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Abstract. In this work we explored the performance of a quantum-
enhanced support vector machine versus linear discriminant analysis,
for the classi�cation of electroencephalography (EEG) recordings. The
data were prepared and vectorized using Riemannian Geometry, a ubiq-
uitous method for EEG analysis. The results demonstrate that quantum
classi�cation achieved a good performance, although lower than the one
achieved with LDA. We conclude that quantum computation does not
provide an advantage as compared to classical computation for the clas-
si�cation of well-separable data. Further studies needs to investigate if
quantum computation could o�er an advantage in situations where clas-
sical classi�cation fails.
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1 Introduction

Litterature on quantum computing suggests it may o�er an advantage as com-
pared with classical computing in terms of computational time and outcomes,
such as for pattern recognition or when using limited training sets [14, 5].

A ubiquitous library on quantum computing is Qiskit [1]. Qiskit is an IBM
library distributed under Apache 2.0 which provides both quantum algorithms
and backends. A backend can be either your local machine or a remote machine,
which one can emulates or be a quantum machine. Qiskit abstraction over the
type of machine you want to use, make designing quantum algorithm seamless.

Qiskit implements a quantum version of support vector -like classi�er, known
as quantum-enhanced support vector classi�er (QSVC) [10]. QSVC likely o�ers
an advantage over classical SVM in situations where the classi�cation task is
complex. Task complexity is raised by the encoding of the data into a quantum
state, the number of available data and the quality of the data.

In [6], we suggested that quantum classi�cation might have a tremendous
potential for brain-computer interface relying on electroencephalography (EEG).
Based on this idea, we investigated the feasability of quantum classi�cation of
EEG signals [7], by using QSVC in combination with Riemannian Geometry -
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an ubiquitous framework for EEG analysis which have demonstrated excellent
results in international competition [12]. The study demonstrated the feasability
of such classi�cation thanks to Qiskit and pyRiemann [2], a python library for
the manipulation of time-series data using Riemannian Geometry.

In this paper, we compare the testing accuracy of QSVC as compared to
a standard classi�er based on discriminant linear analysis (LDA). The results
show that the performance of QSVC is correct (mean > 0.7), although the LDA
classi�er obtained a better score (mean 0.9). The article is organized as follows.
Fist section contains a description of the data. Second section describes our
method. Third section holds our results, conclusion and discussion.

2 Data

We used the `BI.EEG.2012-GIPSA` dataset recorded at GIPSA-lab (Saint-Martin-
d'Hères, France), which are freely available on Zenodo (Geneve, Switzerland) 1.

This dataset contains the (noninvasive) EEG recordings of 26 participants
(seven female) with a mean (SD) age of 24.4 (2.76) who attended a visual P300
TARGET / NON-TARGET experiment. The visual P300 is an endogenous ERP
peaking at 240�600 ms after the appearance of a visual stimulation on screen.
Unlike short-latency exogenous components, which are automated and sensory
responses to a stimulation, endogenous components re�ect a neural processing,
which is solely task-dependent [13]. In particular, the P300 is elicited by the
appearance of an improbable and highly distinct stimulation (i.e., the oddball
paradigm).

The participants played Brain Invaders, a BCI version of the famous vintage
game Space Invaders (Taito, Tokyo, Japan), consisting of 36 aliens displayed
in a 6 Ö 6 matrix. The participants' task consisted of counting the number
of �ashes of a TARGET alien, which was designated at the beginning of each
set of eight repetitions. In the Brain Invaders P300 paradigm, a repetition is
composed of 12 �ashes, of which two include the TARGET alien and 10 do not
(NON-TARGET). For each participant, there were a total of eight randomly
prede�ned TARGET aliens. Therefore, a total of (resp.) 128 (8 Ö 8 Ö 2) and
640 (8 Ö 8 Ö 10) TARGET and NON-TARGET trials were recorded for each
participant during the experiment

EEG signals were acquired using a NeXus-32 biofeedback system (MindMe-
dia, Herten, Germany), consisting of a research-grade ampli�er and a EEG cap.
The cap was equipped with 16 Silver/Silver Chloride wet electrodes placed ac-
cording to the 10-20 international system (F7, F3, F4, F8, T7, C3, CZ, C4, T8,
P7, P3, PZ, P4, P8, O1 and O2), with FZ as a ground. Note that the NeXus-32
headset does not use an electrode as a reference; rather, a hardware common
average reference is used.

The ampli�er was linked by USB connection to the PC where the data were
acquired by means of the software OpenVibe [15]. Data were acquired at a sam-
pling frequency of 128 samples per second. For ensuing analysis, the application

1 https://zenodo.org/record/2649069
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tagged the EEG using software tagging. The tags were sent by the application
to the OpenVibe plateform thanks to the Boost inter-process messaging 3. Note
that the tagging process introduces a jitter and a latency which arti�cially mod-
ify the ERPs onset. These belong to the hardware and software components
of the experiment. In particular, a disadvantage of software tagging is a strong
drift over time, resulting in higher jitter. As a consequence, it is only possible to
compare the ERP acquired within the same experimental conditions when the
latency is not corrected [8].

A complete description of the dataset is available in [17].

3 Methods

Data were �ltered between 1 and 24 Hz using a zero-phase IR �lter with a ham-
ming window. We extracted all TARGET (n = 128) and NON-TARGET (n =
640) epochs starting from 100 ms to 700 ms after the onset of stimulation, and
applied a spatial �lter using xDAWN (number of �lters = 2) [16]. The number
of �lter was determined using a trial -error approach. The use of a spatial �lter
allowed us to reduce the epochs' dimensionality (and therefore the computation
time), while improving the signal-to-noise ratio. We then transformed epochs
into symmetric positive de�nite (SPD) correlation matrices using the method
described in [9]. The matrices contained 64 elements (8 Ö 8). Considering the
Riemannian geometry of SPD matrices, we vectorized these matrices by projec-
tion into the tangent space of the Riemannian manifold [4]. All vectors contained
36 elements (8 x [8 + 1] / 2). We �nally applied a principal component analysis
to reduce the size of the feature vectors from 36 to 10 elements. The limit of
10 elements was set considering the computational limitation of the quantum
emulator.

Data were linearly entangled using a second-order Pauli-Z evolution cir-
cuit (the so-called ZZFeatureMap in Qiskit). The number of repetitions for the
ZZFeatureMap was set to 2 and the number of shots was set to 1024. The quan-
tum computer was emulated using QasmSimulator [1]. Data entanglement was
only required for QSVC.

Data were then passed as input to a QSVC and LDA classi�er.

Performance assessment The performance of QSVC and LDA was assessed with
�ve-fold cross validation and measured using the area-under the curve of the clas-
si�er. To avoid implementation biases, performance was assessed within MOABB
[11, 3], a BCI benchmark for reproducible. The code for this paper is available
online 2

3 https://theboostcpplibraries.com/
2 https://github.com/pyRiemann/pyRiemann-qiskit/blob/main/examples/ERP/classify_P300_bi.py
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4 Results, Conclusion and discussion

Results Figure 1 contains the scatter plot of the results obtained with our two
pipelines (Riemannian Geometry plus either QSVC or LDA). The AUC was 0.88
and 0.72 for the classical and quantum pipeline respectively.

Fig. 1. Scatter plots: AUC as a function of the pipeline, that is Riemannian Geometry
plus quantum (RG+QuantumSVM) or classical (RG+LDA) computation. Each point
corresponds to a participant in the datasets (26 + 24 subjects in total).

Conclusion and discussion The results suggests that QSVC achieved a good per-
formance, but still lower than a standard pipeline with LDA. However classical
classi�ation already provided good results with the data. In order to demon-
strate a quantum advantage, it would have been better to include data where
the classical classi�cation failed. In addition, the hyper parameters of the model
such as the number of shots and the entanglement methods was chosen arbitrary
as we experienced computational issues with the simulator. In fact, it is possible
that with a set of parameters chosen through a systematic method, the results
would have been better.

Finally, our pipelines rely on the vectorization of the input matrices using
the tangent space of the riemanian manifold. Vectorization implies dimension-
ality reduction and therefore loss of information. It exists other algorithms as
minimum-distance-to-means (MDM) that directly take matrices as an input. The
MDM algorithm is an optimization problem and thereby can be espressed using
constraing programming. Qiskit directly accepts constraint programming mod-
els to solve binary and unconstrainted optimization problems. One possible axe
of research is to implement a convex model of the MDM which respects Qiskit
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contraints (binary and unconstrained variables), or to enable Qiskit optimization
to solve problems containing continuous variables.
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