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Abstract

Decision trees have long been recognized as models of choice in sensitive ap-
plications where interpretability is of paramount importance. In this paper, we ex-
amine the computational ability of Boolean decision trees for the explanation pur-
pose. We focus on both abductive explanations (suited to explaining why a given
instance has been classified as such by the decision tree at hand) and on contrastive
explanations (suited to explaining why a given instance has not been classified by
the decision tree as it was expected). More precisely, we are interested in deriving,
minimizing, and counting abductive explanations and contrastive explanations. We
prove that the set of all irredundant abductive explanations (also known as PI-
explanations or sufficient reasons) for an instance given a decision tree can be
exponentially larger than the size of the input (the instance and the decision tree).
Therefore, generating the full set of sufficient reasons for an instance can be out
of reach. In addition, deriving a single sufficient reason, though computationally
easy when dealing with decision trees, does not prove enough in general; indeed,
two sufficient reasons for the same instance may differ on many features. To deal
with this issue and generate synthetic views of the set of all sufficient reasons, we
define notions of relevant features and of necessary features that characterize the
(possibly negated) features appearing in at least one or in every sufficient reason
for an instance, and we show that they can be computed in polynomial time. We
also introduce the notion of explanatory importance, that indicates how frequent
each (possibly negated) feature is in the set of all sufficient reasons. We show how
the explanatory importance of a (possibly negated) feature and the number of suf-
ficient reasons for an instance can be obtained via a model counting operation,
which turns out to be practical in many cases. We also explain how to enumerate
minimum-size sufficient reasons. We finally show that, unlike sufficient reasons,
the set of all contrastive explanations for an instance given a decision tree can be
derived, minimized and counted in polynomial time.

*This is an extended and revised version of a selected paper (in French) from EGC’22.

1



1 Introduction
In essence, explaining a decision is to give the details or reasons that help the person
who asked for an explanation (known as the explainee) (1) understand why the decision
has been made. The explanation issue is of tremendous significance, especially when
decisions are predictions made by Machine Learning (ML) classifiers. For such AI sys-
tems, with any data instance x considered at input, the ML model f outputs a decision
that is a predicted class f(x). When dealing with binary classifiers, which is what we
do in this paper, two classes are possible: 1 for the instances classified as positive, and
0 for the negative ones.

Unsurprisingly, with the growing number of applications that rely on ML tech-
niques, researches on eXplainable AI (XAI) have become increasingly important (see
for instance (1; 2; 3; 4; 5; 6; 7; 8; 9; 10)). Actually, ML models with high prediction
performance are often considered as poorly explainable (11; 12; 13; 14), and when the
ability of delivering explanations is critical, a trade-off between the accuracy of the
model and its explainability must be looked for (12; 15). Especially, most approaches
to XAI that deal with black-box classifiers are of heuristic nature. They typically focus
on a surrogate model instead of the black-box classifier at hand. As a consequence,
the explanations of the predictions that are generated can be at the same time rele-
vant to the surrogate model and irrelevant to the black-box classifier itself (see e.g.,
(16; 17)). Such approaches cannot be used in any high-risk context since they deliver
model-agnostic explanations that can be unsound (18). This means that one can find
counterexamples x′ for such explanations. More precisely, given an instance x and an
explanation for the prediction made f(x), there may exist other instances x′ sharing
the same explanation as the one for x but such that f(x′) ̸= f(x) (19). When this
happens, the ”explanation” that is computed can hardly be considered as explaining
the prediction f(x) since the same explanation would also work for a distinct predic-
tion f(x′). In particular, the explainee cannot take advantage of such explanations to
derive sound conclusions about the predictions made by the classifier. Unfortunately,
such a scenario is not unfrequent. Indeed, it has been shown in (20) that the amount
of counterexamples can be high when using some of the most popular approaches for
computing model-agnostic explanations, namely LIME (21), Anchors (22), and SHAP
(8).

Whatever the way x has been classified (positive or negative), an explainee may
seek for explanations from two distinct types (1). On the one hand, abductive explana-
tions (23)1 for x are intended to explain why x has been classified in the way it has
been classified by the ML model (thus, addressing the “Why?” question); on the other
hand, the purpose of contrastive (also known as counterfactual) explanations for x is
to explain why x has not been classified by the ML model as the explainee expected
it (thus, addressing the “Why not?” question) (24). In both cases, explanations that are
as simple as possible are often preferred (where simplicity is modeled as irredundancy,
or even as size minimality). Clearly, every instance has an abductive explanation and a

1Unlike (24), we do not require abductive explanations to be always minimal w.r.t. set inclusion. The
notion of abductive explanations considered here correspond to so-called weak abductive explanations in
(25).
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contrastive explanation2 given a binary classifier. In particular, every ML model asso-
ciates with any given instance x an abductive explanation, referred as the direct reason
for x, that is induced from the way the model classifies x. This direct reason may co-
incide with x (in that case, it is not so helpful), but it may also be simpler than x, as it
is the case for decision trees.

Although there is no consensual view of what of interpretability means (26), deci-
sion trees (27; 28) are arguably among the most interpretable ML models for classifica-
tion problems. Because of their interpretability, decision trees are often considered as
target models for distilling black-box models into more comprehensible ones (29; 2).
Furthermore, decision trees are often the components of choice for building (less in-
terpretable, but potentially more accurate) ensemble classifiers, such as random forests
(30) and gradient boosted trees (31).

The interpretability of decision trees is mainly endowed with two key characteris-
tics. On the one hand, decision trees are transparent: each node in a decision tree has
some meaning, and the principles used for generating all nodes can be explained. On
the other hand, decision trees are locally explainable: by construction of a decision tree
T , any input instance x is mapped to a unique root-to-leaf path that yields to a decision
label. The subset of (positive and negative) features tTx occurring in the path used to
find the right label 1 or 0 (in the binary classification case) for x in the decision tree
T is called the path-restricted explanation for x (32), and it is the direct reason for
classifying x as a positive instance or as a negative instance given T . Notably, tTx is an
abductive explanation for x given T , which explains why x has been classified by T as
it has been classified. Indeed, every instance x′ that coincides with x on tTx is classified
by T in the same way as x. However, such direct reasons can contain arbitrarily many
redundant features (32). This motivates to take account for other types of abductive
explanations in the case of decision trees, namely, sufficient reasons (33) (also known
as prime implicant explanations (34)), that are irredundant abductive explanations, and
among them, minimum-size sufficient reasons.

Beyond these characteristics, the interpretability of decision trees can be assessed
in a more formal way by focusing on a set of XAI queries of interest. In such a setting,
an ML model is said to offer a given XAI query when there exists a polynomial-time
algorithm for answering the query given the model. The more XAI queries offered,
the more interpretable the ML model. Following this line of research, (35) points out
a number of XAI queries (including both explanation and verification queries). As to
explanation queries, the authors consider the issue of generating a sufficient reason
and the issue of generating a minimum-size contrastive explanation. They identify a
number of conditions about the representation of the Boolean classifier f at hand that
prove sufficient to ensure that the XAI queries are tractable. Then (36) shows that the
decision tree model satisfy those conditions, so that, as a consequence, it offers the XAI
queries considered in (35). Notably, the authors also show that many other ML models
(including decision lists, random forests, and boosted trees) do not offer any of the
queries. Altogether, this shows on a formal basis that decision trees can be considered
as a challenging ML model whenever interpretability is a crucial requirement.

In this paper, we focus on explanation queries for Boolean decision trees in a for-

2Unless f is a constant function, mapping every instance x to the same label.
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mal XAI perspective. The abductive explanations and the contrastive explanations we
consider are thus sound. We examine the computational ability of Boolean decision
trees in deriving, minimizing and counting sufficient reasons and contrastive explana-
tions. Each of those tasks can be viewed as an additional XAI query. We prove that
the set of all sufficient reasons for an instance given a decision tree can be exponen-
tially larger than the size of the input. When this is the case, generating the full set
of sufficient reasons (i.e., the complete reason for the instance (33)) is typically out
of reach. Furthermore, when computing this set is feasible but the set is large enough,
the explainability issue is not dealt with since it would not really make sense to report
hundreds explanations to the explainee (they would not be able to take advantage of
them as a whole because of their cognitive limitations). However, computing a single
sufficient reason, though tractable for decision trees, does not prove enough in general;
indeed, two sufficient reasons for the same instance may differ on every feature. To
deal with this issue and generate synthetic views of the set of all sufficient reasons,
we define notions of relevant features and of necessary features that characterize the
(possibly negated) features appearing in at least one or in every sufficient reason, and
we show that they can be computed in polynomial time. We also introduce the notion
of explanatory importance, that indicates how frequent each (possibly negated) feature
is in the set of explanations. Though deriving the explanatory importance of a (possi-
bly negated) feature in the set of sufficient reasons and determining the cardinality of
this set are two computationally demanding tasks, we show how they can be achieved
thanks to a model counting operation, which turns out to be practical in many cases.
We also explain how to enumerate minimum-size sufficient reasons, which is a way
to count them when they are not too numerous. We finally show that, from a com-
putational standpoint, contrastive explanations highly depart from sufficient reasons.
Indeed, the set of all contrastive explanations for an instance given a decision tree can
be computed in polynomial time. As a consequence, such explanations can also be
minimized and counted in polynomial time.

The rest of the paper is organized as follows. Preliminaries about Boolean func-
tions, decision trees, abductive reasons, and contrastive explanations are given in Sec-
tion 2. The computation of all sufficient reasons is considered in Section 3. Necessary
and relevant features are presented in this section, as well as the approach for assessing
the explanatory importance of a feature w.r.t. sufficient reasons and for counting the
number of sufficient reasons. We also explain there how minimum-size sufficient rea-
sons can be enumerated. An algorithm for computing all the contrastive explanations
for the instance given the decision tree is presented in Section 4. Experimental results
are reported in Section 5. Section 6 concludes the paper. For the sake of readability, all
the proofs are reported in a final appendix.

2 Formal Preliminaries

2.1 Boolean Functions
For an integer n, let [n] be the set {1, . . . , n}. By Fn we denote the class of all Boolean
functions from {0, 1}n to {0, 1}, and we use Xn = {x1, . . . , xn} to denote the set
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of input Boolean variables, corresponding to the features under consideration. Any
assignment x ∈ {0, 1}n is called an instance. If f(x) = 1 for some f ∈ Fn, then x
is called a model of f . x is a positive instance when f(x) = 1 and a negative instance
when f(x) = 0.

We refer to f as a propositional formula when it is described using the Boolean con-
nectives ∧ (conjunction), ∨ (disjunction), and ¬ (negation), together with the Boolean
constants 1 (true) and 0 (false). Other connectives, like material implication → can
also be considered. As usual, a literal ℓ is a variable xi (a positive literal) or its nega-
tion ¬xi, also denoted xi (a negative literal). xi and xi are complementary literals.
A positive literal xi is associated with a positive feature (i.e., xi is set to 1), while a
negative literal xi is associated with a negative feature (i.e., xi is set to 0). A term (or
monomial) t is a conjunction of literals, and a clause c is a disjunction of literals. A
term is usually viewed as a (conjunctively-interpreted) set of literals, while a clause
is viewed as a (disjunctively-interpreted) set of literals. A DNF formula is a disjunc-
tion of terms and a CNF formula is a conjunction of clauses. Often, a DNF formula is
viewed as a (disjunctively-interpreted) set of terms, while a CNF formula is viewed as
a (conjunctively-interpreted) set of clauses. The set of variables occurring in a formula
f is denoted Var(f). A formula f is consistent if and only if it has a model. A CNF
formula is monotone whenever every literal over a given variable in the formula has the
same polarity (i.e., whenever a literal occurs in the formula, the complementary literal
has no occurrence in the formula). A formula f1 implies a formula f2, noted f1 |= f2, if
and only if every model of f1 is a model of f2. Two formulae f1 and f2 are equivalent,
noted f1 ≡ f2 whenever they have the same models.

Given an assignment z ∈ {0, 1}n, the corresponding term is defined as

tz =

n∧
i=1

xzi
i where x0

i = xi and x1
i = xi

A term t covers an assignment z if t ⊆ tz . An implicant of a Boolean function f is a
term that implies f . A prime implicant of f is an implicant t of f such that no proper
subset of t is an implicant of f . Dually, an implicate of a Boolean function f is a clause
that is implied by f , and a prime implicate of f is an implicate c of f such that no
proper subset of c is an implicate of f .

Let us illustrate the previous notions on the following example:

Example 1. The DNF formula f1 = (x1 ∧ x2) ∨ (x2 ∧ x3) and the CNF formula
f2 = (x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) represent two Boolean functions from F3. We have
Var(f1) = Var(f2) = {x1, x2, x3}. f and g are consistent since x = (1, 1, 1) is
a model of f1 and a model of f2. f2 is monotone while f1 is not since f1 contains
an occurrence of the positive literal x2 and an occurrence of the negative literal x2

(which is complementary to x2). We can see that f1 implies f2, but f1 and f2 are
not equivalent since f2 does not imply f1. Indeed, (0, 1, 0) is a model of f2 but not
a model of f1. The term x1 ∧ x3 is an implicant of f1 that covers x since the set of
literals {x1, x2, x3} corresponding to tx is a superset of the set of literals {x1, x3}.
More specifically, x1 ∧ x3 is a prime implicant of f1 since neither x1 nor x3 is an
implicant of f1. f1 has three prime implicants: x1 ∧ x2, x2 ∧ x3, and x1 ∧ x3. The
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Figure 1: A decision tree T for recognizing Cattleya orchids. The left (resp. right) child
of any decision node labelled by xi corresponds to the assignment of xi to 0 (resp. 1).

clause x1 ∨ x2 ∨ x3 is an implicate of f2, but not a prime one, since the clause x1 ∨ x2

is an implicate of f2. In fact, x1 ∨ x2 is the unique prime implicate of f2.

2.2 Decision Trees, Abductive and Contrastive Explanations
With these basic notions in hand, we now focus on the following representation class
of Boolean functions:

Definition 1 (Decision Tree). A (Boolean) decision tree over Xn is a binary tree T ,
each of whose internal nodes is labeled with one of n input Boolean variables from
Xn, and whose leaves are labeled 0 or 1. Every variable is assumed (without loss of
generality) to appear at most once on any root-to-leaf path (read-once property). The
value T (x) ∈ {0, 1} of T on an input instance x is given by the label of the leaf
reached from the root as follows: at each node, go to the left or right child depending
on whether the input value of the corresponding variable is 0 or 1, respectively. The
size of T , denoted |T |, is given by the number of its nodes.

The class of decision trees over Xn is denoted DTn. It is well-known that any de-
cision tree T ∈ DTn can be transformed in linear time into an equivalent disjunction
of terms, denoted DNF(T ), where each term corresponds to a path from the root to a
leaf labeled with 1. Dually, T can be transformed in linear time into a conjunction of
clauses, denoted CNF(T ), where each clause is the negation of the term describing a
path from the root to a leaf labeled with 0.

For illustration, the following toy example will be used throughout the paper as a
running example:

Example 2. The decision tree in Figure 1 separates Cattleya orchids from other or-
chids using the following features: x1: “has fragrant flowers”, x2: “has one or two
leaves”, x3: “has large flowers”, and x4: “is sympodial”.
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A DNF representation of T is given by

DNF(T ) = {x1 ∧ x2 ∧ x3 ∧ x4, x1 ∧ x2 ∧ x3 ∧ x4, x1 ∧ x2 ∧ x3 ∧ x4,

x1 ∧ x2 ∧ x3 ∧ x4, x1 ∧ x2 ∧ x3 ∧ x4}. (1)

Dually, a CNF representation of T is given by

CNF(T ) = {x1 ∨ x2, x1 ∨ x2 ∨ x3, x1 ∨ x2 ∨ x3 ∨ x4, x1 ∨ x2 ∨ x3 ∨ x4,

x1 ∨ x2 ∨ x3 ∨ x4, x1 ∨ x2 ∨ x3 ∨ x4, x1 ∨ x2 ∨ x3 ∨ x4}. (2)

As a salient characteristic, decision trees convey a single explicit abductive expla-
nation for classifying any input instance: its direct reason. In general, this reason differs
from the instance itself (but may nevertheless coincide with it in some cases).

Definition 2 (Direct Reason). Let T ∈ DTn and x ∈ {0, 1}n. The direct reason for x
given T is the term, denoted tTx , corresponding to the unique root-to-leaf path of T that
is compatible with x, i.e., the path-restricted explanation for x given T (32).

Another important notion of abductive explanations corresponds to the following
concept of sufficient reason (33).

Definition 3 (Sufficient Reason). Let f ∈ Fn and x ∈ {0, 1}n such that f(x) = 1
(resp. f(x) = 0). A sufficient reason for x given f is a prime implicant t of f (resp.
¬f ) that covers x. sr(x, f) denotes the set of sufficient reasons for x given f .

Thus, a sufficient reason (33) (also known and introduced as prime implicant ex-
planation (34)) for an instance x given a class described by a Boolean function f is
a subset t of the characteristics of x that is minimal with respect to set inclusion, and
such that any instance x′ sharing this set t of characteristics is classified by f as x is.
Thus, when f(x) = 1, t is a sufficient reason for x given f if and only if t is a prime
implicant of f such that t covers x, and when f(x) = 0, t is a sufficient reason for x
given f if and only if t is a prime implicant of ¬f such that t covers x. Accordingly,
sufficient reasons are suited to explain why the instance at hand x has been classified
by f as it has been classified.

Unlike sufficient reasons that are subset-minimal abductive explanations, direct rea-
sons may contain arbitrarily many redundant features, even in the case f is represented
by a decision tree (32). This explanation redundancy can be arbitrarily large and it is
observed frequently in practice, even when optimal (size-minimal) decision trees are
considered (37).

When considering the sufficient reasons of the input instance, one may be interested
in focusing on the shortest ones, referred to as minimum-size sufficient reasons. Those
reasons are valuable since conciseness is often a desirable property of explanations
(Occam’s razor). Formally:

Definition 4 (Minimum-size Sufficient Reason). Let f ∈ Fn and x ∈ {0, 1}n. A
minimum-size sufficient reason for x given f is a sufficient reason for x given f that
contains a minimal number of literals.
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Finally, unlike direct and (possibly minimum-size) sufficient reasons that aim to
explain the classification of the instance x under consideration as achieved by the clas-
sifier f , contrastive explanations are valuable when x has not been classified by f as
expected by the explainee (1). In this case, one looks for minimal subsets of the features
(w.r.t. set inclusion) that when switched in x are enough to get instances that are classi-
fied positively (resp. negatively) by f if x is classified negatively (resp. positively) by
f . Note that computing contrastive explanations can also be useful when x has been
classified by f as expected by the explainee. Indeed, whatever the expectations of the
explainee, contrastive explanations make precise how to minimally change instances
to get a different prediction. As such, they somehow indicate how much robust the
prediction achieved can be considered (38; 35).

Formally, a contrastive explanation for x given f (24) is a subset t of the charac-
teristics of x that is minimum w.r.t. set inclusion among those such that at least one
instance x′ that coincides with x except on the characteristics from t is not classified
by f as x is.

Definition 5 (Contrastive Explanation). Let f ∈ Fn and x ∈ {0, 1}n such that f(x) =
1 (resp. f(x) = 0). A contrastive explanation for x given f is a term t over Xn such
that t ⊆ tx, tx \ t is not an implicant of f (resp. ¬f ), and for every ℓ ∈ t, t \ {ℓ} does
not satisfy this last condition.

Just like for sufficient reasons, one can be interested in focusing on the shortest
contrastive explanations:

Definition 6 (Minimum-size Contrastive Explanation). Let f ∈ Fn and x ∈ {0, 1}n.
A minimum-size contrastive explanation for x given f is a contrastive explanation for
x given f that contains a minimal number of literals.

Example 3. Based on our running example, we can observe that T (x) = 1 for the
instance x = (1, 1, 1, 1) and that T (x′) = 0 for the instance x′ = (0, 0, 0, 0). The
direct reason for x given T is the term tTx = x1 ∧ x2 ∧ x3 ∧ x4. It coincides with the
term tx. Contrastingly, the direct reason for x′ given T is the term tTx′ = x1 ∧ x2,
that does not coincide with tx′ = x1 ∧ x2 ∧ x3 ∧ x4. x1 ∧ x4 and x2 ∧ x3 ∧ x4

are the sufficient reasons for x given T . x1 ∧ x4 is the unique minimum-size sufficient
reason for x given T . x4, x1 ∧ x2, and x1 ∧ x3 are the sufficient reasons for x′ given
T . x4 is the unique minimum-size sufficient reason for x′ given T . x4, x1 ∧ x2, and
x1 ∧ x3 are the contrastive explanations for x given T . Thus, the instance (1, 1, 1, 0)
that differs with x only on x4 is not classified by T as x is ((1, 1, 1, 0) is classified as a
negative instance). x4 is the unique minimum-size contrastive explanations for x given
T . x1 ∧ x4 and x2 ∧ x3 ∧ x4 are the contrastive explanations for x′ given T . Thus, the
instance (1, 0, 0, 1) that differs with x′ only on x1 and x4 is not classified by T as x′

is ((1, 0, 0, 1) is classified as a positive instance). x1 ∧ x4 is the unique minimum-size
contrastive explanations for x′ given T .

We mention in passing that when dealing with decision trees T , we could have
focused only on explanations for the positive instances x given T . This comes from the
fact that DTn is closed under negation, in the sense that for any T ∈ DTn, a decision tree
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equivalent to ¬T can be obtained by just replacing from T the label of each leaf with its
complement. So, for any instance x ∈ {0, 1}n, a direct reason (resp. sufficient reason,
minimum-size sufficient reason, contrastive explanation) explaining why T (x) = 0 is
precisely the same as a direct reason (resp. sufficient reason, minimum-size sufficient
reason, contrastive explanation) explaining why (¬T )(x) = 1. Considering T or its
negation ¬T has no computational impact since ¬T can be computed in time linear in
the size of T .

3 Computing All Sufficient Reasons
Sufficient reasons can be exponentially numerous When switching from the di-
rect reason for an instance (that is unique but, in general, not redundancy-free) to its
sufficient reasons, a main obstacle to be dealt with lies in the number of reasons to
be considered. Indeed, even for the restricted class of decision trees with logarithmic
depth, an input instance can have exponentially many sufficient reasons:

Proposition 1. There is a decision tree T ∈ DTn of depth log2(n + 1) such that for

any x ∈ {0, 1}n, the number of sufficient reasons for x given T is at least ⌊ 3
2

n+1
2 ⌋.

In many practical cases, the number of sufficient reasons for an instance given
a decision tree can be very large. Thus, Figure 3 shows an mnist49 instance (the
leftmost subfigure) that has been considered in our experiments. A decision tree with
high accuracy (see Section 5) has been learned for this dataset, and the instance has
569,351,040 sufficient reasons given this decision tree.

Several algorithms for generating the set of all sufficient reasons for an input in-
stance given a decision tree have been designed so far (see (37) for a brief survey).
Notably, based on the evidence that the set sr(x, T ) of all sufficient reasons for x
given T coincides with the set of prime implicants of the quantified Boolean formula

∀{ℓ : ℓ ∈ tx} · CNF(T )

where every literal of tx is universally quantified in CNF(T ), together with the fact
that a monotone CNF formula equivalent to CNF(T ) can be obtained by removing from
every clause c of CNF(T ) every literal not belonging to tx (see Proposition 21 and
Theorem 10 from (39)), one can take advantage of the quasi-polynomial time algorithm
of Gurvich and Khachiyan (40) for an incremental enumeration of the prime implicants
of a monotone CNF formula in order to derive sr(x, T ) with the same computational
guarantees. Note however that the existence of an enumeration algorithm for sufficient
reasons satisfying strong computational requirements about the enumeration process
(e.g., incremental polynomial time, or even output polynomial time) is unlikely (41).

Another noteworthy observation is that, in the worst case, the sufficient reasons
for a given instance may differ on every feature. For instance, consider the Boolean
function f given by the decision tree T reported on Figure 2. f is equivalent to x1∨x2.
The direct reason for x = (1, 1) given T is x1, and it is a sufficient reason for x.
However, x also has another sufficient reason given T , namely x2. Such a diversity of
the sufficient reasons for the same instance has also been pointed out in (37).

9
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Figure 2: A decision tree T equivalent to x1 ∨ x2.

Figure 3: A mnist49 instance (on the left), then (from left to right) two sufficient
reasons for it, including a minimum-size one (the leftmost one out of the two) and an
explanatory heat map for the instance (the rightmost picture).

Thus, considering only a single sufficient reason for the input instance is not satis-
fying; indeed, the sufficient reason that is returned to the explainee may be considered
as bad by her/him, even though a much better reason for the explainee might exist.

In practice, instances may have very dissimilar sufficient reasons. As an illustra-
tion, the two central subfigures of Figure 3 present two sufficient reasons for the same
instance, and one can observe that they differ on many features (blue (resp. red) dots
correspond to pixels on (resp. off)).

To sum up, on the one hand, computing the set of all the sufficient reasons for a
given instance is not always feasible in a reasonable amount of time. Furthermore, if
the computation succeeds but the cardinality of the set is huge, the (disjunctively in-
terpreted) set of sufficient reasons, equivalent to the complete reason for the instance
(33), can hardly be considered as intelligible by the explainee. On the other hand, be-
cause of the diversity that can be observed in the set of sufficient reasons, deriving one
sufficient reason, only, is not guaranteed to be informative enough. Thus, one needs to
design approaches to synthesizing the set of sufficient reasons while avoiding the two
pitfalls (the computational one and the informational one).

Synthesizing the set of sufficient reasons In this objective, the following notions of
necessary / (ir)relevant features appear useful. These notions of necessity and relevance
echo the ones that have been considered in (42) for logic-based abduction.

Definition 7 (Explanatory Features). Let f ∈ Fn, and x ∈ {0, 1}n be an instance. Let
e be an explanation type.3

• A literal ℓ over Xn is a necessary feature for the family e of explanations for x
given f if and only if ℓ belongs to every explanation t for x given f such that t

3For instance, e can be s when the sufficient reasons for x given f are targeted or c when the contrastive
explanations for x given f are targeted.
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is of type e. Nece(x, f) denotes the set of all necessary features for the family e
of explanations for x given f .

• A literal ℓ over Xn is a relevant feature for the family e of explanations for
x given f if and only if ℓ belongs to at least one explanation t for x given f
such that t is of type e. Rele(x, f) denotes the set of all relevant features for
the family e of explanations for x given f . Irre(x, f), which is the complement
of Rele(x, f) in the set of all literals over Xn, denotes the set of all irrelevant
features for the family e of explanations for x given f .

The necessary (resp. irrelevant) features for the family s of sufficient reasons for x
given f are the most (resp. less) important features for explaining the classification of
x by f , since they belong to every (resp. no) sufficient reason for x given f .

When a single sufficient reason t for x given f has been computed, the cardinality
of t deprived from the features of Necs(x, f) is small, and the cardinality of the sym-
metric difference between t and Rels(x, f) is small as well, t can be viewed as a good
representative of the complete reason for x given f in the sense that a sufficient reason
t′ for x given f that differs a lot from t cannot exist.

In the case when f is a decision tree T , though the set of all sufficient reasons
for x given T cannot be generated when it is too large, Necs(x, f), Rels(x, f), and
Irrs(x, f) can be derived efficiently:

Proposition 2. Let T ∈ DTn, and x ∈ {0, 1}n. Computing Necs(x, T ), Rels(x, T ),
and Irrs(x, T ) can be done in O((n+ |T |) · |T |) time.

We mention in passing that the task of deciding whether a given feature belongs
to a sufficient reason for an input instance is also referred to as the feature member-
ship problem (43). Though this problem is NP-hard for arbitrary Boolean classifiers,
it remains tractable for decision trees (43). This tractability result clearly coheres with
Proposition 2.

Going a step further consists in evaluating the explanatory importance of every
(positive or negative) feature:

Definition 8 (Explanatory Importance). Let f ∈ Fn, and x ∈ {0, 1}n be an instance.
Let e be an explanation type, and Ee(x, f) the set of all explanations for x given f
that are of type e. The explanatory importance of a literal ℓ over Xn for x given f w.r.t.
e is given by

Impe(ℓ,x, f) =
#({t ∈ Ee(x, f) : ℓ ∈ t})

#(Ee(x, f))
.

Example 4. Based on our running example, Necs(x, T ) = {x4} and Rels(x, T ) =
{x1, x2, x3, x4}. We also have Imps(x4,x, T ) = 1, Imps(x1,x, T ) = Imps(x2,x, T ) =
Imps(x3,x, T ) =

1
2 , and Imps(ℓ,x, T ) = 0 for every other literal ℓ (the negative ones

over {x1, x2, x3, x4}).4 As to x′, we have Necs(x
′, T ) = ∅ and Rels(x

′, T ) = {x1,
x2, x3, x4}. We also have Imps(x1,x

′, T ) = 2
3 , Imps(x2,x

′, T ) = Imps(x3,x
′, T ) =

4Note that by construction the explanatory importance Imps(ℓ,x, f) of ℓ for x given a Boolean classifier
f is equal to 0 when ℓ is not a literal of tx since the sufficient reasons for x given f are terms containing
only literals from tx.
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Imps(x4,x
′, T ) = 1

3 , and Imps(ℓ,x
′, T ) = 0 for every other literal ℓ (the positive

ones over {x1, x2, x3, x4}).

Importantly, the concept of explanatory importance must not be confused with the
notion of feature importance (which can be defined and assessed in many different
ways): the former is local (i.e., relative to an instance) and not global, it concerns lit-
erals and not variables (polarity matters), and it is about the explanation task, not the
prediction one.

In order to compute the explanatory importance of a literal, a straightforward ap-
proach consists in enumerating the explanations of Ee(x, f). This is feasible when this
set is not too large, but, as already mentioned, this is not always the case for sufficient
reasons even when f is a decision tree T . Thus, for dealing with the remaining case, an
alternative approach must be looked for.

Focusing on sufficient reasons, we designed such an approach for computing the
explanatory importance Imps(ℓ,x, T ) w.r.t. sufficient reasons of a literal ℓ for an in-
stance x given a decision tree T . This approach is given by Algorithm 1. As explained
previously, we know that sr(x, T ) is by construction the set of prime implicants of the
CNF formula C = {c ∩ tx : c ∈ CNF(T )}, which can be computed in time polyno-
mial in the size of T and the size of x. Then one can exploit the translation process
presented in (44) showing how to associate in polynomial time with a given CNF for-
mula (here, C) another CNF formula, say PIC, such that the models of PIC are in
one-to-one correspondence with the prime implicants of C. The translation leverages
Tseitin transformation (45), and requires auxiliary variables to be introduced. Every
auxiliary variable that is introduced is definable from the initial variables (46), so that
the number of models of the resulting CNF formula PIC is the same as the number
of prime implicants of C. In our case, the translation can be simplified because C is a
monotone CNF formula. Finally, we take advantage of the compiler D4 (47) to compile
PIC into a d-DNNF circuit (48) dDNNF , and this enables us to compute both the
number of sufficient reasons for x given T (it is given by #(dDNNF ), the number
of models of dDNNF ) and the explanatory importance of every literal ℓ ∈ tx (it is
the ratio of the number of sufficient reasons #({t ∈ Es(x, T ) : ℓ ∈ t}) for x given
T that contains ℓ – this number coincides with the number of models #(dDNNF |ℓ)
of dDNNF when conditioned by ℓ – divided by the number #(dDNNF ) of suffi-
cient reasons for x given T ). The compilation phase into d-DNNF is computationally
expensive in the general case, but the last step can be achieved in time polynomial in
the size of dDNNF . Indeed, the d-DNNF language supports in polynomial time the
model counting query and the conditioning transformation (49).

Example 5. Let us illustrate Algorithm 1 on our running example focusing on instance
x = (1, 1, 1, 1). Based on the CNF representation of T given in (2), we get

C = (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

∧ (x2 ∨ x4) ∧ (x3 ∨ x4) ∧ x4,

which can be simplified into the equivalent formula (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ x4 us-
ing unit propagation. Then PIC is obtained by conjoining C with the following im-
plications (one formula is generated per literal occurring in C): x1 → (x2 ∨ x3),

12



Algorithm 1: Computing the explanatory importance of literals w.r.t. sufficient reasons

Require: a decision tree T ∈ DTn and an instance x ∈ {0, 1}n
Ensure: the explanatory importance Imps of each literal from tx
C = {c ∩ tx : c ∈ CNF(T )}
▷ compute a CNF formula C such that the prime implicants of C are the sufficient reasons for x given T

PIC = CNF PI(C)
▷ translate C into a CNF formula PIC with models representing the prime implicants of C (44)

dDNNF = D4(PIC) ▷ compile PIC into a d-DNNF circuit dDNNF (48; 47)

for ℓ ∈ L do
Imps(ℓ,x, T ) =

#(dDNNF |ℓ)
#(dDNNF ) ▷ compute the explanatory importance of literals from tx

end for
return (Imps)

x2 → x1, and x3 → x1. Each implication makes precise conditions under which
the corresponding literal ℓ (the condition of the implication) participates in a prime
implicant of C, i.e., there exists a clause of C that is satisfied by ℓ but the clause
is not satisfied any longer if ℓ is removed. In the general case, the conclusion part
of each implication is a DNF formula (equivalent to the negation of all clauses of
C deprived from ℓ), so that the implication itself cannot be read directly as a CNF
formula: new variables must be introduced using Tseitin transformation to turn each
implication into a CNF formula that has the same consequences over the initial set
of variables as the corresponding implication. The resulting CNF formula is PIC.
On the example, it turns out that introducing new variables is useless since every im-
plication can be considered as a clause. Thus, one gets the CNF formula PIC =
(x1 ∨ x2) ∧ (x1 ∨ x3) ∧ x4 ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x1) ∧ (x3 ∨ x1). Finally, PIC
can be compiled into the d-DNNF circuit dDNNF given at Figure 4. This circuit
dDNNF has two models over {x1, x2, x3, x4}, namely (0, 1, 1, 1) and (1, 0, 0, 1).
Each of them corresponds (in a one-to-one way) with a sufficient reason for x given
T , given by the the literals of tx occurring in it. Thus, (0, 1, 1, 1) is associated with
x2 ∧ x3 ∧ x4, and (1, 0, 0, 1) is associated with x1 ∧ x4. The two sufficient reasons
for x given T are recovered, as expected. From dDNNF , we can easily compute the
explanatory importance of the literals ℓ occurring in tx by computing for each of them
the ratio #(dDNNF |ℓ)

#(dDNNF ) . As expected, we get Imps(x1,x, T ) =
1
2 , Imps(x2,x, T ) =

1
2 ,

Imps(x3,x, T ) =
1
2 , and Imps(x4,x, T ) = 1.

We will show in Section 5 that, despite a high complexity in the worst case (the size
of dDNNF can be exponential in |T |), this approach based on knowledge compilation
proves quite efficient in practice.

Clearly enough, when Imps(ℓ,x, T ) has been computed for every ℓ ∈ tx, one can
easily generate explanatory heat maps. The rightmost subfigure of Figure 3 gives the
explanatory heat map computed for the mnist instance corresponding to the leftmost
subfigure. This instance has 12 necessary literals and 105 relevant literals. Blue (resp.
red) pixels correspond to positive (resp. negative) literals in the instance, and the inten-
sity of the color aims to reflect the explanatory importance of the corresponding literal.
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Figure 4: A d-DNNF circuit representing the sufficient reasons for x given T .

This explanatory heat map gives a synthetic explanation as to why the corresponding
instance is recognized as a ”4”, and not as a ”9”. It suggests that the instance is a ”4”
because pixels ”closing the loop” of a ”9” and those forming the ”tail” of a ”9” are off.

Enumerating minimum-size sufficient reasons An approach to synthesizing the set
of sufficient reasons consists in focusing on the minimum-size ones. Indeed, though the
set of minimum-size sufficient reasons for an instance given a decision tree can also be
exponentially large (60), the number of minimum-size sufficient reasons cannot exceed
the number of sufficient reasons, and it can be significantly lower in practice.

It is known that a sufficient reason for an instance x given a decision tree T can be
generated in time polynomial in the size of the input (x and T ) using a greedy algorithm
(see e.g., (32)). Adding the minimum-size condition makes the problem intractable:

Proposition 3. (50) Let T ∈ DTn and x ∈ {0, 1}n. Computing a minimum-size suffi-
cient reason for x given T is NP-hard.

Despite this intractability result, minimum-size sufficient reasons can be generated
in many practical cases. A common approach for handling NP-optimization problems
is to rely on modern constraint solvers. One follows this direction here and casts the task
of finding minimal sufficient reasons as a Boolean constraint optimization problem. We
first need to recall that a PARTIAL MAXSAT problem consists of a pair (Csoft, Chard)
where Csoft and Chard are (finite) set of clauses. The goal is to find a Boolean assign-
ment that maximizes the number of clauses c in Csoft that are satisfied, while satisfying
all clauses in Chard.

Proposition 4. Let T be a decision tree in DTn and x ∈ {0, 1}n be an instance such
that T (x) = 1. Let (Csoft, Chard) be an instance of the PARTIAL MAXSAT problem
such that:

Csoft = {xi : xi ∈ tx} ∪ {xi : xi ∈ tx} and Chard = {c ∩ tx : c ∈ CNF(T )}.

The intersection of tx with tx∗ where x∗ is an optimal solution of (Chard, Csoft), is
a minimum-size sufficient reason for x given T .

Clearly enough, if x is such that T (x) = 0, then it is enough to consider the same
instance of PARTIAL MAXSAT as above, except that Chard = {c∩tx : c ∈ CNF(¬T )}.
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Interestingly, one can take advantage of the PARTIAL MAXSAT characterization
above for generating a preset number of minimum-size sufficient reasons via the use
of blocking clauses. Basically, the approach is as follows: one generates a first reason
t, then one adds to Chard the negation of t as a clause and we resume until the bound
is reached or no solution exists or the size of the last solution that has been generated
is strictly larger than the size of the first reason t that has been computed. To avoid the
latter test, after the generation of the first reason t, one can alternatively add to Chard a
CNF encoding of a cardinality constraint ensuring that the next reasons to be generated
have the same size as the one of t.

Finally, when dealing with instances x for which computing a minimum-size suffi-
cient reason t is too demanding in practice (i.e., the PARTIAL MAXSAT solver used to
compute it does not terminate in due time), one can relax the size minimality condition
about explanations and computes an abductive explanation h for x given T in polyno-
mial time, while ensuring some guarantees about the size of h. Indeed, the derivation
of a minimum-size reason t for an instance x given a decision tree T amounts to the
computation of a minimal hitting set t of the hypergraph with {c ∩ tx : c ∈ CNF(T )}
as set of hyperedges. The point is that a simple greedy algorithm running in O(n · |T |)
time can be exploited to derive a hitting set h of such a hypergraph: this algorithm
consists in choosing a literal ℓ of tx that belongs to a maximum number of clauses of
{c ∩ tx : c ∈ CNF(T )}, then deleting ℓ from tx and all the clauses containing ℓ from
{c ∩ tx : c ∈ CNF(T )}, and repeating this process until the resulting set of clauses is
empty. h is the set of literals ℓ of tx that have been picked up in the process. It turns out
that the size of h is guaranteed to be lower than the size of any minimum-size sufficient
reason t up to a factor lnm− ln lnm+0.78 (51), where m is the number of clauses in
CNF(T ) (or, equivalently, the number of branches in T ).

4 Computing All Contrastive Explanations
Interestingly, it has been shown that sufficient reasons and contrastive explanations are
connected by a minimal hitting set duality (24). This duality can be leveraged to derive
one of the two sets of explanations from the other one using algorithms for computing
minimal hitting sets (52; 53).

However, in the case of decision trees, a more direct and much more efficient ap-
proach to derive all the contrastive explanations for x ∈ {0, 1}n given T ∈ DTn can be
designed. Indeed, unlike what happens for sufficient reasons (see Section 3), the set of
all contrastive explanations for x ∈ {0, 1}n given a decision tree T ∈ DTn can be com-
puted in polynomial time from x and T . Note that this result has also been obtained in
parallel and independently of us (see (43)).

Proposition 5. The set of all contrastive explanations for x ∈ {0, 1}n given a decision
tree T ∈ DTn can be computed in time polynomial in n+ |T | as

min({c ∩ tx : c ∈ CNF(T )},⊆)

when T (x) = 1, and as

min({c ∩ tx : c ∈ CNF(¬T )},⊆)
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when T (x) = 0.

Example 6. On our running example, using again (2) for the CNF representation of T
together with x = (1, 1, 1, 1), we have min({c ∩ tx : c ∈ CNF(T )},⊆) = {x1 ∨ x2,
x1 ∨ x3, x4}, which corresponds to the contrastive explanations x1 ∧ x2, x1 ∧ x3, and
x4 for x given T (viewing clauses and terms as sets of literals). Similarly, we have

CNF(¬T ) = {x1 ∨ x2 ∨ x3 ∨ x4, x1 ∨ x2 ∨ x3 ∨ x4, x1 ∨ x2 ∨ x3 ∨ x4,

x1 ∨ x2 ∨ x3 ∨ x4, x1 ∨ x2 ∨ x3 ∨ x4}.

Thus, with x′ = (0, 0, 0, 0), we have min({c∩tx′ : c ∈ CNF(¬T )},⊆) = {x2∨x3∨x4,
x1 ∨ x4}; which corresponds to the contrastive explanations x2 ∧ x3 ∧ x4 and x1 ∧ x4

for x′ given T .

Figure 5: Two instances from mnist49: a ”4” correctly identified as a ”4” by the
decision tree, and a ”9” misclassified as a ”4” by the decision tree. For each instance,
two contrastive explanations are reported (the leftmost ones correspond to the ”4” that
is correctly classified and the rightmost ones correspond to the ”9” that is misclassified.

As a matter of illustration, Figure 5 presents two instances from mnist49 that
have been considered in our experiments: the first instance is a ”4” correctly identified
as a ”4” by the decision tree, and the second instance is a ”9” misclassified as a ”4” by
the decision tree. One can observe that the ”4” really looks as a ”4”, while the ”9” could
also be seen as a ”4”. The ”4” correctly classified has 42 contrastive explanations given
the decision tree: 10 of size 1, 11 of size 2, 11 of size 3, 5 of size 4, 3 of size 5, and
2 of size 6. The misclassified ”9” has 21 contrastive explanations given the decision
tree: 3 of size 1, 5 of size 2, 10 of size 3, and 3 of size 4. For those two instances, the
size of the contrastive explanations is rather small (with a maximal size of 6 for the
first instance), given that 784 features are used to describe the instances (the pictures
consist of 28×28 pixels). For each instance, two contrastive explanations are reported
on the figure. The leftmost picture shows a contrastive explanation of size 1 for the
”4” instance at hand. This first explanation is not very satisfying: one can hardly see
why turning on the red pixel would change the ”4” into a ”9”. This shows that our
predictor is not as robust as one would expect it to be. The next picture (from left
to right) presents another contrastive explanation (of size 6) for the same ”4” instance.
This explanation is intuitively better than the previous one (roughly, it tells that ”closing
the loop” by turning on the six red pixels given by the explanation would be enough
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Table 1: Description of the 20 datasets for which empirical results are provided.

Dataset #I #F #C source
recidivism 26020 11 2 Kaggle
adult 48842 14 2 UCI
bank marketing 45211 17 2 UCI
bank 41188 21 2 Kaggle
lending loan 9578 13 2 Kaggle
contraceptive 1473 9 3 UCI
compas 5278 14 2 OpenML
christine 5418 1637 2 OpenML
farm-ads 4143 54877 2 UCI
mnist49 13782 784 2 -
spambase 4601 57 2 UCI
mnist38 13966 784 2 -
madelon 4400 500 2 UCI
gisette 7000 5000 2 OpenML
gina 3153 970 2 OpenML
price phone 2000 20 4 Kaggle
letter 20000 16 2 UCI
titanic 623 5 2 Kaggle
yeast 2417 117 2 OpenML
soybean 683 35 2 UCI

to change the prediction from ”4” to ”9”). Similarly, the last two pictures give two
contrastive instances for the ”9” that is misclassified. The first one has size 1 and the
second one (corresponding to the rightmost picture) has size 4. The second explanation
looks slightly better than the first one, that is clearly not satisfying.

As illustrated by Figure 5, Proposition 5 has two direct, yet noteworthy, conse-
quences: on the one hand, the number of contrastive explanations for any instance
given a decision tree cannot exceed the number of branches in the tree; on the other
hand, the size of any contrastive explanation for any instance given a decision tree is
upper bounded by the depth of the tree. Those two properties offered by decision trees
are valuable from the intelligibility perspective. However, the second property can also
be viewed as a testimony of the intrinsic limitation of the robustness of decision trees as
an ML model: changing a few features (no more than the depth of the tree) in the input
instance (whatever it is) is enough to change the prediction made. For a fixed depth,
this holds whatever the accuracy of the tree. Thus, though the average accuracy of the
decision tree used to classify the two instances at Figure 5 exceeds 95% on the test set
(see Section 5), turning on a single pixel is enough for the predictor to recognize a ”9”
instead of a ”4” for the first instance, and a ”4” instead of a ”9” for the second instance.

Other straightforward consequences of Proposition 5 are that computing necessary
/ relevant features and computing the explanatory importance of features w.r.t. con-
trastive explanations can be achieved in time polynomial in n+ |T |. Because they can
be enumerated efficiently, contrastive explanations can also be easily minimized and
counted.

5 Experiments

5.1 Empirical setting
We have considered 90 datasets, which are standard benchmarks from the well-known
repositories Kaggle (www.kaggle.com), OpenML (www.openml.org), and UCI (archive.
ics.uci.edu/ml/). mnist38 and mnist49 are subsets of the mnist dataset, restricted

17

www.kaggle.com
www.openml.org
archive.ics.uci.edu/ml/
archive.ics.uci.edu/ml/


Table 2: Empirical results for the 20 datasets.

Decision Tree | Sufficient | | Min.-Sized | #Nec. Features #Rel. Features

Dataset %A #N #B #D med max med max med max med max

recidivism 63.4 13828.8 147.6 27.8 14 22 13 22 6 19 60 98
adult 81.4 12934.0 2974.8 47.0 16 36 16 36 7 22 263 543
bank marketing 87.4 6656.4 1432.6 30.7 14 21 14 21 3 16 247 398
bank 89.0 5523.6 977.8 29.6 13 24 13 24 4 15 200 330
lending loan 73.5 2610.4 1131.4 33.3 16 31 16 31 8 25 226 442
contraceptive 50.4 1252.2 88.6 22.0 11 20 11 20 8 17 25 47
compas 66.0 1230.0 46.2 19.1 6 14 6 14 3 12 16 33
christine 63.4 853.2 426.0 36.6 12 47 12 47 8 41 92 202
farm-ads 86.8 544.8 264.6 85.5 20 99 20 99 16 92 73 192
mnist49 95.5 539.6 267.9 28.8 22 30 22 30 9 19 91 166
spambase 92.0 536.4 264.8 30.1 15 29 15 29 9 24 68 146
mnist38 96.0 506.6 251.4 27.2 19 28 19 28 8 20 93 157
madelon 75.2 357.8 178.2 16.7 10 20 10 20 7 18 38 103
gisette 93.3 347.8 173.2 36.0 27 39 27 39 19 34 64 113
gina 85.8 337.0 173.0 24.1 12 26 12 26 7 19 54 108
price phone 82.2 335.6 161.5 13.2 8 14 8 14 4 11 27 76
letter 99.3 317.0 95.9 15.8 6 15 6 15 1 12 49 81
titanic 75.9 274.0 116.3 17.1 7 17 7 17 4 14 22 58
yeast 97.3 68.8 33.9 18.7 15 20 15 20 7 16 26 38
soybean 96.9 46.2 19.3 11.6 2 9 2 9 1 8 8 19

#Sufficient #Contrastive | Contrastive | #Min.-Sized

Dataset med max med max med max med max

recidivism 10387 9734080 54 145 3 16 2 144
adult - ≥ 1573835722607300000000000 201 470 4 16 3 256
bank marketing - ≥ 7460375213484350000000 189 337 4 13 8 432
bank - ≥ 7433951979018500000 150 277 4 13 4 168
lending loan 459258918095775 943243242816203000000000000000 157 311 3 12 3 192
contraceptive 20,50 4272 21 52 2 11 2 48
compas 16 444 13 33 2 11 2 21
christine 63108 2167735434744 71 151 3 8 2 4096
farm-ads 1177,50 921895392 59 166 2 10 - ≥ 10000
mnist49 7392384 715892613696000 61 106 2 12 - ≥ 10000
spambase 15712 2535069312 50 107 2 11 4 384
mnist38 14849376 16922386736640 62 107 3 11 32 3072
madelon 106 3221020 30 72 2 9 2 32
gisette 3905 234593712 50 81 2 10 - ≥ 10000
gina 4544 432967680 38 77 2 8 4 6144
price phone 109 363828 19 50 2 7 2 32
letter 9342 28391526 32 56 3 9 4 256
titanic 44 49920 16 38 2 9 2 96
yeast 128 24576 18 23 2 5 8 4608
soybean 3 60 5 15 2 6 1 20
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to the instances of 3 and 8 (resp. 4 and 9) digits. Because some datasets are suited to
the multi-label classification task, we used the standard “one versus all” policy to deal
with them: all the classes but the target one are considered as the complementary class
of the target. Categorical features have been treated as arbitrary numbers (the scale is
nominal). As to numeric features, no data preprocessing has taken place: these features
have been binarized on-the-fly by the decision tree learning algorithm that has been
used.

For every benchmark b, a 10-fold cross validation process has been achieved. Namely,
a set of ten decision trees Tb have been computed and evaluated from the labelled in-
stances of b, partitioned into 10 parts. One part was used as the test set and the re-
maining 9 parts as the training set for generating a decision tree. Each Tb is thus in
one-to-one correspondence with the test set chosen within the whole dataset b. The
classification performance for b was measured as the mean accuracy obtained over the
10 decision trees generated from b. The CART algorithm, and more specifically its
implementation provided by the Scikit-Learn library (54) has been used to learn deci-
sion trees. All hyper-parameters of the learning algorithm have been set to their default
value. Notably, decision trees have been learned using the Gini criterion, and without
any maximal depth or any other manual limitation.

For each benchmark b, each decision tree Tb, and a subset of at most 100 instances
x picked up at random in the test set following a uniform distribution, we computed
sufficient reasons for x given Tb (using the standard greedy algorithm run on the direct
reason tTb

x ), and minimum-size sufficient reasons for x given Tb using the PARTIAL
MAXSAT encoding presented in Proposition 4. This enabled us to draw some statistics
(median, maximum) about the sizes of the reasons that have been generated. Using the
algorithm presented in the proof of Proposition 2, we also derived the necessary and
relevant explanatory features for each x, and again drew some statistics about them.
Exploiting the model counter D4, we computed the number of sufficient reasons for x
given Tb, as well as the explanatory importance of every feature of x. Taking advan-
tage of the algorithm given in Proposition 4, we computed the number of contrastive
explanations for x given Tb, and drew some statistics about those numbers and about
the sizes of the contrastive explanations. Finally, using the approach described in Sec-
tion 3, we enumerated all the minimum-size sufficient reasons for x given Tb up to a
limit of 10 000, and again drew some statistics about the numbers of minimum-size
sufficient reasons. Of course, for each computation, we measured the corresponding
runtimes since this is fundamental to determine the extent to which the algorithms are
practical.

All the experiments have been conducted on a computer equipped with Intel(R)
XEON E5-2637 CPU @ 3.5 GHz and 128 GiB of memory. D4 (47) was run with its
default parameters. For computing minimum-size reasons, we used the Pysat library
(55), which provides the implementation of the RC2 PARTIAL MAXSAT solver. This
solver was run using the parameters corresponding to the “Glucose” setting. A time-out
of 100s per instance was set for D4.
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5.2 Results
For space reasons, we report an excerpt of our results, focusing on 20 benchmarks
out of 90. The selected datasets are among those containing many instances and/or
many features. They are described in Table 1. The leftmost column of this table gives
the name of the dataset. Columns #I , #F , #C, and source give, respectively, the
number of instances in the dataset, the number of features used to describe instances,
the number of classes, and the repository the dataset comes from.

Table 2 (top and bottom) presents the results obtained for the 20 datasets given in
Table 1. The leftmost column of Table 2 gives the name of the dataset b. Columns %A,
#N , #B, and #D give, respectively, the mean accuracy over the ten decision trees,
the average number of nodes in those trees, the average number of binary features they
are based on, and the average depth of their branches. The next columns give statistics
(median, maximum) about, respectively, the size of the first sufficient reason (| Suffi-
cient |) and of the first minimum-size sufficient reason (| Min.-Sized |) that have been
computed for the instance at hand. Then one can find the numbers of necessary (#Nec.
Features) and relevant (#Rel. Features) features that appear in the set of sufficient
reasons for the instance. Table 2 (bottom) gives statistics (median, maximum) about,
respectively, the numbers of sufficient reasons (#Sufficient) that have been computed,
the numbers of contrastive explanations (#Contrastive) and their sizes (| Contrastive
|), and finally the numbers of minimum-size sufficient reasons (#Min-Sized).

Figure 6 gives scatter plots for comparing the numbers of sufficient reasons with the
numbers of minimum-size sufficient reasons for instances from four datasets, namely
adult, contraceptive, lending loan, and spambase. Each dot corresponds
to an instance (out of 1000) of the corresponding dataset for which no time out has been
reached. The x-coordinate of an instance is the number of minimum-size sufficient rea-
sons of the instance, and its y-coordinate is the number of sufficient reasons. The blue
line in each scatter plot gathers the dots (x, y) such that y = x (observe that different
scales are used on the two axes for the sake of readability).

Figure 7 gives box plots for comparing the sizes of sufficient reasons with the sizes
of minimum-size sufficient reasons for instances from four datasets (the same ones
as those considered in Figure 6). For each dataset, ten instances have been picked up
uniformly at random. For each of them, a minimum-size sufficient reason has been
computed, as well as a number of sufficient reasons up to a maximum of 10 000. The
distribution of the sizes of those reasons is reported in a box plot (the minimal value cor-
responds to the size of a minimum-size sufficient reason). One can observe significant
differences in the resulting pictures: for some instances (e.g., instance 9 of adult), the
obtained distribution is spread out (the minimum-size sufficient reasons are more than
seven times smaller than some sufficient reasons); for other instances (e.g., instance 4
of adult), the distribution is quite narrow.

Table 2 also shows that, empirically, the number of contrastive explanations for an
instance is typically far smaller than its number of sufficient reasons. It also shows that
the sizes of contrastive explanations are in general very small. This coheres with the
result stated by Proposition 5.

As to the computation times, it turns out that all the algorithms described in the
previous sections proved as efficient in practice. This is not surprising for those al-
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Figure 6: Comparing the numbers of sufficient reasons with the number of minimum-
size sufficient reasons for instances from four datasets.

gorithms having a polynomial-time worst-case complexity (the greedy algorithm for
computing a sufficient reason, the one for deriving explanatory features, and the one
for computing all the contrastive explanations). It was less obvious at first sight for the
algorithms used for counting the number of sufficient reasons and for computing the
explanatory importance of features. However, all the computations that have been run
have terminated in due time, except for instances from 3 datasets out of 90, namely
adult, bank marketing, and bank. For these datasets, the time limit of 100s has
been reached for, respectively, 203, 150, and 336 instances out of 1000 (in this case,
the median number of sufficient reasons has not been reported). Notably, for all the 90
datasets but those 3, the median time required for counting the number of sufficient
reasons and computing the explanatory importance of features never exceeded 1s.

Computing a minimum-size sufficient reason, and more generally all such rea-
sons looked challenging as well, due to both the intrinsic complexity of computing a
minimum-size sufficient reason and to their number. Nevertheless, our enumeration al-
gorithm succeeded in deriving all the minimum-size sufficient reasons for every dataset
except 3 out of 90, namely farm-ads, mnist49, and gisette. For these datasets,
the limit of 10 000 reasons has been reached for, respectively, 5, 16, and 3 instances out
of 1000. Interestingly, the median time needed to derive all the minimum-size sufficient
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Figure 7: Comparing the sizes of sufficient reasons with the sizes of minimum-size
sufficient reasons for instances from four datasets.

reasons for the instances for which the computation has been successful exceeded 1s
only for 2 datasets (adult and bank marketing).

Figure 8 gives box plots depicting the distributions of the computation times spent
to count the sufficient reasons and the minimum-size sufficient reasons for 1000 in-
stances from two datasets, adult and lending loan. The approach presented in
Section 3 and based on the model counter D4 has been used for solving the counting
problem about sufficient reasons, and the enumeration method with blocking clauses
described in the same section has been exploited to count minimum-size sufficient
reasons. D4 succeeded in counting in due time (100s) the sufficient reasons for 797
instances out of 1000. When it failed, the corresponding computation time has been set
to 100s for drawing the statistics. The enumeration method succeeded in computing all
the minimum-size sufficient reasons for every instance. Figure 8 clearly illustrates that
the time required for counting sufficient reasons or minimum-size sufficient reasons
remains small enough most of the time, despite the possibly huge number of reasons.

Interestingly, our experiments have also highlighted that the greedy algorithm for
deriving a sufficient reason computes in practice a minimum-size sufficient reason in
many cases. This explains the discrepancy between the results reported in Table 2 and
those depicted on Figure 7. Indeed, the size of a single sufficient reason per instance
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Figure 8: Distributions of the computation times spent to count sufficient reasons and
minimum-size sufficient reasons for 1000 instances from two datasets.

(the one furnished by the greedy algorithm) has been considered to compute the results
reported in Table 2, while all its sufficient reasons (up to a maximum of 10 000) have
been taken into account to derive the values used to draw Figure 7.

When considering the full set of reasons, a considerable difference between the
number of sufficient reasons and the number of minimum-size sufficient reasons can
also be observed (see Table 2 and Figure 6). Focusing on minimum-size reasons leads
often to drastically reduce the number of reasons, sometimes by several orders of mag-
nitude. For some instances, the number of minimum-size sufficient reasons is small
enough so that it is conceivable to provide each of them to the explainee for further
examination. This is seldom the case for sufficient reasons.

Our experiments have also shown that the number of explanatory relevant features
for an instance is typically much lower than the number of binary features used to de-
scribe it, and that the number of explanatory necessary features is also significantly
lower than the number of explanatory relevant features. The gap between the two ex-
plains the possibly enormous number of sufficient reasons.

Finally, like minimum-size sufficient reasons, the number of contrastive explana-
tions appears not very large in many cases. Hopefully, this coheres with the existence
of the theoretical bound - the number of branches in the tree - as pointed out in Section
4.

6 Conclusion
In light of our results, it turns out that the explanatory power of decision trees goes
far beyond its ability to generate efficiently direct reasons. From a decision tree, the
explanatory importance of features and the minimum-size reasons for an instance can
be computed efficiently in practice most of the time.

To be more precise, from our results, fully addressing the “Why not?” question for
decision trees appears as easier than fully addressing the “Why?” question: computing
the full set of sufficient reasons for the instance at hand is typically out of reach, while

23



computing its full set of contrastive explanations is tractable. Especially, the limited
robustness of decision trees, i.e., the fact that the decision made about an instance can
be questioned when a few features of the instance are changed, can be explained by the
fact that the size of any contrastive explanation for any instance given a decision tree
is upper bounded by the depth of the tree (but this size does not depend directly on the
accuracy of the tree).

Nevertheless, our results show that the full set of sufficient reasons for an instance
given a decision tree can be synthesized efficiently most of the time. Computing nec-
essary features and relevant features w.r.t. sufficient reasons is tractable. Furthermore,
the computation of the explanatory importance of features w.r.t. sufficient reasons turns
out to be practical very often.

Thus, the language of decision trees appears not only as appealing for the learning
purpose when dealing with instances that are not too noisy, but also as a good target
when one needs to reason on the various forms of explanations (abductive and con-
trastive ones) associated with the predictions made. This coheres with (and completes)
the results reported in (35; 36), showing that many other explanation and verification
tasks are tractable for decision tree classifiers.

Several extensions of this work can be envisioned.
One of them consists in focusing on restricted classes of decision trees (e.g., the

class of decision trees representing monotone Boolean functions), and to determine
for such subclasses whether sufficient reasons could be enumerated efficiently, and if
this is not the case, to determine whether the explanatory importance of features w.r.t.
sufficient reasons and the minimum-size sufficient reasons could be computed in a
tractable way.

To deal with the possibly exponentially large number of sufficient reasons for an
instance, another perspective is to design and evaluate approaches that generate only
a subset of the whole set of sufficient reasons, provided that this subset of reasons is
diverse enough, i.e., the reasons that are delivered are as dissimilar as possible. While
the diversity issue has already been considered for counterfactual model-agnostic ex-
planations (56), it would be useful to tackle it for sufficient reasons by taking account
for several notions of explanation similarity.

Exploring approaches to deriving better explanations would be useful as well. In
this paper, a focus was made on minimum-size explanations. The significance of such
explanations comes from Occam’s razor: everything else being equal, it makes sense
to prefer a shorter explanation to a longer one, since a shorter explanation can be con-
sidered as more intelligible than a longer one. However, size is only one of the criteria
to be considered, and though there is no consensus about what is a good explanation
(57; 26; 58; 59), it is clear that many other criteria that are not intrinsic to explanations
but heavily depend on the explainee must be taken into account as well. Especially, user
preferences, when available, can be used to select explanations of improved quality. It
has been shown that the exploitation of user preferences may drastically reduce the
number of abductive explanations (60). It would be interesting to evaluate the extent to
which handling user preferences (of various kinds) impacts the explanatory importance
of features when dealing with decision trees.
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Proofs
Proof of Proposition 1

Proof. Let T be the complete binary tree of depth k, formed by n = 2k − 1 internal
nodes and 2k leaves. We assume a breadth-first ordering of internal nodes, such that
the root is labeled by x1, the nodes of depth 1 are labeled by x2 and x3, and so on.
Each internal node at depth k − 1 from the root of T has two children, one of it is
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a 0-leaf and the other one is a 1-leaf. For an arbitrary instance x ∈ {0, 1}n and any
complete subtree T ′ of T of depth d, let s(x, T ′) denote the set of sufficient reasons of
x given T ′, and let σ(x, d) = |s(x, T ′)| denote the number of those sufficient reasons.
We show by induction on d that:

σ(x, 1) = 1 (3)
σ(x, d+ 1) = σ(x, d)(σ(x, d) + 1) (4)

For the base case (3), any complete subtree T ′ of T of depth d = 1 has a single
internal node, say xi, with two leaves labeled by 0 and 1, respectively. Therefore, the
unique sufficient reason for x given T ′ is either xi or xi, and hence, σ(x, 1) = 1. Now,
consider any complete subtree T ′ of T of depth d + 1 rooted at a node xi. Let T ′

l (xi)
and T ′

r(xi) denote the subtrees of depth d, respectively rooted at the left child of xi and
the right child of xi. Suppose without loss of generality that the unique path leading to
T ′(x) = 1 includes the left child of xi (i.e. T ′

l (x) = 1). By construction,

s(x, T ′) = {tl ∧ tr : tl ∈ s(x, T ′
l ), tr ∈ s(x, T ′

r)}
∪{li ∧ tl : tl ∈ s(x, T ′

l )}

where li = xi if xi = 0 in x, and li = xi otherwise. Since by induction hypothesis
s(x, T ′

l ) = s(x, T ′
r) = σ(x, d), it follows that σ(x, d + 1) = σ(x, d)2 + σ(x, d).

Finally, since the doubly exponential sequence5 given by a(1) = 1 and a(d + 1) =

a(d)2 + a(d) satisfies a(d) = ⌊c2d−1⌋, where c ∼ 1.59791, it follows that σ(x, k) ≥
⌊(3/2)2k−1⌋. Using 2k−1 = (n+ 1)/2, we get the desired result.

Proof of Proposition 2

Proof. The algorithms to compute Necs(x, T ), Rels(x, T ), and Irrs(x, T ) are as fol-
lows: first compute CNF(T ) and then remove from this set of clauses every literal that
does not belong to tx. This can be done in O(n · |T |) time. By construction, the result-
ing CNF formula (say, f ) is monotone: every literal in it occurs with the same polarity
as the one it has in tx. Furthermore, the size of f cannot exceed the size of CNF(T ),
thus the size of T .

Since f is a monotone CNF formula, its prime implicates can be computed by
removing from f every clause that is a strict superset of another clause of f .This can
be achieved in quadratic time in the size of f , thus in the size of T . Let g be the resulting
formula in prime implicates form and equivalent to f . g is equivalent to the complete
reason for x given T . Since it is in prime implicates form, g is Lit-dependent on every
literal occurring in it (i.e., g is Lit-simplified, see Proposition 8 in (61) for details),
hence so is the complete reason for x given T .

This means that for every literal ℓ occurring in g, there exists a sufficient reason for
x given T that contains ℓ, so that Rels(x, T ) is the set of literals occurring in g and
Irrs(x, T ) is the complement of Rels(x, T ) in the set of all literals over Xn. Finally,
since by definition the literals of Necs(x, T ) must belong to every sufficient reason for
x given T , they are given by the unit clauses that belong to g.

5See https://oeis.org/A007018.
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Proof of Proposition 4

Proof. Let x∗ be any solution of (Csoft, Chard). Observe that the set of all hard clauses
c∩ tx (where c is a clause of CNF(T )) corresponds to a monotone CNF formula. There-
fore, in order to satisfy such a clause c ∩ tx, x∗ must set a literal ℓ of tx to 1. Thus, x∗

satisfies all the hard clauses of Chard if and only if the term consisting of the literals
that are shared by tx =

∧n
i=1 ℓi and tx∗ is an implicant of T and is implied by x.

The soft clauses of Csoft are used to select among the assignments that satisfy all
the hard clauses, the ones that correspond to minimum-size sufficient reasons. Soft
clauses are given by literals ℓi, which are precisely the complementary literals to those
occurring in tx. Having a soft clause ℓi violated by x∗ means that the literal ℓ of tx
is necessary to get an implicant of T given the assignment of the other variables in
x∗. Whenever a soft clause ℓi is violated by x∗ a penalty of 1 incurs. This ensures
that the term consisting of the literals that are shared by tx =

∧n
i=1 ℓi and tx∗ is a

minimum-size sufficient reason for x given T .

Proof of Proposition 5

Proof. Let f ∈ Fn and x ∈ {0, 1}n such that f(x) = 1 (the case when f(x) = 0
can be handled in the same way by considering ¬f instead of f ). By definition, the
sufficient reasons t for x given f are the prime implicants of f that covers x. Thus,
they are precisely the prime implicants of the (conjunctively-interpreted) set of clauses
{c∩ tx : c ∈ CNF(f)} where CNF(f) is any CNF formula equivalent to f . Furthermore,
the complete reason for x given f (equivalent to the disjunction of all the sufficient
reasons for x given f (33)) is a monotone Boolean function because every sufficient
reason covers x which assigns in a unique way every variable from Xn. The prime
implicates of such a monotone function are precisely the minimal hitting sets of the
prime implicants of the function. Because of the minimal hitting set duality between
sufficient reasons and contrastive explanations for x given f (24), the contrastive ex-
planations for x given f are thus the sets of literals corresponding to the prime im-
plicates of {c ∩ tx : c ∈ CNF(f)}. Now, since the (conjunctively-interpreted) set of
clauses {c ∩ tx : c ∈ CNF(f)} is equivalent to the complete reason for x given f ,
it is a monotone function, and as a consequence, its prime implicates are its minimal
elements w.r.t. ⊆. This comes from the correctness of any resolution-based algorithm
for generating prime implicates (see e.g., (62)). Finally, when f is a decision tree T ,
{c∩ tx : c ∈ CNF(T )} can be computed in time polynomial in n+ |T | because CNF(T )
can be computed in time linear in |T |. Using an extra quadratic time in the size of this
set {c ∩ tx : c ∈ CNF(T )}, its minimal elements w.r.t. ⊆ can be selected. The resulting
set is by construction the set of all the contrastive explanations for x given T , and this
set has been computed in time polynomial in n+ |T |.
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