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Abstract

In car-sharing, free-floating is becoming increasingly popular. It means that the shared cars are parked in the public space without
dedicated parking spaces. For the operator, this solves the problem of parking space requirements. But the acute imbalance problem
shows the need of stochastic modelling and analysis. In this paper, a new stochastic model adapted to free-floating is proposed,
taking into account the sharing of public space between private and free-floating cars. As is generally the case, the model consists
of dividing the service area into small zones, with free-floating car dynamics adapted to usage, meaning car reservation, one-way
trip and no parking space reservation. The originality of our model is that, due to the presence of private cars, the capacity of a
zone seen by free-floating cars is random. We show that, unlike in station-based car-sharing systems, it is not limited. In addition,
a stochastic averaging principle governs the behavior of free-floating cars. We exhibit a phase transition between a non-saturated
regime where free-floating cars can always be parked and a saturated regime where free-floating cars cannot find an available
parking space with positive probability. This probability is entirely determined by the environment - parameters of private cars and
public space- which means that the operator cannot act on the proportion of zones without available parking spaces. The solution
of the dimensioning problem -finding the optimal fleet size to minimize the number of zones without available free-floating cars
or parking spaces- is completely different from that of station-based car-sharing which is a trade-off. It consists in claiming that
the more free-floating cars there are in the system, the more satisfied users are, assuming always that private cars are much more
numerous that free-floating cars.
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1. Introduction

Over the last few decades, car-sharing has emerged as an alternative mode of transportation that is more ecological,
economical and adapted to the architecture of large cities compared to the individual car ownership. See Shaheen et al.
(2012).
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1.1. Station-based and free-floating car-sharing

Car-Sharing exists in two forms. The first one is round-trip where the user can book in advance and needs to return
the car at the departure point. It involves station-based systems, with stations with a fixed number of parking spaces
(station capacities). The second one proposes one-way trips. The user picks up a car at a departure point, makes a trip
and returns the car at destination. These systems called free-floating are not based on physical stations. Cars are parked
all over the public space. One-way trip systems are more convenient than round-trip ones because of flexibility, see
Wielinski et al. (2015). Their usage is increasing, especially for free-floating-ones. See for example (Kolleck, 2021,
Figure 1) for the German case-study on the development of car sharing.

On the one hand, for station-based systems with round-trips, because the parking space after departure remains
reserved during the trip, the only problem for the user is to find an available car. On the other hand, the one-way
systems are faced with a greater imbalance problem, with zones with high demand and no car and zones with low
demand and many cars. Moreover, in contrast to round-trip systems, the users have to find both an available car and
an available parking space. This issue is not only due to heterogeneity on demand. Even in a homogeneous system,
the users could face this situation due to their random behavior. Managing such systems is not easy. An issue is the
dimensioning problem: how many cars would be needed per station on average to minimize the proportion of empty
stations (with no available cars) or full stations (with no available parking spaces)?

To address these issues, much work has been done to study of station-based car-sharing systems in order to under-
stand their behavior and improve their reliability. Few concern stochastic analysis. Stochastic models of station-based
sharing systems have been proposed to take into account the randomness of the system. See Gast et al. (2015); Bour-
dais et al. (2020). They are devoted to bike-sharing and car-sharing. Car-sharing systems have some additional features
compared to bike-sharing, mainly the fact that reservation is proposed. In all the following, a bike-sharing model is
the version without reservation of a car-sharing model; a station-based car-sharing model offers both car and parking
space reservation while in a free-floating car-sharing model, only car reservation can be done, the cars being parked in
the public space. Furthermore the parameters vary from one system to another one. For example, from a parameter es-
timation on data sets, the mean trip duration is greater for car-sharing, see Fricker et al. (2021), than for bike-sharing,
see Gast et al. (2015).

The intuitive result for dimensioning the fleet size is that, in the case of a simple homogeneous model for bike-
sharing (or car-sharing without reservation) systems, the stations should be roughly half full. Indeed, Fricker and Gast
(2016) prove that the optimal fleet size per station in this case is half the station capacity plus an additional term which
is the load of the system, i.e. the product of the arrival rate of user demand per station by the average trip time. Other
refined stochastic models that take into account the heterogeneity of the system in for example Fricker et al. (2012),
the impact of the reservation (of the car, the parking space or both of them) in Bourdais et al. (2020) or the presence
of bikes and e-bikes in Ancel et al. (2022) have been proposed and analyzed by probabilistic or mean field techniques.
Moreover the bike-sharing model motivates other analytical studies. Indeed, in Massey et al. (2022), motivated by
bike-sharing, the exact solutions for transient probabilities of the M/M/1 queue are derived using group symmetry
and complex analysis. Bražėnas and Valakevičius (2023) deals with trip times under a phase-type distribution.

The other, more recent form of car-sharing without physical stations is gaining in popularity. Recall that, in such
free-floating systems, cars are parked in public areas. Users pick up the car of their choice, generally the one closest to
their geographical location, complete their trip and park the car in an available public space around their destination.
Free-floating offers more flexibility to the user and brings an answer to the problem of saturation at the destination.
For Le Vine et al. (2014), because of these structural differences with station-based car-sharing systems, free-floating
accounts for the bulk of journeys while station-based systems act as a complement.

1.2. Free-foating modelled as a station-based system

Despite the differences, free-floating has always been analyzed in the literature as station-based where the service
area is divided into small zones, from 0.25 km2 to 1 km2, see (Lippoldt et al., 2018, section V) for a discussion,
acting as stations. For example, to solve the relocation problem for free-floating car-sharing systems, Weikl and
Bogenberger (2015) transform a free-floating system to a station-based car-sharing system by theoretically defining
artificial stations by dividing the service area.
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Fig. 1: Communauto service area, Montreal Fig. 2: Reconstruction of Communauto service area with 2020 dataset

In this paper, for our case study on free-floating in Montreal, Figures 1 and 2 show the Communauto free-floating
service area in Montreal. Figure 1 shows a capture of this zone with St. Laurent Boulevard in red as a landmark.
In Figure 2, a reconstruction of this zone is made through GPS data of the positions of Communauto’s free-floating
cars. A -62 degree rotation is made in order to make the Saint Laurent Boulevard coincide with the vertical axis and
a mesh is applied to the whole service area. Note that in Figure 2 every red square represents a zone. In this case,
Communauto’s 100 km2 service area is divided into approximately 100 zones. Every dot is a GPS position of a parked
Communauto free-floating car. In this data set for the whole year 2020, each transaction corresponds to one GPS
position, for example the destination position.

Such an approach allows to use a framework where results have been obtained. Nevertheless, this approach has
some drawbacks already mentioned in the literature. First, the parameters of such a station-based model depend on the
mesh which is used, see (Lippoldt et al., 2018, section V). Second Weikl and Bogenberger (2015) raise the issue that
transferring the existing relocation models for station-based systems to FFCS systems is however restricted, as the
new systems have other dynamics resulting from spontaneous usage without reservation, without stations and without
a priori information on the users’ destinations. Third, a crucial issue is how to define the capacity of each zone. This
capacity is limited by the urban space and is arbitrary fixed in the previous literature. See Moreno et al. (2022) where
two types of zones are considered, intensive zones and normal zones, according to demand. In Moreno et al. (2022),
the capacity of each zone is fixed to the maximum of parked free-floating cars observed on real data in such a zone. In
other respects, the problem of fixed capacity does not arise for free-floating bike-sharing systems where the capacity
of the physical zones is large enough to be considered infinite. Moreover, it is interesting to note that in the FFBSS
relocation problem with electric fences, a fixed capacity of artificial stations is relevant, see Zhang et al. (2019) for
example.

1.3. Random capacity for free-floating systems

For free-floating systems, the capacity of each zone can be defined as the number of available parking spaces added
to the number of the free-floating cars parked in this zone. Thus, the choice of a fixed capacity as in a station-based
system does no longer make sense. Indeed, for free-floating, the cars of the system share available places in public
areas with the private cars. The number of private cars being random, the residual capacity per zone is therefore
perceived as random by free-floating cars. This key feature is specific to free-floating and cannot be captured by the
classical modeling of a free-floating system as a station-based system. Note that, for free-floating, the capacity can
not be obtained by data analysis without data on public parking spaces in the service area.

The paper deals with free-floating car-sharing. In this paper, our first objective is to propose a new model for
car-sharing systems suited to free-floating which take into account that the free-floating cars share public space with
much more numerous private cars. Within this framework, our second objective is to measure the difficulty for the
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user both to find a car at departure and to return his car at destination. The third one is to solve in this framework
the dimensioning problem, which is the optimal number of free-floating cars the operator must put to optimize the
availibilioty of resources. Then the last objective is to present simulations which validate the results. As far as we
know, this is the first model of a free-floating car-sharing system with zones that takes into account the presence of
private cars in the dynamics. This point of view is original and seems much more relevant for the system than the
classical approaches used up to now to study free-floating car-sharing systems. This model takes into account the
interactions between private and free-floating cars and as a result highlights that the residual capacity (the parking
spaces not occupied by private cars) ignore the free-floating cars. Note that all the results presented in Section 3 are
proved in a companion paper Fricker et al. (2023).

1.4. Outline of the paper

Section 1 deals with the introduction. Section 2 presents briefly the model and the probabilistic tools used in the
stochastic analysis. In Section 3, the stochastic model is described and the main results of the analysis are presented,
then the validation by simulation. Section 4 gives a conclusion and directions for future work.

2. Material and methods

2.1. Modelling

In this paper, we consider an homogeneous framework. Let us clarify the main features of our model suited to
free-floating. The service area is divided into N zones. The public space in each zone contains a number of parking
spaces of the order of N, called the overall capacity of the zone. Note that this capacity does not depend on pricing or
demand. It depends only on the urban characteristics of the zone assumed to be similar for all zones. Moreover the set
of N zones is completely symmetric in terms of free-floating car demand (a random user demand with the same rate for
each zone), destination choice (uniform among the N zones), and random reservation and trip time. The heterogeneity
of the trip times of the users is modelled by a common distribution. Indeed as in previous bike or car sharing models,
see Fricker and Gast (2016); Bourdais et al. (2020) for example, the cars moving are indistinguishable. Car-Sharing
cars coexist with a large number of private cars and share public parking space with them. Private cars arrive in
each zone according to a Poisson process of parameter of the same order as N. This choice reflects the numerical
imbalance between the private and free-floating cars. The interarrival times and parking times of private cars are
assumed independent respectively identically distributed with exponential distribution. In conclusion, the parameters
of the model do not depend on the specific zone.

This model aims to describe the randomness of the residual capacity available to the car-sharing system in the
public space. The homogeneity is natural for a mean-field approach, to have the simplest framework to deal with for
technical reasons. In the following, thanks to our methodology, the model could be modified with various behaviors
to model different usages. We will keep in our model that the parked free-floating cars are either available or reserved.
This shows how other more refined variants can also be modeled. Moreover, in real systems, there can be higher car-
sharing demand where supply of parking is likely lower. Our model is robust enough to be generalized to a spatially
heterogeneous setting, making all parameters dependent on the zones considered. Modeling via clusters remains
suitable for a mean field approach, such as what was done for bike sharing systems by Fricker et al. (2012). As for
the temporal heterogeneity (peak and off-peak hours), it is possible to set the model parameters corresponding to the
chosen time window. In this way, we obtain an approximation of the model behavior specific to this time window. But
a general framework in which the parameters are time-dependent could be envisaged as a final goal.

2.2. Mean field

For car-sharing, the mean-field approach applied to a set of N zones means that, when N becomes large, the states
of two zones become independent and identically distributed. This classical result allows us to reduce the state of the
whole system to that of a single zone, when the system is large enough. A nice queueing interpretation of the limiting
state process of a zone (when N becomes large) enables us to obtain explicitly the stationary distributions of the
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number of available parking spaces, the number of available free-floating cars and the number of reserved cars. This
simple expression of the steady-state behavior of the free-floating system is used for the dimensioning problem. This
means characterizing the optimal number of free-floating cars per zone, that minimizes the number of zones without
both available cars and parking spaces.

2.3. Averaging

This new stochastic model takes into account the interaction between private and car-sharing cars sharing public
space. The number of car-sharing cars is negligible compared to the total number of private ones that could share
the service area (850 for Communauto Vs 800 000 private cars in Montreal). Thus intuitively, the private car behavior
ignores the presence of free-floating cars. Told in a different way, ignoring the sparse presence of free-floating cars, the
private cars left a residual number of available parking spaces. Moreover, for each zone, since the number of private
cars is large, their evolution is fast - with jump rates of order N- and free-floating cars, arriving at a much smaller rate
- with jump rates of order 1-, see the number of available parking spaces in average. Averaging has been extensively
investigated in stochastic networks since Kurtz (1992), a first famous framework given by loss networks in Hunt and
Kurtz (1994). Because of this, loss networks are a key reference or conversely, due to the universality of dynamics of
loss networks, averaging is present in a huge number of models. It is the case here. Mathematically, the study deals
with the fast process of the number of private cars compared to the slow process of the number of car-sharing vehicles,
see also Hunt and Kurtz (1994). It allows to find the behavior of the free-floating cars in a large system although the
evolution equation has discontinuities, due to the presence of private cars which condition available parking spaces.
To understand the averaging principle, we study the processes at different time scales.

2.4. Phase transition

As in loss networks, Hunt and Kurtz (1994), there are two regimes: One with a large number of available parking
spaces (of the order of N) and the free-floating cars always be parked. It is called here the Montreal regime. The
other is where private cars saturate the public space of the free-floating service area leaving few parking spaces, i.e.
a random number with fixed finite mean when N becomes large. There is a positive probability that the free-floating
cars can not be parked in the target zone and have to park in another zone. This regime is called the Paris regime. Note
that in the latter case, the probability that the user has to accept to turn around his destination and park slightly away
is an important parameter for the operator. This probability allows him to measure the discomfort suffered by the user
in case of saturation.

3. Results

In this section, proofs are omitted and will be presented in a companion paper Fricker et al. (2023).

3.1. The model

The service area is divided into N zones, each of them with a global capacity of order N, say equal to cN where
c > 0 is a fixed constant depending on the urban structure of the service area. Let M be the total number of free-
floating cars in the system. The number M/N of free-floating cars per zone is denoted by sN in the following. The
dynamics of the model are as follows:

• Users of free-floating cars arrive at zone i (1 ≤ i ≤ N) according to a Poisson process of rate λ. The Poisson
processes for arrivals in the different zones are independent. Each user reserves a free-floating car, if there is at
least one available car. The reservation duration is random with an exponential distribution with parameter η.
Otherwise, if no free-floating car is available in zone i when arriving, the user leaves the system, looking for
another means of transportation.

• After reservation, they starts a trip whose duration time has an exponential distribution with parameter µ.
• At the end of the trip, the user chooses zone j ∈ {1, ...,N} with probability 1/N.
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• If the user does not find a parking space in zone j, they starts a new trip with exponential distribution with the
same parameter µ. Notice that the destination choice is again made uniformly over the N zones.

• Private cars arrive at zone i according to a Poisson process of parameter αN. This choice is consistent with the
assumption that private cars outnumber the free-floating ones. The arrival rate of private cars in a zone is thus
of order N, larger than that of free-floating cars, of order 1.

• Each private car stays in a zone for a random time with exponential distribution of parameter β then leaves the
system.

• If there is no available parking space in the zone, the arriving private car leaves the system.

3.2. Markov process for the state of zones

For a given zone i in {1, ...,N}, we consider
(
XN

i (t),mN
i (t),VN

i (t),RN
i (t)

)
a four component stochastic process such

that, at time t,

• XN
i (t) is the number of private cars parked in this zone,

• mN
i (t) is the number of available spaces in this zone,

• VN
i (t) is the number of available free-floating cars parked in this zone,

• RN
i (t) is the number of reserved free-floating cars parked in this zone.

Note that a distinction is made between available parked free-floating cars and those already reserved in order to obtain
a Markovian framework. Note also that, for sake of simplicity, all users make a reservation. Moreover it is obvious
that, at any time t ≥ 0 and for any zone i,

XN
i (t) + mN

i (t) + VN
i (t) + RN

i (t) = cN.

Thus the state of a given zone i is reduced to the three component stochastic process
(
mN

i (t),VN
i (t),RN

i (t)
)

since
XN

i (t) = cN − mN
i (t) − VN

i (t) − RN
i (t).

The model presented here is as simple as possible. Variants can be studied. For example, we can consider that, if
private cars do not find a parking space in the target zone, they could look for a parking space in another zone. And
also we can imagine that, if free-floating users do not find an available car in the target zone, a proportion of them
could look for one in another zone. We could also add that only a fraction of users make a reservation.

The state of the N zones is given by
(
mN

i (t),VN
i (t),RN

i (t), 1 ≤ i ≤ N
)

which is a Markov process on state space

(mi, vi, ri)1≤i≤N ∈ N3N ,∀i ∈ {1, . . . ,N}, mi + vi + ri ≤ cN,
N∑

i=1

vi + ri ≤ M

 .
Each transition of this Markov process modifies only the state of one zone. The transitions from ((mi, vi, ri), 1 ≤ i ≤ N)
which change the state of zone i move (mi, vi, ri) to



(mi + 1, vi, ri) at rate β(cN − mi − vi − ri)

(mi − 1, vi + 1, ri) at rate
µ

N

(
M −

∑N
l=1(vl + rl)

)
1mi>0

(mi, vi − 1, ri + 1) at rate λ1vi>0

(mi + 1, vi, ri − 1) at rate ηri

(mi − 1, vi, ri) at rate αN1mi>0
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and let the remaining
(
(m j, v j, r j), 1 ≤ j ≤ N, j , i

)
unchanged. The first transition occurs when a private car leaves

zone i making a new parking space available. It happens at rate βxi, i.e. at rate β(cN − mi − vi − ri). The second
corresponds to the arrival of a free-floating car being available for users and taking a parking place if possible. Note
that there are M − v1 − r1 − . . . − vN − rN free-floating cars in move for a trip with exponential distribution with
parameter µ. For the moving free-floating cars, the probability to park in zone i is 1/N. Therefore we get the rate
associated to this transition. The third one happens when a user reserves an available free-floating car in zone i if there
is one. It occurs at rate λ. This car remains parked but reserved at the same parking space. The forth corresponds to the
departure of a reserved free-floating car making a new parking space available in the zone. The last one corresponds
to the arrival of a private car taking a parking space in zone i if possible.

3.3. Two regimes

Intuitively, due to the homogeneity of the system, all zones have the same limiting behavior. First we focus on the
evolution of the number of available parking spaces (mN

i (t))t≥0 in a given zone i in {1, ...,N}. If the state of zone i is
(mi, vi, ri) at time t, the number of available parking spaces mi increases by 1 at rate β(cN − mi − vi − ri) + ηri and
decreases by 1 if mi > 0 at rate αN + µ(M − v1 − r1 − . . . − vN − rN)/N. Roughly speaking vi and ri are negligible
compared to cN since the sum v1 + r1 + . . . + vN + rN is less or equal to M of order N (recall that M/N tends to a
constant s, the fleet size per station, called the fleet size parameter) . Thus, for N large enough, the process (mi(t))
behaves like a birth and death process with birth rate βcN and death rate αN. It is well known that such a birth-and-
death process is ergodic and admits a unique invariant measure which is geometric with parameter βc/α if βc/α < 1,
and is transient and tends to +∞ if βc/α > 1. It should be noted that the limiting number of available parking spaces
does not depend on the car-sharing parameters. Intuitively, it is due to the orders of magnitude of random variables,
recalling that mN

i (t) = cN − XN
i (t) − VN

i (t) − RN
i (t).

Thus we highlight two regimes with a phase transition when βc/α is equal to 1 clearly identified in term of param-
eters related to the environment, i.e. the private cars and the urban characteristic of the service area (parameters α, β
and c). Intuitively,

• The saturated regime: When βc/α < 1, the private cars occupy all the parking spaces in the zone which means a
number equivalent to cN when N is large. In other words if the arrival rate of the private cars, i.e. αN , exceeds
the parking completion rate βcN, the zone will not have time to free a parking space before the arrival of a
new private car. Indeed, as previously explained, the number of parking spaces is of order 1, with geometric
distribution with parameter βc/α. With probability 1 − βc/α, a free-floating car arriving in a zone can not be
parked in this zone.

• The unsaturated regime: When βc/α > 1, the private cars leave a proportion of order N of the parking spaces in
the zone. As the number of free-floating cars are of order 1 in a zone, free-floating cars can be parked without
any restriction. They always find an available parking space.

3.3.1. The saturated regime
It holds when βc/α < 1. We present briefly the behavior.
The mean-field approximation. In this case, the free-floating cars face some positive probability 1 − βc/α > 0

of not finding an available parking space (and thus looking for a space in another zone). This measures the difficulty
(and not impossibility) to park at destination for a user of the free-floating car-sharing system. This quantity depends
only on the private car parameters (the environment for the free-floating system) and could be computed, provided by
data on parking spaces in the service area and on the movement of private cars in this area.

Recall that the behavior of the large N-zone system (approximated by the mean-field limit) can be summarized by
the behavior of a single zone, two zone behaviors becoming independent. The limiting free-floating state process of
a zone is the limiting number of available free-floating cars and the limiting number of reserved cars (V(t),R(t)). It
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behaves like an inhomogeneous Markov process with transitions, from (v, r) at time t,

(v, r)→


(v − 1, r + 1) at rate λ1v>0

(v, r − 1) at rate η r

(v + 1, r) at rate
βc
α
µ (s − E (V(t) + R(t)))

that is easy to understand intuitively. The couple (V(t),R(t)) can be interpreted (see Figure 3) as two queues in tandem
with

• the first one, a one-server queue with arrival rate (βc/α)µ (s − E (V(t) + R(t))) at time t and service time λ,
• and the second one, an infinite-server queue with service rate η.

βc
α
µ (s − E (V(t) + R(t)))

V
R

λ

η

Fig. 3: Dynamics of (V(t),R(t)) as a tandem of two queues. The horizontal is a M/M/1 queue, the vertical queue is M/M/∞ queue.

The limiting behavior is given by the following proposition.

Proposition 1 (Behavior of a zone in the saturated case). When βc/α < 1, when N gets large, after some time to,
the number of available parking spaces at time t is stationary with geometric distribution with parameter βc/α. The
free-floating cars which return to a zone find no parking space with probability βc/α. The joint numbers of available
and reserved cars (V(t),R(t)) behave after t0 behave like the inhomogeneous tandem of queues of Figure 3.

This behavior has to be compared with that of the station-based bike-sharing model with fixed capacity by Fricker
et al. (2012) and with car reservation by Bourdais et al. (2020). There are two main differences.

• The βc/α factor in the arrival rate of the first queue (the available free-floating cars) in Proposition 1 which is
interpreted as an acceptance probability since the free-floating cars have a probability 1 − βc/α of not finding a
parking space in a given zone (rejection probability). It is as if private cars is thinning the return of free-floating
cars with probability βc/α. This replaces the role of the finite station capacity of the model usually proposed for
station-based car-sharing systems.

• The absence of finite capacity for the tandem of queues in the limiting behavior. See (Bourdais et al., 2020,
Figure 1).

Steady-state behavior. Using the product-form of the invariant measure of the underlying two-dimension Markov
process (i.e. with queueing interpretation, a tandem of two queues), the long-time behavior (V,R) of the state of a zone
is given by two independent random variables with respective distributions: a geometric 1 distribution with parameter

ρ =
βc
α

µ

λ
(s − E(V + R)) (1)

1 a probability measure π on N such that, π(k) = (1 − ρ) ρk , k ∈ N with ρ ∈]0, 1[.
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and a Poisson distribution with parameter λρ/η if such a ρ exists. It is important to mention that the residual capacity m
available for the free-floating cars, previously considered as a zone-specific constant and arbitrarily fixed, turns out to
be unbounded in our modeling, random with a geometric distribution depending only on the environment parameters
(private cars and characteristics of the zone).

Equation (1) is a fixed point equation on ρ. Indeed, using that V and R have respectively a geometric distribution
with parameter ρ and a Poisson distribution with parameter λρ/η, E(V) = ρ/(1 − ρ) and E(R) = λρ/η. Thus, equation
(1) can be rewritten as follows

ρ =
βc
α

µ

λ

(
s −

ρ

1 − ρ
−
λρ

η

)

or equivalently

s =
ρ

1 − ρ
+

(
λ

η
+
α

βc
λ

µ

)
ρ. (2)

It is clear that the right-hand side of equation (2) is a function of ρ defined on [0,+∞[\{1}, strictly increasing on
both intervals [0, 1[ and ]1,+∞[. More precisely, s is strictly increasing from [0, 1[ to [0,+∞[, and from ]1,+∞[ to
] − ∞,+∞[. In conclusion, for a fixed s, there is a unique solution ρ ∈]0, 1[. Moreover ρ is given explicitly. See
Proposition 2. Indeed, equation (2) is a polynomial equation of second order in ρ, with two real solutions, and it can
be straightforwardly checked that it has exactly one solution in ]0, 1[.

This is summarized in the following result.

Proposition 2 (Stationary mean-field limit). When βc/α < 1, the limit as N becomes large of the joint numbers of
available and reserved free-floating cars (V(t),R(t)) in a given zone has the following stationary distribution

geom(ρ) ⊗ Poisson
(
λρ

η

)
(3)

where ρ is given by

ρ =
A + s + 1 −

√
(A + s + 1)2 − 4sA
2A

with A = λ

(
1
µ

α

βc
+

1
η

)
. (4)

It means that the limiting number of available and reserved free-floating cars as N is large at equilibrium are
independent and with simple distributions with explicit parameters.

These two limits in N and t are not so easy to handle. For example, it is hard, even an explicit limit is obtained, to
prove the long-time convergence of the mean-field limit to its equilibrium point (V,R). To understand the long-time
behavior of the state process of a zone, we use changes of time-scales. It is the aim of the following section.

The different time-scales. What follows is introduced in order to obtain the long-time behavior of the system when
it gets large, by results on convergence of the processes. Roughly speaking, to investigate the stationary state as N gets
large, it is convenient to accelerate time in Nt. Moreover to understand the behavior, the difference between the order
of the rate of transitions concerning the numbers of private cars XN(t) and free-floating VN(t) lead us to investigate
different timescales (standard in t, accelerated in Nt and slowed down in t/N). The proofs are left to the companion
paper Fricker et al. (2023).

The accelerated time gives the simplest point of view. It allows to obtain the steady-state for large N.
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Proposition 3 (Accelerated time-scale behavior). If βc/α < 1 and µ < λ, for the convergence in distribution,

1. If XN(0)/N
d
−−−−→
N→∞

x0 then (XN(Nt)/N)→N→∞ (c).

2. For each t > 0, as N → ∞, mN(t)→ Y where Y is random variable on N with geometric distribution of parameter
βc/α.

3. For each t > 0 and each i, the random variables (VN
i (Nt),RN

i (Nt)) converges to (V,R) as N gets large with
distribution geometric ⊗ Poisson given by Proposition 2.

Considering the normal time scale, we capture that saturation by private cars holds after some time t0. Indeed, in
the standard time-scale (t 7→ t), the two processes (XN(t)) and (mN(t)) are both moving fast (at order N) such that
(mN(t)), when N tends to +∞, roughly becomes of order 1 after some finite time t0. They reach instantaneously (at
fixed t > t0) an equilibrium for a fixed value (v, r) of the slow process (VN(t),RN(t)) at t, moving at order 1. Moreover,
when βc/α < 1 and t > t0, the equilibrium distribution of the number of available places is geometric with parameter
βc/α. The following result holds for the saturated case.

Proposition 4 (Standard time-scale behavior). If βc/α < 1 and µ < λ, for the convergence in distribution,

1. If XN(0)/N
d
−−−−→
N→∞

x0 then process (XN(t)/N) converges to a deterministic process given by

(
XN(t)

N

)
→N→∞ (x(t)) =

(
α

β
+

(
x0 −

α

β

)
e−βt

)
∧ c.

2. For t0 = 1
β

ln α/β−x0
α/β−c > 0, for t > t0 fixed, as N → ∞, mN(t) → Y where Y is a random variable on N with

geometric distribution of parameter βc/α.
3. For i ≤ N, (VN

1 (t),RN
1 (t)) converges as N → ∞ after t0 to the inhomogeneous process described by the tandem of

queues.

Considering a slow time-scale (t 7→ t/N), we only capture the dynamics of the fast process (private cars), the slow
process (free-floating cars) being static in time.

Theorem 1 (Slow time-scale behavior). Assume βc/α < 1. Given limN→∞(mN(0),VN(0),RN(0)) = (m0, v0, r0), the
sequence of processes (mN(t/N),VN(t/N)) converges in distribution to the process (Lm(t), v0, r0), where Lm(t) is the
number of customers in a M/M/1 queue with arrival rate βc and service rate α.

3.3.2. The unsaturated regime
When βc/α > 1, the number of parking spaces is of order N thus the probability for a free-floating car to find an

available parking space is equal to 1. Recall that it means that the car is parked in the target zone. The free-floating
car process of returns is not thinned by the mass of private cars. Thus, for the free-floating car in a zone, the results
of the saturated case are valid replacing βc/α by one. For example, Proposition 2 holds with only the expression of A
changed. It is written as follows.

Proposition 5 (Stationary mean-field limit). When βc/α > 1, the limit as N becomes large of the joint numbers of
available and reserved free-floating cars (V(t),R(t)) in a given zone has the following stationary distribution

geom(ρ) ⊗ Poisson
(
λρ

η

)
(5)
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where ρ is given by

ρ =
A + s + 1 −

√
(A + s + 1)2 − 4sA
2A

with A = λ

(
1
µ

+
1
η

)
. (6)

3.4. Application to dimensioning

As in the case of station-based car-sharing systems, users of free-floating car-sharing systems are faced with the
problem of finding available cars and parking spaces throughout the service area. To address this major issue, the first
question for the operator is the dimensioning problem. The aim is to find the optimal total number of free-floating cars
sN to put in circulation which corresponds to a minimum proportion of zones without free-floating cars or parking
spaces.

Let us focus on the proportion of zones without parking spaces. In the unsaturated regime, this proportion is 0. In
the saturated regime, in contrast with the case of a station-based car-sharing system, the limiting proportion of zones
without available parking spaces, which is 1 − βc/α, depends only on the parameters of the environment (private cars
and characteristics of the zone). The operator cannot therefore act on this proportion by varying the dimensioning
parameter s.

But the operator can reduce the number of zones where there is a lack of cars. Let us denote by P0 the limiting pro-
portion of zones without free-floating cars, given by P0 = P(V = 0). In both regimes, using respectively Proposition 2
or 5 in the saturated or unsaturated regime,

P0 = 1 − ρ

where ρ is given by equation (4), respectively equation (6). In both cases, this limiting proportion P0 is a decreasing
function of s since equation (2) shows that s is a strictly increasing function of ρ. Therefore, the more the operator
increases the number of free-floating cars per zone, the better the system performs since the probability that a user do
not find an available free-floating car in a given zone becomes smaller and smaller. This is nevertheless limited by the
assumption that the number of free-floating cars per zone is negligible (of order 1) compared to the number of cars
per zone (of order N). Our theoretical study succeeds in evaluating the probability of having no free-floating cars in a
zone. In conclusion, our model measures the fact that, for free-floating car-sharing systems, a lack of cars can occur.

3.5. Validation by simulation

We implemented a simulator for our stochastic model. It reproduces the dynamics of a free-floating system of M
cars interacting with private cars and N stations each of capacity cN. For the movement of cars, it follows the distri-
butions of our model. In particular, it relies on the generation of random numbers from the exponential distribution to
simulate the inter-arrival times of Poisson processes. Two fundamental properties of the exponential distribution are
the lack of memory and the fact that, the distribution of Y = min{X1, ..., Xn} where X1, ..., Xn are independent random
variables exponentially distributed with parameters λ1, ..., λn, is again exponential with parameter λ = λ1 + ... + λn.
We report page 13 the algorithm used for the simulations.

Plotting in Figure 4 the evolution in time of the number of available parking spaces, available and reserved free-
floating cars in a randomly chosen station, we can state what happens when the number of zones grows, i.e. when N
doubles from 25 to 50. Indeed, for N = 25 we can still detect jumps of the processes related to free-floating cars. But
for N = 50, the number of jumps for the same processes is much smaller, approximately 1/4 than before. This is due
to the fact that as the number of zones doubles, the jumps of the free-floating cars are spread over a larger number of
zones.

In Figure 5, we plot the distribution of the number of available parking spaces and available free-floating cars
which is a geometric distribution. Indeed plotting the distribution in logarithmic scale gives a straight line. To check
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Fig. 4: The evolution in time of the number of available parking spaces, available and reserved FF-cars in a randomly chosen station. On the left,
for N = 50 and on the right for N = 25.

that the number of reserved free-floating cars follows a Poisson distribution, we plot on the same axes the probability
mass function of the Poisson with theoretical parameters and the distribution obtained by simulation. The two curves
are close.

4. Conclusion and future work

Until now, free-floating car-sharing systems have been modelled as station-based systems with zones considered as
stations with fixed capacities. But such a model is not relevant since free-floating cars share the same parking spaces
with private cars inducing fluctuations of random capacities left to the car-sharing system.

The intuition is that private cars are numerous compared to free-floating cars, ignoring their presence and behaving
roughly independently in each zone as an M/M/cN/cN queue. This is the simplest loss system studied. See (Robert,
2013, Chapter 6). Then, because of this difference in order of magnitude, a stochastic averaging principle should
naturally govern the free-floating car behavior.

We propose in this paper a new model for car-sharing specific to free-floating that we are able to analyze. The study
of this model leads to the mobilisation of several probabilistic techniques, where mean-field and stochastic averaging
are combined. The study of stochastic averaging principle in large systems is original, as far as we know. All technical
details and theoretical arguments of the proofs are presented in Fricker et al. (2023) in preparation.

A phase transition occurs. Under a critical value for a quantity related to the environment, i.e. the private cars and
the public space size, the private cars saturate the public space. And because they are more numerous, they prevent
the free-floating cars to find a parking space with some probability. This regime is called saturated regime. Over
this critical value, in the so-called non-saturated regime, the free-floating cars find an available parking space with
probability one. In both cases, the steady-state behavior when N is large of the non-moving free-floating cars, available
or reserved, can be derived in a quite simple explicit form (cf Propositions 2 and 5). The technique for obtaining the
long-time behavior is to accelerate the time t to Nt and let N tend to infinity. See the paper Fricker et al. (2023) for
details.

As a byproduct, the paper proves the intuitive answer to the dimensioning problem for free-floating. The lack
of parking spaces is not governed by free-floating car-sharing but just the environment. The operator acts only on
providing cars to minimize the lack of available free-floating cars. Thus the more cars the more satisfaction for the
user, under the assumption that private cars are much more numerous than free-floating cars.

To investigate further more realistic distributions, especially for trip times of free-floating cars and parking times
of private cars, a simulator is currently written. These distributions could be provided by data analysis of a city case-
study. The algorithm and simulations presented in in Section 3.5 validate the results for exponential distributions.
They should be adapted to general distributions.
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Algorithm 1 Simulate the dynamics of the model

t ← 0
L← M −

∑
l(Rl + Vl)

tη ← exp(ηRi,N)
tα ← exp(αN,N)
tβ ← exp(βXi,N)
tλ ← exp(λ,N)
tµ ← exp(µ, L)
while number of jumps ≤ N j do

t ← min(tη, tλ, tµ, tα, tβ)
if t is in tη then

i← station where tη = t
(mi,Vi,Ri)← (mi + 1,Ri − 1,Vi)
ωµ ← t + exp(µ)
append ωµ to tµ
tη,i ← t + exp(ηRi) (set tη,i ← ∞ if Ri = 0)

end if
if t is in tµ then

i←U({1, ...,N})
if mi > 0 then

(mi,Vi,Ri)← (mi − 1,Ri,Vi + 1)
remove t from tη

else {mi = 0}
ωµ ← t + exp(µ)
substitute t with ωµ in tµ

end if
end if
if t is in tλ then

i← station where tλ = t
tλ,i ← t + exp(λ)
if Vi > 0 then

(mi,Vi,Ri)← (mi,Ri + 1,Vi − 1)
tη,i ← t + exp(ηRi)

end if
end if
if t is in tα then

i← station where tα = t
tα,i ← t + exp(αN)
if mi > 0 then

(mi,Vi,Ri)← (mi − 1,Ri,Vi)
Xi ← cN − mi − Vi − Ri

tβ,i ← t + exp(βXi)
end if

end if
if t is in tβ then

i← station where tβ = t
(mi,Vi,Ri)← (mi + 1,Ri,Vi)
Xi ← cN − mi − Vi − Ri

tβ,i ← t + exp(βXi) (set tβ,i ← ∞ if Xi = 0)
end if

end while
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Fig. 5: Estimation by simulation of the distribution of the number of available parking spaces, available and reserved free-floating cars in a given
zone, obtained by simulation for N = 100 with parameters λ = 1.5, α = 1.8, β = µ = 1 = η = 1, c = 1.2, s = 2 (saturated regime). The respective
distributions are quite close to two geometric and a Poisson distributions.

Extensions could be made for more complicated dynamics of the private cars where they look for a parking space
in another zone when there is no parking space in the target zone. This induces another type of interactions between
zones. It is a work in progress. This work also open many avenues for future research.

Finally, it should also be pointed out that, although free-floating car-sharing networks are booming worldwide and
address crucial sustainable mobility issues in the urbanized world of the 21st century, the techniques as mean-field
approach and stochastic averaging principle employed here could also be used for other applications in the field of
interacting systems.
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Wielinski, G., Trépanier, M., Morency, C., 2015. What about free-floating carsharing? a look at the montreal, canada, case. Transportation
Research Record 2563, 28–36.
Zhang, Y., Lin, D., Mi, Z., 2019. Electric fence planning for dockless bike-sharing services. Journal of cleaner production 206, 383–393.

http://dx.doi.org/https://doi.org/10.1016/j.rtbm.2012.04.005

