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A NEW STOCHASTIC MODEL FOR CARSHARING SUITED TO
FREE-FLOATING

CHRISTINE FRICKER, HANENE MOHAMED, ALESSIA RIGONAT, AND MARTIN TREPANIER

ABSTRACT. Free-floating has an increasing popularity in carsharing but imbalance problem
shows the need of stochastic modelling and analysis. In this paper, a new stochastic model
suited to free-floating is proposed, taking into account the sharing of public space between pri-
vate and free-floating cars.The capacity seen by free-floating cars in such a model turns out to
be random. We show that unlike station-based car-sharing systems, it is not bounded. More-
over, a stochastic averaging principle governs the free-floating car behavior. We exhibit a phase
transition between a non-saturated regime where free-floating cars can always be parked and a
saturated one where free-floating cars do not find an available parking space with positive prob-
ability. This probability is completely determined by the environment which implies that the
operator cannot act on the proportion of saturated areas, i.e. without parking parking spaces.
We solve the dimensioning problem; the more free-floating cars in the system, the more satisfied
users are.

Keywords. free-floating carsharing, stochastic model, mean-field approach, averaging principle,
dimensioning problem.

1. INTRODUCTION

Over the last few decades, carsharing has emerged as an alternative mode of transportation that
is ecological, economical and adapted to the architecture of large cities.

Carsharing exists in two forms. The first one is round-trip where the user needs to return the
car at the departure point. It involves station-based systems, with stations with a fixed number
of parking spaces (station capacities). The second one proposes one-way trips. The user picks
up a car at a departure point, makes a trip and returns the car at destination. It can be ever
station-based or free-floating systems. They are more convenient and their popularity increases,
especially free-floating ones.

In the round-trip systems, there is no interaction between stations since the parking space
after departure remains reserved during the trip. Thus the only problem for the user is to find
an available car. The one-way systems are facing the imbalance problem, with zones with high
demand and no car and zones with low demand and many cars. Moreover, in contrast to round-trip
systems, the users have to find both an available car and an available parking space. This issue
is not only due to heterogeneity on demand. Even in a homogeneous system, the users should
face this situation due to the randomness of their behavior. Managing such systems is not easy.
Much work has been done to study of station-based carsharing systems in order to understand
their behavior and improve their reliability. An issue is the dimensioning problem: how many cars
would be needed per station on average to minimize the proportion of empty stations (with no
available cars) or full stations (with no available parking spaces)?

To address these issues, stochastic models have been proposed to take into account the random-
ness of the system. The intuitive result is that, in the case of a simple homogeneous model for
bike-sharing (or carsharing without reservation) systems, the stations should be roughly half full.
Indeed, [] proves that the optimal fleet size per station in this case is half the station capacity
plus an additional term which is the load of the system, i.e. the product of the arrival rate of
user demand per station by the average trip time. Other refined stochastic models that take into
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account the heterogeneity of the system in for example [5], the impact of the reservation (of the
car, the parking space or both of them) in [6] or the presence of bikes and e-bikes in [I] have been
proposed and analyzed by probabilistic or mean field techniques. Moreover the bikesharing model
motivates other analytical studies. In [12], others metrics motivated by bikesharing are studied.
[2] deals with trip times under a phase-type distribution.

Another more recent form of carsharing without physical stations gains in popularity. Recall
that, in such free-floating systems, cars are parked in public areas. The user picks up the car
of his choice, generally closest to his geographical position, makes his trip and parks the car in
an available public space around his destination. Free-floating offers more flexibility to the user
and brings an answer to the problem of saturation at the destination. For [I0], because of these
structural differences with station-based carsharing systems, free-floating has the main part of
journeys while station-based systems behaves as a complement.

But despite these differences, free-floating has always been analyzed in the literature as a station-
based system where the service area is divided into small zones, from 0.25 km? to 1 km?, acting as
stations [I1].
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As an example, for our case study on free-floating in Montreal, Figures [I| and [2| show the
Communauto free-floating service area in Montreal. Figure [1| shows a capture of this zone with
St. Laurent Boulevard in red as a landmark. In Figure [2| a reconstruction of this zone is made
through GPS data of the positions of Communauto’s free-floating cars. A rotation is made in order
to make the Saint Laurent Boulevard coincide with the horizontal axis and a mesh is applied to
the whole service area.

Such an approach allows to use a framework where results have been obtained. Nevertheless,
this approach has some drawbacks. The parameters of such station-based model depend on the
mesh which is used. In particular, the capacity of each zone can be defined as the number of
available parking spaces added to the number of the free-floating cars parked in this zone. Thus,
the choice of a fixed capacity as in a station-based system does no longer make sense. Indeed, for
free-floating, the cars of the system share available places in public areas with the private cars.
The number of private cars being random, this makes the residual capacity per zone seen by the
free-floating cars as random. This key feature is specific to free-floating and cannot be captured
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by the classical modeling of a free-floating system as a station-based system. Note that, for free-
floating, the capacity can not be obtained by data analysis without data on public parking spaces
in the service area.

The paper deals with free-floating carsharing. In this paper, our first objective is to propose
a new model for carsharing systems suited to free-floating which take into account that the free-
floating cars share public space with much more numerous private cars. Within this framework,
our second objective is to measure the dissactifaction of the user, i.e. the difficulty for the user
both to find a car at departure and to return his car at destination. The third one is to solve in
this framework the dimensioning problem, which is the optimal number of free-floating cars the
operator must put to optimize the satisfaction of the user. Then the last objective is to present
simulations which validate the results.

2. MATERIAL AND METHODS

2.1. Modelling. The first step is to consider an homogeneous framework. Let us clarify the
main features of our new model suited to free-floating. The service area is divided into N zones,
each of which has a fairly large overall parking capacity, say of the same order as N. The set
of N zones is completely symmetric in terms of free-floating car demand (a random user demand
with the same rate for each zone), destination choice (uniform among the N zones), and random
reservation and trip time. The heterogeneity of the trip times of the users is modelled by a commun
distribution. Indeed it is now widely accepted now that in these models the moving free-floating
cars are indistinguishable. carsharing cars coo-exist with a large number of private cars and share
public parking space with them. Private cars arrive in each zone according to a Poisson process
of parameter of the same order as N. This choice reflects the numerical imbalance between the
private and free-floating cars. The interarrival times and parking times of private cars are assumed
independent respectively identically distributed with exponential distribution. In conclusion, the
parameters of the model do not depend on the specific zone.

This modeling aims to take into account the randomness of the residual capacity available to the
carsharing system in the public space. The homogeneity is natural for a mean field approach. In
the following, thanks to our methodology, the model could be modified with various behaviors. We
will keep in our model that the motionless free-floating cars are either available or reserved. This
shows how other more refined variants can also be modeled. Moreover, the model is robust enough
to be generalized to a spatially heterogeneous setting, making all parameters dependent on the
zone considered. Modeling via clusters remains suitable for a mean field approach, such as what
was done for bike sharing systems by [3]. As for the temporal heterogeneity (peak and off-peak
hours), it is sufficient to set the model parameters corresponding to the chosen time window. In
this way, we obtain an approximation of the model behavior specific to this time window.

As far as we know, this is the first model of a free-floating carsharing system that does not
reduce it to a station-based system. This point of view is original and seems much more relevant
for the system than the classical approaches used up to now to study free-floating carsharing
systems. This model takes into account the interactions between private and free-floating cars and
highlights that the residual capacity (the parking spaces not occupied by private cars) ignore the
free-floating cars.

2.2. Mean field. For carsharing, the mean-field approach applied to a set of N zones means that,
when N becomes large, the states of two zones become independent and identically distributed.
This classical result allows us to reduce the state of the whole system to that of a single zone, when
the system is large enough. A nice queueing interpretation of the limiting state process of a zone
(when N becomes large) allows us to obtain explicitly the stationary distributions of the number
of available parking spaces, the number of available free-floating cars and the number of reserved
cars. This simple expression of the steady-state behavior of the free-floating system is used for
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the dimensioning problem. This means characterizing the optimal number of free-floating cars per
zone, allowing to minimize the number of zones without both available cars and parking spaces.

2.3. Averaging. This new stochastic model takes into account the interaction between private
and carsharing cars sharing public space. The number of carsharing cars is negligible compared
to the total number of private ones that could share the service area (850 for Communauto Vs
800 000 private cars in Montreal). Thus intuitively, the private car behavior ignores the presence of
free-floating cars. Moreover since the number of private cars is large, their evolution is fast and free-
floating cars, arriving at a much smaller rate, see the number of private cars in average. Averaging
has been extensively investigated in stochastic networks since [9], the first famous framework given
by loss networks in [§]. Because of this, loss networks are always a key reference or conversely, due
to the universality of dynamics of loss networks, averaging is present in a huge number of models.
It is the case here. Mathematically, the study deals with the fast process of private cars compared
to the slow process of carsharing vehicles. It allows to find the behavior of the free-foating cars in
a large system although the evolution equation has discontinuities, due to the presence of private
cars which condition available parking spaces. To understand the averaging principle, we study
the processes at different time scales. Told in a different way, ignoring the sparse presence of
free-floating cars, the private cars left a residual number of available parking spaces.

2.4. Phase transition. There are two regimes: One with a large number of available parking
spaces (of the order of N) and the free-floating cars always be parked. It is called the Montreal
regime. The other one where private cars saturate the parking spaces of the free-floating service
area and there is a positive probability that the free-floating cars can not be parked in the target
zone and have to park in another zone. This regime is called the Paris regime. Note that in the
latter case, the probability that the user has to accept to turn around his destination and park
slightly away is an important parameter for the operator. This probability allows him to measure
the discomfort suffered by the user in case of saturation.

3. RESULTS

3.1. The model. The service area is divided into N zones, each of them with a global capacity of
order N, say equal to ¢N where ¢ > 0 is a fixed constant depending on the urban structure of the
service area. Let M be the total number of free-floating cars in the system. The number M /N of
free-floating cars per zone is denoted by sy in the following. The dynamics of the model are as
follows:

e Users of free-floating cars arrive at zone i (1 < i < N) according to a Poisson process
of rate A\. Each user reserves a free-floating car, if there is at least one available car.
The reservation duration is random with an exponential distribution with parameter 7.
Otherwise, if no car is available in the zone i, he leaves the system looking for another
means of transportation.

o After reservation, he starts a trip whose duration time has an exponential distribution
with parameter pu.

e At the end of the trip, the user chooses zone j € {1, ..., N} with probability 1/N.

e If the user does not find a parking space in zone j, he starts a new trip with exponential
distribution with the same parameter u. Notice that the destination choice is again made
uniformly over the IV zones.

e Private cars arrive at zone ¢ according to a Poisson process of parameter a/N. This choice
is consistent with the assumption that private cars outnumber the free-floating ones. The
arrival rate of private cars in a zone is thus of order IV, larger than that of free-floating
cars, of order 1.

e Each private car stays in a zone for a random time with exponential distribution of pa-
rameter f3.
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e If there is no available parking space in the zone, the arriving private car leaves the system.

3.2. The Markov process for the state of zones. For a given zone i in {1, ..., N}, we consider
(XN (t),mN (1), VN (t), RN (t)) a four component stochastic process such that, at time ¢,

XN (t) is the number of private cars parked in this zone,

mX (t) is the number of available spaces in this zone,

VN (t) is the number of available free-floating cars parked in this zone,
e RN(t) is the number of reserved free-floating cars parked in this zone.

Note that a distinction is made between available parked free-floating cars and those already
reserved in order to obtain a Markovian framework. Moreover it is obvious that, at any time ¢ > 0
and for any zone 1,

XNt +mN (@) + VN (t) + RN (t) = eN.

Thus the state of a given zone i is reduced to the three component stochastic process (m (t), V;¥ (t), RN (t))
since XN (t) = cN —miM(t) — VN (t) — RN (1).
The model presented here is as simple as possible. Variants can be studied. For example, we
can consider that, if private cars do not find a parking space in the target zone, they could look
for a parking space in another zone. And also we can imagine that, if free-floating users do not
find an available car in the target zone, a proportion of them could look for one in another zone.
Note also that, for sake of simplicity, we consider that all users make a reservation.
The state of the N zomes is given by (m (t), V;¥(t),RN(t), 1 <i < N) which is a Markov
process on state space

N
{(mi,vi,ri)lgiSN c NgN,Vi c {1, .. .,N}, m; +v; +1r; < CN,ZUZ' +7r; < M} .
i=1
The transitions of this Markov process modify only the state of one zone. The transitions from
((my,v;,7;), 1 <i< N) which change the state of zone i move (m;,v;, ;) to

m; + 1,0, 1) B(eN —m; —v; — ;)
m; — 1,v; +1,1;) % (M - Zl]\;1(vl + 7“1)) Lm;>0

(
(
(mivvi - I,Ti + 1) )‘1U¢>0
(mi + v, — 1)

(mi — 1,7)i,7’i) CkN].ml.>0.
and let the remaining ((m;,v;,7;), 1 < j < N,j # i) unchanged. The first transition occurs when
a private car leaves zone ¢ making a new parking space available. It happens at rate Sz;, i.e.
at rate 8(cN — m; —v; — r;). The second corresponds to the arrival of a free-floating car being
available for users and taking a parking place. Note that there are M — vy — 71 — ... — vy — TN
free-floating cars in move for a trip with exponential distribution with parameter p. For the moving
free-floating cars, the probability to park in zone ¢ is 1/N. Therefore we get the rate associated to
this transition. The third one happens when a user reserves an available free-floating car in zone
i, it occurs at rate A. This car remains parked but reserved at the same parking space. The forth
corresponds to the departure of a reserved free-floating car making a new parking space available
in the zone. The last one corresponds to the arrival of a private car taking a parking space in zone
i.

3.3. Two regimes. Intuitively, due to the homogeneity of the system, all zones have the same limit
behavior. First we focus on the evolution of the number of available parking spaces (m (¢)):>¢ in
a given zone 7 in {1,..., N}. If the state of zone i is (m;,v;, ;) at time ¢, the number of available
parking spaces m; increases by 1 at rate 8(¢N —m; —v; —r;) +nr; and decreases by 1 if m; > 0 at
rate aN + u(M —vy —r1 —... — vy —ry)/N. Roughly speaking v; and r; are negligible compared
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to ¢N since the sum vy +r1 + ...+ vy + ry is less or equal to M of order N (recall that M/N
tends to a constant s, the fleet size per station, called the fleet size parameter) . Thus, for N large
enough, the process (m;(t)) behaves like a birth and death process with birth rate ScN and death
rate alN. It is well known that such a birth-and-death process is ergodic and admits a unique
invariant measure which is geometric with parameter Sc/a if fc/a < 1, and is transient and tends
to +00 if Be/a > 1. Tt is remarkable that the limiting number of available parking spaces does not
depend on the carsharing parameters. Intuitively, it is due to the orders of magnitude of random
variables, recalling that m¥ (t) = cN — XN (t) — VN (t) — RN (t).

Thus we highlight two regimes with a phase transition when B¢/« is equal to 1 clearly identified
in term of parameters related to the environment, i.e. the private cars and the urban characteristic
of the service area (parameters «, § and c). Intuitively,

e The saturated regime: When fe/a < 1, the private cars occupy all the parking spaces in
the zone which means a number equivalent to ¢cN when N is large. In other words if the
arrival rate of the private cars, i.e. alN , exceeds the parking completion rate ScN, the
zone will not have time to free a parking space before the arrival of a new private car.
Indeed, as seen previously, the number of parking spaces is of order 1, with geometric
distribution with parameter Sc/a. With probability 1 — Se/«, a free-floating car arriving
in a zone can not be parked in this zone.

e The unsaturated regime: When ¢/« > 1, the private cars leave a proportion of order N of
the parking spaces in the zone. As the number of free-floating cars are of order 1 in a zone,
free-floating cars can be parked without any restriction. They always find an available
parking space.

3.3.1. The saturated regime. It holds when Bc¢/a < 1. We present briefly the behavior.

The mean-field approximation. In this case, the free-floating cars face some positive prob-
ability 1 — Se/a > 0 of not finding an available parking space (and thus looking for a space in
another zone). This measures the difficulty (and not impossibility) to park at destination for a user
of the free-floating carsharing system. This quantity depends only on the private car parameters
(the environment for the free-floating system) and could be computed, provided by data on parking
spaces in the service area and on the movement of private cars in this area.

Recall that the behavior of the large N-zone system (approximated by the mean-field limit) can
be summarized by the behavior of a single zone, two zone behaviors becoming independent. The
limiting free-floating state process of a zone is the limiting number of available free-floating cars
and the limiting number of reserved cars (V (t), R(t)). It behaves like an inhomogeneous Markov
process with transitions, from (v,r) at time ¢,

(v—1,7r+1) Al,o
(v, 1) — (v,r—1) nr

(v+1,7) %u(s—E(V(t)—i—R(t)))

that is easy to understand intuitively. The couple (V(t), R(t)) can be interpreted (see Figure ?7?)
as two queues in tandem with

e the first one, a one-server queue with arrival rate (8c/a)u (s —E (V(t) + R(t))) at time ¢
and service time A,
e and the second one, an infinite-server queue with service rate 7.

Note that the Sc/a factor in the arrival rate of the first queue (the available free-floating cars)
is interpreted as an acceptance probability since the free-floating cars have a probability 1 — ¢/«
of not finding a parking space in a given zone (rejection probability). It is as if private cars is
thinning the return of free-floating cars with probability Sc/a. This replaces the role of the finite
station capacity of the model usually proposed for station-based carsharing systems.
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FIGURE 3. Dynamics of (V(t), R(t)) as a tandem of two queues. The horizontal
is a M/M/1 queue, the vertical queue is M /M /oo queue.

It can be summarized like this.

Proposition 1 (Behavior of a zone in the saturated case). When Bc/a < 1, when N gets large,
after some time t,, the number of available parking spaces at time t is stationary with geometric
distribution with parameter Sc/a. The free-floating cars which return to a zone find no parking
space with probability Bc/o. The joint numbers of available and reserved cars (V(t), R(t)) behave
after to behave like the inhomogeneous tandem of queues of Figure[3

Steady-state behavior. Using the product-form of the invariant measure of the underlying
two-dimension Markov process (i.e. with queueing interpretation, the tandem of two queues),
the steady-state of the state of a zone (V, R) is given by two independent random variables with
respective distributions: a geometric E| distribution with parameter

¢

1) o= BV + B)
and a Poisson distribution with parameter Ap/n. It is important to mention that the residual
capacity m available for the free-floating cars, previously considered as a zone-specific constant and
arbitrarily fixed, turns out to be unbounded in our modeling, random with a geometric distribution
depending only on the environment parameters (private cars and characteristics of the zone).

Equation is a fixed point equation on p. Indeed, using that V and R have respective
geometric and Poisson distributions, E(V) = p/(1 — p) and E(R) = Ap/n. Thus, equation can

be rewritten as follows
A
poben(o__p N
a A 1—p 1
or equivalently

_ P (A e
@) S_1p+(n+ﬂw)p

It is clear that the right-hand side of equation (2)) is a function of p defined on [0, +00[\{1}, strictly
increasing on both intervals [0, 1] and ]1, +o00[. More precisely, s is strictly increasing from [0, 1] to
[0, 400[, and from ]1,+o0[ to ] — 0o, 4+00[. In conclusion, for a fixed s, there is a unique solution
p €]0,1[. Moreover p is given explicitly. See Proposition [2| Indeed, equation is a polynomial
equation of second order in p, with two real solutions, and it can be straightforwardly checked that
it has exactly one solution in ]0, 1.

This is summarized in the following result.

Proposition 2 (Stationary mean-field limit). When fc/a < 1, the limit as N becomes large of
the joint numbers of available and reserved free-floating cars (V(t), R(t)) in a given zone has the

La probability measure 7 on N such that, w(k) = (1 — p) p*, k € N with p €]0, 1].
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following stationary distribution

A
(3) geom(p) ® Poisson (np)
where p is given by

A 1—+/(A 1)2 —4sA 1 1
(4) poAtstl-VArsH2-dsd L (e 1Y
2A pphe m
It means that the limiting number of available and reserved free-floating cars as N is large at
equilibrium are independent and with simple distributions with explicit parameters.

These two limits in N and ¢ are not so easy to handle. For example, it is hard, even the possible
limit is obtained, to prove the long term convergence of the mean-filed limit to its equilibrium
point (V, R). To obtain the long-time behavior of the state process of a zone, we use changes of
time-scales. It is the aim of the following section.

The different time-scales. What follows is introduced in order to obtain the long-time
behavior of the system when it gets large, by results on convergence of the processes. Roughly
speaking, to investigate the stationary state as IV gets large, it is conenient to accelerate time in Nt.
Moreover to understand the behavior, the difference between the order of the rate of transitions
concerning the numbers of private cars XV (¢) and free-floating V'V (¢) lead us to investigate different
timescales (standard in ¢, accelerated in Nt and slowed down in ¢/N). The proofs are left to the
paper [1].

The accelerated-time gives the simplest point of view. It allows to obtain the steady-state for
large N.

Proposition 3 (Accelerated time-scale behavior). If fc/a < 1 and p < X, for the convergence in
distribution,

(1) If XN (0)/N # zo then (XN (Nt)/N) = N—oo (€).

(2) For each t > 0 fized, as N — oo, m™(t) — Y where Y is random variable on N with
geometric distribution of parameter Bc/a.

(3) For each t > 0 fized, the random variables (VN (Nt), RY (Nt)) converges as N gets large
with a limiting distribution geometric @ Poisson as previously explained.

Considering the normal time scale, we capture that saturation by private holds after some time
to. Indeed, in the standard time-scale (t +— t), the two processes (X (t)) and (m™(t)) are both
moving fast (at order N) such that (m® (¢)), when N tends to +oo, roughly speaking becomes of
order 1 after some finite time t5. They reache instantaneously (at fixed ¢ > ¢y) an equilibrium for
a fixed value v of the slow process (VN (t)) at ¢, moving at order 1. Recall that, when Bc/a < 1,
the equilibrium distribution of the number of available places is geometric with parameter Sc/a.
The following result holds for the saturated case.

Proposition 4 (Standard time-scale behavior). If Sc/a < 1 and p < A, for the convergence in
distribution,

(1) If XN(0)/N %} xo then process (XN (t)/N) converges to a deterministic process given
—00

by
(E52) et~ (3 (- 5))

(2) There exists to > 0 such that, for t > ty fived, as N — oo, m™N(t) — Y where Y is a
random variable on N with geometric distribution of parameter fe/o.
, converges after to to the inhomogeneous process described by the tandem
3) (VN(t), RN (¢ ter to to the inh described by the tand
of queues.
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Considering a slow time-scale (¢t — t/N), we only capture the dynamics of the fast process
(private cars), the slow process (free-floating cars) being static in time.

Theorem 1 (Slow time-scale behavior). Assume Bc/a < 1. Given limy_so(m™ (0),VV(0)) =
(mo,vo), the sequence of processes (m™ (t/N),VN(t/N)) converges in distribution to the process
(vo, L (1)), where Ly, (t) is the number of customers in a M/M/1 queue with arrival rate Sc and
service rate o

3.3.2. The unsaturated regime. When Bc¢/a > 1, the number of parking spaces is of order N thus
the probability for a free-floating car to find an available parking space is equal to 1. Recall that
it means that the car is parked in the target zone. The free-floating car process of returns is not
thinned by the mass of private cars. Thus, for the free-floating car in a zone, the results of the
saturated case are valid replacing Sc¢/a by one. For example, in Proposition [2] just the expression
of A is changed. It is written as follows.

Proposition 5 (Stationary mean-field limit). When Sc/a > 1, the limit as N becomes large of
the joint numbers of available and reserved free-floating cars (V(t), R(t)) in a given zone has the
following stationary distribution

5) Wmmm®Pm$m<¥v

where p is given by

A 1- (A 1)2 — 454
(6) poAtstloVAestDT-dsd L (1 1Y)
24 O

3.4. Application to dimensioning. As in the case of station-based carsharing systems, users of
free-floating carsharing systems are faced with the problem of finding available cars and parking
spaces throughout the service area. To address this major issue, the first question for the operator
is the dimensioning problem. The aim is to find the optimal total number of free-floating cars sV
to put in circulation which corresponds to a minimum proportion of zones without cars or parking
spaces.

Note that, in contrast with the case of a station-based carsharing system, the limit proportion
of zones without available parking spaces given by 1 — Sc¢/a depends only on the parameters of
the environment (private cars and characteristics of the zone). The operator cannot therefore act
on this proportion by varying the dimensioning parameter s. He can only act on the reduction of
the number of zones where there is a lack of cars.

For free-floating carsharing systems, the fact that there is a permanent lack of cars is real. It
is confirmed by our theoretical study. This limiting proportion of car-free zones, denoted by Py,
is given by Py = P(V = 0) = 1 — p. This limiting proportion P, is a decreasing function of s
since equation shows that s is a strictly increasing function of p. Therefore, the more the
operator increases the number of free-floating cars per zone, the better the system performs since
the probability that a user do not find an available free-floating car in a given zone becomes smaller
and smaller.

3.5. Validation by simulation. We implemented a simulator that reproduces the dynamics of
a free-floating system of M cars interacting with private cars and IV stations each of capacity cNV.
The simulator reproduces the movement of cars following the laws of our model. In particular, it
relies on generating random numbers from the exponential distribution to simulate the inter-arrival
times of the Poisson processes. Two fundamental properties of the exponential distribution are the
lack of memory and the fact that, the distribution of ¥ = min{Xj, ..., X,,} where Xi,..., X,
are independent random variables exponentially distributed with parameters Aq, ..., A,, is again
exponential with parameter A = A\ + ... + A,. We report page the algorithm used for the
simulations.
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FIGURE 4. The evolution in time of the number of empty places, available and
reserved FF-cars in a randomly chosen station. The figure on the left is for N = 50,
on the right for N = 25.

Plotting in Figure [f] the evolution in time of the number of empty spots, available and reserved
free-floating cars in a randomly chosen station, we can state what happens when the number of
zones grows, i.e. when N doubles from 25 to 50. Indeed, for N = 25 we can still detect jumps
of the processes related to free-floating cars. But for N = 50, the number of jumps for the same
processes is much smaller, approximately 1/4 than before. This is due to the fact that as the
number of zones doubles, the jumps of the free-floating cars are spread over a larger number of
zones.

In Figure[5] we plot the distribution of the number of available parking spaces and available free-
floating cars and we recognize the shape of the geometric distribution. An additional verification
is performed plotting the obtained distribution in logarithmic scale and observing that what we
obtain is a straight line. To check that the number of reserved free-floating cars follows a Poisson
distribution, we plot on the same axes the probability mass function of the Poisson with theoretical
parameters and the distribution obtained by simulation. The two curves are overlapping with a
small error.

4. CONCLUSION AND FUTURE WORK

Until now, free-floating carsharing systems have been modeled as station-based systems with
zones considered as stations with fixed capacities. But this model is not relevant since free-floating
cars share the same parking spaces with private cars inducing fluctuations of random capacities
left to the carsharing system. Moreover private cars are numerous compared to free-floating cars,
ignoring intuitively their presence and behaving in our model roughly independently in each zone
as an M/M/cN/cN queue. This is the simplest loss system studied. See [I3][Chapter 6]. Because
of the difference in order of magnitude, a stochastic averaging principle naturally governs the
free-floating car behavior.

We propose a new model for carsharing specific to free-floating that we are able to analyze.
The study of this model leads to the mobilisation of several probabilistic techniques, where mean-
field and stochastic averaging are combined. The study of stochastic averaging principle in large
systems is original, as far as we know. All technical details and theoretical arguments of the proofs
are presented in [7] in preparation.

A phase transition occurs. Over a critical value for a quantity related to the environment,
i.e. the private cars and the public space size, the private cars saturate the public space. And
because they are more numerous, they prevent the free-floating cars to find a parking space with
some probability. The steady-state behavior when NN is large of the non-moving free-floating cars,
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Algorithm 1 Simulate the dynamics of the model

t<+ 0
L+ M- ,(Ri+V)
ty < exp(nR;, N)
to < exp(aN,N)
tﬁ — exp(ﬁXi, N)
ty + exp(A\, N)
ty < exp(p, L)
while number of jumps < N; do
t min(tn,t,\,tu, ta,tﬁ)
if ¢ is in ¢,, then
i < station where ¢, =1
(mi, Vi, R;) < (m; + 1, R; — 1, V)
wy < t+exp(p)
append w,, to t,
tni < t+exp(nR;) (set t,; < oo if R; =0)
end if
if tis in ¢, then
i U{L,..,N})
if m; > 0 then
(mi,Vi,Ri) — (mi —1,R;,V; + 1)
remove ¢ from ¢,
else {m; = 0}
wy < t+exp(p)
substitute t with w, in t,,
end if
end if
if ¢t isin ¢, then
1 < station where t, = ¢
tri — t+exp(A)
if V; > 0 then
(mi, ‘/i; Rl) — (mi, R; + 1, Vi — 1)
ty,i <t +exp(nR;)
end if
end if
if ¢ is in t, then
1 < station where t, =t
ta,i < t+exp(alN)
if m; > 0 then
(miv Via Rl) A (ml -1, R, Vl)
X;+cN—m; —V,—R;
tgi <t +exp(BX;)
end if
end if
if tis in tg then
i < station where tg =1
(mi, Vi, R;) < (m; + 1, R;, V;)
X, cN—m; —V,—R;
tg: < t+ eXp(ﬂXi) (set tg,i < 00 if X; = O)
end if
end while
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F1GURE 5. Estimation by simulation of the distribution of the number of available
parking spaces, available and reserved free-floating cars in a given zone, obtained
by simulation for NV = 100 with parameters A\=1.5, u=1,a=18, =1,n=1,
¢ = 1.2, s = 2 (saturated regime). The respective distributions are quite close to
two geometric and a Poisson distributions.

available or reserved, can be derived in a quite simple explicit form (cf Proposition [2{ and . The
technique for obtaining the long-term behavior is to accelerate the time ¢t to Nt and let N tend to
infinity. See the paper [7] for details.

As a byproduct, the paper proves the intuitive answer to the dimensioning problem for free-
floating. The lack of parking spaces is not governed by free-floating carsharing but just the envi-
ronment. The operator act only on providing cars to minimize the lack of available free-floating
cars. Thus the most cars the most satisfaction for the user.

To validate our results and investigate further more realistic distributions, especially for trip
times of free-floating cars and parking times of private cars, a simulator is currently written. The
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algorithm is presented here and results from simulation for exponential distributions are presented
in the paper. It can also manage general distributions. These distributions could be provided by
data analysis of a city case-study.

Extensions could be made for more complicated dynamics of the private cars where they look
for a parking space in another zone when there is no parking space in the target zone. This induces
another type of interactions between zones. It is a work in progress. This work also open many
avenues for future research.

Finally, it should also be pointed out that, although free-floating carsharing networks are boom-
ing worldwide and address crucial sustainable mobility issues in the urbanized world of the 21st
century, the techniques as mean-field approach and stochastic averaging principle employed here
also have numerous applications in the field of interacting systems.
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