted to keep only a small number of relevant 
features and this is usually based on machine learning algo-
rithms for dimensionality reduction. The feature selection 
step is performed in conjunction with or separately from 
the learning step that combines the selected features to cre-
ate a radiomic signature that correlates with the clinical 
outcome. Machine learning algorithms used in radiomics 
are referred to as classical machine learning algorithms as 
opposed to deep learning. In contrast to radiomics, deep-
learning features are not predefined and are learned together 
with the clinical problem. The most common types of deep-
learning algorithms for image analysis are convolutional 
neural networks (CNNs). CNNs correspond to deep neural 
networks based on a sequence of convolutional operations. 
Deep learning with CNNs gained momentum in 2012 when 
Krizhevsky et al. won the ImageNet Large-Scale Visual Rec-
ognition Challenge by a large margin, with a CNN called 

AlexNet [11]. For medical image analysis, the application 
of deep learning began and grew rapidly in 2015 and 2016 
[12]. Deep learning has been applied in ultrasound, X-rays, 
computed tomography (CT) and magnetic resonance imag-
ing [13–18]. Deep learning is now considered as the state-
of-the-art method in medical image analysis. Pros and cons 
of radiomics and deep learning are summarized in Table 1. It 
has been shown to outperform traditional machine learning 
methods and radiomics for many applications, but it requires 
more data for training, and this can be a limiting factor. 
Computer-aided diagnosis (CAD) tools consist of software 
that uses algorithms derived from AI to provide indicators 
and assist radiologists. CAD systems are subdivided in 
computer-aided detection (CADe) tools and computer-aided 
diagnosis (CADx) tools.

Lung nodule detection

By definition, lung nodules are focal opacities, well or 
poorly defined, measuring 3–30 mm in diameter [19]. The 
majority of pulmonary nodules are solid, co-existing with 
a subsolid category; which includes pure ground glass and 
part-solid nodules. The mean prevalence of lung nodules 
varies between incidentally detected series and screening 
trials, ranging from 13% (range: 2–24%) to 33% (17–53%), 
respectively [20]. In the National Lung Screening Trial 
(NLST), 27.3% of 26,309 participants who underwent low-
dose chest CT had at least one non-calcified lung nodule 
measuring 4 mm in diameter or larger and which was consid-
ered screen positive [21]. In the Dutch–Belgian lung-cancer 
screening trial [Nederlands–Leuvens Longkanker Screen-
ings Onderzoek (NELSON)], 19.7% of the 6,309 individuals 
screened had at least one non-calcified pulmonary nodule 
measuring 5–10 mm on their first screening chest CT [22]. 
Assisting in the detection of lung nodules is an important 
task in thoracic imaging, particularly in the context of mass 
screening.

The first CADe tools for the detection of pulmonary nod-
ules on chest CT were developed in the 2000s (Fig. 1). These 
tools were based on classical machine learning methods and 

Table 1  Pros and cons of 
radiomics and deep learning

Pros Cons

Radiomics
 Explainable Generalizability issues
 Require less data for training Radiomics signature to assess the same 

problem are often based on different 
parameters

Deep learning
 Often achieve better results Black box
 Better generalizability Require more data for training
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already had excellent sensitivity. In an ancillary study from 
the NELSON trial, Zhao et al. found that a commercially 
available CADe tool had a sensitivity of 96.7%, whereas 
double reading had only 78.1% sensitivity [23]. Nonetheless, 
these CADe tools are known to encounter a high number of 
false positives and insufficient performances for the detec-
tion of subsolid nodules (Fig. 2). Evaluating one of these 
early CADe tools, Bae et al. reported a sensitivity of 95.6% 
for the detection of pulmonary nodules nonetheless with a 
number of false positives per examination of 6.9 and 4.0 for 
detection sensitivity thresholds of 3 and 5 mm, respectively 
[24]. Regarding the detection of subsolid nodules, Benzak-
oun et al. showed that only 50% were detected with a sen-
sitivity adjusted for 3-mm nodule detection, at the average 
cost of 17 CAD marks per CT [25].

In recent years, several CADe tools based on deep 
learning have been developed. Either two-dimensional or 
three-dimensional CNN were used. These tools have been 
developed either on proprietary data or on publicly avail-
able databases. Several public databases have been released 
including the NLST dataset and the Lung Image Database 
Consortium Image collection (LIDC) [26]. The main advan-
tages of public databases are to allow a larger number of 
data scientists to work on the subject and to allow a per-
formance comparison between the proposed algorithms. Of 

the 1018 chest CTs from the LIDC dataset, 888 CTs had 
1,186 nodule annotations that were used by the Lung Nodule 
Analysis 2016 (LUNA16) challenge in which participants 
were invited to develop a CADe tool to automatically detect 
pulmonary nodules on CT [27]. The proposed algorithms 
achieved a sensitivity ranging between 79.3 and 98.3% at 
the respective costs of 1 and 8 false positives per CT. In a 
recent study, Masood et al. reported a deep learning-based 
CADe tool which was also developed from the LIDC data-
set; reaching 98.1% sensitivity for nodules ≥ 3 mm, with 
2.21 false positives per CT [28]. Other challenges for lung 
nodule detection have been organized, for example: the 
data challenge held at the annual congress of the French 
Society of Radiology in 2019 (Journées Francophones de 
Radiologie 2019). This challenge included 1237 chest CT 
examinations and participants were asked to develop AI 
models that detected lung nodules; calculating their volume 
after segmentation and classifying them as either: probably 
benign (volume < 100  mm3) or probably malignant (vol-
ume ≥ 100  mm3) nodules [29, 30].

Several deep learning-based tools are already commer-
cially available. These tools are expected to increase the 
adoption of CADe tools for lung nodule detection. Their 
sensitivity is generally greater than that of radiologists, but 
even if the number of false-positive per CT has decreased 

Fig. 1  Detection of a pulmonary solid nodule. A Axial chest CT 
image shows a 7 × 4 mm solid nodule (arrow) in the right lower lobe. 
B, C A first computer-aided detection (CADe) tool based on classical 
machine learning method correctly detects the nodule at the cost of 
four false positives (an example of a false positive is pointed in C). D, 
E A second CADe tool based on classical machine learning method 

also correctly detects the nodule at the cost of numerous false posi-
tives when the sensitivity is adjusted for 3-mm nodule detection (D) 
whereas there are no false positives when the threshold is set at 6-mm 
(E). F A deep learning-based CADe tool also correctly identifies the 
nodule with no false positives
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compared with previous CADe tools it remains a limiting 
factor. Li et al. evaluated a commercially available CADe 
tool on 346 patients in a lung-cancer screening program and 
found a greater detection rate compared to that of double 
reading (86.2% vs. 79.2%), however, the number of false-
positives per CT examination was also significantly greater 
(1.53 vs. 0.13; P < 0.001) [31]. For lung-cancer screening, 
these deep learning-based CADe systems could be used as 
a second, concurrent or first reader, or even as a stand-alone 
solution if their performance is confirmed as superior to that 
of expert radiologists [32]. It is important to note that dose 
reduction and iterative reconstruction parameters impact AI 
software in its ability to detect lung nodules. In a study using 
chest phantoms, Schwyzer et al. showed that the detection 
of ground-glass nodules decreased significantly when the 
radiation dose was decreased and it was also influenced by 
the level of iterative reconstruction [33].

Although chest radiography is not effective in lung-
cancer screening, assisting in the detection of lung nod-
ules on radiographs remains a task of major importance in 
daily practice. Several CADe tools have been developed for 
detecting major chest X-rays abnormalities, of those which 
include pulmonary nodules (Fig. 3). Yoo et al. evaluated a 
commercially available deep learning-based CADe on three 
chest X-rays from the NLST trial [34]. The sensitivity and 
specificity for detecting pulmonary nodules were not statisti-
cally different from those of radiologists. (86.2% vs. 87.7%; 
P = 0.80 and 85.0% vs. 86.7%; P = 0.42). However, when 
they only considered malignant nodules from the first round 

of the NLST, AI had a similar sensitivity to that of radiolo-
gists despite a lower specificity (94.1% vs. 94.1%; P > 0.99 
and 83.3% vs. 91.3%; P < 0.001 respectively). Using another 
commercially available deep learning-based CADe tool for 
lung nodule detection on chest X-ray, Sim et al. showed that 
the mean sensitivity of radiologists improved significantly 
from 65.1 to 70.3% (P < 0.001), and the number of false-
positive results per radiograph decreased significantly from 
0.20 to 0.18 (P < 0.001) when radiologists had access to 
AI results [35]. In their study, sensitivity of the CADe tool 
alone was 67.3% for 0.20 false-positive per radiograph [35].

Lung nodule segmentation 
and characterization

In daily practice, the strategy for characterizing pulmonary 
nodules is based primarily on their size, morphology and 
evolution over time. For incidentally detected nodules, the 
most commonly used guidelines are those of the Fleischner 
Society [36] and British Thoracic Society (BTS) [20]. The 
Fleischner guidelines are based on the mean diameter and 
type (solid or subsolid) of the nodule. By contrast, the BTS 
guidelines recommend volumetry rather than 2D- measure-
ments of the nodule and include clinical information through 
the Brock model [20]. The Brock model, which was devel-
oped using data from the Pan-Canadian Early Lung Can-
cer Detection Study, is designed to assess the likelihood 
of malignancy of pulmonary nodules [37]. It is based on 

Fig. 2  Detection of a pulmo-
nary ground-glass nodule. A 
Axial chest CT image shows a 
10 × 8 mm ground-glass nodule 
(arrow) in the right upper lobe. 
The ground-glass nodule is 
not detected by two different 
computer-aided detection tools 
based on classical machine 
learning methods (B and C) but 
is correctly detected by the one 
based on deep learning (D) 
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demographic characteristics, the presence of emphysema, 
as well as the size, shape and location of the nodule [37].

For lung-cancer screening, the American College of 
Radiology established the Lung-RADS classification (Lung 
CT Screening Reporting and Data System) [38], which is 
based on the diameter measurement similar to that used 
in the NLST. Whereas in Europe, the NELSON trial used 
another approach based on volumetry and the calculation 
of volume doubling times [22]. In line with the European 
position statement guidelines [39], three French scientific 
societies recommended the use of volumetry when evaluat-
ing lung nodules [40].

The first major application of AI tools in the characteriza-
tion of pulmonary nodules is therefore the segmentation of 
lung nodules. Accurate segmentation of pulmonary nodules 
is essential as it allows automated volume calculation. These 
measurements are used to decide the management of the 
nodule according to the guidelines previously mentioned 

and also to calculate the volume doubling time when a sub-
sequent follow-up CT examination is performed. Some AI 
tools dedicated to lung-cancer screening can not only auto-
matically detect and measure lung nodules but also suggest 
Lung-RADS categorization. This is done by combining the 
mean nodule diameter measurement and the nodule type 
(solid or not) (Fig. 4). Lancaster et al. recently evaluated 
this type of deep-learning tool in 283 participants from the 
Moscow lung-cancer screening program who had at least 
one solid lung nodule [41]. CT examinations were analyzed 
independently by five experienced thoracic radiologists. 
They were asked to determine whether each participant’s 
largest nodule measured < 100  mm3 (nodule classified as 
negative) or ≥ 100  mm3 (nodule classified as indeterminate/
positive). A consensus among radiologists was reached to 
determine the ground truth. The threshold of 100  mm3 for a 
solid nodule was chosen in accordance with the NELSON-
Plus protocol for pulmonary nodules detected by low-dose 

Fig. 3  Lung nodule detection on chest X-ray. Lung nodule seen on chest X-ray (A) is correctly detected by the deep learning-based computer-
aided detection tool (box with orange borders in B)

Fig. 4  Automated Lung-RADS 
classification. Automated lung 
nodule detection, volumetry 
and Lung-RADS classification 
using a deep-learning-based 
computer-aided detection tool 
in a patient who underwent an 
ultra-low-dose chest CT exami-
nation as part of a lung-cancer 
screening program
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CT [42]. The authors found that the AI tool had fewer nega-
tive misclassifications (i.e., nodules ≥ 100  mm3 misclas-
sified as nodules < 100  mm3) than four out of five expe-
rienced radiologists, however it resulted in more positive 
misclassifications (53 vs. 6 to 25). In another study, Jacobs 
et al. showed that using a dedicated viewer with automatic 
segmentation instead of a PACS-like viewer increased the 
interobserver agreement (Fleiss kappa = 0.58 vs. 0.66) and 
significantly decreased reading time (86 vs. 160 s; P < 0.001) 
[43]. Several morphology-based segmentation methods have 
been evaluated for lung nodule segmentation such as region 
growing and graph cut, however, deep-learning methods can 
also be used [44, 45]. Rocha et al. evaluated three different 
approaches for lung nodule segmentation: a conventional 
approach using the Sliding Band Filter and two deep-learn-
ing approaches, one using the very popular U-Net architec-
ture and the other using the SegU-Net architecture [46]. The 
models were trained on 2653 nodules from the LIDC dataset. 
Deep learning methods clearly outperformed the conven-
tional approach with Dice similarity coefficients of 0.830 for 
the U-net and 0.823 for the SegU-Net compared to 0.663 for 
the Sliding Band Filter [46]. Wang et al. proposed a different 
CNN architecture for the same task [47]. Their model was 
also trained on the LIDC dataset and they obtained perfor-
mances in the same ranges as Rocha et al. In their study, the 
Dice similarity coefficient ranged from 0.799 to 0.823 in the 
test dataset and external test datasets [47].

Another potential application of AI in the management of 
pulmonary nodules is the prediction of risk of malignancy 
based on the study of the nodule’s global characteristics 
rather than just its size. Several studies have been conducted 
to predict the risk of lung nodule malignancy using either 
a radiomics or a deep-learning approach [48–51]. Hawkins 
et al. used a radiomic approach on a subset of NLST par-
ticipants who had lung nodules (198 participants, 170 of 
whom had lung cancers) to predict which nodules would 
later become cancers [48]. Of the 219 three-dimensional 
radiomic features they extracted, 23 stable features were 
selected to build a model capable of predicting which nod-
ules would become cancerous at one and two years with 
accuracies of 80% (area under the curve [AUC] = 0.83) and 
79% (AUC = 0.75), respectively [48]. In a retrospective study 
of 290 patients from two institutions, Beig et al. found that 
adding radiomic features of the perinodular space to radi-
omic features of the intranodular space improved the AUC 
from 0.75 to 0.80 for distinguishing lung adenocarcinomas 
from granulomas on non-contrast chest CT [49]. In their 
study, a total of 1776 features were extracted from each soli-
tary pulmonary nodule, of which 12 were retained for each 
model. One of the concerns regarding the use of the radi-
omic approach is the lack of consistency between studies, 
notably for the characterization of pulmonary nodules [49]. 
Indeed, radiomic features retained by the machine learning 

models vary from one study to another. Emaminejad et al. 
evaluated the effects of several CT acquisitions and recon-
struction parameters on radiomic features [52]. In a cohort 
of 89 lung-cancer screening participants with a solid lung 
nodule, they found that the 226 radiomic features included, 
lacked interconditional reproducibility [52]. Furthermore, 
slice thickness, dose and reconstruction kernel had a major 
impact on feature reproducibility. In a study of 99 nodules 
in 170 patients who underwent full-dose and ultra-low-dose 
unenhanced chest CT, Autrusseau et al. evaluated the con-
sistency of a radiomic model for predicting the relative risk 
of lung nodule malignancy [53]. They used a research ver-
sion of a CADx tool that had been trained on the NLST 
dataset and only found a good but not perfect agreement 
(kappa = 0.60) for classifying nodules as “benign,” “inde-
terminate,” or “malignant” on full-dose and ultra-low-dose 
chest CT. These studies show that the impact of dose is an 
important issue for the generalizability of radiomic-based 
CADe tools in the setting of lung-cancer screening. In the 
NLST, low-dose chest CT examinations were performed at 
an effective dose of 1.5 mSv, but ultra-low-dose protocols 
with sub-mSv radiation doses are increasingly being used 
[54], especially for lung-cancer screening. In addition, fur-
ther dose reduction is expected in the coming years with the 
advent of photon-counting CT systems [55]. As shown by 
Emaminejad et al. reconstruction parameters also signifi-
cantly impact the results of radiomic-based approaches [52]. 
The impact of the recently introduced deep-learning image 
reconstruction algorithms on radiomics models has not yet 
been evaluated. These new reconstruction algorithms are 
known to reduce image noise and improve lesion detectabil-
ity [56]. Deep learning models are also influenced by image 
parameters. Hoang-Thi et al. reported that the choice of the 
reconstruction kernel had an impact on the performance of 
deep-learning models trained to segment diffuse lung dis-
eases [57]. They showed that deep-learning models perform 
better on images reconstructed with the same kernel which 
was used to reconstruct the images in the training dataset 
[52]. They also showed that combining the mediastinal and 
pulmonary kernels in the training dataset improves the per-
formance of the models.

Several studies have evaluated the use of deep-learning 
methods to predict the risk of lung nodule malignancy. For 
instance, Massion et al. used the NLST dataset (14,761 
benign and 932 malignant nodules) to develop their model, 
which they then tested on 2 independent external datasets 
[50]. They obtained AUCs of 0.835 and 0.919 to predict 
malignancy on external datasets, compared with 0.781 and 
0.819, respectively, for the Mayo model, which is a com-
monly used clinical risk model for incidental nodules. These 
results are better than those previously reported using a radi-
omics approach. According to the authors, a deep-learn-
ing model score above 65% indicates the need for tissue 
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sampling [50]. However, in the two independent external 
datasets on which they tested their model, this threshold 
would have resulted in an interventional procedure being 
performed in up to 21% of benign nodules. Ardila et al. also 
developed a deep-learning model on the NLST dataset, but 
instead of focusing on the characterization of pre-identified 
nodules, they aimed to build an end-to-end approach, per-
forming both localization and lung-cancer risk categoriza-
tion [51]. Their model was tested on a subset of 6716 indi-
viduals (86 positive for cancer) from the NLST dataset and 
on an independent dataset of 1139 individuals (27 positive 
for cancer), on which it obtained AUCs of 0.944 and 0.955, 
respectively [51]. Their model outperformed radiologists 
with absolute reductions of 11% in false positives and 5% in 
false negatives [51]. Their model was also trained to input 
the prior CT examination in addition to the current one. In 
this setting, the model performance was on-par with that of 
the radiologists [51]. Despite impressive results, these two 
studies show that current CADx systems do not yet outper-
form the clinical strategy which is based on close follow-up 
of suspected pulmonary nodules.

Lung cancer characterization 
and stratification

Several studies have evaluated whether AI could go beyond 
cancer detection and attempt to predict histological type or 
even the probability of treatment response or prognosis.

Virtual biopsy using AI may be of interest in frail patients 
for whom percutaneous biopsy is considered risky, espe-
cially before treatment with stereotactic radiotherapy, or to 
select the best surgical time for subsolid nodules. Indeed, 
subsolid nodules may correspond either to atypical adenom-
atous hyperplasia and adenocarcinoma in situ, both consid-
ered pre-invasive lesions, or to minimally invasive adenocar-
cinoma and invasive adenocarcinoma. Pre-invasive lesions 
and minimally invasive adenocarcinomas can be followed-up 
clinically whereas invasive adenocarcinoma requires sur-
gery. Although they all present as subsolid nodules, certain 
morphological characteristics are known to differ between 
these lesions [58]. Fan et al. developed a radiomic signature 
in 160 pathologically confirmed lung adenocarcinomas to 
differentiate invasive adenocarcinomas from non-invasive 
lesions manifesting as ground-glass nodules. Out of 355 
radiomic features extracted, two were retained to build their 
radiomic signature, which had an AUC ranging from 0.917 
to 0.971 in four independent datasets [59]. Wang et al. evalu-
ated a deep-learning approach to address the same ques-
tion [60]. They used a dataset of 886 ground-glass nodules 
and trained three different deep-learning algorithms. They 
obtained lower AUC s ranging from 0.827 to 0.941.

AI has also been used to non-invasively search for cer-
tain mutations that can impact therapeutic choices. For 
instance, epidermal growth factor receptor (EGFR) muta-
tion is strongly predictive of therapy response to anti-EGFR 
tyrosine kinase inhibitor therapy and programmed death-
ligand 1 (PD-L1) expression on tumors is a predictive bio-
marker for sensitivity to immunotherapy. EGFR-positive 
adenocarcinomas are more frequently found in women 
without centrilobular emphysema and are more frequently 
of smaller size with spiculated margins and with no associ-
ated lymphadenopathy [61]. Jia et al. developed and tested 
a radiomic signature to predict EGFR mutations in a cohort 
of 503 patients with lung adenocarcinoma who had received 
surgery [62]. They extracted 440 features of which 94 were 
retained and combined using a random forest classifier. They 
obtained an AUC of 0.802 to predict the presence of the 
mutation and the AUC was further improved to 0.828 by 
adding sex and smoking history, although the significance 
of this improvement was not assessed. For the same task, 
Wang et al. evaluated a deep-learning approach in a larger 
multicentric study [63]. They used data from 18,232 patients 
with lung cancer with EGFR gene sequencing taken from 
nine cohorts in China and the USA including a prospective 
cohort of 891 patients. Their model to predict EGFR muta-
tion, yielded an AUC ranging from 0.748 to 0.813 in the dif-
ferent cohorts (0.756 in the prospective cohort) [60]. When 
combing imaging and clinical data, the AUC raised to the 
range of 0.763–0.834 (0.788 in the prospective cohort) [63]. 
To predict immunotherapy response, several approaches 
have been tested. Sun et al. used a radiomic model to pre-
dict tumor infiltration by CD8 cells in patients treated by 
anti PD-1 or anti PD-L1 immunotherapy [64]. They used 
data from 135 patients with five types of cancer including 
lung cancer. Eight features including five radiomic features 
were retained to compose the radiomic signature which had 
an AUC of 0.67 predicting the abundance of CD8 cells [61]. 
This radiomic signature was associated with improved over-
all survival. By contrast, Trebeschi et al. constructed a radi-
omic signature to directly predict immunotherapy response 
in patients with advanced melanoma and non-small cell 
lung cancer [65]. They obtained an AUC of 0.66 to predict 
individual response for each lesion within the test dataset. 
By combining predictions made on individual lesions, they 
obtained significant performances in the prediction of over-
all survival for both tumor types (AUC = 0.76) [65].

Finally, in a stratification study, Hosny et al. used a deep-
learning approach for mortality risk stratification in patients 
with non-small cell lung cancer [66]. They used data from 
seven independent datasets across five institutions, includ-
ing publicly available datasets totaling 1194 patients. They 
trained three-dimensional CNN to predict 2-year overall sur-
vival from pre-treatment chest CT examinations in patients 
treated with radiotherapy or surgery. They obtained an AUC 
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of 0.70 for radiotherapy and 0.71 for surgery [66]. These 
models outperformed random forest models based on clini-
cal information (age, sex, and TNM stage) which had an 
AUC of 0.55 and 0.58 for radiotherapy and surgery, respec-
tively. By exploring the features captured by the CNN, they 
identified that the region that contributed most to the pre-
dictions was the interface between the tumor and stroma 
(parenchyma or pleura).

All these results show that images contain information 
that can help the characterization and stratification of lung 
cancer. However, the results of these CADx tools remain 
currently insufficient to replace biopsy in eligible patients 
or to prevent patients from receiving potentially effective 
treatment.

Conclusion

Lung cancer imaging is a very active research topic in AI. 
Many detection, characterization and stratification tools have 
been proposed and some of which are commercially avail-
able. The prospect of massive lung-cancer screening pro-
grams represents a major challenge in terms of patient vol-
ume and medical resources. AI-based tools will likely play 
an important role in limiting the medico-economic impact 
and allowing the largest possible population to benefit from 
efficient screening (i.e., with a minimal number of false 
negatives and false positives). To date, commercially avail-
able tools remain primarily CADe-type detection software.
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