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Abstract. Motivated by fatigue damage models, this paper addresses optimal control prob-
lems governed by a non-smooth system featuring two non-differentiable mappings. This consists of
a coupling between a doubly non-smooth history-dependent evolution and an elliptic PDE. After
proving the directional differentiability of the associated solution mapping, an optimality system
which is stronger than the one obtained by classical smoothening procedures is derived. If one of
the non-differentiable mappings becomes smooth, the optimality conditions are of strong stationary
type, i.e., equivalent to the primal necessary optimality condition.

Key words. damage models with fatigue, non-smooth optimization, evolutionary VIs, optimal
control of PDEs, history-dependence, strong stationarity

AMS subject classifications. 34G25, 34K35, 49J20, 49J27, 74R99

1. Introduction. Fatigue is considered to be the main cause of mechanical fail-
ure [29, 35]. It describes the weakening of a material due to repeated applied loads
(fluctuating stresses, strains, forces, environmental factors, temperature, etc.), which
individually would be too small to cause its malfunction [1, 35]. Whether in associa-
tion with environmental damage (corrosion fatigue) or elevated temperatures (creep
fatigue), fatigue failure is often an unexpected phenomenon. Unfortunately, in real
situations, it is very difficult to identify the fatigue degradation state of a material,
which sometimes might result in devastating events. Therefore, it is extremely im-
portant to find methods which allows us to describe and control the behaviour of
materials exposed to fatigue. While there are very few papers [1] (damage in elastic
materials) and [11] (cohesive fracture), concerned with a rigurouos mathematical ex-
amination of models describing fatigue damage, the literature regarding the optimal
control of fatigue models is practically nonexistent. All the existing results which
include the terminology “optimal control” in the context of fatigue damage do not
address theoretical aspects nor involve mathematical tools such as optimal control
theory in Banach spaces as in the present work, but focus on design of controllers and
simulations instead, see e.g. [18, 28] and the references therein.

In this paper we investigate the optimal control of the following viscous two-filed
gradient damage problem with fatigue:

ϕ(t) ∈ arg min
ϕ∈H1(Ω)

E(t, ϕ, q(t)),

−∂qE(t, ϕ(t), q(t)) ∈ ∂q̇Rε(H(q)(t), q̇(t)) in L2(Ω), q(0) = 0,

 (1.1)

a.e. in (0, T ). To be more precise, we prove an optimality system that is far stronger
than the one obtained by classical smoothening techniques.

The main novelty concerning (1.1) arises from the highly non-smooth structure, which
is due to the non-differentiability of the dissipation Rε in the evolution inclusion, in
combination with an additional non-smooth fatigue degradation mapping which shall
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be introduced below. This excludes the application of standard adjoint techniques
for the derivation of first-order necessary conditions in form of optimality systems.
Not only does the evolution in (1.1) have a highly non-smooth character, but, as we
will next see, it is also history-dependent. The fact that the differential inclusion is
coupled with a minimization problem (which can be reduced to an elliptic PDE) gives
rise to additional challenges [5].

The problem describes the evolution of damage under the influence of a time-dependent
load ` : [0, T ]→ H1(Ω)∗ (control) acting on a body occupying the bounded Lipschitz
domain Ω ⊂ RN , N ∈ {2, 3}. The induced ’local’ and ’nonlocal’ damage are expressed
in terms of the functions q : [0, T ] → L2(Ω) and ϕ : [0, T ] → H1(Ω), respectively
(states).

In (1.1), the stored energy E : [0, T ]×H1(Ω)× L2(Ω)→ R is given by

E(t, ϕ, q) :=
α

2
‖∇ϕ‖2L2(Ω) +

β

2
‖ϕ− q‖2L2(Ω) − 〈`(t), ϕ〉H1(Ω), (1.2)

where α > 0 is the gradient regularization and β > 0 denotes the penalization param-
eter. Thus, the two damage variables are connected through the penalty term β in
the stored energy, so that our model becomes a penalized version of the viscous fa-
tigue damage model addressed in [1] (two-dimensional case); note that, for simplicity
reasons, we do not take a displacement variable into account. The type of penaliza-
tion used in (1.2) has already been proven to be successful in the context of classical
damage models (without fatigue). Firstly, it approximates the classical single-field
damage model, in the sense that, when β → ∞, the penalized damage model co-
incides with the model addressed in [16, 22], cf. [25]. Secondly, the penalization we
use is frequently employed in computational mechanics due to the numerical benefits
offered by the additional damage variable (see e.g. [13] and the references therein).
For more details, we also refer to [24, Sec. 2.1-2.2].

The differential inclusion appearing in (1.1) describes the evolution of the damage
variable q under fatigue effects. Therein, H is a so-called history operator that models
how the damage experienced by the material affects its fatigue level. Thus, as opposed
to other well-known damage models, cf. e.g. [15, 16,22], the dissipation Rε in (1.1) is
affected by the history of the evolution, H(q). The parameter ε > 0 stands for the
viscosity parameter, while the symbol ∂q̇ denotes the convex subdifferential of the
functional Rε in its second argument. Thus, the non-smooth differential inclusion is
to be understood as follows:

(−∂qE(t, ϕ(t), q(t)), η − q̇(t))L2(Ω) ≤ Rε(H(q)(t), η)−Rε(H(q)(t), q̇(t)) ∀ η ∈ L2(Ω).

The viscous dissipation Rε : L2(Ω)× L2(Ω)→ R is defined as

Rε(ω, η) :=


∫

Ω

f(ω) η dx+
ε

2
‖η‖2L2(Ω), if η ≥ 0 a.e. in Ω,

∞ otherwise,
(1.3)

and features a second non-smooth component, namely the fatigue degradation map-
ping f . This describes in which measure the fatigue affects the fracture toughness
of the material. This mapping is non-increasing in applications, since the higher the
cumulated damage H(q), the lower the fracture toughness f(H(q)). Whereas usually
the toughness of the material is described by a fixed (nonnegative) constant [15,16], in
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the present model it changes at each point in time and space, depending on H(q). To
be more precise, the value of the fracture toughness of the body at (t, x) is given by
f(H(q))(t, x), cf. (1.3). Hence, the model (1.1) takes into account the following crucial
aspect: the occurrence of damage is favoured in regions where fatigue accumulates.
We underline that the dissipation Rε accounts for the non-smooth nature of the
evolution in the first place: even if f is replaced by a (nonnegative) constant, the
evolution in (1.1) still describes a non-smooth process. The optimal control thereof
is far away from being standard and has been recently addressed in [5, Sec. 4], where
strong stationarity for the damage model (1.1) without fatigue is proven. By contrast,
in applications which take fatigue into consideration, f : R+ → R+ is constant until
its kink point is achieved, after which it monotonically decreases [2, Sec. 2.6.2]. Thus,
it is the fatigue degradation mapping f which accounts for the highly non-smooth
character of our problem.
Deriving necessary optimality conditions is a challenging issue even in finite dimen-
sions, where a special attention is given to MPCCs (mathematical programs with
complementarity constraints). In [31] a detailed overview of various optimality con-
ditions of different strength was introduced, see also [20] for the infinite-dimensional
case. The most rigorous stationarity concept is strong stationarity. Roughly speaking,
the strong stationarity conditions involve an optimality system, which is equivalent
to the purely primal conditions saying that the directional derivative of the reduced
objective in feasible directions is nonnegative (which is referred to as B stationarity).
While there are plenty of contributions in the field of optimal control of smooth prob-
lems, see e.g. [38] and the references therein, fewer papers are dealing with non-smooth
problems. Most of these papers resort to regularization or relaxation techniques to
smoothen the problem, see e.g. [3, 17, 19] and the references therein. The optimality
systems derived in this way are of intermediate strength and are not expected to be of
strong stationary type, since one always loses information when passing to the limit
in the regularization scheme. Thus, proving strong stationarity for optimal control of
non-smooth problems requires direct approaches, which employ the limited differen-
tiability properties of the control-to-state map. In this context, there are even less
contributions. We refer to the pioneering work [26] (strong stationarity for optimal
control of elliptic VIs of obstacle type), which was followed by other papers address-
ing strong stationarity of various types of VIs [7, 8, 12, 27, 39, 40]. Regarding strong
stationarity for optimal control of non-smooth PDEs, the literature is rather scarce
and the only papers known to the author addressing this issue so far are [5,6,9,10,23].
Let us point out the main contributions of the present work. This paper aims at deriv-
ing optimality conditions which - regarding their strength - lie between the conditions
derived by classical regularization techniques and the strong stationary ones. Start-
ing from an optimality system obtained via smoothening, we resort to direct methods
from previous works [5, 23], in order to improve our initial optimality conditions as
far as we can. Note that this is a novel way of obtaining optimality conditions. We
emphasize that, in contrast to [5,23], our state system features two non-differentiable
mappings instead of one, so that the methods from the aforementioned works are of
limited applicability: Strong stationary conditions are not expected in our complex
doubly non-smooth setting. If the fatigue degradation mapping is smooth, strong
stationarity conditions are indeed available. We underline that, to the best of our
knowledge, optimal control problems featuring two non-differentiable functions have
not been tackled so far in the literature, not even in the context of classical smoothen-
ing methods.
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The paper is structured as follows. After an introduction of the notation, section 2
focuses on the analysis of our fatigue damage model (1.1). Here we address the exis-
tence and uniqueness of solutions, by proving that (1.1) is in fact equivalent to a PDE
system. This consists of an elliptic PDE and a highly non-smooth differential ODE.
The latter one is of particular interest. It features two non-differentiable functions,
namely max and the fatigue degradation function f ; the latter appears in the argu-
ment of the initial non-smoothness, cf (2.2a). The properties of the control-to-state
operator associated to (1.1) are investigated. In particular, we are concerned with
the directional differentiability of the solution mapping of the non-smooth state sys-
tem. To the best of our knowledge, the sensitivity analysis of non-smooth differential
equations containing two non-differentiable functions has never been examined in the
literature.

In section 3 we present the optimal control problem and investigate the existence of
optimal minimizers. Then, in subsection 3.1 we derive our first optimality conditions,
by resorting to a classical smoothening method. These conditions are of intermediate
strength. If the non-smoothness is inactive, they coincide with the classical KKT
system. However, our first optimality system does not contain any information in
those points (t, x) where the non-differentiable mappings max and f attain their kink
points. This is namely the focus of section 3.2, where the main result is proven
in Theorem 3.15. Here, the initial optimality system is improved by employing the
"surjectivity" trick from [5, 23]. The new and final optimality conditions (3.18) are
comparatively strong (but not strong stationary). They contain information in terms
of sign conditions on sets where the non-smoothness is active; these are not expected
to be obtained if one just smoothens the problem, cf. e.g. [6, Remark 3.9]. Moreover, if
the fatigue degradation function f is smooth, then (3.18) is of strong stationary type
(Corollary 3.16). For completeness, the expected (not proven) strong stationarity
system associated to the doubly non-smooth state system is presented in Section
3.3. Here we include a thorough explanation as to why the methods from [5, 23]
fail (Remark 3.22). Finally, we include in Appendix A the proof of Lemma 3.7, for
convenience of the reader.

Notation. Throughout the paper, T > 0 is a fixed final time. If X and Y are
linear normed spaces, then the space of linear and bounded operators from X to Y
is denoted by L(X,Y ), and X

d
↪→ Y means that X is densely embedded in Y . The

dual space of X will be denoted by X∗. For the dual pairing between X and X∗ we
write 〈., .〉X . The closed ball in X around x ∈ X with radius α > 0 is denoted by
BX(x, α). If X is a Hilbert space, we write (·, ·)X for the associated scalar product.
The following abbreviations will be used throughout the paper:

H1
0 (0, T ;X) := {z ∈ H1(0, T ;X) : z(0) = 0},

H1
T (0, T ;X) := {z ∈ H1(0, T ;X) : z(T ) = 0},

where X is a Banach space. The adjoint operator of a linear and continuous mapping
A is denoted by A?. By χM we denote the characteristic function associated to the set
M . Derivatives w.r.t. time (weak derivatives of vector-valued functions) are frequently
denoted by a dot. The symbol ∂ stands for the convex subdifferential, see e.g. [30].
With a little abuse of notation, the Nemystkii-operators associated with the mappings
considered in this paper will be denoted by the same symbol, even when considered
with different domains and ranges. The mapping max{·, 0} is abbreviated by max(·).

4



With a little abuse of notation, we use in the following the Laplace symbol for the
operator ∆ : H1(Ω)→ H1(Ω)∗ defined by

〈∆η, ψ〉H1(Ω) := −
∫

Ω

∇η∇ψ dx ∀ψ ∈ H1(Ω).

2. Properties of the control-to-state map. This section is concerned with
the investigation of the solvability and differentiability properties of the state system
(1.1).

Assumption 2.1. For the mappings associated with fatigue in (1.1) we require the
following:

1. The history operator H : L2(0, T ;L2(Ω))→ L2(0, T ;L2(Ω)) satisfies

‖H(q1)(t)−H(q2)(t)‖L2(Ω) ≤ LH
∫ t

0

‖q1(s)− q2(s)‖L2(Ω) ds a.e. in (0, T ),

for all q1, q2 ∈ L2(0, T ;L2(Ω)), where LH > 0 is a positive constant. More-
over, H : L2(0, T ;L2(Ω)) → L2(0, T ;L2(Ω)) is supposed to be Gâteaux-
differentiable with continuous derivative on H1(0, T ;L2(Ω)).

2. The non-linear function f : R → R is assumed to be Lipschitz-continuous
with Lipschitz-constant Lf > 0 and directionally differentiable.

Remark 2.2. Assumption 2.1.1 is satisfied by the Volterra operator H : L2(0, T ;L2(Ω))→
L2(0, T ;L2(Ω)), defined as

[0, T ] 3 t 7→ H(q)(t) :=

∫ t

0

A(t− s)q(s) ds+ q0 ∈ L2(Ω),

where A ∈ C([0, T ];L(L2(Ω), L2(Ω))) and q0 ∈ L2(Ω). This type of operator is often
employed in the study of history-depedent evolutionary variational inequalities, see
e.g. [34, Ch. 4.4].

Concerning Assumption 2.1.2, we remark that non-differentiable fatigue degradation
functions are very common in applications, since such mappings often display at least
one kink point, see [2, Sec. 2.6.2]. This basically means that once the cumulated fatigue
H(q) achieves a certain value, say nf , the body suddenly starts to become weaker in
terms of its fracture toughness (so that nf is a kink point of f). This abrupt weakening
of the material is described by the monotonically decreasing mapping f on the interval
[nf ,∞), see [2, Sec. 2.6.2].

Assumption 2.1 is supposed to hold throughout the paper, without mentioning it
every time.

It is not difficult to check that the Nemytskii operator f : L2(Ω)→ L2(Ω) is Lipschitz
continuous with constant Lf . In view of Assumption 2.1.1, we thus have

‖(f ◦ H)(q1)(t)− (f ◦ H)(q2)(t)‖L2(Ω) ≤ Lf LH
∫ t

0

‖q1(s)− q2(s)‖L2(Ω) ds (2.1)

a.e. in (0, T ), for all q1, q2 ∈ L2(0, T ;L2(Ω)).

Proposition 2.3 (Control-to-state map). For every ` ∈ L2(0, T ;H1(Ω)∗), the
fatigue damage problem (1.1) admits a unique solution (q, ϕ) ∈ H1

0 (0, T ;L2(Ω)) ×
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L2(0, T ;H1(Ω)), which is characterized by the following PDE system

q̇(t) =
1

ε
max

(
− β(q(t)− ϕ(t))− (f ◦ H)(q)(t)

)
in L2(Ω), q(0) = 0, (2.2a)

−α∆ϕ(t) + β ϕ(t) = βq(t) + `(t) in H1(Ω)∗ (2.2b)

a.e. in (0, T ).

Proof. Let t ∈ [0, T ] and q̂ : [0, T ] → L2(Ω) be arbitrary, but fixed. Since E(t, ·, q̂(t))
is strictly convex, continuous and radially unbounded (see (1.2)), the minimiza-
tion problem minϕ∈H1(Ω) E(t, ·, q̂(t)) admits a unique solution ϕ̂(t) characterized by
∂ϕE(t, ϕ̂(t), q̂(t)) = 0 in H1(Ω)∗. In view of (1.2), this means that

ϕ̂(t) ∈ arg min
ϕ∈H1(Ω)

E(t, ϕ, q̂(t))⇐⇒ ϕ̂(t) = φ(q̂(t), `(t)), (2.3)

where φ : L2(Ω)×H1(Ω)∗ 3 (q̃, ˜̀) 7→ ϕ̃ ∈ H1(Ω) is the solution operator of

− α∆ϕ̃+ β ϕ̃ = βq̃ + ˜̀ in H1(Ω)∗. (2.4)

With the map φ at hand, the evolution in (1.1) reads

− ∂qE(t, φ(q(t), `(t)), q(t)) ∈ ∂q̇Rε(H(q)(t), q̇(t)) a.e. in (0, T ). (2.5)

In the light of (1.2), (1.3), and sum rule for convex subdifferentials, (2.5) is equivalent
to

R(H(q)(t), v)−R(H(q)(t), q̇(t))+ε (q̇(t), v−q̇(t))L2(Ω) ≥ β
(
φ(q(t), `(t))−q(t), v−q̇(t)

)
L2(Ω)

(2.6)
for all v ∈ L2(Ω), a.e. in (0, T ), where

R : L2(Ω)× L2(Ω)→ R, R(ω, η) :=

{∫
Ω
f(ω)η dx, if η ≥ 0 a.e. in Ω,

∞ otherwise.
(2.7)

Now we use the result in [5, Lemma 3.3] for each time point t and we see that (2.6)
is in fact equivalent with

q̇(t) =
1

ε
(I− P∂q̇R(H(q)(t),0))

(
g(q(t), `(t))

)
a.e. in (0, T ), (2.8)

where we abbreviate for convenience

g(q(t), `(t)) := β(φ(q(t), `(t))− q(t)). (2.9)

In (2.8), P∂q̇R(H(q)(t),0) : L2(Ω) → L2(Ω) stands for the (metric) projection onto the
set ∂q̇R(H(q)(t), 0), i.e., P∂q̇R(H(q)(t),0)η is the unique solution of

min
µ∈∂q̇R(H(q)(t),0)

‖η − µ‖22

for any η ∈ L2(Ω). In order to compute ∂q̇R(H(q)(t), 0), we use the definition of the
convex subdifferential and the fact that R(H(q)(t), 0) = 0, from which we deduce

∂q̇R(H(q)(t), 0) = {µ ∈ L2(Ω)| (µ, v)L2(Ω) ≤ R(H(q)(t), v) ∀ v ∈ L2(Ω)}.
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Now, in view of (2.7) combined with the fundamental lemma of the calculus of vari-
ations we have

∂q̇R(H(q)(t), 0) = {µ ∈ L2(Ω)|µ ≤ f(H(q)(t)) a.e. in Ω}.

This means that P∂q̇R(H(q)(t),0)(η) = min{η, f(H(q)(t))} and since η−min{η, f(H(q)(t))} =
max{η − f(H(q)(t)), 0} we can finally write (2.8) as

q̇(t) =
1

ε
max{g(q(t), `(t))− f(H(q)(t)), 0} a.e. in (0, T ). (2.10)

To summarize, we have shown that the evolution in (2.5) is equivalent to (2.10).

To solve (2.10), we apply a fixed-point argument. For this, we take a look at the
mapping L2(0, t;L2(Ω)) 3 η 7→ G(η) ∈ H1(0, t;L2(Ω)), given by

G(η)(τ) :=

∫ τ

0

max(g(η(s), `(s))− (f ◦ H)(η)(s)) ds ∀ τ ∈ [0, t],

where t ∈ (0, T ] is to be determined so that G : L2(0, t;L2(Ω))→ L2(0, t;L2(Ω)) is a
contraction. For all q1, q2 ∈ L2(0, t;L2(Ω)) the following estimate is true

‖G(q1)(τ)− G(q2)(τ)‖L2(Ω) ≤
∫ τ

0

‖g(q1(s), `(s))− g(q2(s), `(s))‖L2(Ω) ds

+

∫ τ

0

‖(f ◦ H)(q1)(s)− (f ◦ H)(q2)(s)‖L2(Ω) ds

≤ c
∫ τ

0

‖q1(s)− q2(s)‖L2(Ω) ds+ Lf LH

∫ τ

0

∫ s

0

‖q1(ζ)− q2(ζ)‖L2(Ω) dζ ds

≤ c t1/2‖q1 − q2‖L2(0,t;L2(Ω)) + tLf LH‖q1 − q2‖L1(0,t;L2(Ω))

≤ (c t1/2 + Lf LH t
3/2)‖q1 − q2‖L2(0,t;L2(Ω)) for all τ ∈ [0, t],

(2.11)
where c > 0 is a positive constant. Here we used the fact that max : L2(Ω)→ L2(Ω)
is Lipschitzian with constant 1, the definition of g (see (2.9)) combined with the
boundedness of φ, and the estimate (2.1). From (2.11) we deduce

‖G(q1)− G(q2)‖L2(0,t;L2(Ω)) ≤ (c t+ Lf LH t
2)‖q1 − q2‖L2(0,t;L2(Ω)). (2.12)

which allows us to conclude that 1
ε G is a contraction for a small enough t. Thus,

the PDE (2.10) restricted on (0, t) admits a unique solution in H1
0 (0, t;L2(Ω))(see

e.g. [14, Thm. 7.2.3]). Now, the unique solvability of (2.10) on the whole interval
(0, T ) and the desired regularity of q follows by a concatenation argument.

Finally, we recall that ϕ(·) = φ(q(·), `(·)), cf. (2.3) and we deduce from (2.4) that
ϕ ∈ L2(0, T ;H1(Ω)). To summarize, we obtained that (1.1) admits a unique solu-
tion (q, ϕ) ∈ H1

0 (0, T ;L2(Ω)) × L2(0, T ;H1(Ω)), which, owing to (2.3) and (2.10), is
characterized by (2.2).

Lemma 2.4. The solution map associated to (1.1)

S : L2(0, T ;H1(Ω)∗) 3 ` 7→ (q, ϕ) ∈ H1
0 (0, T ;L2(Ω))× L2(0, T ;H1(Ω))

is Lipschitz continuous.
7



Proof. Let `1, `2 ∈ L2(0, T ;H1(Ω)∗) be arbitrary, but fixed. In the following, we
abbreviate (qi, ϕi) := S(`i) and g(qi(·), `i(·)) := β(φ(qi(·), `i(·)) − qi(·)), i = 1, 2,
where φ is the solution operator of (2.4) . In view of Proposition 2.3 combined with
(2.1), we obtain

‖(q1 − q2)(t)‖L2(Ω) ≤
1

ε

∫ t

0

‖g(q1(s), `1(s))− g(q2(s), `2(s))‖L2(Ω) ds

+
1

ε

∫ t

0

‖(f ◦ H)(q1)(s)− (f ◦ H)(q2)(s)‖L2(Ω) ds

≤ c
∫ t

0

‖q1(s)− q2(s)‖L2(Ω) + ‖`1(s)− `2(s)‖H1(Ω)∗ ds

+
1

ε
Lf LH

∫ t

0

∫ s

0

‖q1(ζ)− q2(ζ)‖L2(Ω) dζ ds ∀ t ∈ [0, T ],

where c > 0 is a constant dependent only on the given data. Then, applying Gronwall’s
inequality leads to

‖(q1 − q2)(t)‖L2(Ω) ≤ ĉ
∫ t

0

‖`1(s)− `2(s)‖H1(Ω)∗ ds ∀ t ∈ [0, T ],

where ĉ > 0 is a constant dependent only on the given data. By employing again
(2.2a) and by estimating as above without integrating over time, we obtain

‖q1 − q2‖H1(0,T ;L2(Ω)) ≤ c̃ ‖`1 − `2‖L2(0,T ;H1(Ω)∗), (2.13)

where c̃ > 0 is another constant dependent only on the given data. Now, the desired
result follows from ϕi = φ(qi, `i), i = 1, 2, φ ∈ L(L2(Ω)×H1(Ω)∗, H1(Ω)) and (2.13).

Lemma 2.5. The mapping (f ◦ H) : L2(0, T ;L2(Ω)) → L2(0, T ;L2(Ω)) is Hadamard
directionally differentiable with

(f ◦ H)′(η; δη) = f ′(H(η);H′(η)(δη)) ∀ η, δη ∈ L2(0, T ;L2(Ω)). (2.14)

Moreover, for all η, δη1, δη2 ∈ L2(0, T ;L2(Ω)), it holds

‖(f ◦ H)′(η; δη1)(t)− (f ◦ H)′(η; δη2)(t)‖L2(Ω)) ≤ Lf LH
∫ t

0

‖δη1(s)− δη2(s)‖L2(Ω) ds

(2.15)
a.e. in (0, T ).

Proof. In view of the differentiability properties of H and f , the mapping (f ◦
H) : L2(0, T ;L2(Ω)) → L2(0, T ;L2(Ω)) is Hadamard directionally differentiable [32,
Def. 3.1.1, Lem. 3.1.2(b)]. To see this, we first note that f : L2(0, T ;L2(Ω)) →
L2(0, T ;L2(Ω)) is Hadamard directionally differentiable, since it is directionally dif-
ferentiable (by Assumption 2.1.2 and Lebesgue’s dominated convergence theorem, see
e.g. [36, Lemma A.1]) and Lipschitz-continuous. In view of Assumption 2.1.1, chain
rule [33, Prop. 3.6(i)] implies that (f ◦H) is Hadamard directionally differentiable as
well, with directional derivative given by (2.14). To prove (2.15), we observe that, as
a consequence of (2.1), we have

1

τ
‖(f◦H)(η+τδη1)(t)−(f◦H)(η+τδη2)(t)‖L2(Ω) ≤ Lf LH

∫ t

0

‖δη1(s)−δη2(s)‖L2(Ω) ds

8



a.e. in (0, T ), for all η, δη1, δη2 ∈ L2(0, T ;L2(Ω)) and all τ > 0. Passing to the limit
τ ↘ 0, where one uses the directional differentiability of f ◦ H and the fact that
convergence in L2(0, T ;L2(Ω)) implies a.e. convergence in L2(Ω) for a subsequence,
then yields the desired estimate.

Proposition 2.6 (Directional differentiability). The operator S : L2(0, T ;H1(Ω)∗)→
H1

0 (0, T ;L2(Ω))×L2(0, T ;H1(Ω)) is directionally differentiable. Its directional deriva-
tive (δq, δϕ) := S′(`; δ`) at ` ∈ L2(0, T ;H1(Ω)∗) in direction δ` ∈ L2(0, T ;H1(Ω)∗) is
the unique solution of

δ̇q(t) =
1

ε
max ′

(
z(t);−β(δq(t)− δϕ(t))− f ′(H(q);H′(q)(δq))(t)

)
in L2(Ω), δq(0) = 0,

(2.16a)

−α∆δϕ(t) + β δϕ(t) = βδq(t) + δ`(t) in H1(Ω)∗ (2.16b)

a.e. in (0, T ), where we abbreviate z(t) := −β(q(t)− ϕ(t))− (f ◦ H)(q)(t).

Proof. We start by examining the solvability of (2.16). To this end, we just check
that the mapping L2(0, t;L2(Ω)) 3 η 7→ Ĝ(η) ∈ H1(0, t;L2(Ω)), given by

Ĝ(η)(τ) :=

∫ τ

0

max ′
(
z(s);−β(η(s)− φ(η(s), δ`(s))− f ′

(
H(q);H′(q)(η)

)
(s)
)
ds

for all τ ∈ [0, t], is Lipschitzian from L2(0, t;L2(Ω)) to L2(0, t;L2(Ω)) with con-
stant smaller than ε, for t ∈ (0, T ] small enough. Then, by using the arguments
employed at the end of the proof of Proposition 2.3, we can deduce that, for any
δ` ∈ L2(0, T ;H1(Ω)∗), (2.16) admits a unique solution (δq, δϕ) ∈ H1

0 (0, T ;L2(Ω)) ×
L2(0, T ;H1(Ω)). For all η1, η2 ∈ L2(0, t;L2(Ω)) the following estimate is true

‖Ĝ(η1)(τ)− Ĝ(η2)(τ)‖L2(Ω) ≤
∫ τ

0

‖g(η1(s), δ`(s))− g(η2(s), δ`(s))‖L2(Ω) ds

+

∫ τ

0

‖f ′(H(q);H′(q; η1))(s)− f ′(H(q);H′(q; η2))(s)‖L2(Ω) ds

≤ c
∫ τ

0

‖η1(s)− η2(s)‖L2(Ω) ds+ Lf LH

∫ τ

0

∫ s

0

‖η1(ζ)− η2(ζ)‖L2(Ω) dζ ds

≤ c t1/2‖η1 − η2‖L2(0,t;L2(Ω)) + tLf LH‖η1 − η2‖L1(0,t;L2(Ω))

≤ (c t1/2 + Lf LH t
3/2)‖η1 − η2‖L2(0,t;L2(Ω)) for all τ ∈ [0, t],

where c > 0 is a positive constant; note that here we abbreviated again g(ηi(·), δ`(·)) :=
β(φ(ηi(·), δ`(·))− ηi(·)), i = 1, 2. Here we used the fact that max′(z(s), ·) : L2(Ω)→
L2(Ω) is Lipschitzian with constant 1, the boundedness of φ (see (2.4)), and (2.15) in
combination with (2.14). Then, we obtain an estimate similar to (2.12) which allows
us to conclude the fact that 1

ε Ĝ is a contraction.

Next we focus on the convergence of the difference quotients associated with the
mapping S. We begin by observing that the operator max : L2(0, T ;L2(Ω)) →
L2(0, T ;L2(Ω)) is Hadamard directionally differentiable [32, Def. 3.1.1, Lem. 3.1.2(b)],
since it is directionally differentiable (by Lebesgue’s dominated convergence theorem,
see e.g. [36, Lem. A.1]) and Lipschitz-continuous. Moreover,

G : (η, ψ) 7→ −β(η − φ(η, ψ))− (f ◦ H)(η)
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is directionally differentiable from L2(0, T ;L2(Ω))×L2(0, T ;H1(Ω)∗) to L2(0, T ;L2(Ω)),
since φ is linear and bounded between these spaces (cf. (2.4)) and as a result of Lemma
2.5. Now chain rule [33, Prop. 3.6(i)] implies that

F := max ◦G

is (Hadamard) directionally differentiable from L2(0, T ;L2(Ω))×L2(0, T ;H1(Ω)∗) to
L2(0, T ;L2(Ω)) with

F ′((q, `); (δq, δ`)) = max ′
(
G(q, `);G′((q, `); (δq, δ`))

)
for all (q, `), (δq, δ`) ∈ L2(0, T ;L2(Ω)) × L2(0, T ;H1(Ω)∗). For simplicity, in the fol-
lowing we abbreviate qτ := S1(`+τ δ`), where τ > 0 is arbitrary, but fixed. S1 denotes
the first component of the map S, i.e., S1 : L2(0, T ;H1(Ω)∗) → H1

0 (0, T ;L2(Ω)) is
the solution map associated with (2.10). By combining the equations for qτ , q and
(2.16), we obtain

d

dt

(qτ − q
τ
− δq

)
=
F(qτ , `+ τ δ`)−F(q, `)

τ
−F ′

(
(q, `); (δq, δ`)

)
a.e. in (0, T ),(qτ − q

τ
− δq

)
(0) = 0.

(2.17)
This implies∥∥∥(qτ − q

τ
− δq

)
(t)
∥∥∥
L2(Ω)

≤
∫ t

0

∥∥∥F(qτ , `+ τ δ`
)
(s)−F

(
(q, `) + τ(δq, δ`)

)
(s)

τ

∥∥∥
L2(Ω)

+
∥∥∥ F((q, `) + τ(δq, δ`)

)
(s)−F(q, `)(s)

τ
−F ′

(
(q, `); (δq, δ`)

)
(s)︸ ︷︷ ︸

=:Aτ (s)

∥∥∥
L2(Ω)

ds

≤
∫ t

0

∥∥∥G(qτ , `+ τδ`)(s)−G((q, `) + τ(δq, δ`)
)
(s)

τ

∥∥∥
L2(Ω)

ds+ ‖Aτ‖L1(0,t;L2(Ω))

≤ c
∫ t

0

∥∥∥(qτ − q
τ
− δq

)
(s)
∥∥∥
L2(Ω)

ds+ Lf LH

∫ t

0

∫ s

0

∥∥∥(qτ − q
τ
− δq

)
(ζ)
∥∥∥
L2(Ω)

dζ ds

+ ‖Aτ‖L1(0,T ;L2(Ω)) ∀ t ∈ [0, T ],
(2.18)

where c > 0 is the positive constant appearing in (2.11). In (2.18) we used again
the Lipschitz continuity of max : L2(Ω)→ L2(Ω), the boundedness of φ (cf. (2.3) and
(2.4)), and the estimate (2.1). Applying Gronwall’s inequality in (2.18) yields∥∥∥(qτ − q

τ
− δq

)
(t)
∥∥∥
L2(Ω)

≤ C ‖Aτ‖L1(0,T ;L2(Ω)) ∀ t ∈ [0, T ], (2.19)

where C > 0 is a constant dependent only on the given data. Now, (2.17) and
estimating as in (2.18), in combination with (2.19), leads to∥∥∥qτ − q

τ
− δq

∥∥∥
H1(0,T ;L2(Ω))

≤ Ĉ ‖Aτ‖L2(0,T ;L2(Ω)) ∀ τ > 0, (2.20)
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where Ĉ > 0 is a constant dependent only on the given data. On the other hand, we
recall the definition of Aτ in (2.18) and the fact that F is directionally differentiable
from L2(0, T ;L2(Ω))× L2(0, T ;H1(Ω)∗) to L2(0, T ;L2(Ω)), which implies

‖Aτ‖L2(0,T ;L2(Ω)) → 0 as τ ↘ 0.

In view of (2.20), we have shown that S1 : L2(0, T ;H1(Ω)∗) → H1(0, T ;L2(Ω) is
directionally differentiable with S′1(`; δ`) = δq. Further, from (2.3) we have S2(`) =
φ(S1(`), `) for all ` ∈ L2(0, T ;H1(Ω)∗), where S2 is the second component of the
operator S, i.e., S2 : L2(0, T ;H1(Ω)∗) 3 ` 7→ ϕ ∈ L2(0, T ;H1(Ω)). Thus, S2 is
directionally differentiable as well, since φ ∈ L(L2(Ω)×H1(Ω)∗;H1(Ω)) and S1 is di-
rectionally differentiable. Its directional derivative S′2(`; δ`) is given by φ(S′1(`; δ`), δ`),
i.e., S′2(`; δ`) = δϕ, see (2.16). The proof is now complete.

3. The optimal control problem. Now, we turn our attention to the optimal
control of the fatigue damage model (1.1). In the remaining of the paper, we are
concerned with the examination of the following optimal control problem

min
`∈H1(0,T ;L2(Ω))

J(q, ϕ, `)

s.t. (q, ϕ) solves (1.1) with r.h.s. `.

In view of Proposition 2.3, this can also be formulated as

min
`∈H1(0,T ;L2(Ω))

J(q, ϕ, `)

s.t. (q, ϕ) solves (2.2) with r.h.s. `.

 (P)

Assumption 3.1. The functional J satisfies

J(q, ϕ, `) = j(q, ϕ) +
1

2
‖`‖2H1(0,T ;L2(Ω)),

where j : L2(0, T ;L2(Ω))×L2(0, T ;H1(Ω))→ R is continuously Fréchet-differentiable.

Note that Assumption 3.1 is satisfied by classical objectives of tracking type such as

Jex(q, ϕ, `) :=
1

2
‖q − qd‖2L2(0,T ;L2(Ω)) +

κ

2
‖ϕ‖2L2(0,T ;H1(Ω)) +

1

2
‖`‖2H1(0,T ;L2(Ω)),

where qd ∈ L2(0, T ;L2(Ω)) and κ ≥ 0.

Proposition 3.2 (Existence of optimal solutions for (P)). The optimal control prob-
lem (P) admits at least one solution in H1(0, T ;L2(Ω)).

Proof. The assertion follows by standard arguments which rely on the direct method
of the calculus of variations combined with the radial unboundedness of the reduced
objective

H1(0, T ;L2(Ω)) 3 ` 7→ J(S(`), `) ∈ R,

the Lipschitz continuity of S on L2(0, T ;H1(Ω)∗) (Lemma 2.4), the compact embed-
ding H1(0, T ;L2(Ω)) ↪→↪→ L2(0, T ;H1(Ω)∗) and the continuity of j from Assumption
3.1.
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3.1. Regularization and passage to the limit. In this section, we are con-
cerned with the derivation of a first optimality system for local optima of (P). Based
thereon, we shall improve our optimality conditions in the next section.

To obtain a first strong optimality system, see (3.6) below, we need the following
rather non-restrictive assumption:

Assumption 3.3. In addition to Assumption 2.1, we require that the mappings as-
sociated with fatigue in (1.1) satisfy:

1. The history operator H : L2(0, T ;L∞(Ω))→ L2(0, T ;L∞(Ω)) fulfills

‖H(q1)(t)−H(q2)(t)‖L∞(Ω) ≤ L̂H
∫ t

0

‖q1(s)−q2(s)‖L∞(Ω) ds a.e. in (0, T ),

for all q1, q2 ∈ L2(0, T ;L∞(Ω)), where L̂H > 0 is a positive constant.
2. The non-differentiable function f : R→ R is assumed to have one non-smooth

point nf .

Remark 3.4. Similarly to Remark 2.2, we observe that Assumption 3.3.1 is satisfied
by classical Volterra operators which are employed in the study of history-dependent
evolutionary variational inequalities, i.e., H : L2(0, T ;L∞(Ω))→ L2(0, T ;L∞(Ω))

[0, T ] 3 t 7→ H(q)(t) :=

∫ t

0

A(t− s)q(s) ds+ q0 ∈ L∞(Ω),

where A ∈ C([0, T ];L(L∞(Ω), L∞(Ω))) and q0 ∈ L∞(Ω).

We underline that Assumption 3.3.2 is very reasonable from the point of view of appli-
cations, since fatigue degradation functions have at most two kink points in practice [2,
Sec. 2.6.2]. However, our mathematical analysis can be carried on in an analogous way
if f has a countable number of non-smooth points; since this is rather uncommon in
applications and for the sake of a better overview, we stick to the setting where f has
a single non-differentiable point.

Assumption 3.5 (Regularization of f). For every ε > 0, there exists a continuously
differentiable function fε : R→ R such that

1. There exists a constant C > 0, independent of ε, such that

|fε(v)− f(v)| ≤ Cε ∀ v ∈ R.

2. fε is Lipschitz continuous with Lipschitz constant L̂f > 0 independent of ε.
3. for every δ > 0, the sequence {f ′ε} converges uniformly towards f ′ on (−∞, nf−

δ] ∪ [nf + δ,∞) as ε↘ 0.

As an immediate consequence of Assumptions 3.5.1, we have

‖fε(η)− f(η)‖L∞(0,T ;L∞(Ω)) → 0 as ε↘ 0, ∀ η ∈ L2(0, T ;L2(Ω)). (3.1)

Remark 3.6. If the fatigue degradation function f is piecewise continuously differ-
entiable, which is always the case in applications [2, Sec. 2.6.2], then Assumption 3.5
is fulfilled. To see this, one defines fε := Φε ? f , where Φε is a standard mollifier.
Then, Assumption 3.5.1 can be easily checked, see e.g. the proof of [21, Thm. 2.4].
Note that it is natural that the Lipschitz continuity of the non-linearity f carries over
to its regularized counterparts with constant independent of ε [37, Chp. I.3.3]. We
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also observe that, since f ′ is continuous on (−∞, nf − δ] ∪ [nf + δ,∞), f ′ε = Φε ? f
′

converges uniformly towards f ′ on this interval, so that Assumption 3.5.3 is satisfied
as well.
In the rest of the paper, we will tacitly assume that, in addition to Assumptions 2.1
and 3.1, Assumptions 3.3 and 3.5 are always fulfilled, without mentioning them every
time.
For an arbitrary local minimizer ¯̀ of (P), consider the following regularization, also
known as "adapted penalization", see e.g. [4]:

min
`∈H1(0,T ;L2(Ω))

J(q, ϕ, `) +
1

2
‖`− ¯̀‖2H1(0,T ;L2(Ω))

s.t. q̇(t) =
1

ε
max ε(−β(q(t)− ϕ(t))− (fε ◦ H)(q)(t)) in L2(Ω), q(0) = 0,

− α∆ϕ(t) + β ϕ(t) = βq(t) + `(t) in H1(Ω)∗, a.e. in (0, T ),


(Pε)

where

max ε : R→ R, max ε(x) :=


0, x ≤ 0,
1
2ε x

2, x ∈ (0, ε) ,

x− ε
2 , x ≥ ε.

Lemma 3.7. For each local optimum ¯̀ of (P) there exists a sequence of local mini-
mizers {`ε} of (Pε) such that

`ε → ¯̀ in H1(0, T ;L2(Ω)) as ε↘ 0. (3.2)

Moreover,

Sε(`ε)→ S(¯̀) in H1
0 (0, T ;L2(Ω))× L2(0, T ;H1(Ω)) as ε↘ 0, (3.3)

where Sε : L2(0, T ;H1(Ω)∗) 3 ` 7→ (qε, ϕε) ∈ H1
0 (0, T ;L2(Ω))×L2(0, T ;H1(Ω)) is the

control-to-state map associated to the state equation in (Pε).
Proof. see Appendix A.
The next result is essential for the solvability of the first adjoint equation in (3.6).
Lemma 3.8. For all η, δη ∈ L2(0, T ;L2(Ω)) it holds

‖[(fε ◦ H)′(η)]?(δη)(t)‖L2(Ω) ≤ L̂f LH
∫ T

t

‖δη(s)‖L2(Ω) ds a.e. in (0, T ), (3.4)

where [(fε ◦ H)′(η)]? : L2(0, T ;L2(Ω))→ L2(0, T ;L2(Ω)) stands for the adjoint oper-
ator of (fε ◦ H)′(η).
Proof. Let ψ ∈ L2(0, T ;L2(Ω)) be arbitrary, but fixed. By virtue of (2.15) (applied
for fε instead of f), we have

([(fε ◦ H)′(η)]?(δη), ψ)L2(0,T ;L2(Ω)) = ((fε ◦ H)′(η)(ψ), δη)L2(0,T ;L2(Ω))

≤
∫ T

0

L̂f LH

∫ T

0

χ
[0,t](s)‖ψ(s)‖L2(Ω) ds ‖δη(t)‖L2(Ω) dt

= L̂f LH

∫ T

0

∫ T

0

χ
[0,s](t)‖δη(s)‖L2(Ω) ds ‖ψ(t)‖L2(Ω) dt

= L̂f LH

∫ T

0

∫ T

t

‖δη(s)‖L2(Ω) ds ‖ψ(t)‖L2(Ω) dt.
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Note that in the first identity we made use of Fubini’s theorem. Now, testing with
ψ := vρ, where v ∈ L2(Ω) and ρ ∈ L2(0, T ), ρ ≥ 0, are arbitrary, but fixed yields∫ T

0

([(fε◦H)′(η)]?(δη)(t), v)L2(Ω)ρ(t) dt ≤ L̂f LH
∫ T

0

∫ T

t

‖δη(s)‖L2(Ω) ds ‖v‖L2(Ω)ρ(t) dt.

Applying the fundamental lemma of the calculus of variations then gives in turn

([(fε ◦ H)′(η)]?(δη)(t), v)L2(Ω) ≤ L̂f LH
∫ T

t

‖δη(s)‖L2(Ω) ds ‖v‖L2(Ω)

a.e. in (0, T ). Since v ∈ L2(Ω) was arbitrary, the proof is now complete.

To show that the relations in (3.13) below are valid, we need to prove that the conver-
gence in (3.3) is true in L∞(0, T ;L∞(Ω)) as well. This is confirmed by the following

Lemma 3.9. Let {`ε} be the sequence of local minimizers from Lemma 3.7 associated
to a local optimum ¯̀ of (P). Then,

Sε(`ε)→ S(¯̀) in L∞(0, T ;L∞(Ω))× L∞(0, T ;L∞(Ω)) as ε↘ 0. (3.5)

Proof. Let us first show that (q̄, ϕ̄) belongs to L∞(0, T ;L∞(Ω)) × L∞(0, T ;L∞(Ω)).
The assertion for (qε, ϕε) follows in a complete analogous way. By taking a look at
(2.2), we see that, since ¯̀∈ L∞(0, T ;L2(Ω)), the mapping ϕ̄ belongs to L∞(0, T ;L∞(Ω));
this follows by the so-called Stampacchia method, cf. e.g. [38, Chp. 7.2.2]. Then, by
arguing as in the proof of Proposition 2.3, where one employs Assumption 3.3.1, one
obtains that q̄ ∈ H1(0, T ;L∞(Ω)) ⊂ L∞(0, T ;L∞(Ω)). Now, to show the convergence
(3.5), we subtract the equation associated to q̄ (see (2.2a)) from the one associated
to qε (see (A.1a)). By using the fact that |max ε(x) −max(x)| ≤ ε ∀x ∈ R, and by
relying on the Lipschitz continuity of max and f , as well as Assumptions 3.5.1, we
arrive at

‖(qε − q̄)(t)‖L∞(Ω) ≤ 2εt+ c

∫ t

0

‖qε(s)− q̄(s)‖L∞(Ω) + ‖ϕε(s)− ϕ̄(s)‖L∞(Ω)

+ Lf

∫ t

0

‖H(qε)(s)−H(q̄)(s)‖L∞(Ω) ds

≤ 2εt+ c

∫ t

0

‖qε(s)− q̄(s)‖L∞(Ω) + ‖`ε(s)− ¯̀(s)‖L2(Ω)

+ Lf L̂H

∫ t

0

∫ s

0

‖qε(ζ)− q̄(ζ)‖L∞(Ω) dζ ds ∀ t ∈ [0, T ],

where c > 0 is a constant dependent only on the given data; note that in the last
inequality we used Assumption 3.3.1. Then, applying Gronwall’s inequality leads to

‖(qε − q̄)(t)‖L∞(Ω) ≤ 2εt+ ĉ

∫ t

0

‖`ε(s)− ¯̀(s)‖L2(Ω) ds ∀ t ∈ [0, T ],

where ĉ > 0 is a constant dependent only on the given data. By employing (3.2), we
can finally deduce that qε → q̄ in L∞(0, T ;L∞(Ω)). In view of (2.2b), the proof is
now complete.

We are now in the position to state the main result of this subsection.
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Proposition 3.10. Suppose that Assumptions 3.1, 3.3 and 3.5 are fulfilled. Let ¯̀be a
local optimum of (P) with associated state (q̄, ϕ̄) ∈ H1

0 (0, T ;L2(Ω))×L2(0, T ;H1(Ω)).
Then there exist adjoint states

ξ ∈ H1
T (0, T ;L2(Ω)) and w ∈ L2(0, T ;H1(Ω))

and multipliers λ ∈ L∞(0, T ;L2(Ω)) and µ ∈ L∞(0, T ;L2(Ω)) such that the following
optimality system is satisfied

−ξ̇ − β
(
w − λ

)
+H′(q̄)?(µ) = ∂qj(q̄, ϕ̄) in L2(0, T ;L2(Ω)), ξ(T ) = 0, (3.6a)

−α∆w + β
(
w − λ

)
= ∂ϕj(q̄, ϕ̄) in L2(0, T ;H1(Ω)∗), (3.6b)

λ(t, x) =
1

ε
χ
{z̄>0}(t, x)ξ(t, x) a.e. where z̄(t, x) 6= 0, (3.6c)

µ(t, x) = f ′(H(q̄)(t, x))λ(t, x) a.e. where H(q̄)(t, x) 6= nf , (3.6d)

(w, δ`)L2(0,T ;L2(Ω)) + (¯̀, δ`)H1(0,T ;L2(Ω)) = 0 ∀δ` ∈ H1(0, T ;L2(Ω)), (3.6e)

where we abbreviate z̄ := −β(q̄ − ϕ̄)− (f ◦ H)(q̄).
Proof. Let {`ε} be the sequence of local minimizers from Lemma 3.7. Since `ε is
locally optimal for (Pε) and on account of the differentiability properties of Sε, cf.
Appendix A, and J , see Assumption 3.1, we can write down the necessary optimality
condition

j′(Sε(`ε))(S
′
ε(`ε)(δ`)) + (`ε, δ`)H1(0,T ;L2(Ω)) + (`ε − ¯̀, δ`)H1(0,T ;L2(Ω)) = 0 (3.7)

for all δ` ∈ H1(0, T ;L2(Ω)). Now, let us consider the system

−ξ̇ε(t)− β
(
wε(t)− 1

ε
max ε

′(zε(t))ξε(t)
)

+H′(qε)?
(
f ′ε(H(qε))

(1

ε
max ε

′(zε)ξε
))

(t) = ∂qj(Sε(`ε))(t), ξε(T ) = 0,

(3.8a)

−α∆wε(t) + β
(
wε(t)− 1

ε
max ε

′(zε(t))ξε(t)
)

= ∂ϕj(Sε(`ε))(t) (3.8b)

a.e. in (0, T ), where we abbreviate zε := −β(qε − ϕε) − (fε ◦ H)(qε) and (qε, ϕε) :=
Sε(`ε). In (3.8a), H′(qε)? : L2(0, T ;L2(Ω)) → L2(0, T ;L2(Ω)) stands for the adjoint
operator of H′(qε).
By arguments inspired e.g. from the proof of [36, Lem. 5.7] in combination with the es-
timate (3.4), one obtains that (3.8) admits a unique solution (ξε, wε) ∈ H1

T (0, T ;L2(Ω))×
L2(0, T ;H1(Ω)). Let us go a little more into detail concerning the solvability of
(3.8a). In this context one checks if the mapping L2(0, t;L2(Ω)) 3 η 7→ G(η) ∈
H1(0, t;L2(Ω)), given by

G(η)(τ) :=

∫ τ

0

β
(
wε(T − s, η(s))− 1

ε
max ε

′(zε(T − s))η(s)
)

−H′(qε)?
(
f ′ε(H(qε))

(1

ε
max ε

′(zε)η(T − ·)
))

︸ ︷︷ ︸
=[(fε◦H)′(qε)]?

(
1
ε max ε′(zε)(η(T−·))

) (T − s) + ∂qj(Sε(`ε))(T − s) ds

for all τ ∈ [0, t], is Lipschitzian from L2(0, t;L2(Ω)) to L2(0, t;L2(Ω)) with constant
smaller than 1, for t ∈ (0, T ] small enough; here wε(t, v) denotes the solution of

−α∆wε(t, v) + β
(
wε(t, v)− 1

ε
max ε

′(zε(t))v
)

= ∂ϕj(Sε(`ε))(t)
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for t ∈ [0, T ] and v ∈ L2(Ω). We observe that, for all η1, η2 ∈ L2(0, t;L2(Ω)), the
following estimate is true

‖G(η1)(τ)− G(η2)(τ)‖L2(Ω) ≤ c
∫ τ

0

‖η1(s)− η2(s)‖L2(Ω) ds

+

∫ τ

0

L̂f LH

∫ T

T−s
‖(η1 − η2)(T − ζ)‖L2(Ω) dζ ds

≤ c t1/2‖η1 − η2‖L2(0,t;L2(Ω)) + L̂f LH

∫ τ

0

∫ s

0

‖(η1 − η2)(ζ)‖L2(Ω) dζ ds

≤ (c t1/2 + L̂f LH t
3/2)‖η1 − η2‖L2(0,t;L2(Ω)) for all τ ∈ [0, t],

where in the first inequality we used the global Lipschitz-continuity of maxε with
constant 1 and (3.4); now the reader is referred to the first part of the proof of
Proposition 2.6 where the exact type of estimate was established in order to obtain
that η = G(η) admits a solution in H1

0 (0, T ;L2(Ω)); finally, a transformation of the
variables yields that (ξε, wε) := (η(T − ·), wε(t, η(T − ·)) is the solution of the adjoint
system (3.8).
Testing (3.8) with S′ε(`ε)(δ`) and (A.2) with (ξε, wε) yields

(wε, δ`)L2(0,T ;L2(Ω)) = j′(Sε(`ε)(S′ε(`ε)(δ`)),

which inserted in (3.7) gives

(wε, δ`)L2(0,T ;L2(Ω)) + (`ε, δ`)H1(0,T ;L2(Ω)) + (`ε − ¯̀, δ`)H1(0,T ;L2(Ω)) = 0 (3.9)

for all δ` ∈ H1(0, T ;L2(Ω)). Further, we observe that

∂qj(Sε(`ε))→ ∂qj(S(¯̀)) in L2(0, T ;L2(Ω)), (3.10a)

∂ϕj(Sε(`ε))→ ∂ϕj(S(¯̀)) in L2(0, T ;H1(Ω)∗), (3.10b)

in the light of (3.3) combined with the continuous Fréchet-differentiability of J (As-
sumption 3.1). Next we focus on proving uniform bounds for the regularized adjoint
states. By employing again a transformation of the variables where this time we ab-
breviate ξ̂ε := ξε(T − ·) and by relying again on the global Lipschitz-continuity of
maxε and (3.4), we obtain from (3.8a)

‖ξ̂ε(t)‖L2(Ω) ≤
∫ t

0

‖β
(
wε(T − s, ξ̂ε(s))−

1

ε
max ε

′(zε(T − s))ξ̂ε(s)
)
‖L2(Ω) ds

+

∫ t

0

‖[(fε ◦ H)′(qε)]
?
(1

ε
max ε

′(zε)(ξ̂ε(T − ·))
)
(T − s)‖L2(Ω) ds

+

∫ t

0

‖∂qj(Sε(`ε))(T − s)‖L2(Ω) ds

≤
∫ t

0

c (‖ξ̂ε(s)‖L2(Ω) + ‖∂ϕj(Sε(`ε))(T − s)‖H1(Ω)∗) ds

+

∫ t

0

L̂fLH

∫ T

T−s
‖ξ̂ε(T − ζ)‖L2(Ω) dζ︸ ︷︷ ︸

=
∫ s
0
‖ξ̂ε(ζ)‖L2(Ω) dζ

ds

+

∫ t

0

‖∂qj(Sε(`ε))(T − s)‖L2(Ω) ds ∀ t ∈ [0, T ].
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Now, Gronwall’s inequality gives in turn

‖ξε(t)‖L2(Ω) ≤ c̃
∫ T−t

0

‖∂ϕj(Sε(`ε))(T − s)‖H1(Ω)∗ + ‖∂qj(Sε(`ε))(T − s)‖L2(Ω) ds

for all t ∈ [0, T ]. Thus, by relying on (3.10a)-(3.10b) and by estimating again as
above in (3.8a), this time without integrating, one obtains that there exists a constant,
independent of ε, such that

‖ξε‖H1(0,T ;L2(Ω)) ≤ c.

As a consequence,

λε :=
1

ε
max ε

′(zε)ξε

and

µε := f ′ε(H(qε))λε

are uniformly bounded in L∞(0, T ;L2(Ω)) (recall that maxε and fε are globally Lips-
chitz continuous with constants independent of ε). From (3.8b) we can further deduce
that there exists a constant c > 0, independent of ε, such that ‖wε‖L2(0,T ;H1(Ω)) ≤ c,
where we use again (3.10b). Therefore, we can extract weakly convergent subsequences
(denoted by the same symbol) so that

wε ⇀ w in L2(0, T ;H1(Ω)), ξε ⇀ ξ in H1(0, T ;L2(Ω)),

λε ⇀
∗ λ, µε ⇀

∗ µ in L∞(0, T ;L2(Ω)) as ε→ 0.
(3.11)

Owing to (3.11), (3.10a), (3.10b) and (3.2), we can pass to the limit in (3.8)-(3.9).
This results in

−ξ̇ − β
(
w − λ

)
+H′(q̄)?µ = ∂qj(q̄, ϕ̄) in L2(0, T ;L2(Ω)), ξ(T ) = 0, (3.12a)

−α∆w + β
(
w − λ

)
= ∂ϕj(q̄, ϕ̄) in L2(0, T ;H1(Ω)∗), (3.12b)

(w, δ`)L2(0,T ;L2(Ω)) + (¯̀, δ`)H1(0,T ;L2(Ω)) = 0 ∀δ` ∈ H1(0, T ;L2(Ω)), (3.12c)

where for the passage to the limit in (3.8a) we also relied on the continuity of the
derivative of H (see Assumption 2.1.1) combined with (3.3).

Now, it remains to prove that (3.6c)-(3.6d) is true. To this end, we show that, for
each δ > 0, we have

λ =
1

ε
max ′(z̄)ξ a.e. in Mδ, (3.13a)

µ = f ′(H(q̄))λ a.e. in M̂δ, (3.13b)

where we abbreviate Mδ := {(t, x) : |z̄(t, x)| ≥ δ}, z̄ := −β(q̄ − ϕ̄) − (f ◦ H)(q̄), and
M̂δ := {(t, x) : |H(q̄)(t, x)− nf | ≥ δ}.
We begin by observing that

‖H(qε)(t)−H(q̄)(t)‖L∞(Ω) ≤ L̂H‖qε − q̄‖L1(0,T ;L∞(Ω)) a.e. in (0, T ),
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in light of Assumption 3.3.1. Thus, as a consequence of (3.5), we have

H(qε)→ H(q̄) in L∞(0, T ;L∞(Ω)), (3.14)

which then implies

zε → z̄ in L∞((0, T )× Ω),

by the Lipschitz continuity of f and Assumption 3.5.1. This means that |zε(t, x)| ≥
δ/2 f.a.a. (t, x) ∈Mδ for ε small enough, independent of (t, x). In view of the definition
of max ε we have

max ε
′(zε(·)) = max ′(z̄(·)) a.e. in Mδ

for ε ≤ δ/2. The definition of λε and (3.11) now yield (3.13a). To show (3.13b), we
proceed in a similar way. Thanks to (3.14), there exists an ε small enough, independent
of (t, x), so that |H(qε)(t, x)− nf | ≥ δ/2 f.a.a. (t, x) ∈ M̂δ. Assumption 3.5.3 applied
for δ/2 then gives in turn the convergence

f ′ε(H(qε))− f ′(H(qε))→ 0 in L∞(M̂δ).

As another consequence of Assumption 3.5.3, we obtain that f ′ is continuous on
(−∞, nf − δ/2] ∪ [nf + δ/2,∞) since f ′ε ∈ C1(R), by assumption. Now, (3.14),
Assumption 2.1.2 and Lebesgue dominated convergence imply that

f ′(H(qε))− f ′(H(q̄))→ 0 in L2(M̂δ).

Finally, the convergence of {λε} from (3.11) along with the definition of µε yield that

µε ⇀ µ = f ′(H(q̄))λ in L1(M̂δ),

i.e., (3.13b). Since δ > 0 was arbitrary and since ∪
δ>0

Mδ = {(t, x) : z̄(t, x) 6= 0} and

∪
δ>0

M̂δ = {(t, x) : H(q̄)(t, x) 6= nf} (up to a set of measure zero), the proof is now

complete.

Remark 3.11.

• If z̄(t, x) 6= 0 and if H(q̄)(t, x) 6= nf a.e. in (0, T ) × Ω, then the optimality
system in Proposition 3.10 coincides with the very same optimality conditions
which one obtains when directly applying the KKT-theory to (P), cf. [38].
Moreover, we observe that (3.6) does not contain any information as to what
happens in those (t, x) for which z̄(t, x) and H(q̄)(t, x) are non-smooth points
of the mappings max and f , respectively. This is the focus of the next section,
where the optimality conditions from Proposition 3.10 shall be improved.

• Indeed, (3.6) is not the best optimality system one could obtain via regular-
ization. Such a system should also contain the relations

λ(t, x) ∈ 1

ε
∂max(0)ξ(t, x) a.e. where z̄(t, x) = 0, (3.15a)

µ(t, x) ∈ ∂f(nf )λ(t, x) a.e. where H(q̄)(t, x) = nf . (3.15b)

We acknowledge the results [37, Thm. 2.4], [6, Prop. 2.17], [9, Thm. 4.4],
where the respective limit optimality systems, though not strong stationary,
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include such relations between multipliers and adjoint states on the sets where
the non-smoothness is active. We cannot expect this to happen in the present
paper; by contrast to the aforementioned contributions, our adjoint state ξε ∈
H1(0, T ;L2(Ω)) converges weakly in a space which is not compactly embedded
in a Lebesgue space. Although we are able to show

max ε
′(z̄ε(·)) ⇀∗ γ ∈ ∂max(z̄(·)) in L∞((0, T )× Ω),

this does not help us conclude (3.15), in view of the lack of space regularity
of the adjoint state.

3.2. Towards strong stationarity. In this section, we aim to derive a stronger
optimality system than (3.6). To this end, we will employ arguments from previous
works [5, 23], which are entirely based on the limited differentiability properties of
the non-smooth mappings involved. We begin by stating the first order necessary
optimality conditions in primal form.

Lemma 3.12 (B-stationarity). If ¯̀∈ H1(0, T ;L2(Ω)) is locally optimal for (P), then
there holds

j′(S(¯̀))S′(¯̀; δ`) + (¯̀, δ`)H1(0,T ;L2(Ω)) ≥ 0 ∀ δ` ∈ H1(0, T ;L2(Ω)). (3.16)

Proof. As a result of Proposition 2.6 and Assumption 3.1 we have that the com-
posite mapping H1(0, T ;L2(Ω)) 3 ` 7→ J(S(`), `) ∈ R is (Hadamard) direction-
ally differentiable [32, Def. 3.1.1] at ¯̀ in any direction δ` with directional derivative
∂(q,ϕ)J(S(¯̀), ¯̀)S′(¯̀; δ`) + ∂`J(S(¯̀), ¯̀)δ`; see [32, Lem. 3.1.2(b)] and [33, Prop. 3.6(i)].
The result then follows immediately from the local optimality of ¯̀ and Assumption
3.1.

In order to improve the optimality conditions from the previous section 3.1, we make
use of the following very natural requirement:

Assumption 3.13. The history operator H satisfies the monotonicity condition

H(q1) ≥ H(q2) ∀ q1, q2 ∈ L2(0, T ;L2(Ω)) with q1 ≥ q2.

Remark 3.14. It is self-evident that the cumulated damage H(q) (fatigue level of the
material) increases as the damage q increases. Hence, the condition in Assumption
3.13 is always satisfied in applications.

As an immediate consequence of Assumption 3.13, we have

H′(q)(η) = lim
τ↘0

H(q + τη)−H(q)

τ
≥ 0 a.e. in (0, T )× Ω (3.17)

for all q, η ∈ L2(0, T ;L2(Ω)) with η ≥ 0 a.e. in (0, T )× Ω.

The main result of this section reads as follows.

Theorem 3.15. Suppose that Assumptions 3.1, 3.3, 3.5 and 3.13 are fulfilled. Let
¯̀∈ H1(0, T ;L2(Ω)) be locally optimal for (P) with associated states

q̄ ∈ H1
0 (0, T ;L2(Ω)) and ϕ̄ ∈ L2(0, T ;H1(Ω)).

19



Then, there exist adjoint states

ξ ∈ H1
T (0, T ;L2(Ω)) and w ∈ L2(0, T ;H1(Ω)),

and multipliers λ ∈ L∞(0, T ;L2(Ω)) and µ ∈ L∞(0, T ;L2(Ω)) such that the following
system is satisfied

−ξ̇ − β
(
w − λ

)
+H′(q̄)?(µ) = ∂qj(q̄, ϕ̄) in L2(0, T ;L2(Ω)), ξ(T ) = 0, (3.18a)

−α∆w + β
(
w − λ

)
= ∂ϕj(q̄, ϕ̄) in L2(0, T ;H1(Ω)∗), (3.18b)

λ(t, x) =
1

ε
χ
{z̄>0}(t, x)ξ(t, x) a.e. where z̄(t, x) 6= 0,

µ(t, x) = f ′(H(q̄)(t, x))λ(t, x) a.e. where H(q̄)(t, x) 6= nf ,

 (3.18c)

0 ≤ λ(t, x) ≤ 1

ε
(ξ(t, x) +G+(t, x)) a.e. where z̄(t, x) = 0,

G−(t, x) ≤ 0 ≤ G+(t, x) a.e. where z̄(t, x) > 0,

 (3.18d)

(w, δ`)L2(0,T ;L2(Ω)) + (¯̀, δ`)H1(0,T ;L2(Ω)) = 0 ∀δ` ∈ H1(0, T ;L2(Ω)), (3.18e)

where we abbreviate z̄ := −β(q̄ − ϕ̄)− (f ◦H)(q̄). In (3.18d), the mappings G+, G− :
[0, T ]× Ω are defined as follows

G+(t, x) :=

∫ T

t

H′(q̄)?[χ{H(q̄)=nf}(−λf
′
+(nf ) + µ)](s, x) ds,

G−(t, x) :=

∫ T

t

H′(q̄)?[χ{H(q̄)=nf}(−λf
′
−(nf ) + µ)](s, x) ds,

(3.19)

where, for any v ∈ R, the right- and left-sided derivative of f : R → R are given by
f ′+(v) := f ′(v; 1) and f ′−(v) := −f ′(v;−1), respectively.
Proof. The existence of a tuple (ξ, w, λ, µ) ∈ H1(0, T ;L2(Ω)) × L2(0, T ;H1(Ω)) ×
L∞(0, T ;L2(Ω))×L∞(0, T ;L2(Ω)) satisfying the system (3.18a)-(3.18b)-(3.18c)-(3.18e)
is due to Proposition 3.10. Thus, the rest of the proof is focused on showing (3.18d).
In this context, we first follow the ideas from [5, Proof of Lem. 2.8] and prove that the
set of arguments of max ′(z̄; ·) from (2.16a) is dense in L2(0, T ;L2(Ω)) (step (I)). With
this information at hand, we are then able to show the desired result by employing a
technique from [5, Proof of Thm. 2.11], see also [23, Proof of Thm. 5.3] (step (II)).
(I) Let ρ ∈ L2(0, T ;L2(Ω)) be arbitrary, but fixed. As indicated above, we next show
that there exists {δ`n} ⊂ H1(0, T ;L2(Ω)) such that

−β(δqn − δϕn)− (f ◦ H)′(q̄; δqn)︸ ︷︷ ︸
:=ρn

→ ρ in L2(0, T ;L2(Ω)) as n→∞, (3.20)

where we abbreviate (δqn, δϕn) := S′(¯̀; δ`n) and ρn := −β(δqn−δϕn)−(f◦H)′(q̄)(δqn)
for all n ∈ N. To this end, we follow the lines of the proof of [5, Lem. 2.8]. We start
by noticing that the mapping

[0, T ] 3 t 7→ q̂(t) ∈ L2(Ω), q̂(t) :=
1

ε

∫ t

0

max ′(z̄(s); ρ(s)) ds

satisfies q̂(0) = 0 and q̂ ∈ H1(0, T ;L2(Ω)). Then, we observe that q̂ fulfills

d

dt
q̂(t) =

1

ε
max ′(z̄(t);−βq̂(t)−(f◦H)′(q̄; q̂)(t)+ρ(t)+βq̂(t)+(f◦H)′(q̄; q̂)(t)

)
a.e. in (0, T ).

(3.21)
20



In view of the embedding H1(0, T ;C∞c (Ω))
d
↪→ L2(0, T ;L2(Ω)), there exists a sequence

{ϕ̂n}n ⊂ H1(0, T ;C∞c (Ω)) such that

βϕ̂n → ρ+ βq̂ + (f ◦ H)′(q̄; q̂) in L2(0, T ;L2(Ω)) as n→∞. (3.22)

For any n ∈ N, consider the equation

d

dt
q̂n(t) =

1

ε
max ′(z̄(t);−β(q̂n − ϕ̂n)− (f ◦ H)′(q̄; q̂n)

)
a.e. in (0, T ), q̂n(0) = 0.

(3.23)
By arguing as in the proof of Lemma 2.6 we see that (3.23) admits a unique solution
q̂n ∈ H1

0 (0, T ;L2(Ω)). Now, we define

δ`n := −α∆ϕ̂n + β
(
ϕ̂n − q̂n

)
∈ H1(0, T ;L2(Ω)), (3.24)

such that the pair (q̂n, ϕ̂n) solves the system (2.16) associated to ¯̀ with right-hand
side δ`n ∈ H1(0, T ;L2(Ω)); note that the regularity of δ`n in (3.24) is due to the
H1(0, T ;C∞c (Ω))-regularity of ϕ̂n. In view of the unique solvability of (2.16), cf.
Proposition 2.6, (q̂n, ϕ̂n) = S′(¯̀; δ`n). Owing to the Lipschitz-continuity of the direc-
tional derivative of max (w.r.t. direction) and (2.15) , we further obtain from (3.21)
and (3.23)

ε‖(q̂n − q̂)(t)‖L2(Ω) ≤ β
∫ t

0

‖(q̂ − q̂n)(s)‖L2(Ω) ds+ Lf LH

∫ t

0

∫ s

0

‖(q̂ − q̂n)(ζ)‖L2(Ω) dζ ds

+

∫ t

0

‖ − βϕ̂n(s) + ρ(s) + βq̂(s) + (f ◦ H)′(q̄; q̂)(s)‖L2(Ω) ds.

Gronwall’s inequality and (3.22) then give in turn

‖q̂n− q̂‖H1(0,T ;L2(Ω)) ≤ c ‖−βϕ̂n+ρ+βq̂+(f ◦H)′(q̄; q̂)‖L2(0,T ;L2(Ω)) → 0 as n→∞,
(3.25)

where c > 0 is a constant dependent only on the given data. By relying on the
continuity of (f ◦ H)′(q̄; ·) : L2(0, T ;L2(Ω))→ L2(0, T ;L2(Ω)), cf. (2.15), we have

βq̂n + (f ◦ H)′(q̄; q̂n)→ βq̂ + (f ◦ H)′(q̄; q̂) in L2(0, T ;L2(Ω)) as n→∞, (3.26)

as a result of (3.25). Combining (3.22) and (3.26) finally yields

−β(q̂n − ϕ̂n)− (f ◦ H)′(q̄; q̂n)→ ρ in L2(0, T ;L2(Ω)) as n→∞.

Since we established above that (q̂n, ϕ̂n) = S′(¯̀; δ`n), the proof of this step is now
complete.

(II) In the following, ρ ∈ L2(0, T ;L2(Ω)) remains arbitrary, but fixed. To prove the
desired relations in (3.18d), we first make use of the B-stationarity from (3.16). Here
we test with the function δ`n ∈ H1(0, T ;L2(Ω)) which was defined in (3.24).

We test (3.18a), (3.18b), and (3.18e) with (δqn, δϕn) := S′(¯̀; δ`n) and δ`n, respec-
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tively. This leads to

0 ≤ ∂qj(q̄, ϕ̄)δqn + ∂ϕj(q̄, ϕ̄)δϕn + (¯̀, δ`n)H1(0,T ;L2(Ω))

= −
∫ T

0

(ξ̇(t), δqn(t))L2(Ω) dt− β(w − λ, δqn)L2(0,T ;L2(Ω))

+ (H′(q̄)?(µ), δqn)L2(0,T ;L2(Ω)) + β(w − λ, δϕn)L2(0,T ;L2(Ω))

+ α(∇w,∇δϕn)L2(0,T ;L2(Ω)) − (w, δ`n)L2(0,T ;L2(Ω))

=

∫ T

0

(ξ(t), δ̇qn(t))L2(Ω) dt− (λ,−β(δqn − δϕn))L2(0,T ;L2(Ω))

+ (µ,H′(q̄)(δqn))L2(0,T ;L2(Ω)) − 〈β(δqn − δϕn) + α∆δϕn + δ`n︸ ︷︷ ︸
=0, cf. (2.16b)

, w〉L2(0,T ;H1(Ω))

=︸︷︷︸
(2.16a)

∫ T

0

(ξ(t),
1

ε
max ′(z̄(t); ρn(t))L2(Ω) dt−

∫ T

0

(λ(t), ρn(t))L2(Ω) dt

−
∫ T

0

(λ(t), (f ◦ H)′(q̄; δqn)(t))L2(Ω) dt+

∫ T

0

(µ(t),H′(q̄)(δqn)(t))L2(Ω) dt ∀n ∈ N,

(3.27)
where the second identity follows from integration by parts, δqn(0) = 0, and ξ(T ) = 0;
here we also recall the abbreviation ρn := −β(δqn−δϕn)− (f ◦H)′(q̄; δqn), see (3.20).
In view of (3.20) and since δqn(t) = 1

ε

∫ t
0

max ′(z̄(s); ρn(s)) ds, letting n→∞ in (3.27)
leads to

0 ≤
∫ T

0

(ξ(t),
1

ε
max ′(z̄(t); ρ(t))L2(Ω) dt−

∫ T

0

(λ(t), ρ(t))L2(Ω) dt

−
∫ T

0

(λ(t), (f ◦ H)′(q̄; q̂ρ)(t))L2(Ω) dt+

∫ T

0

(µ(t),H′(q̄)(q̂ρ)(t))L2(Ω) dt

(3.28)

for all ρ ∈ L2(0, T ;L2(Ω)), where we abbreviate

q̂ρ(t) :=
1

ε

∫ t

0

max ′(z̄(s); ρ(s)) ds ∀ t ∈ [0, T ]. (3.29)

Here we used the fact that max ′(z̄; ·) : L2(0, T ;L2(Ω))→ L2(0, T ;L2(Ω)) is continu-
ous, by the Lipschitz-continuity of max, as well as (3.25) in combination with (2.15)
and the fact that H′(q̄) ∈ L(L2(0, T ;L2(Ω)), L2(0, T ;L2(Ω))).

Next, we take a closer look at the second line in the estimate (3.28). In this context,
we first notice that, for all v, h ∈ R, it holds

f ′(v;h) =

{
f ′+(v)h, if h ≥ 0,

f ′−(v)h, if h < 0.
(3.30)

Moreover, we recall that

max ′(v;h) =


h if v > 0,

max{h, 0} if v = 0,

0 if v < 0.

(3.31)
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Now, let ρ ∈ L2(0, T ;L2(Ω)) with ρ ≥ 0 a.e. in (0, T )× Ω be arbitrary, but fixed. In
view of (3.29) and (3.31), we have q̂ρ ≥ 0 a.e. in (0, T )× Ω and (3.17) implies

H′(q̄)(q̂ρ) ≥ 0 a.e. in (0, T )× Ω.

Then, by recalling (2.14) and by employing Fubini’s theorem, we obtain

−
∫ T

0

(λ(t), (f ◦ H)′(q̄; q̂ρ)(t))L2(Ω) dt+

∫ T

0

(µ(t),H′(q̄)(q̂ρ)(t))L2(Ω) dt

=

∫ T

0

∫
Ω

[−λ(t, x)f ′+(H(q̄)(t, x)) + µ(t, x)]H′(q̄)(q̂ρ)(t, x) dx dt

=

∫ T

0

∫
Ω

H′(q̄)?[−λf ′+(H(q̄)) + µ](t, x)q̂ρ(t, x) dx dt

=
(3.29)

∫
Ω

∫ T

0

H′(q̄)?[−λf ′+(H(q̄)) + µ](t, x)
(1

ε

∫ t

0

max ′(z̄(s, x); ρ(s, x)) ds
)
dt dx

=

∫
Ω

∫ T

0

1

ε
max ′(z̄(t, x); ρ(t, x))

(∫ T

t

H′(q̄)?[−λf ′+(H(q̄)) + µ](s, x) ds
)
dt dx

=

∫ T

0

∫
Ω

1

ε
max ′(z̄(t, x); ρ(t, x))G+(t, x) dx dt ∀ ρ ∈ L2(0, T ;L2(Ω)), ρ ≥ 0,

(3.32)
where the last equality is due to the definition of G+ in (3.19) combined with the
second identity in (3.18c). Going back to (3.28), we have

0 ≤
∫ T

0

∫
Ω

1

ε
max ′(z̄(t, x); ρ(t, x))ξ(t, x)− λ(t, x)ρ(t, x) dx dt

+

∫ T

0

∫
Ω

1

ε
max ′(z̄(t, x); ρ(t, x))G+(t, x) dx dt ∀ ρ ∈ L2(0, T ;L2(Ω)), ρ ≥ 0.

(3.33)
By means of the fundamental lemma of calculus of variations in combination with
the positive homogeneity of the directional derivative w.r.t. direction, we deduce from
(3.33) the inequality

1

ε
max ′(z̄(t, x); 1)ξ(t, x)− λ(t, x) +

1

ε
max ′(z̄(t, x); 1)G+(t, x) ≥ 0 a.e. in (0, T )× Ω.

(3.34)
By arguing exactly in the same way as above, where one takes into account the fact
that H′(q̄)(q̂ρ) ≤ 0 a.e. in (0, T )× Ω, for ρ ≤ 0 a.e. in (0, T )× Ω, we show

−
∫ T

0

(λ(t), (f ◦ H)′(q̄; q̂ρ)(t))L2(Ω) dt+

∫ T

0

(µ(t),H′(q̄)(q̂ρ)(t))L2(Ω) dt

=

∫ T

0

∫
Ω

1

ε
max ′(z̄(t, x); ρ(t, x))

(∫ T

t

H′(q̄)?[−λf ′−(H(q̄)) + µ](s, x) ds
)

︸ ︷︷ ︸
=G−(t,x)

dx dt

∀ ρ ∈ L2(0, T ;L2(Ω)), ρ ≤ 0.
(3.35)

This gives in turn
1

ε
max ′(z̄(t, x);−1)ξ(t, x) + λ(t, x) +

1

ε
max ′(z̄(t, x);−1)G−(t, x) ≥ 0 a.e. in (0, T )× Ω,

(3.36)
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where we relied again on the fundamental lemma of calculus of variations and the
positive homogeneity of the directional derivative w.r.t. direction. From (3.34)- (3.36)
and the fact that max ′(0; ·) = max{·, 0} (see (3.31)) we can now conclude the first
relation in (3.18d). Finally, the second relation in (3.18d) is a consequence of (3.18c),
(3.34)- (3.36) and (3.31). This completes the proof.
Corollary 3.16 (Strong stationarity in the case that f is smooth). Suppose that
Assumptions 3.1 and 3.3 are fulfilled. Let ¯̀∈ H1(0, T ;L2(Ω)) be locally optimal for
(P) with associated states

q̄ ∈ H1
0 (0, T ;L2(Ω)) and ϕ̄ ∈ L2(0, T ;H1(Ω)).

If the set {(t, x) ∈ (0, T ) × Ω : H(q̄)(t, x) = nf} has measure zero, then there exist
unique adjoint states

ξ ∈ H1
T (0, T ;L2(Ω)) and w ∈ L2(0, T ;H1(Ω)),

and a unique multiplier λ ∈ L∞(0, T ;L2(Ω)) such that the following system is satisfied

−ξ̇ − β
(
w − λ

)
+ [(f ◦ H)′(q̄)]?(λ) = ∂qj(q̄, ϕ̄) in L2(0, T ;L2(Ω)), ξ(T ) = 0,

(3.37a)

−α∆w + β
(
w − λ

)
= ∂ϕj(q̄, ϕ̄) in L2(0, T ;H1(Ω)∗), (3.37b)

λ(t, x) =
1

ε
χ
{z̄>0}(t, x)ξ(t, x) a.e. where z̄(t, x) 6= 0,

0 ≤ λ(t, x) ≤ 1

ε
ξ(t, x) a.e. where z̄(t, x) = 0,

 (3.37c)

(w, δ`)L2(0,T ;L2(Ω)) + (¯̀, δ`)H1(0,T ;L2(Ω)) = 0 ∀δ` ∈ H1(0, T ;L2(Ω)), (3.37d)

where we abbreviate z̄ := −β(q̄−ϕ̄)−(f ◦H)(q̄). Moreover, (3.37) is of strong station-
ary type, i.e., if ¯̀∈ H1(0, T ;L2(Ω)) together with its states (q̄, ϕ̄) ∈ H1

0 (0, T ;L2(Ω))×
L2(0, T ;H1(Ω)), some adjoint states (ξ, w) ∈ H1

T (0, T ;L2(Ω))×L2(0, T ;H1(Ω)), and
a multiplier λ ∈ L∞(0, T ;L2(Ω)) satisfy the optimality system (3.37a)–(3.37d), then
it also satisfies the variational inequality (3.16).
Proof. The first statement is a consequence of Theorem 3.15. Note that here we
do not ask that Assumption 3.5 holds true; f does not need to be smoothened, as
its non-smoothness is never active. Assumption 3.13 is also not required here; this
was necessary in the proof of Theorem 3.15 only to show (3.32) and (3.35). Since
{(t, x) ∈ (0, T ) × Ω : H(q̄)(t, x) = nf} has measure zero, (3.32) and (3.35) follow
immediately from the second relation in (3.18c).
To prove the second assertion, we let ρ ∈ L2(0, T ;L2(Ω)) be arbitrary, but fixed
and abbreviate ρ+ := max{ρ, 0} and ρ− := min{ρ, 0}. By distinguishing between
the sets {(t, x) ∈ (0, T ) × Ω : z̄(t, x) > 0}, {(t, x) ∈ (0, T ) × Ω : z̄(t, x) = 0} and
{(t, x) ∈ (0, T )× Ω : z̄(t, x) < 0}, we obtain from (3.37c) and (3.31)

0 ≤
∫ T

0

∫
Ω

1

ε
[max ′(z̄(t, x); ρ+(t, x)) + max ′(z̄(t, x); ρ−(t, x))]ξ(t, x) dx dt

−
∫ T

0

∫
Ω

λ(t, x)[ρ+(t, x) + ρ−(t, x)] dx dt

=

∫ T

0

∫
Ω

1

ε
max ′(z̄(t, x); ρ(t, x))ξ(t, x) dx dt−

∫ T

0

∫
Ω

λ(t, x)ρ(t, x) dx dt

(3.38)
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for all ρ ∈ L2(0, T ;L2(Ω)). Now, let δ` ∈ H1(0, T ;L2(Ω)) be arbitrary but fixed and
test (3.37a), (3.37b), and (3.37d) with (δq, δϕ) := S′(¯̀; δ`) and δ`, respectively. This
leads to

∂qj(q̄, ϕ̄)δq + ∂ϕj(q̄, ϕ̄)δϕ+ (¯̀, δ`)H1(0,T ;L2(Ω))

= −
∫ T

0

(ξ̇(t), δq(t))L2(Ω) dt− β(w − λ, δq)L2(0,T ;L2(Ω)) + ([(f ◦ H)′(q̄)]?(λ), δq)L2(0,T ;L2(Ω))

+ β(w − λ, δϕ)L2(0,T ;L2(Ω)) + α(∇w,∇δϕ)L2(0,T ;L2(Ω)) − (w, δ`)L2(0,T ;L2(Ω))

=

∫ T

0

(ξ(t), δ̇q(t))L2(Ω) dt− (λ,−β(δq − δϕ))L2(0,T ;L2(Ω)) + (λ, (f ◦ H)′(q̄)(δq))L2(0,T ;L2(Ω))

− 〈β(δq − δϕ) + α∆δϕ+ δ`︸ ︷︷ ︸
=0, cf. (2.16b)

, w〉L2(0,T ;H1(Ω))

=︸︷︷︸
(2.16a)

∫ T

0

(ξ(t),
1

ε
max ′(z̄(t); (−β(δq − δϕ)− (f ◦ H)′(q̄; δq))(t))L2(Ω) dt

−
∫ T

0

(λ(t), (−β(δq − δϕ)− (f ◦ H)′(q̄; δq))(t))L2(Ω) dt

≥
(3.38)

0,

where the second identity follows from integration by parts, δq(0) = 0, and ξ(T ) = 0.
Since δ` ∈ H1(0, T ;L2(Ω)) was arbitrary, the proof is now complete.

Remark 3.17. We remark that if fatigue is not taken into consideration, i.e., if f
is replaced by a nonnegative constant, then (3.37) reduces to the strong stationary
optimality conditions obtained in [5, Thm. 4.5]; note that therein the control space is
L2(0, T ;L2(Ω)) instead of H1(0, T ;L2(Ω)).

Remark 3.18. As opposed to (3.37), the optimality system in Theorem 3.15 is not
strong stationary, as we will see in the next section. However, we emphasize that
(3.18) is a comparatively strong optimality system. While countless non-smooth prob-
lems have been addressed by resorting to a smoothening procedure as the one in the
proof of Proposition 3.10 (see e.g. [3, 17, 19] and the references therein), we went a
step further and improved the optimality conditions from Proposition 3.10 by proving
the additional information contained in (3.18d). Let us point out that sign conditions
on the sets where the non-smoothness is active, in our case

0 ≤ λ(t, x) a.e. where z̄(t, x) = 0

are not expected to be obtained by classical regularization techniques, see e.g. [6, Re-
mark 3.9].

3.3. Discussion of the optimality system (3.18). Comparison to strong
stationarity. We begin this section by writing down how the strong stationary op-
timality conditions for the control of (P) should look like.

Proposition 3.19 (An optimality system that implies B-stationarity). Suppose
that Assumptions 3.1 is fulfilled. Assume that ¯̀ ∈ H1(0, T ;L2(Ω)) together with
its states (q̄, ϕ̄) ∈ H1

0 (0, T ;L2(Ω)) × L2(0, T ;H1(Ω)), some adjoint states (ξ, w) ∈
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H1
T (0, T ;L2(Ω))× L2(0, T ;H1(Ω)), and some multipliers λ, µ ∈ L∞(0, T ;L2(Ω)) sat-

isfy the optimality system

−ξ̇ − β
(
w − λ

)
+H′(q̄)?(µ) = ∂qj(q̄, ϕ̄) in L2(0, T ;L2(Ω)), ξ(T ) = 0, (3.39a)

−α∆w + β
(
w − λ

)
= ∂ϕj(q̄, ϕ̄) in L2(0, T ;H1(Ω)∗), (3.39b)

λ(t, x) =
1

ε
χ
{z̄>0}(t, x)ξ(t, x) a.e. where z̄(t, x) 6= 0,

µ(t, x) = f ′(H(q̄)(t, x))λ(t, x) a.e. where H(q̄)(t, x) 6= nf ,

 (3.39c)

0 ≤ λ(t, x) ≤ 1

ε
ξ(t, x) a.e. where z̄(t, x) = 0,

f ′+(nf )λ(t, x) ≤ µ(t, x) ≤ f ′−(nf )λ(t, x) a.e. where H(q̄)(t, x) = nf ,

 (3.39d)

(w, δ`)L2(0,T ;L2(Ω)) + (¯̀, δ`)H1(0,T ;L2(Ω)) = 0 ∀δ` ∈ H1(0, T ;L2(Ω)), (3.39e)

where we abbreviate z̄ := −β(q̄ − ϕ̄) − (f ◦ H)(q̄) and where, for any v ∈ R, the
right- and left-sided derivative of f : R → R are given by f ′+(v) := f ′(v; 1) and
f ′−(v) := −f ′(v;−1), respectively. Then, ¯̀ also satisfies the variational inequality
(3.16).

Proof. Let ρ ∈ L2(0, T ;L2(Ω)) be arbitrary, but fixed. In the proof of Corollary 3.16
we saw that the first identity in (3.39c) and the first relation in (3.39d) combined with
(3.31) imply

0 ≤
∫ T

0

∫
Ω

1

ε
max ′(z̄(t, x); ρ(t, x))ξ(t, x) dx dt−

∫ T

0

∫
Ω

λ(t, x)ρ(t, x) dx dt (3.40)

for all ρ ∈ L2(0, T ;L2(Ω)). Next we abbreviate H′(q̄)(q̂ρ)− := min{H′(q̄)(q̂ρ), 0} and
H′(q̄)(q̂ρ)+ := max{H′(q̄)(q̂ρ), 0}, where

q̂ρ(t) :=
1

ε

∫ t

0

max ′(z̄(s); ρ(s)) ds ∀ t ∈ [0, T ].

From the second identity in (3.39c) and the second relation in (3.39d) we deduce that

0 ≤
∫ T

0

∫
Ω

[−λ(t, x)f ′+(H(q̄)(t, x)) + µ(t, x)]︸ ︷︷ ︸
≥0

H′(q̄)(q̂ρ)+(t, x) dx dt

+

∫ T

0

∫
Ω

[−λ(t, x)f ′−(H(q̄)(t, x)) + µ(t, x)]︸ ︷︷ ︸
≤0

H′(q̄)(q̂ρ)−(t, x) dx dt

=

∫ T

0

∫
Ω

−λ(t, x)f ′(H(q̄)(t, x);H′(q̄)(q̂ρ)+(t, x)) + µ(t, x)H′(q̄)(q̂ρ)+(t, x) dx dt

+

∫ T

0

∫
Ω

−λ(t, x)f ′(H(q̄)(t, x);H′(q̄)(q̂ρ)−(t, x)) + µ(t, x)H′(q̄)(q̂ρ)−(t, x) dx dt

= −
∫ T

0

(λ(t), (f ◦ H)′(q̄; q̂ρ)(t))L2(Ω) dt+

∫ T

0

(µ(t),H′(q̄)(q̂ρ)(t))L2(Ω) dt,

(3.41)
where in the second identity we relied on (3.30). Adding (3.40) and (3.41) yields
(3.28). Now, let δ` ∈ H1(0, T ;L2(Ω)) be arbitrary but fixed and abbreviate (δq, δϕ) :=
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S′(¯̀; δ`). By testing (3.28) with −β(δq− δϕ)− (f ◦H)′(q̄; δq) and by arguing step by
step backwards as in the proof of (3.27), we finally arrive at the desired result.
Remark 3.20. Some words concerning Proposition 3.19 are in order:

• The optimality system (3.39) differs from (3.18) only regarding the relations
in (3.39d) and (3.18d). As expected, the optimality conditions in (3.39d)
contain more information than (3.18d). This is also confirmed by Proposition
3.21 below.

• We point out that (3.39) is not of strong stationary type, as we were not able
to show (3.16)⇒ (3.39); the optimality conditions in (3.39) just point out the
information that is missing in (3.18), namely

λ(t, x) ≤ 1

ε
ξ(t, x) a.e. where z̄(t, x) = 0,

f ′+(nf )λ(t, x) ≤ µ(t, x) ≤ f ′−(nf )λ(t, x) a.e. where H(q̄)(t, x) = nf .
(3.42)

Note that the sign condition

0 ≤ λ(t, x) a.e. where z̄(t, x) = 0

is already contained in (3.18d). The proof of Proposition 3.19 shows that
(3.42) is indeed needed for the implication (3.18)⇒ (3.16).

• In order to prove that a certain optimality system implies B-stationarity, it is
essential that it includes sign conditions for the involved multipliers and/or
adjoint states on the sets where the non-smoothness is active. This fact has
been observed in many contributuions dealing with strong stationarity [23,
Rem. 6.9], [6, Rem. 3.9], [5, Rem. 4.8], [9, Rem. 4.15]. In our case, see
(3.18d), the information on {z̄ = 0} is incomplete, while the sign conditions
on the set {H(q̄) = nf} are non-existent and seem to be hidden in the integral
formulations (3.19).

Proposition 3.21 (The optimality system (3.39) is stronger than (3.18)). Suppose
that all the hypotheses in Proposition 3.19 are fulfilled. If, in addition, Assumption
3.13 holds true, then (3.18) is satisfied.

Proof. We only need to show that (3.39d) implies (3.18d). To this end, we first prove
that

H′(q̄)?(η1) ≥ H′(q̄)?(η2) ∀ η1, η2 ∈ L2(0, T ;L2(Ω)) with η1 ≥ η2. (3.43)

We recall that, as a consequence of Assumption 3.13, H′(q̄)(ρ) ≥ 0 for all ρ ∈
L2(0, T ;L2(Ω)), ρ ≥ 0, cf. (3.17). This leads to

(H′(q̄)?(η1), ρ)L2(0,T ;L2(Ω)) = (η1,H′(q̄)(ρ))L2(0,T ;L2(Ω))

≥ (η2,H′(q̄)(ρ))L2(0,T ;L2(Ω)) = (H′(q̄)?(η2), ρ)L2(0,T ;L2(Ω)),

from which (3.43) follows. Now, the second relation in (3.39d) and the definitions of
G+ and G− in (3.19) give in turn

G+ ≥ 0 and G− ≤ 0 a.e. in (0, T )× Ω.

Thus, (3.39d) implies (3.18d) and the proof is complete.
Remark 3.22. The gap between (3.18) and the strong stationary optimality condi-
tions (3.39) is due to the additional non-smooth mapping f appearing in the argument
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of the initial non-smoothness max, cf. (2.2a). To see this, let us take a closer look at
the proof of Theorem 3.15. Therein, (3.18d) is proven by relying on direct methods
from previous works [5, 23] which deal with strong stationarity in the context of one
non-differentiable map. In these findings it has been observed that the set of directions
into which the non-smoothness is differentiated - in the "linearized" state equation -
must be dense in a suitable (Bochner) space [5, Remark 2.12], [23, Lem. 5.2]. The
density of the set of directions into which max is differentiated, see (2.16a), is in-
deed available, as the first step of the proof of Theorem 3.15 shows. This allowed
us to improve the optimality system (3.6) from the previous section. However, the
non-differentiable function f requires a similar density property too, which reads as
follows

{H′(q̄;S′1(¯̀; δ`)) : δ` ∈ H1(0, T ;L2(Ω))} d
↪→ L2(0, T ;L2(Ω)), (3.44)

where S1 denotes the first component of the control-to-state operator S : L2(0, T ;H1(Ω)∗) 3
` 7→ (q, ϕ) ∈ H1

0 (0, T ;L2(Ω)) × L2(0, T ;H1(Ω)). By taking a look at the "linearized"
state equation (2.16a), we see that (3.44) is not to be expected, due to the lack of
surjectivity of the mapping max′(z̄; ·). Thus, the methods from [5,23] are restricted to
one non-smoothness and permit us to improve the limit optimality system (3.6) only
up to a certain point. Thus, the strong stationarity for the control of (P) remains an
open question.

Appendix A. .

Proof of Lemma 3.7.

The arguments are well-known [4] and can be found in [5, App.B] for the case that (f ◦
H)(q) is constant and the control space is L2(0, T ;L2(Ω)) instead of H1(0, T ;L2(Ω)).

(I) Let ε > 0 be arbitrary, but fixed. We begin by recalling the smooth state equation
appearing in (Pε):

q̇(t) =
1

ε
max ε(−β(q(t)− ϕ(t))− (fε ◦ H)(q)(t)) in L2(Ω), q(0) = 0, (A.1a)

−α∆ϕ(t) + β ϕ(t) = βq(t) + `(t) in H1(Ω)∗, a.e. in (0, T ). (A.1b)

By employing the exact same arguments as in the proof of Proposition 2.3, one infers
that (A.1) admits a unique solution (qε, ϕε) ∈ H1

0 (0, T ;L2(Ω))× L2(0, T ;H1(Ω)) for
every ` ∈ L2(0, T ;H1(Ω)∗), which allows us to define the regularized solution mapping

Sε : L2(0, T ;H1(Ω)∗) 3 ` 7→ (qε, ϕε) ∈ H1
0 (0, T ;L2(Ω))× L2(0, T ;H1(Ω)).

The operator Sε is Gâteaux-differentiable and its derivative at ` ∈ L2(0, T ;H1(Ω)∗)
in direction δ` ∈ L2(0, T ;H1(Ω)∗), i.e., (δq, δϕ) := S′ε(`)(δ`), is the unique solution of

δ̇q(t) =
1

ε
max ε

′(zε(t))
(
− β(δq(t)− δϕ(t))− (fε ◦ H)′(qε)(δq)(t)

)
in L2(Ω), δq(0) = 0,

− α∆δϕ(t) + β δϕ(t) = βδq(t) + δ`(t) in H1(Ω)∗, a.e. in (0, T ),
(A.2)

where we abbreviate zε := −β(qε − ϕε)− (fε ◦ H)(qε). By arguing as in the proof of
Lemma 2.4 we deduce that Sε : L2(0, T ;H1(Ω)∗)→ H1

0 (0, T ;L2(Ω))×L2(0, T ;H1(Ω))
is Lipschitz continuous (with constant independent of ε). Moreover, we have the
convergence

Sε(`ε)→ S(`) in H1
0 (0, T ;L2(Ω))× L2(0, T ;H1(Ω)), (A.3)

28



for `ε → ` in L2(0, T ;H1(Ω)∗). To see this, one first shows that Sε(`)→ S(`), which
follows by estimating as in the proof of Lemma 2.4 and by using (2.1) applied for fε
along with (3.1). Then, (A.3) is a consequence of the Lipschitz continuity of Sε (with
constant independent of ε).
(II) Next, we focus on proving that ¯̀ can be approximated via local minimizers of
optimal control problems governed by (A.1). To this end, let BH1(0,T ;L2(Ω))(¯̀, ρ) be
the ball of local optimality of ¯̀ and consider the smooth (reduced) optimal control
problem

min
`∈H1(0,T ;L2(Ω))

J(Sε(`), `) +
1

2
‖`− ¯̀‖2H1(0,T ;L2(Ω))

s.t. ` ∈ BH1(0,T ;L2(Ω))(¯̀, ρ).

 (P ρε )

By arguing as in the proof of Proposition 3.2, we see that (P ρε ) admits a global solution
`ε ∈ H1(0, T ;L2(Ω)). Since `ε ∈ BH1(0,T ;L2(Ω))(¯̀, ρ), we can select a subsequence with

`ε ⇀ ˜̀ in H1(0, T ;L2(Ω)), (A.4)

where ˜̀∈ BH1(0,T ;L2(Ω))(¯̀, ρ). For simplicity, we abbreviate in the following

J (`) := J(S(`), `), (A.5a)

Jε(`) := J(Sε(`), `) +
1

2
‖`− ¯̀‖2H1(0,T ;L2(Ω)) (A.5b)

for all ` ∈ H1(0, T ;L2(Ω)). Due to (A.3) and Assumption 3.1, it holds

J (¯̀)
(A.5a)

= J(S(¯̀), ¯̀) = lim
ε→0

J(Sε(¯̀), ¯̀)
(A.5b)

= lim
ε→0
Jε(¯̀) ≥ lim sup

ε→0
Jε(`ε), (A.6)

where for the last inequality we relied on the fact that `ε is a global minimizer of (P ρε )
and that ¯̀ is admissible for (P ρε ). In view of (A.5b), (A.6) can be continued as

J (¯̀) ≥ lim sup
ε→0

J(Sε(`ε), `ε) +
1

2
‖`ε − ¯̀‖2H1(0,T ;L2(Ω))

≥ lim inf
ε→0

J(Sε(`ε), `ε) +
1

2
‖`ε − ¯̀‖2H1(0,T ;L2(Ω))

≥ J(S(˜̀), ˜̀) +
1

2
‖˜̀− ¯̀‖2H1(0,T ;L2(Ω)) ≥ J (¯̀),

(A.7)

where we used again (A.3) in combination with the compact embeddingH1(0, T ;L2(Ω)) ↪→↪→
L2(0, T ;H1(Ω)∗), and the continuity of j, see Assumption 3.1; note that for the last
inequality in (A.7) we employed the fact that ˜̀∈ BH1(0,T ;L2(Ω))(¯̀, ρ). From (A.7) we
obtain that ˜̀= ¯̀ and

J (¯̀) = lim
ε→0

J(Sε(`ε), `ε) +
1

2
‖`ε− ¯̀‖2H1(0,T ;L2(Ω)) = J(S(˜̀), ˜̀) +

1

2
‖˜̀− ¯̀‖2H1(0,T ;L2(Ω)).

Since J(Sε(`ε), `ε)→ J(S(˜̀), ˜̀), one has the convergence

`ε → ¯̀ in H1(0, T ;L2(Ω)), (A.8)

where we also relied on (A.4). As a consequence, (A.3) yields

Sε(`ε)→ S(¯̀) in H1
0 (0, T ;L2(Ω))× L2(0, T ;H1(Ω)). (A.9)

A classical argument finally shows that `ε is a local minimizer of min`∈H1(0,T ;L2(Ω)) Jε(`)
for ε > 0 sufficiently small.
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