
HAL Id: hal-03939085
https://hal.science/hal-03939085

Submitted on 24 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

An improved multi-objective genetic algorithm with
heuristic initialization for service placement and load

distribution in edge computing
Adyson Maia, Yacine Ghamri-Doudane, Dario Vieira, Miguel Franklin de

Castro

To cite this version:
Adyson Maia, Yacine Ghamri-Doudane, Dario Vieira, Miguel Franklin de Castro. An improved multi-
objective genetic algorithm with heuristic initialization for service placement and load distribution in
edge computing. Computer Networks, 2021, 194, pp.108146. �10.1016/j.comnet.2021.108146�. �hal-
03939085�

https://hal.science/hal-03939085
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


An Improved Multi-Objective Genetic Algorithm with
Heuristic Initialization for Service Placement and Load

Distribution in Edge Computing

Adyson M. Maiaa,b, Yacine Ghamri-Doudaneb, Dario Vieirac, Miguel F. de
Castroa

aFederal University of Ceará (UFC), Fortaleza, Brazil
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Abstract

Edge Computing (EC) is a promising concept to overcome some obstacles of

traditional cloud data centers to support Internet of Things (IoT) applications,

especially time-sensitive applications. However, EC faces some challenges, in-

cluding the resource allocation for heterogeneous applications at a network edge

composed of distributed and resource-restricted nodes. A relevant issue that

needs to be addressed by a resource manager is the service placement problem,

which is the decision-making process of determining where to place different ser-

vices (or applications). A related issue of service placement is how to distribute

workloads of an application placed on multiple locations. Hence, we jointly in-

vestigate the load distribution and placement of IoT applications to minimize

Service Level Agreement (SLA) violations due to the limitations of EC resources

and other conflicting objectives. In order to handle the computational complex-

ity of the formulated problem, we propose a multi-objective genetic algorithm

with the initial population based on random and heuristic solutions to obtain

near-optimal solutions. Evaluation results show that our proposal outperforms

other benchmark algorithms in terms of response deadline violation, as well

as terms of other conflicting objectives, such as operational cost and service
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availability.
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1. Introduction

Internet of Things (IoT) is a paradigm driving a digital transformation in

our daily lives with the progressing development of computing and wireless tech-

nologies [1]. In the IoT paradigm, smart objects, or things, are essential building

blocks, which include mobile phones, vehicles, home appliances, sensors, actu-5

ators, and any other embedded devices. These devices will be interconnected

in order to exchange data related to real and virtual worlds among themselves

through modern communication network infrastructures. The continued growth

of IoT brings more connected devices to collect and consume data across the

network. Due to the resource constraints of those devices, a common approach10

is to use Cloud Computing (CC) to execute data analysis remotely. Some of

the benefits of using CC are (i) the flexible pricing model (pay-as-you-go), (ii)

the on-demand and elastic delivery of virtualized resources (e.g., computing,

storage, and network resources), and (iii) the scalable computing model [2].

The backbone of CC is based on building a few large data centers in various15

parts of the world to serve a huge number of users. However, this means that

all the data and requests need to be transmitted to a remote centralized data

center, which results in long (network) latencies. For some time-sensitive IoT

applications (e.g., factory automation, intelligent transport systems, emergency

response, interactive mobile gaming, augmented reality, and mission-critical ap-20

plications) requiring real-time responses at 10ms or even 1ms [3], the delay

caused by transferring data to the cloud is unacceptable. Moreover, some data

processing can be made locally without having to be transmitted to the cloud.

Even when some decisions are made in the cloud, it may be unnecessary and

inefficient to send the large volume of data to the cloud for processing and stor-25

ing because not all data is useful for decision making and analysis [4]. Another

2



drawback of CC is the lack of fast and direct access to local contextual infor-

mation (e.g., precise user location, local network conditions, and users mobility

behavior) while provisioning resources to an application [5]. Therefore, these

challenges caused by the explosive growth of IoT cannot be addressed only by30

the Cloud Computing model.

Edge Computing (EC) aims to overcome some limitations of CC by bring-

ing cloud services and resources (e.g., computing, storage, and networking re-

sources) closer to end-users on geo-distributed nodes at the network edges [6, 7].

Some examples of such edge nodes are cellular base stations, routers, switches,35

and wireless access points. Thus, applications (or services1) running on edge

nodes in the vicinity of their users (customers or IoT devices) can filter, ag-

gregate, or analyze data close to its source. Consequently, Edge Computing

can (i) minimize latency and response time; (ii) reduce core and cloud networks

traffic; (iii) reduce load on end-user devices; and minimize power consumption40

of those devices; (iv) make better location- and context-aware decisions; as well

as (v) improve security and privacy [5]. The characteristics of EC ensure a wide

range of applications and use cases that can benefit from being deployed at the

edge, such as healthcare, augmented and virtual reality, multi-player gaming,

interactive multimedia, video analytics, smart environments, industrial control45

systems, vehicular communications, road traffic monitoring [7].

Compared to a traditional cloud infrastructure, Edge Computing has dis-

tinguishing characteristics [4, 8]. First, Cloud Computing usually locates its

resources in a few centralized data centers, but there will be a dense geo-

distribution of edge nodes in EC. Furthermore, the availability of the cloud50

services depends on the distance of multi-hop between the end-user and the

cloud data centers, while edge nodes are one or few hops away from end-users.

Edge nodes are more heterogeneous than cloud servers, i.e., edge nodes come

with different form factors and resources capabilities. However, edge nodes are

generally more resource-limited than cloud data centers.55

1we use the notion of application and service interchangeably in this paper
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Despite the benefits of Edge Computing, it is still a recent research topic and

faces several challenges. We are particularly interested in the service placement

problem in the context of EC, which is a resource management issue related to

the selection of computer-based nodes (or servers) to host multiple applications

according to some demands and constraints to optimize a set of performance-60

related objectives [9, 10]. Therefore, a service placement scheme maps each

application onto some hosting node.

Another challenge is provisioning adequate resources to handle the workloads

generated by applications users, which relates to the amount of resources that

should be allocated to each application that processes an incoming workload.65

A simple solution to this problem is using resource over-provisioning to handle

high peak loads. However, over-provisioning is unsuitable for EC due to high

costs and limited resource capacity at edge nodes [11, 7]. Meanwhile, a service

placement solution mappings can be many-to-many, i.e., an application can be

placed onto one or more nodes, and a node can host more than one application.70

In this way, service placement may consider the load balancing to distribute

workloads of an application across multiple nodes. Load distribution can be

applied to improve resource usage, increase availability, reduce response time,

avoid bottlenecks and over-provisioning [12].

Although the service placement and load distribution can be separately op-75

timized in independent procedures, the placement decision may affect the load

distribution, and vice versa [13]. Hence, an optimal decision-making process

may require a complex joint optimization of those two procedures.

We can find several research works in the literature concerning service place-

ment in Cloud Computing (e.g., [14, 15, 10]). However, these works cannot be80

directly applied to EC because they do not consider the distinct characteristics

of EC. On the other hand, there are some research works on service place-

ment in the context of Edge Computing, such as Tärneberg et al. [9], Gu et al.

[16], Skarlat et al. [11], Zhao and Liu [17]. However, these existing works have

shortcomings, such as not considering the limited resource capabilities of edge85

nodes, requirements of time-sensitive applications, or multiple conflicted opti-
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mization objectives.

Motivated by the above facts, we jointly address the service placement and

load distribution problem in Edge Computing. The formulated problem consid-

ers infrastructure constraints and different application characteristics (response90

deadline, resource demand, scalability, and availability) to minimize not only

Service Level Agreement (SLA) violations but also other possibly conflicting

objectives (e.g., operational cost and unavailability). Furthermore, we extend

our previous Genetic Algorithm (GA) [18, 19] to improve the solutions obtained

for the formulated problem. More specifically, the main contributions of this95

paper are as follows:

• We present a system model where multiple replicas of an application can

be placed in different parts of the network to distribute requests (load)

among these replicas. Moreover, we assume a static EC scenario where

all information required in the service placement and load distribution100

decision-making process is provided in advance and does not change over

time.

• We jointly formulate the service placement and load distribution as an

Mixed-Integer Nonlinear Programming (MINLP) optimization problem to

minimize the potential occurrence of SLA violations. Thus, a solution for105

this problem specifies the service placement mapping and the distribution

of requests among different nodes. We also transform this MINLP into a

Mixed-Integer Linear Programming (MILP) problem to be solved using a

linear solver.

• The single-objective problem is extended to include multiple conflicted110

objectives but still prioritizing time-sensitive applications.

• We propose a meta-heuristic based on GA to solve the multi-objective

problem. The proposal is an improvement of our previous works [18, 19]

by including heuristic solutions in the initialization of the GA and the

MGBM stopping criteria [20]. This improvement aims to speed up the115
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algorithm and obtain better solutions.

The remainder of the paper is organized as follows. Section 2 reviews the

related work. Next, Section 3 presents our system model. We formally formulate

the service placement and load distribution problem in Section 4. In Section

5, we describe our proposed GA to solve the formulated optimization problem.120

Then, Section 6 analyses the performance of our proposal. Finally, Section 7

concludes this paper.

2. Related Work

Virtual Machine (VM) placement is a well-studied topic in Cloud Computing

(CC). Pires and Barán [14], Pietri and Sakellariou [15], de Carvalho et al. [21],125

and Filho et al. [10] published surveys on this topic over the past few years.

However, service placement approaches to conventional CC cannot be directly

applied to Edge Computing (EC) because they do not consider the distinct

characteristics of EC (e.g., a large, distributed, and heterogeneous environment)

nor the time-sensitive application requirements.130

Computation offloading refers to the transfer of tasks from a device to an

external platform, such as the edge and cloud computing. Hence, it enables run-

ning intensive computational applications at a device with constrained resources

while reducing its energy consumption. Moreover, a crucial part of offloading

is deciding whether to offload or not. In [22], the authors present a survey con-135

cerning computation offloading in the context of Multi-access Edge Computing

(MEC). In this paper, we are not interested in this offloading decision process,

but service placement and computation offloading can be seen as complemen-

tary problems. Furthermore, we only focus on the static aspect of the service

placement problem, where the mapping of applications onto hosting nodes does140

not change for a long time, and the decision parameters are known in advance.

We can find some approaches in the literature to solve the service placement

problem in the context of Edge Computing. Skarlat et al. [11] examine the
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service placement in a hierarchical and distributed edge architecture to maxi-

mize the number of applications placed on edge nodes rather than the cloud.145

The work also prioritizes time-sensitive applications to satisfy their response

time deadline requirements. Moreover, a control node uses a Genetic Algorithm

(GA) to obtain the application placement decision among its child nodes in the

hierarchical network infrastructure. However, it does not address the load dis-

tribution, and the proposed GA can generate infeasible solutions, which may150

degrade the algorithm performance.

In [9], the authors discuss the placement of applications in edge nodes to

minimize the overall running cost. That is, the work aims to reduce the edge

resource consumption due to the assumption that the running cost is propor-

tional to resource usage. The authors present an iterative local search heuristic155

among neighboring solutions to find a near-optimal solution. A limitation of

this work is the assumption of having sufficient resources for all applications at

the network edge. Moreover, the work does not consider the requirements of

time-sensitive applications.

Zhao and Liu [17] address service placement and load distribution problems160

in MEC while targeting to minimize the average response time. The authors

propose a heuristic strategy that tries to select, for each application, hosting

nodes with low average response time among all requests to host the application

and receive its requests. Nevertheless, the proposed solution does not take

into consideration the response time deadline requirement that is particularly165

important for latency-sensitive applications.

In [16], the authors also investigate both service placement and load dis-

tribution problems in MEC. Gu et al. [16] formulate the optimization problem

to minimize an overall cost while satisfying the maximum tolerable delay of

time-sensitive medical applications. However, the authors only examine the170

application deployment in base stations of a mobile network, ignoring other

possible locations such as the core network and cloud data centers. In addi-

tion, the work assumes that there are sufficient resources in the base stations to

deploy all applications while satisfying the delay requirement.
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Yang et al. [23] present a study for joint optimization of service placement175

and load distribution problems in a static scenario. The authors design a two-

step heuristic to minimize the average latency of all application requests while

satisfying the nodes capacity constraints. First, the heuristic relaxes the prob-

lem by disregarding the node capacity constraint, and it solves the problem

using a linear programming solver. Then, a greedy strategy tries to obtain a180

feasible solution for the original problem from the optimal solution of the re-

laxed problem. A drawback of this work is the assumption that applications are

homogeneous, as all requests consume the same amount of resources.

In [24], the authors investigate VM scheduling and placement decision in

MEC to (i) maximize infrastructure provider revenue, (ii) minimize SLA viola-185

tions, and (iii) ensure fairness in resource allocation among service providers.

Even though the work investigates SLA violation in terms of response time, it

considers the processing time responsible only for the response delay, neglecting

the network delay. Furthermore, the work applies a weighted sum scalarization

to transform the multi-objective problem into a single-objective one. Unfor-190

tunately, setting weights for each objective is not an easy task in a practical

scenario for a decision-maker.

According to Spinnewyn et al. [25], an EC environment is more suscepti-

ble to unpredictable failures than the cloud. As a result, this characteristic

significantly affects the reliability of applications deployed in an EC environ-195

ment. Therefore, the authors investigate the placement of multi-component

applications to optimize multi-objectives and satisfy the application minimum

availability requirement. This work also applies a scalarization to transform

a multi-objective optimization into a single-objective problem. More specifi-

cally, it sequentially optimizes the problem in multiple steps. In each step, an200

objective function is optimized, and the results of previous steps are added as

equality constraints. A shortcoming of this work is that it does not consider the

requirements of time-sensitive applications. Furthermore, the applied scalariza-

tion transformation also requires the decision-maker to have a global preference

order among all objectives.205
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Table 1 presents a comparison of the discussed related work. We can ob-

serve that some works address both the service placement and load distribution

problems, but not all works adequately address the Quality of Service (QoS)

requirements, especially the response deadline requirement for time-sensitive

applications. Regarding the optimization object, most research papers have a210

single objective. Moreover, many multi-objective works transform the problem

into a single-objective problem by some scalarization method that requires a

global preference order among all optimization objectives. However, this pref-

erence order can be hard to adjust or, in many cases, does not even exist in a

practical scenario.215

Table 1: Related work comparison

Work Problem Objective Requirement Solution

Skarlat et al. [11] SP SO Resource-Based,

QoS-Based

MH

Tärneberg et al. [9] SP SO Resource-Based H

Zhao and Liu [17] SP, LD SO Resource-Based H

Gu et al. [16] SP, LD SO Resource-Based,

QoS-Based

H

Yang et al. [23] SP, LD SO Resource-Based H

Katsalis et al. [24] SP, LD MO2SO Resource-Based,

QoS-Based

D

Spinnewyn et al. [25] SP MO2SO Resource-Based,

QoS-Based

MH, H

Our proposal SP, LD SO, MO Resource-Based,

QoS-Based

MH

SP: Service Placement, LD: Load Distribution,

SO: Single Objective, MO: Multi-Objective, MO2SO: MO transformed into SO,

MH: Meta-Heuristic, H: Heuristic, D: Deterministic

In order to overcome some limitations of the above-discussed works, we

jointly investigate the static service placement and load distribution problems

in a distributed, heterogeneous, and resources limited EC environment. In this
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paper, we present a single and multi-objective optimization formulations that

consider applications, especially for IoT, with different QoS requirements. More-220

over, we improve the performance of our previous solutions [18, 19] by including

heuristics in the initialization of the proposed meta-heuristic based on GA.

3. System Model

In our system model, an Infrastructure Provider (InP) owns and maintains

the network infrastructure comprised of hosting nodes and links connecting these225

nodes. A hosting node is a general-purpose machine having diverse resource

capabilities (e.g., processing, memory, storage, and networking resources) and

supporting execution of applications through virtualization technologies, such

as VM or container. Moreover, hosting nodes can be located anywhere on the

network between end-users and cloud data centers. Some nodes also act as230

access points for end-user devices.

Application Service Providers (ASPs) create applications used by end-users

and rent on-demand resources from an InP to deploy their applications. End-

user devices are connected directly with some node over a wired or wireless link.

Over time, devices send requests, or tasks, to be processed by an application.235

A device request is routed among the nodes up to a node hosting the required

application. Lastly, the request is processed, and its response is sent back to

the device.

ASPs do not directly determine where to place their applications. Usually,

an ASP signs an SLA defining the QoS requirements to be fulfilled by the InP. In240

this way, a service placement scheme is an autonomous decision-making process

maintained by the InP that decides where to deploy different applications over

the network infrastructure according to some constraints, requirements, and

performance goals defined by ASPs and InP.

In order to illustrate the system model, we describe the use case of a cel-245

lular network with Edge Computing capabilities (e.g., 5G network), as shown

in Figure 1. In this case, applications can be hosted on nodes located on the
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Radio Access Network (RAN), Core Network, and Cloud Computing regions.

If an application is running on a Base Station (BS) in the RAN region, then a

request can only be routed among neighboring Base Stations (BSs) to reduce250

traffic at the core and to decrease transmission delays. However, not all appli-

cations can be deployed to BSs because of the limited computing resources in

this region. Hence, some applications are hosted in the core or the cloud while

carrying about not violating some placement criteria defined by the providers.

Figure 1: Proposed Edge Computing system for 5G networks.

3.1. Network Model255

We model the network as an undirected and connected graph G = (V, E),

where the vertices V are hosting nodes and the edges E are network links between

the nodes. We assume all vertices are accessible by any other vertex in the graph

through multiple hops. In addition, end-user devices and their connections are

not represented in G.260
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Each network link e = (u, v) ∈ E has the following property:

• Transmission Delay Da,e
net is the average amount of time it takes for a

request for an application a to be transmitted in the network link e.

3.2. Resource Type Model

The proposed system model allows specifying different types of resources,265

where R is the set of these considered resources. For instance, the set R =

{CPU,RAM,DISK} is made up of processing (CPU), Random-Access Mem-

ory (RAM) and disk storage resources (DISK). RAM and disk storage are mea-

sured in bytes, while CPU can be measured in Instructions Per Second (IPS).

3.3. Node Model270

A node, or vertex, in the graph G, represents a server with specific resource

capabilities to run applications. Although multiple servers may be located on a

single network node, we view these multiple servers as a single unit. Therefore,

there is precisely one server for each network node, and we use the terms node

and server interchangeably throughout this paper. In this way, we can include275

cloud data centers as a single cloud node in the graph.

Each node v ∈ V has the following features:

• Resource Capacity Cr
v is a number describing the total capacity of

resource r ∈ R on node v.

• Usage Cost gv(λ) is a function specifying the (monetary) cost of allo-280

cating resources for an application with a workload λ ≥ 0 on the node.

We define the workload λva as the (average) arrival rate of requests for

application a in node v.

• Availability Pv is the probability that the node v will not fail.

We assume that the cloud node has an unlimited capacity for all resources285

(i.e., Cr
cloud = ∞,∀r ∈ R) due to the capacity difference between cloud and

edge nodes.
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3.4. Application Model

Let A be the set of all different applications to be placed over the network.

We consider that one or more instances, or replicas, of these applications can be290

deployed within the system, but these instances are independent of each other.

Furthermore, a node can only host one instance of each application.

An application a ∈ A has the following parameters:

• Response Deadline Da is a number specifying the maximum time (i.e.,

deadline) allowed for responding a request for application a. The response295

time comprises the network delay plus the processing delay.

• Maximum Number of Instances Na describes how application a scales

horizontally. For instance, it can be set to Na = 1, if the service does

not allow replicas or Na = ∞ if the maximum number of instances is

undefined.300

• Resource Demand hra(λ) denotes how an application scales vertically.

In other words, it is a non-decreasing function specifying the (average)

amount of resources r ∈ R required by a replica of a with a workload λ.

For instance, we can define a constant function if the vertical scaling is

not supported or an increasing linear function if the amount of resources305

required is proportional to the workload.

• CPU Work Size Wa is a value indicating the average amount of pro-

cessing required to get a response to a request for a. It is measured by

the number of instructions or clock cycles required to process a request.

• Availability Pa denotes the probability that an application replica is310

working without internal failure.

3.5. User Model

End-user devices, or users, are not aware of where applications are deployed

and which application instance will handle their requests. Therefore, we can

distribute these requests among multiple replicas placed on the system.315

13



Let U bet the set of all users in the system, then a user u ∈ U has the

following properties:

• Requested Application ua. It specifies the application a ∈ A requested

by the user. For the sake of simplicity, we assume each user sends requests

for only one application.320

• Request Rate λa is the average request generation rate for an end-user

device of application a ∈ A. We assume that all users of a send requests

to this application at the same average rate, which is determined by a

Poisson distribution.

• Attached Node uv. A user is always connected to some node v ∈ V,325

which acts as an access point.

Then, we define Uv
a as the set of users connected to node v requesting appli-

cation a, and Ua is the set of all users requesting application a in the system.

Table 2 summarizes the notations used in the system model.

4. Problem Statement and Formulation330

In a practical scenario, it is not possible to place all applications on the edge

of the network given the resource limitations of hosting nodes in this region.

Consequently, some applications are deployed further (i.e., in the core network

or the cloud) from their end-users. This considerable distance between node

and user may result in the response time of a request to exceed the deadline335

specified by some applications. Moreover, an overloaded server also increases re-

sponse time, thus distributing the load among application replicas may mitigate

this issue. Hence, both service placement and load distribution decisions may

result in violations of the response deadline requirement, which is an important

metric to be minimized for time-sensitive applications in an Edge Computings340

environment.

Infrastructure Provider (InP) and Application Service Providers (ASPs) of-

ten have many other performance metrics to optimize instead of just a single one.
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Table 2: Notations used in the proposed system model

Symbol Description

System Model

V, E ,R,A,U
Set of network nodes, network links, resource types, applica-

tions, and users, respectively

Da,e
net Network delay for application (app) a in a link e

Cr
v Total capacity of resource r on node v

gv(λ) Resource allocation cost on node v for an app with workload λ

Pv Availability probability of node v

Da Maximum tolerable response time of app a

Na Maximum number of replicas for app a

hr
a(λ) Demand of resource r for a replica of app a with workload λ

Wa CPU work size of a request for app a

λa Request generation rate for users of app a

Pa Availability probability of app a

Uv
a Set of users connected to node v requesting application a

Ua Set of all users requesting application a in the system

However, those multiple metrics are, in general, contradicting each other. For

instance, an ASP wants to decrease response time while reducing the monetary345

cost of allocating resources to its applications. On the other hand, decreasing

costs implies using cheaper cloud resources and, thus, increasing response time.

An InP may also seek to reduce the infrastructure running costs by decreasing

the number of active nodes hosting applications. However, minimizing the num-

ber of servers in use may result in nodes being overloaded and, consequently,350

SLA violations.

Given the above context, we formulate the joint problem of service placement

and load distribution to minimize deadline violation as a single objective, and

multiple objectives in this section. In this paper, we are only interested in the

static, or offline, approach of the problem where applications and users do not355

move for a long time. Moreover, all information required in the decision-making
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process is provided in advance.

Table 3 summarizes the notations used in this section, and the remaining of

this section is organized as follows. First, Subsection 4.1 presents an estimation

of the response time of a request. Then, Subsection 4.2 specifies the variables360

and constraints of the problem. Subsection 4.3 presents a nonlinear and linear

formulation of the single-objective case. Finally, Subsection 4.4 formulates the

multi-objective case.

Table 3: Notations used in the problem formulation

Symbol Description

Problem Formulation

Fu,v
a

Set of requests from users attached to node u to an instance of

app a hosted on node v

Qu
a

Number of requests for app a generated from users attached to

node u

Qa Total number of requests for app a in the system

du,va Average response time of a request flow Fu,v
a

da,u,vnet Average network delay of a request flow Fu,v
a

da,u,vproc Average processing delay of a request flow Fu,v
a

λv
a Request arrival rate of app a on node v

µv
a Service rate of app a on node v

Problem Variables

x = (ρ, γ, δ) Decision variables

ρva Whether node v deploys an instance of app a or not

γu,v
a Whether request flow Fu,v

a exists or not

δu,va Number of requests in the flow Fu,v
a

Optimization Objectives

F List of objective functions, F = (f1, . . . , fm)

fdv(x) Deadline violation of the system given variable x

fcost(x) Overall operational cost given variable x

ffail(x) Average unavailability of applications given variable x

16



4.1. Response Time Estimation

Since requests can be distributed among multiple replicas of an application,365

we define a request flow Fu,v
a as the set of requests for application a ∈ A

generated by users attached to node u ∈ V (source node) and handled by a

replica of a placed on node v ∈ V (target node). In addition, let δu,va = |Fu,v
a |

be the number of requests in a flow. Thus, Equation 1 specifies the average

response time du,va of a request flow Fu,v
a , where da,u,vnet is the average time to370

send requests to a from users in u to node v and da,u,vproc is the average processing

time of requests on v. We estimate both network and processing delays in the

remainder of this subsection.

du,va = da,u,vnet + da,u,vproc (1)

4.1.1. Network Delay

The network delay of a request includes: (i) the communication delay be-375

tween the requesting end-user device and the node to which it is attached, and

(ii) the transmission delay from this latter node to a server hosting the appli-

cation following a multi-hop routing path. It is important to note that a user

attachment node can host the application and process its requests, and therefore

the transmission delay of the second part is zero. Since we are examining the380

static problem case, the communication delay between a device and its attach-

ment node does not affect the placement decision [17]. Therefore, we do not

consider this communication delay in the network delay estimation.

We estimate the average network delay of a request flow Fu,v
a as:

da,u,vnet =

0 if u = v∑
e∈Pu→v

Da,e
net otherwise

(2)

where Pu→v is the set of links in a routing path from u to v. This set can be385

determined by some shortest routing path algorithm, such as the Floyd–Warshall

algorithm [26, 27]. Therefore, we assume that da,u,vnet is a constant in the static

problem.
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4.1.2. Processing Delay

For an application replica placed on a node, we model its processing time390

as an M/M/1 queueing model. This queueing model helps us to estimate the

average processing time in different workload conditions. Moreover, we utilize

the M/M/1 queue because the aggregated traffic generated by users of an IoT

application can be approximated as a Poisson process [28].

We determine the request arrival rate or workload λva for the application a395

running on node v as the sum of all requests arriving at this node. Equation 3

expresses this request arrival rate, where δu,va ∈ [0, Qu
a ] is an integer variable

indicating the size of request flow Fu,v
a (i.e., number of requests in the flow).

Moreover, Qu
a = d|Uu

a |λae is the number of requests for application a generated

by users attached to node u, λa is the request rate of a user of a, and |Uu
a | is400

the cardinality of set Uu
a .

λva =
∑
u∈V

δu,va (3)

Service times have an exponential distribution with rate parameter µ, where

1/µ is the mean service time in an M/M/1 queue. Thus, we express 1/µv
a as the

average time to perform the request CPU work Wa with the resources allocated

for a replica of application a in node v as:405

1

µv
a

=
Wa

hCPU
a (λva)

(4)

Finally, Equation 5 gives the average processing time of requests for appli-

cation a running on node v according to Little’s law.

da,u,vproc =
1

µv
a − λva

(5)

4.2. Problem Variables and Constraints

In order to jointly formulate the service placement and load distribution

problems, we define x = (ρ, γ, δ) as a triple of problem variables. We describe410

these variables as follows:
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1. Application Placement ρ = {ρva | a ∈ A and v ∈ V} is a set of binary

variables, where ρva ∈ {0, 1} indicates whether a replica of an application

a is placed on a node v or not.

2. Request Flow Existence γ = {γu,va | a ∈ A and u, v ∈ V} is the second415

set of binary variables, where γu,va ∈ {0, 1} specifies whether or not a

request flow Fu,v
a exists between nodes u and v for an application a.

3. Load Distribution δ = {δu,va | a ∈ A and u, v ∈ V} is a set of variables

related to how requests are distributed, where δu,va ∈ Z+ is the size of

request flow Fu,v
a .420

A solution to the studied problem sets values for the above variables. Fur-

thermore, a solution is feasible only if all the following constraints are met:

1. Number of Instances. A node can only host a single replica of a given

application. Moreover, the number of instances deployed in the system

must respect the limits defined by the applications (i.e., Na), and all of

them need to be placed.

1 ≤
∑
v∈V

ρva ≤ Na ∀a ∈ A (6)

2. Request Flow Existence. A request flow Fu,v
a only exists if a replica

of application a is placed on node v and there are users connected in u

requesting a.

γu,va ≤ ρvaQu
a ∀a ∈ A,∀u, v ∈ V (7)

3. Request Flow Size. If a flow Fu,v
a exists, its size must be at least one

and at most equal to the number of requests generated by users connected

to node u.

γu,va ≤ δu,va ≤ γu,va Qu
a ∀a ∈ A,∀u, v ∈ V (8)

4. Load Conservation. The aggregate size of all request flows for appli-

cation a from the same source node u is equal to the total number of

requests for a generated by users connected to this node. In other words,
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all requests are distributed to some node.∑
v∈V

δu,va = Qu
a ∀a ∈ A,∀u ∈ V (9)

5. Node Capacity. The total amount of resources demanded by applica-

tions placed on a server should not exceed its capacity.∑
a∈A

ρvah
r
a(λva) ≤ Cr

v ∀r ∈ R,∀v ∈ V (10)

6. Queue Stability. An M/M/1 queue is stable only if the average service

rate is larger than its average arrival rate. This stability needs to be

guaranteed for each application placed on a node.

λva < µv
a ∀a, v (ρva = 1) , a ∈ A, v ∈ V (11)

4.3. Single Objective Formulation

Our goal is to minimize the deadline violation of the system, which we define

as the highest violation among all request flows in the system. Then, we specify425

the deadline violation of a request flow Fu,v
a as the positive part of the difference

between its average response time and the application response deadline, i.e.,

max (0, du,va −Da). Equation 12 expresses this objective function, where [z]+ =

max(0, z) is the positive part of a real number z.

fdv(x) = max
x
{[du,va −Da]+}

x = (ρ, γ, δ)

(12)

Then, the static single objective optimization problem is formulated as:

min fdv(x)

x = (ρ, γ, δ)

subject to eqs. (6) to (11)

(13)

The optimization problem (13) is a Mixed-Integer Nonlinear Programming430

(MINLP) problem because constraints (10) and (11) and the objective func-

tion (12) are nonlinear. MINLP is usually difficult to solve due to its high
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computational complexity [29]. One way to reduce this complexity is to ap-

ply linearization and relaxation techniques. In Appendix A, we describe how

to transform problem (13) into a Mixed-Integer Linear Programming (MILP)435

problem.

4.4. Multiple Objective Formulation

Based on the single objective optimization problem (13) and given F =

(f1, f2, . . . , fm) as a list of m performance-related functions, the multi-objective

optimization problem for the static approach is formulated as:

minF (x) = (f1(x), f2(x), . . . , fm(x))

x = (ρ, γ, δ)

subject to eqs. (6) to (11)

(14)

According to the InP or ASPs wishes, different objectives can be optimized.

Some non-exhaustive performance-related functions are listed below:

• Deadline Violation fdv. The violation level of the system defined in the440

single objective case by Equation 13 is a relevant metric to minimize for

latency-sensitive applications.

• Operational Cost fcost. Deploying applications on the system is not

a free operation, for there is a cost charged, possibly monetary, to ASPs

for the resources used by their applications according to the pay-as-you-

go pricing model. For this reason, a provider aims to reduce the cost of

running a product. Given gv(·) as the allocation cost function on a node

v described in Section 3, then the total operational cost for an application

is simply the sum of costs on each node hosting an application replica,

i.e.,
∑

v∈V ρ
v
agv(λva). Considering all applications, a performance metric

to minimize is the overall operational cost, which is defined as:

fcost(x) =
∑
a∈A

∑
v∈V

ρvagv(λva)

x = (ρ, γ, δ)

(15)
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• Unavailability ffail. ASPs also want high availability for their applica-

tions. An application becomes unavailable when all of its replicas become

unavailable. A replica is unavailable when there is a failure in the node

hosting it, or an internal failure occurs in its software. In other words, a

replica is available if there is no hardware and software failure. We formu-

late this unavailability of an application as
∏

v∈V (1− ρvaPvPa), where Pv

and Pa are the availability probability of node v and application a respec-

tively. In this way, maximizing the average availability or minimizing the

average unavailability across all applications is a metric to be optimized,

which we formally specify as follows:

ffail(x) =
1

|A|
∑
a∈A

∏
v∈V

(1− ρvaPvPa)

x = (ρ, γ, δ)

(16)

Unlike single objective optimization problems that may have a unique opti-

mal solution, in multi-objective optimization problems, conflicts among objec-

tives usually prevent from having a single optimal solution that can optimize all445

objectives simultaneously. In this way, improvement of one objective may lead

to deterioration of another. For instance, reducing unavailability or increasing

availability of applications means raising costs by placing more replicas. On

the other hand, decreasing costs implies using more cloud resources as they are

generally cheaper than edge resources, and thus increasing the deadline viola-450

tion. Therefore, it is necessary to search for a set of best optimal compromise

solutions by considering trade-offs among the conflicting objectives.

The concept of Pareto dominance [30] plays a vital role to find a set of best

trade-off solutions that cannot be improved in any of the objectives without

degrading at least one of the other objectives. Formally, a feasible solution x1

Pareto dominates another solution x2, expressed as x1 ≺ x2, only if

fi(x1) ≤ fi(x2) ∀i ∈ {1, 2, . . . ,m}

and fj(x1) < fj(x2) ∃j ∈ {1, 2, . . . ,m}
(17)

The set of all solutions that are not dominated by any other solution is called
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Pareto optimal set or Pareto front. These non-dominated solutions are consid-

ered equally good if there is no additional preference information. However, for455

the optimization problem (14), it is important to improve the performance of

time-sensitive applications, which can be considered a preference information.

Moreover, we assume that a decision maker either does not have a preference

order for other objectives or has difficulties in obtaining it. Motivated by this

fact, we propose the following modification of Pareto dominance.460

Preferred Dominance. Let f1 be the highest priority function to be opti-

mized among the list of objective functions F = (f1, f2, . . . , fm). A feasible

solution x1 dominates another solution x2, expressed as x1 ≺1 x2, only if

|f1(x1)− f1(x2)| ≤ ξ and x1 ≺ x2 for (f2, . . . fm)

or if f1(x1) < f1(x2)− ξ
(18)

where ξ is a constant approximation error. In other words, the dominance

operator ≺1 prioritizes a selected function f1, and then it is sufficient that a

solution x1 has a smaller value than another solution x2 in f1 in order for x1

dominates x2. Otherwise, if f1(x1) and f1(x2) have close values, then the Pareto

dominance operator, defined in Equation 17, with the remaining objective func-465

tions is used instead. Therefore, we can select a performance-related function

to time-sensitive applications as a priority goal. For instance, we can set the

deadline violation in Equation 12 as the primary objective to be optimized, i.e.,

f1 = fdv.

5. Genetic Algorithm Proposal470

Although well-known linear solvers, such as IBM ILOG CPLEX2, can solve

MILP problems, these problems are generally NP-Hard [17]. Moreover, the

linear version of Problem (13) in Appendix A is highly time-consuming due

to a large number of variables. Another limitation of these solvers is that they

2https://www.ibm.com/products/ilog-cplex-optimization-studio
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only address single-objective optimization problems. A way to overcome this475

limitation is transforming a multi-objective optimization into a single-objective

problem through scalarizing methods, such as weighted sum. However, these

methods assume that there is a global preference order among all objectives

to be optimized, which may be hard to define in practical cases. Furthermore,

in many multi-objective optimizations, it is difficult to obtain the exact Pareto480

optimal set. Therefore, we propose a meta-heuristic based on Genetic Algorithm

(GA) to obtain near-optimal solutions. We utilize a genetic approach because

this meta-heuristic is not limited to linear, unconstrained, or single-objective

problems. In other words, a GA can solve a nonlinear, constrained, and multi-

objective problem, such as Problem (13). Moreover, a GA can be implemented485

in a parallel environment [31].

GA is a method for solving optimization problems inspired by the process of

natural selection. In a GA, a population of candidate solutions, called individ-

uals, to an optimization problem is evolved toward an optimal solution [32, 33].

Each individual has a corresponding chromosome that encodes the solution. For490

instance, a traditional chromosome is represented by a string, or vector, of bi-

nary values, but other encodings are also possible. Moreover, a chromosome

is associated with a fitness level, which is correlated to the objective function

value of the solution it encodes. GA is an iterative process where at each step,

called generation, it creates a new population by recombining or randomly mu-495

tating chromosome elements of selected individuals of the current population to

produce offspring that make up the next generation. Individuals are selected

stochastically, but those with better fitness are preferred over those that are

less fit. Usually, GA terminates when either produces a maximum number of

generations or reaches a satisfactory fitness level.500

GA is typically applied for unconstrained optimization problems. A common

way of incorporating constraints into a GA is through penalty functions that

add a certain value to the objective function based on the amount of constraint

violation present in a specific solution. Nonetheless, it may be extremely difficult

to estimate good penalty factors or even generate a single feasible solution for505
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some complex optimization problems [34].

An alternative method to handle constrained-optimization problems in GAs

is to develop (i) special solution representations to simplify the shape of the

search space, and (ii) special operators to preserve the feasibility of solutions at

all times. Gonçalves and Resende [35] propose a Biased Random-Key Genetic510

Algorithm (BRKGA) where chromosomes are represented as a vector of ran-

domly generated real numbers in the interval [0, 1]. A deterministic algorithm,

named decoder, takes any chromosome as input and associates it with a feasible

solution of an optimization problem, for which an objective value or fitness can

be computed. In other words, a chromosome gives instructions on how to build515

a feasible solution for a particular problem.

Although BRKGA can handle constrained problems, it is generally applied

for single-objective optimizations. On the other hand, GAs are suited for multi-

objective problems due to the simultaneous evaluation of many candidate solu-

tions, but it is necessary to incorporate the idea of Pareto optimality during the520

better fit selection process. Hence, we extend BRKGA by including the popu-

lation classification strategy of the Non-dominated Sorting Genetic Algorithm

II (NSGA-II) [36]. NSGA-II is a well-known multi-objective genetic algorithm

that uses dominance and diversity preservation mechanisms to rank individuals

of a population.525

Figure 2 shows the flowchart of our genetic algorithm that combines BRKGA

and NSGA-II. In the next subsections, we detail the main evolutionary opera-

tions of the proposed genetic algorithm.

5.1. Chromosome representation

The chromosome representation proposed and the description of its parts

are given below:

C =
[
I1, I2, . . . , I|A|,

S1
1 , S

2
1 , . . . , S

|V|
1 , . . . , S1

|A|, S
2
|A|, . . . , S

|V|
|A|,

E1, E2, . . . , EQ

]
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Figure 2: Proposed genetic algorithm flowchart.

1. Ia defines the number of replicas for an application a.530

2. Sv
a specifies the priority to place a replica of application a in node v.

3. Eq is related to the order of a request q assigned to a replica, where

q ∈ {1, 2, . . . , Q} and Q =
∑
Qu

a is the total number of requests.

Decoder Algorithm. The proposed Algorithm 1 decodes the above chromo-

some representation into a feasible solution. Its basic idea is to first select the535

potential placement locations of each application (lines 4 to 7). For this, it takes

the first part of the chromosome (Ia) to delimit the maximum number of possi-

ble nodes hosting an application replica on line 5. Then, nodes with high values

in the second part of the chromosome (Sv
a) are chosen as potential deployment

sites for an application. The cloud is also added as a possible location to ensure540

that there are resources to deploy at least one replica of each application on the

network.

The second step of Algorithm 1 is the load/request distribution (lines 8 to

20). It creates a sequence of all requests conforming to the third part of the

chromosome (Eq). Following this sequence, requests are assigned one at a time545

among the nodes selected in the first step of the algorithm. For a request, the

decoder looks for a node with short response time and sufficient resources to
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receive it. When the first envisioned target node is found, it sets to place a

replica of the requested application on this node and assigns the request to this

replica. It also updates the number of available resources and the response time550

of the target node after increasing the workload. Note that only the processing

delay may be increased with a growing workload, thus using the estimated

response time to select the target node is a way to distribute load among nodes

without ignoring the network delay.

Finally, the decoder algorithm verifies that the maximum number of replicas555

of an application is respected and replaces surplus replicas with the cloud node

(lines 21 to 24).

In order to exemplify how the Algorithm 1 works, let us define a simple

system model with three nodes (one base station, the core, and the cloud), and

one application, as shown in Figure 3a. This application allows a maximum of560

four replicas to be placed in the system (i.e., N1 = 4), and it has three requests.

Moreover, the base station has resources available to receive a maximum of one

request, while the core node can receive two requests, and the cloud has no

restriction. Figure 3b shows the chromosome of an individual in this defined

system. This chromosome leads the decoder algorithm to select only two nodes565

as candidates to host the application because dI1N1e = d0.5 ∗ 4e = 2. More

specifically, the base station and core nodes are selected because they have higher

values in the second part of the chromosome (i.e., SBS
1 = 0.7, Score

1 = 0.4). The

third part of the chromosome indicates that request E2 is assigned first and

followed by requests E1 and E3. According to the shortest response time order570

in the second step of Algorithm 1, a replica of the application with request E2 is

placed in the base station and then another replica with the remaining requests

E1 and E3 is placed in the core node. Figure 3c shows the feasible solution

decoded from the exemplified chromosome.

Complexity Analysis. Let A = |A|, V = |V| and R = |R|. The first out-575

ermost loop of Algorithm 1 (lines 4 to 7) has complexity O (AV log V ) due to

the sorting procedure on line 6. Line 8 has complexity O (Q logQ). Assuming
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Algorithm 1: Proposed Chromosome Decoder.

Data: individual

Result: Decoded solution (ρ, γ, δ)

1 initialize ρva, γ
u,v
a , δu,va ← 0;

2 initialize du,va ← da,u,vnet ;

3 I, S,E ← individual.chromosome;

/* Part I: Node Selection */

4 forall a ∈ A do

5 n← min(|V|, dIaNae);

6 Va ← select n nodes with higher Sv
a , v ∈ V;

7 Va ← Va ∪ {cloud};

/* Part II: Request Distribution */

8 L← list of requests sorted by E in descending order;

9 forall r ∈ L do

10 a← appr; // requested application of r

11 u← sourcer; // source node of r

12 sort nodes v in Va by du,va in ascending order;

13 forall v ∈ Va do

14 if assigning r to v respects Constraints (10) and (11) then

15 ρva ← 1;

16 γu,v
a ← 1;

17 δu,va ← δu,va + 1;

18 update free resources on v given (ρ, γ, δ);

19 update du,va by Equation 1 and current (ρ, γ, δ);

20 break;

/* Part III: Feasibility Verification */

21 forall a ∈ A do

22 n← Na −
∑

i∈V ρ
i
a;

23 if n > 0 then

24 replace n replicas of a with the cloud node;
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(a) System model.

0.5 0.7 0.4 0.1 0.6 0.8 0.3

I1 SBS
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1 Scloud
1 E1 E2 E3

(b) Chromosome as an input parameter.

ρBS
1 ρcore1 ρcloud1 δBS,BS

1 δBS,core
1 δBS,cloud

1

1 1 0 1 2 0

(c) Feasible solution decoded.

Figure 3: Decoding example for Algorithm 1.

that checking the satisfaction of constraints on line 14 can be done in O (R) and

the update of variables between lines 15 and 19 has complexity O (1). Then the

complexity of the second outermost loop (lines 9 to 20) is O (QV log V +QV R).580

Given that the number of resources types is much less than the number of nodes

(i.e., R � V ), then we have O (QV log V +QV R) = O (QV log V ). The loop

between lines 21 and 24 has complexity O (AV ). Therefore, Algorithm 1 has

complexity O ((A+Q)V log V +Q logQ).

5.2. Initial Population585

BRKGA initializes the first population with individuals as vectors of random

values. An alternative is to populate the starting population with a few solutions

obtained with another heuristic for the specific problem being solved while the

remaining individuals are randomly generated. This strategy may help speed up

the convergence of the algorithm and improve the quality of the final solutions.590

Hence, we apply the following heuristics that encode some feasible solutions on
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the proposed chromosome representation:

• Cloud. A simple solution is to place all applications in the cloud. Ac-

cording to Algorithm 1 (lines 4-7), it is sufficient that Ia = 0 to only select

the cloud node. Thus, the solution is encoded as595

Ia = 0, Sv
a = 0, Eq = 0 ∀a ∈ A,∀v ∈ V,∀q ∈ [1, Q]

• Deadline. Another heuristic is to prioritize requests for applications with

shorter deadline requirements. In addition, the heuristic selects as many

nodes as possible, i.e., Ia = 1, for an application to reduce response time

and deadline violations. Given Dappq
as the application deadline require-

ment of request q, then the heuristic solution is encoded as600

Ia = 1, ∀a ∈ A

Sv
a = 0, ∀a ∈ A,∀v ∈ V

Eq = 1−
Dappq

maxa∈ADa
∀q ∈ [1, Q]

• Net Delay. Zhao and Liu [17] propose a heuristic that selects nodes with

the lowest network latency for all other nodes as candidates to host an

application. We encode this heuristic as follows:

Ia = 1, ∀a ∈ A

Sv
a = 1−

∑
i∈V d

a,i,v
net

maxj∈V
∑

i∈V d
a,i,j
net

, ∀a ∈ A,∀v ∈ V

Eq = 0 ∀q ∈ [1, Q]

• Cluster. For each application, a heuristic is to place replicas of it in

regions where its end-users are located. We can define a region as a set605

of close nodes where there are users attached to them (i.e., |Uv
a | > 0).

Moreover, we apply the K-medoids clustering technique [37] to detect

those regions. The K-medoids algorithm is a variation of the classical
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K-means algorithm. Despite the similarity between these two algorithms,

K-medoids chooses points in the dataset as centers, or medoids, of the610

clusters and can be used with an arbitrary distance function, while in K-

means, a cluster center is not necessary a point in the dataset. Moreover,

Park and Jun [37] propose a simple and fast K-metoid algorithm with time

complexity of O (nk), where n is the dataset size, and k is the number of

clusters. These characteristics allow us to partition the subset of nodes615

where |Uv
a | > 0 in any connected graph using the network delay da,u,vnet as

the distance function. Let Ma be the set of medoids obtained after the

execution of the clustering algorithm for an application a with a maximum

of Na clusters. Then, the heuristic to place replicas close to end-users pri-

oritizes nodes near to a center of |Ma| regions, which is formally encoded620

as

Ia = 1, ∀a ∈ A

Sv
a = 1− mini∈Ma d

a,i,v
net

maxj∈V mini∈Ma d
a,i,j
net

, ∀a ∈ A,∀v ∈ V

Eq = 0 ∀q ∈ [1, Q]

• Combined Solution. Given S as a set of random-key chromosome vec-

tors and si the i-th element of a vector s ∈ S with length n, then we

can combine two or more heuristic solutions by summing their encoded

vectors as specified below:625

s+i =
1

|S|
∑
s∈S

si ∀i ∈ {1, . . . , n}

• Inverted Solution. In order to add more diversity to the initial popula-

tion, we can add complementary, or inverted, solutions to those obtained

by the above heuristics. Since si ∈ [0, 1] is valid for each element of a

chromosome vector s, we can obtain the inverted solution by doing the

following operation:630
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s̄i = 1− si ∀i ∈ {1, . . . , n}

5.3. Next Population and Stopping Criteria

At the beginning of an iteration or generation t, our genetic algorithm de-

codes all individuals in the current population into feasible solutions. Next, it

applies the sorting procedure of NSGA-II to rank individuals based on a domi-

nance operator and a mechanism to preserve diversity. In this sorting procedure,635

we can either use our proposed dominance operator ≺1 or the Pareto dominance

operator ≺ to check if a solution is better than another in a multi-objective con-

text.

After the population sorting, the proposed GA partitions the population

into two groups: (i) the best-ranked individuals as an elite group, and (ii) the640

remaining individuals as non-elite ones. Then, it adds the elite individuals with-

out modification in the next generation. This elitist strategy keeps track of good

solutions found during the algorithm iterations, which results in a monotonically

improving heuristic. It is important to note that elite group size is a parameter

of the algorithm, but a relatively small value is generally used.645

In addition to the elite individuals, the next population is also composed of

(i) mutant and (ii) offspring individuals. We utilize the BRKGA procedure to

generate mutant individuals as simple random-generated vectors. Our GA com-

pletes the remainder of the next population with offspring. Each new offspring

individual is produced by combining one solution selected at random from the650

group of elite individuals and one from the set of non-elite individuals. Similar

to BRKGA, we use parameterized uniform crossover mechanism [38] to combine

two parent solutions and obtaining a new offspring. In this crossover mecha-

nism, an offspring inherits a gene (i.e., the value of a vector element) of its elite

parent with a probability Pelite ≥ 0.5.655

The above-discussed procedure for generating the next population is re-

peated until a stopping criterion is met. We use the stopping criterion for

multi-objective problems proposed by Mart́ı et al. [20], which is called MGBM
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after the authors surnames. MGBM tries to detect situations where no further

progress will be made in the GA by designing a progress estimator Îmdr(t).660

Thus, our GA terminates either when it reaches a maximum number of gen-

erations (i.e., t ≥ tmax) or when the progress estimation falls below a defined

threshold (i.e., Îmdr(t) < Îmin
mdr). Here, tmax and Îmin

mdr are parameters to be set,

and t ≥ 1 is the generation/iteration index.

6. Performance Analysis665

In this section, we present the performance (i.e., the optimality) results

of our proposed Genetic Algorithm (GA) by comparing it with benchmarking

algorithms over a cellular network (5G) with Edge Computing (EC) capabilities.

This section is structured as follows. First, Subsection 6.3 presents the per-

formance metrics. Next, Subsection 6.2 describes the evaluated algorithms.670

Then, Subsection 6.3 details the experiment setup. In Subsection 6.4, we de-

fine the values of key parameters of the proposed GA. Finally, we analyze the

obtained experimental results in Subsection 6.5.

6.1. Performance Metrics

We select the deadline violation fdv, operational cost fcost, and service un-675

availability ffail as performance-related functions to be optimized. We chose

these functions because they are relevant in the context of EC, and there are

conflicts between them, as discussed in Section 4.4. It is important to note that

we can use other objectives since the proposed algorithm has no restrictions on

this aspect.680

6.2. Evaluated Algorithms

An overview of the compared algorithms is given below:

• MILP returns the optimal solution for the linear and relaxed version

of (13) (see Appendix A). The optimal solution is found by the branch

and cut technique in the CPLEX linear solver. We also use a timeout685

parameter to stop the solver tool.
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• Cloud simply places everything in the cloud node.

• NetDelay+DL combines the Net Delay and Deadline heuristics pre-

sented in Section 5.2.

• Cluster+DL combines the Cluster and Deadline heuristics presented in690

Section 5.2.

• MOHGA(≺1) is the proposed GA for multi-objective using the heuristic

initialization and the dominance operator ≺1. The result of this algorithm

is the best-ranked individual because we are only interested in obtaining

a single solution.695

• MOHGA(≺) is similar to MOHGA(≺1) but using the Pareto dominance

operator ≺ instead.

• MOGA(≺1) is the same as MOHGA(≺1) but without using the heuristic

initialization. That is, the first population is only randomly generated.

• SOHGA(f) uses the proposed GA with heuristic initialization to opti-700

mize a single objective function f ∈ {fdv, fcost, ffail}.

6.3. Analysis Setup

We conduct the experiment in Python with the CPLEX solver [39] to eval-

uate the performance of the above-mentioned algorithms in a 5G network sce-

nario. In this scenario, Base Stations (BSs) are equally distributed in a grid705

area, and there is a network link between neighboring BSs. There are also

hosting nodes in different network parts (i.e., BS, core, and cloud), and their

capacities are reduced as they descend from cloud to BSs.

We use the three types of applications specified for 5G networks, with the

following characteristics [40]:710

• massive Machine Type Communications (mMTC) has low resource

usage, high deadline, and a large number of users;
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Table 4: Performance Evaluation Parameters

Parameter Value

System

CPU (MIPS) Cloud: ∞, Core: 200000, BS: 40000

Storage Disk (MB) Cloud: ∞, Core: 32000, BS: 16000

RAM (MB) Cloud: ∞, Core: 8000, BS: 4000

Node Availability Pv (%) Cloud: 99.9, Core: 99.0, BS: 90.0

Cost Gv, G
r
v Cloud: 0.025, Core: 0.05, BS: 0.1

User Proportion (%) 70 mMTC, 20 eMBB, 10 URLLC

App. Proportion (%) 34 mMTC, 33 eMBB, 33 URLLC

Applications

Max. Replicas Na [1, |V|]

Deadline Da (ms) mMTC: [100, 1000], URLLC: [1, 10], eMBB: [10, 50]

λa (requests/ms) mMTC: [0.0002, 0.001],

eMBB: [0.001, 0.01], URLLC: [0.02, 0.2]

App. Availability Pa (%) mMTC, eMBB: [80.0, 90.0], URLLC: [90.0, 99.0]

CPU Work Wa (MI) mMTC, URLLC: [1, 5], eMBB: [1, 10]

RAM, Disk Ha,r
1 , Ha,r

2
mMTC, URLLC: [1, 10], eMBB: [1, 50]

CPU Ha,r
1 , Ha,r

2 Wa, Wa/Da + 1

Net. Delay Da,u,v
net (ms)

neighbor BS-BS, BS-Core
mMTC, URLLC: [1, 2], eMBB: [1, 5]

Net. Delay Da,u,v
net (ms)

Core-Cloud
mMTC, URLLC: [10, 12], eMBB: [10, 15]

An interval [a, b] means that a value is chosen randomly within this range.

• Ultra Reliable Low Latency Communications (URLLC) has low

resource usage, a strict deadline, and a small volume of users;

• enhanced Mobile Broadband (eMBB) has high resource usage, a715

medium deadline, and an intermediate number of users.

Then, we randomly assign the value of the application parameters based

on the above characteristics and some predictions for 5G discussed by Schulz
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et al. [3] (response deadline and request rate). For evaluation purposes, we

assume that it is sufficient to use relative values for the parameters among720

different application types instead of applying more realistically accurate values.

In addition, we also assume that the application resource demand hra(·) and

node usage cost gv(·) functions are linear according to Equations (19) and (20),

respectively, where Ha
1 , H

a
2 , Gv, and Gr

v are constants.

hra(λ) = Ha,r
1 λ+Ha,r

2 (19)

gv(λva) = Gvρ
v
a +

∑
r∈R

Gr
vh

r
a(λva) = Gvρ

v
a +

∑
r∈R

Gr
v (Ha,r

1 λva +Ha,r
2 ) (20)

In order to have different user densities, users are distributed either uni-725

formly or through isotropic Gaussian blobs [41] in the grid area. Then, a user

is attached to the nearest BS. Finally, each test case is executed 30 times to ob-

tain results with a 95% confidence interval [42]. Table 4 summarizes the major

experiment parameters.

6.4. Different Parameters Settings730

Regarding the parameters of the proposed MOHGA(≺1), we analyze its

performance in terms of the optimization objectives against different values of

these parameters.

Elite and Mutant Group Size. In a GA with elitist strategy and random

mutants, some parameters to be defined are the number of individuals in the735

elite and mutant sets. Figure 4 presents the influence of these parameters in the

objective functions for MOHGA(≺1) with a population size of 100. We observe

that values in the range between 10% and 20% for these parameters result in

better results for all three objectives. These values allow the algorithm to have

a diversity of solutions within the search space and still benefit from the elitist740

strategy. Therefore, we select the number of elite and mutant individuals to be

both 10% of all population.
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(a) Max. Deadline Violation (b) Overall Operational Cost

(c) Avg. Service Unavailability

Figure 4: Performance of different elite and mutant group sizes.

Elite Probability. In the crossover operation described in Section 5.3, a pa-

rameter to be defined is the probability Pelite to an offspring inheriting a gene of

its elite parent. Figure 5 presents the impact of different values of Pelite on the745

objectives functions. We can see that this parameter does not have much influ-

ence on the objectives, but Pelite = 0.6 has a slightly better results, specially

for service availability in Figure 5c.

Stopping Criteria Threshold. We examine the performance of different stop-

ping threshold Îmin
mdr values for MOHGA(≺1) with a maximum of 100 generations750

and a population size of 100 for each generation. Regarding the optimization

objectives, the algorithm performs better when the threshold is below 0.2. How-

ever, a small threshold implies that the algorithm iterates over more generations,

consequently, resulting in longer execution time, as shown in Figure 6d. Hence,
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(a) Max. Deadline Violation (b) Overall Operational Cost

(c) Avg. Service Unavailability

Figure 5: Performance of different elite probability Pelite values.

we select Îmin
mdr = 0.1 as a trade-off between optimality and execution time.755

6.5. Results and Discussion

We evaluated performance of the examined algorithms for each optimization

objective in scenarios with different amounts of applications, users, and hosting

nodes.

Max. Deadline Violation. Figure 7a presents the impact on the system760

deadline violation level by increasing the number of deployed applications in

a scenario with 5x5 BSs and 10k users. In all algorithms, the violation level

grows as more applications compete for the fixed amount of node resources.

More specifically, Cloud heuristic has the worst results due to the distance be-

tween the users and the cloud node. Meanwhile, the optimum solutions of MILP765
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(a) Max. Deadline Violation (b) Overall Operational Cost

(c) Avg. Service Unavailability (d) Avg. Execution Time

Figure 6: Performance of different stopping criteria threshold Îmin
mdr values.

present, as expected, the best results. When we compare MOHGA(≺1) with

MOGA(≺1) and MOHGA(≺), a drastic performance improvement of this GA

is observed due to the inclusion of the heuristics initialization and preferred

dominance operator ≺1. MOHGA(≺1) also outperforms both NetDelay+DL

and Cluster+DL heuristics, which are used at its initialization. Furthermore,770

the multi-objective MOHGA(≺1) has similar results obtained by only optimiz-

ing the deadline violation in SOHGA(fdv) because the dominance operator ≺1

prioritizes time-sensitive applications with strict deadline requirements. Both

MOHGA(≺1) and SOHGA(fdv) perform near the optimum results of MILP.

The growth in users number also affects the demand of node resources and,775

consequently, the level rise of deadline violation, as shown in Figure 7b. Cloud

heuristic is an exception in this figure with constant results due to the unlimited
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(a) 10000 users and 5x5 BSs (b) 50 apps and 5x5 BSs

(c) 10000 users and 50 apps Legend

Figure 7: Maximum Deadline Violation

capacity of the cloud node. Besides that, the growth slope is less steep for

MOHGA(≺), MOGA(≺1), Cluster+DL, and NetDelay+DL algorithms when the

number of users is greater than 4k due to surplus requests being processed in780

the cloud node. The other algorithms, MILP, SOHGA(fdv), and MOHGA(≺1),

tend to have a linear growth behavior presumably because resource demand also

increases linearly with the number of users in the tested scenario.

On the other hand, more nodes mean more resources available to meet ap-

plication requirements. Figure 7c shows the deadline violation performance of785

the algorithms by varying the number of base stations with 50 applications and

10k users. Cluster+DL, NetDelay+DL, MILP, SOHGA(fdv), and MOHGA(≺1)

exhibit violation decrease by adding more nodes, while Cloud and MOHGA(≺)

have similar results in all tested variations. However, MOGA(≺1) produces

worse results with more base stations, possibly due to a higher number of chro-790
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mosome values combinations.

(a) 10000 users and 5x5 BSs (b) 50 apps and 5x5 BSs

(c) 10000 users and 50 apps Legend

Figure 8: Overall Operational Cost

Overall Operational Cost. Figure 8 presents the performance of the com-

pared algorithms according to cost function fcost. In the tested scenarios, the

optimum solution to minimize the overall operational cost is to place only one

replica of each application in the cloud node, which has the cheapest resources.795

Thus, Cloud heuristic is the optimum solution in this case. As solution SO-

HGA(fcost) includes the Cloud heuristic and only optimizes the cost function

fcost, it also achieves an optimal solution. In addition, the multi-objective algo-

rithms MOHGA(≺1), MOHGA(≺), and MOGA(≺1) have slightly better results

than NetDelay+DL and Cluster+DL by varying the number of applications and800

users, as shown in Figures 8a and 8b, respectively.

In Figure 8c, all algorithms present a linear cost increase by varying the
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number of nodes but with a fixed number of users and applications. This be-

havior is explained by how we estimate the number of requests generated. More

specifically, we assume that there is at least one request coming from a node805

with users attached when the number of requests is defined as Qu
a = d|Uu

a |λae in

Section 4.1.2. Moreover, users will be more distributed in the test scenario by in-

creasing the number of BSs. Consequently, there are more nodes with attached

users and, thus, more requests are generated even if the number of users and

applications does not change. Then, increasing the number of requests implies810

more resource consumption and higher operational costs.

Avg. Service Availability. Figures 9a, 9b, and 9c relate the impact of service

availability, or unavailability, with the variation of the number of applications,

users, and nodes, respectively. Cloud heuristic has the worst results due to the

placement of a single replica for each application, and all compared genetic al-815

gorithms outperform NetDelay+DL and Cluster+DL. Moreover, MOHGA(≺1)

has slightly lower availability than other GAs in Figures 9a and 9b. Meanwhile,

the performance difference between MOHGA(≺1) and the other GAs is most

notable in Figure 9c. This performance degradation may be explained by the

trade-off of solution MOHGA(≺1) having less deadline violation. That is, MO-820

HGA(≺1) may try to place more replicas of time-sensitive applications to reduce

deadline violations. Then, fewer resources are available to place many replicas

of time-tolerant applications. Consequently, the average availability across all

applications is impacted in MOHGA(≺1) as there are more time-tolerant than

time-sensitive applications in our tests.825

In Figures 9a and 9b, we observe a considerable loss of availability for Net-

Delay+DL and Cluster+DL heuristic by increasing the number of applications

or users on a 5x5 BSs grid. As these heuristics may prioritize the same edge

nodes for applications with some similar characteristics (e.g., network latency

and user distribution), so there is more competition for those nodes by increas-830

ing the number of applications or users. As a result, NetDelay+DL and Clus-

ter+DL deploy fewer application replicas resulting in decreased service avail-
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(a) 10000 users and 5x5 BSs (b) 50 apps and 5x5 BSs

(c) 10000 users and 50 apps Legend

Figure 9: Average Service Availability

ability. Meanwhile, the other compared algorithms do not have large variations

in their performance, which may be explained by the use of the cloud node to

receive the increased resource demand.835

Figure 9c shows that the majority of compared algorithms improve their

performance by adding more hosting nodes in the system. As the number of

nodes grows, it is possible to place more application replicas on the system,

and thus, increasing service availability. Cloud is the only algorithm without

improvement as the number of replicas deployed per application is fixed.840

7. Conclusion

In this paper, we jointly formulated the static service placement and load

distribution in an IoT and Edge Computing environment as an optimization
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problem by considering diverse application characteristics (e.g., response dead-

line, resource demand, scalability, and availability). The formulated problem845

aims to minimize SLA infringements, caused by violations of the deadline re-

quirement, and other possibly conflicting objectives (e.g., operational cost and

unavailability). Then, we proposed a multi-objective genetic algorithm based on

BRKGA and NSGA-II to obtain feasible solutions close to the Pareto optimal

front. We also modified the Pareto dominance operator to prioritize applica-850

tions with strict deadline requirements. Furthermore, we included heuristic

solutions during the initialization of the proposed genetic algorithm to improve

its solution results.

We analyzed the efficiency of the proposed algorithm through simulations.

Our experimental results show that the proposed multi-objective GA achieves855

values close to the optimum of the MILP formulation in terms of deadline vi-

olation, and still generally outperforms the benchmark heuristics for the other

analyzed objectives (operational cost and service availability). Moreover, we

observed that the results of the proposed GA are related to the deadline prior-

itization and the heuristic initialization.860

As future work, we plan to investigate the dynamic (or online) service place-

ment and load distribution problems, which includes application migration, user

mobility, and other dynamic changes in the network.
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Appendix A. Linearization and Relaxation

We transform the nonlinear problem (13) into a Mixed-Integer Linear Pro-

gramming (MILP) problem by linearizing and relaxing its objective function,870

and constraints (10) and (11). These transformations are described as follows.
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Node Capacity Constraint. For an application a, its monotonic resource

demand function hra(λ) may be nonlinear for a specific resource type r ∈ R.

In this case, the function hra(λ) can be replaced by an over linear estimator

ĥra(λ) in the domain interval [0, Qa], as shown in Equation A.1, where Ha,r
1 ,

Ha,r
2 are constants, and Qa is equal to

∑
v∈V Q

v
a. That is, hra(λ) is substituted

by a linear function ĥra(λ) such that hra(λ) ≤ ĥra(λ) for all λ ∈ [0, Qa]. The

idea here is that ĥra(λ) results in a resource demand equal to or greater than

that originally required by hra(λ). For instance, a naive replacement can be the

constant function ĥra(λ) = Ha,r
2 , where Ha,r

2 = max{hra(x) | 0 ≤ x ≤ Qa}.

ĥra(λ) = Ha,r
1 λ+Ha,r

2 (A.1)

Given that requests only arrive at servers running the requested application

according to Equations (3), (7) and (8), we have:

ρvaλ
v
a = λva (A.2)

By applying Equations (A.1) and (A.2) to Equation 10, the node capacity

constraint can be rewritten as:∑
a∈A

(λvaH
a,r
1 + ρvaH

a,r
2 ) ≤ Cr

v ∀r ∈ R,∀v ∈ V (A.3)

Queue Stability Constraint. In order to have a linear queue stability con-

straint, we apply Equations (4) and (A.1) to Constraint (11) and obtain:

λva

(
Ha,CPU

1 −Wa

)
+Ha,CPU

2 > 0 ∀a, v (ρva = 1) , a ∈ A, v ∈ V (A.4)

However, it must remove the strictness of the above inequality to obtain

a standard form of a MILP problem. For this, it is added a small constant

Θ ∈ (0, 1]. Furthermore, both sides of the inequality are multiplied by ρva to

ensure the queue existence constraint. Then, we further have:

ρvaλ
v
a

(
Ha,CPU

1 −Wa

)
+ ρvaH

a,CPU
2 ≥ ρvaΘ ∀a ∈ A,∀v ∈ V (A.5)

Finally, applying Equation A.2 to the above result, we obtain the following

linear queue stability constraint:

λva

(
Ha,CPU

1 −Wa

)
+ ρvaH

a,CPU
2 ≥ ρvaΘ ∀a ∈ A,∀v ∈ V (A.6)
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Objective Function. Problem (13) has a min max f(x) objective, which is

nonlinear because max function is nonlinear. This type of problem can be

transformed into one without max function by replacing min max f(x) for min z,

where z is a new variable, and adding a new constraint relating this variable to

f(x) (i.e., f(x) ≤ z). In this way, the objective is linear, but it is necessary to

check the linearity of the new constraint. Based on this transformation, we can

add the following constraint in the problem:

γu,va du,va −Da ≤ ε ∀a ∈ A,∀u, v ∈ V (A.7)

where ε ≥ 0 is a new variable indicating the system deadline violation that

we want to minimize. Moreover, given Equations (1), (2), (4), (5) and (A.1),

we rewrite Constraint (A.7) as:(
γu,va λvad

a,u,v
net − ελva − λvaDa

)(
Ha,CPU

1 −Wa

)
+ γu,va

(
Ha,CPU

2 da,u,vnet +Wa

)
−Ha,CPU

2

(
Da + ε

)
≤ 0

∀a ∈ A,∀u, v ∈ V (A.8)

However, in Constraint (A.8), both γu,va λva and ελva are bilinear terms (i.e.,

multiplication of two variables). We can relax these terms to obtain linear ones

using McCormick envelopes [43]. That is, we replace these bilinear terms with

new variables (ϕu,v
a = γu,va λva and ψv

a = ελva) and add the following new linear

constraints in the problem:

0 ≤ γu,va ≤ 1 and 0 ≤ λva ≤ Qa and 0 ≤ ε ≤ E ∀a ∈ A,∀u, v ∈ V

(A.9a)

0 ≤ ϕu,v
a ≤ λva and Qa (γu,va − 1) + λva ≤ ϕu,v

a ≤ γu,va ∀a ∈ A,∀u, v ∈ V

(A.9b)

0 ≤ ψv
a ≤ λvaE and εQa + λvaE − EQa ≤ ψv

a ≤ εQa ∀a ∈ A,∀u, v ∈ V

(A.9c)

where E is a constant specifying the maximum deadline violation allowed.

Then, we can rewrite Constraint (A.8) with the two new variables to have a
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linear constraint:

(
ϕu,v
a da,u,vnet − ψv

a − λvaDa

)(
Ha,CPU

1 −Wa

)
+ γu,va

(
Ha,CPU

2 da,u,vnet +Wa

)
−Ha,CPU

2

(
Da + ε

)
≤ 0

∀a ∈ A,∀u, v ∈ V (A.10)

Linear Formulation. Let ϕ = {ϕu,v | a ∈ A and u, v ∈ V}, ψ = {ψv
a | a ∈

A and v ∈ V}, and x = (ρ, γ, δ, ε, ϕ, ψ). Then, we use the above linearizations

and relaxations to formulate the MILP problem of the static single objective875

case as follows:

min
x
ε

x = (ρ, γ, δ, ε, ϕ, ψ)

s.t. eqs. (6) to (9), (A.3), (A.6), (A.9) and (A.10)

(A.11)

It is important to note that a solution to problem (A.11) is also feasible for

problem (13), but it may present a higher objective value ε when applied to the

original problem due to the bilinear relaxation.
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