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1. Introduction

Let T be a complete discrete valuation ring with fraction field K and residue field k.
We denote by p ≥ 1 the characteristic exponent of k. Let X be a smooth, projective,
geometrically integral curve over K. Let F = K(X) be the function field of X and
let t be a uniformizing parameter of T . We prove the following theorem which settles
a conjecture of Colliot-Thélène, Suresh and the second author for function fields of
p-adic curves [C-T-P-S, conjecture 1], in the very general context of semiglobal fields.

Theorem 1.1. (see Th. 5.4) Let G be a reductive F–group and assume that p does
not divide the order of the automorphism group of the absolute root system of Gad.
Let Z be a twisted flag F–variety of G, that is, Zks

∼= Gks/Q for some ks–parabolic
subgroup Q. Then Z(F ) 6= ∅ if and only if Z(Fv) 6= ∅ for all discrete valuations of F
arising from normal models of X.

We need to precise what we mean by the discrete valuations of F considered in
the statement. A normal model of X is a normal integral T -scheme X with generic
fiber X that is flat and projective over T of relative dimension one; if in addition
the scheme X is regular we say that it is a regular model. For each normal model X
of X, each point x ∈ X of codimension 1 defines a divisorial valuation vx of F ; the
statement deals with all such valuations for all such models. On the one hand the
original conjecture has no characteristic restriction and in the other hand it was stated
only in the case K is a p-adic field; our result goes then essentially much further than
the conjecture. The small characteristic cases cannot be reached by the techniques of
the paper and are then still open.
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2 P. GILLE AND R. PARIMALA

The result was known in the same generality for the cases of smooth projective
quadrics and Severi-Brauer varieties [C-T-P-S, th. 3.1, 4.3] and also for generalized
Severi-Brauer varieties (Reddy-Suresh [R-S, th. 2]).

If we use all rank one valuations, the result holds unconditionally on the charac-
teristic exponent p (Cor. 4.8). On the other hand, if G extends to a reductive group
scheme over a smooth model X of X, the result is similarly unconditional (Cor. 4.6).
Though this is a very restrictive condition, it applies for example when G arises from
a reductive T–group scheme (called the constant case in [C-T-H-H-K-P-S]).

Let us review the contents. Given a henselian couple (A, I) and a reductive A-
group scheme H , section 2 deals with generation of groups H(A) by elements arising
from unipotent radicals of parabolic subgroups à la Kneser-Tits and also with the
quotient of H(A)/RH(A) by the (normal) subgroup of R-trivial elements defined in
[G-S]. Section 3 is devoted to mild improvements of patching techniques of Harbater-
Hartmann-Krashen involving more analytical functions and leads to various group
decompositions (prop. 3.7); this permits to obtain a patching theorem for twisted flag
varieties (th. 3.9). Section 4 deals with the setting of the beginning of the introduction
and provides a weaker version of the main result. What remains to do is mostly a
local study for a two dimensional complete regular local ring R with parameters t, s
and torsors over its localization R[t−1, s−1]. This is achieved in section 5 by making
use of the loop torsors over R[t−1, s−1] and of the results of [Gi3].

Acknowledgements. We thank Venapally Suresh for a careful reading of the man-
uscript and fruitful suggestions. We thank David Harbater for valuable comments on
a preliminary version of the paper. Finally we thank Gabriel Dospinescu for telling
us about Schneider’s book.

Conventions and notation. (a) A variety V over a field F means a separated
F–scheme of finite type which is integral [St, Tag 020D].

(b) Let G be a reductive F–algebraic group and let Fs be a separable closure of F .
Let (B, T ) be a Killing couple of Gks and denote ∆(GFs

) = ∆(GFs
, B, T ) the associ-

ated Dynkin diagram (there is a canonical bijection ∆(GFs
, B, T )

∼
−→ ∆(GFs

, B′, T ′)
for another choice of Killing couple). This diagram ∆(GFs

) is equipped with the
star action of Gal(Fs/F ) [B-T, §6.4]. We recall that there is an order preserving
bijection I → PI between the subsets of ∆(GFs

) and the Fs–parabolic subgroups
of GFs

containing B (or equivalently with the G(Fs)–conjugacy classes of parabolic
subgroups of GFs

). Since minimal F–parabolic subgroups are G(F )-conjugate we
denote by ∆0(G) ⊂ ∆(GFs

) the conjugacy class of P0 ×F Fs where P0 is a min-
imal F–parabolic subgroup of G (it is stable under the star action). The triple
(∆(GFs

), star action,∆0(G)) is called the Tits index of G. By abuse of notation,
∆0(G) alone is called the Tits index. By a twisted F–flag variety of G, we mean a
G-variety X which becomes isomorphic over Fs to some GFs

/PI as GFs
-variety (such

an I is unique). According to [M-P-W1, prop. 1.3], I is invariant under the star



LOCAL-GLOBAL PRINCIPLE 3

action and X is G-isomorphic to the variety of parabolic subgroups of type I which
is denoted in this paper by ParI(G).

Those varieties are called sometimes projective homogeneous G–varieties (as in
[C-T-P-S]) but we warn the reader of the danger of this terminology since there exist
in positive characteristic F–subgroups Q which are not smooth such that G/Q is a
projective F–variety [W]. In the appendix 6, we show that a homogeneous G–variety
X is a twisted F–flag variety of G if and only if the action is transitive in the sense
that G(E) acts transitively on X(E) for each field extension E of F (Prop. 6.2).

(c) We use mainly the terminology and notation of Grothendieck-Dieudonné [EGAI,
§9.4 and 9.6] which agrees with that of Demazure-Grothendieck used in [SGA3, Exp.
I.4]. Let S be a scheme and let E be a quasi-coherent sheaf over S. For each morphism
f : T → S, we denote by ET = f ∗(E) the inverse image of E by the morphism f .
We denote by V(E) the affine S–scheme defined by V(E) = Spec

(
Sym•(E)

)
; it is

affine over S and represents the S–functor Y 7→ HomOY
(EY ,OY ) [EGAI, 9.4.9]. We

assume now that E is locally free of finite rank and denote by E∨ its dual. In this case
the affine S–scheme V(E) is of finite presentation (ibid, 9.4.11); also the S–functor
Y 7→ H0(Y, EY ) = HomOY

(OY , EY ) is representable by the affine S–scheme V(E∨)
which is also denoted by W(E) [SGA3, I.4.6].

(d) Let G be a reductive S-group scheme and denote by Gad its adjoint group. Let P
be an S–parabolic subgroup of G and let Pad = P/C(G) the associated S–parabolic
subgroup of Gad. Let s ∈ S, we have a decomposition (depending on s)

(1.1) Gad,κ(s)

∼
−→ G1 ×κ(s) G2 · · · ×κ(s) Gns

where the Gi’s are adjoint simple groups over an algebraic closure κ(s) of the residue

field κ(s). Then Pad,κ(s)

∼
−→ P1×κ(s)P2 · · ·×κ(s)Pns

where each Pi is a κ(s)–parabolic
subgroup of Gi. We say that P is a strictly proper parabolic subgroup at s if Pi ( Gi

for each i; P is a strictly proper parabolic subgroup of G if P is strictly proper at
s for each s ∈ S. Since the type of a parabolic S–subgroup is a locally constant
function [SGA3, §XXIV.3], this definition is equivalent to that of Petrov and Stavrova
[P-S, before theorem 1]. We remind the reader that the reductive S–group G is
isotropic if it admits a S-subgroup scheme isomorphic to Gm,S , equivalently it admits
a homomorphism λ : Gm,S → G such that λκ(s) is non trivial for all s ∈ S. We

say that G is strictly isotropic if there exists a homomorphism λ : Gm,S → G such
that for all s ∈ S each projection λi,κ(s) : Gm,κ(s) → Gi involving the decomposition

(1.1) is non trivial. Such a λ provides the Richardson S–parabolic subgroup PG(λ) as
defined in [Gi2, §7.1] which is strictly proper since the centralizer CGad

(λ) is a Levi
S–subgroup of PGad

(λ).
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2. Around Kneser-Tits’ problem

Let A be a semilocal ring, I its radical.

2.1. Subgroups of elementary elements. Let H be a reductive A-group scheme
assumed strictly isotropic. Let P be a strictly isotropic A–parabolic subgroup (which
exists by part (d) of the Conventions). Let P− be a A–parabolic subgroup opposite to
P . The subgroup of H(A) generated by Ru(P )(A) and Ru(P

−)(A) does not depend
of the choice of P and P−, this is a normal subgroup of H(A) which is denoted by
H(A)+ [P-S, Thm. 1 and comments].

Lemma 2.1. We have H(A) = H(A)+ P (A).

Proof. We put U = Ru(P ), U− = Ru(P
−). According to [SGA3, XXVI.5.2], we have

a decomposition H(A) = U(A)U−(A)P (A) whence H(A) = H(A)+ P (A). �

A special case of [G-S, prop. 7.7] is the following.

Lemma 2.2. Assume that (A, I) is an henselian couple and that H is semisimple
simply connected. Then the map H(A)/H(A)+ → H(A/I)/H(A/I)+ is an isomor-
phism.

2.2. R-equivalence. We assume now that A is a nonzero finite k–algebra for a field
k. Then A is an Artinian k–algebra. We denote by I its Jacobson radical and remind
the reader that (A, I) is an henselian couple.

Let H be an A–reductive group scheme and consider the Weil restriction
G = RA/k(H), this is a smooth affine connected algebraic k–group [C-G-P, A.5.9].
We have G(k) = H(A). We use R-equivalence for group schemes over rings as defined
in [G-S].

Lemma 2.3. We decompose A = A1 × · · · × Ad where each Ai is a local artinian
k–algebra of residue field ki.

(1) The map H(A)→
∏

i H(ki) induces isomorphisms

G(k)/RG(k)
∼
−→ H(A)/RH(A)

∼
−→

∏

i

H(ki)/RH(ki).

(2) If H is furthermore simply connected and strictly isotropic, we have a commutative
diagram of isomorphisms

H(A)/H(A)+
∼

//

≀
��

H(A)/RH(A)

≀

��

G(k)/RG(k)∼
oo

∏
i H(ki)/H(ki)

+ ∼
//
∏

iH(ki)/RH(ki).
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Proof. (1) The first isomorphism G(k)/RG(k)
∼
−→ H(A)/RH(A) is a formal fact

[G-S, lemma 2.4]. Let n be the smallest positive integer such that In = 0. We put
Aj = A/Ij+1 for j = 0, . . . , n− 1, it comes with the ideal Jj = Ij/Ij+1 = I Aj which
satisfies J2

j = 0. We have Aj/Jj = Aj−1 for j = 1, . . . , n− 1.
We put Gj = RAj/k(HAj

) for j = 0, . . . , n−1; we have a sequence of homomorphisms
G = Gn → Gn−1 → · · · → G1 → G0 =

∏
i Rki/k(Hki). It induces homomorphisms

G(k)/R = Gn(k)/R→ Gn−1(k)/R→ · · · → G1(k)/R→ G0(k)/R =
∏

i

H(ki)/R

and we will show by a dévissage argument that all of them are isomorphisms.
Let j be a an integer satisfying 1 ≤ j ≤ n − 1. According to a variant of [G-P-S,

Lemma 8.3], we have an exact sequence of fppf (resp. étale, Zariski) sheaves on Spec(k)

0→W

(
(tj)∗

(
Lie(H)(Aj−1)⊗Aj−1

Jj

))
→ RAj/k(HAj

))→ RAi/k(HAj−1
)→ 1.

where tj : Spec(Aj)→ Spec(k) is the structural morphism. We have then a sequence
of k–algebraic groups

0→ (Ga)
mj → Gj → Gj−1 → 1.

The map Gj → Gj−1 is a (Ga)
mj -torsor which is trivial since Gj−1 is affine. We have

then a decomposition of k-schemes Gj
∼
−→ Gj−1×k (Ga)

mj which induces an isomor-
phism Gj(k)/R → Gj−1(k)/R. Thus the map G(k)/R → G0(k)/R =

∏
i H(ki)/R is

an isomorphism as desired.

(2) We have A/I = k1×· · ·×kd. Lemma 2.2 provides an isomorphism H(A)/H(A)+
∼
−→

H(A/I)/H(A/I)+ =
∏

i H(ki)/H(ki)
+ and we have an isomorphism H(ki)/H(ki)

+ ∼
−→

H(ki)/RH(ki) for each i [Gi1, thm. 7.2]. This completes the proof by chasing dia-
gram. �

3. Patching, R-equivalence and twisted flag schemes

3.1. Using the implicit function theorem. We consider a variation of the frame-
work of [H-H-K, 2.4]. Let T be a complete DVR of fraction field K and t be a

uniformizing parameter. Let R̂0 be ring containing T and which is also a complete

discrete valuation ring having uniformizer t. We denote by F0 the fraction field of R̂0.
Let α > 1 be a real number and we define the absolute value on F0 by | tnu |= α−n

for n ∈ Z and u ∈ (R̂0)
×.

Let F1, F2 be subfields of F0 containing T . We further assume that we are given

t-adically complete T -submodules V ⊂ F1 ∩ R̂0 and W ⊂ F2 ∩ R̂0 satisfying the
following conditions:

(3.1) V +W = R̂0;

(3.2) V ∩ tR̂0 = tV and W ∩ tR̂0 = tW.
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Note that Condition (3.2) is equivalent to

(3.3) V ∩ tnR̂0 = tnV and W ∩ tnR̂0 = tnW for each n ≥ 1.

Remarks 3.1. (a) Condition (3.2) above is added there compared with [H-H-K, 2.4]
but we do not require at this stage that F1 is dense in F0.

(b) Condition (3.1) and Condition (3.2) will play an essential role later when dealing
with the patching method, see Setting 4.2 and Lemma 4.3.

We equip the submodules V [1
t
] of F0 of the induced metric (and similarly for W [1

t
]).

Lemma 3.2. (1) V is closed in R̂0.

(2) For v ∈ V [1
t
] \ {0}, we have

| v |= Inf{αn | tnv ∈ V }.

(3) We have V = Inf{v ∈ V [1
t
] | | v | ≥ 0} and V is a clopen submodule of V [1

t
].

(4) V [1
t
] is closed in F0 and is a Banach K-space.

Proof. (1) Our assumption is that the map V → lim←−V/t
m+1V is an isomorphism.

Let (xn) be a sequence of V which converges in R̂0. For each m ≥ 0, condition (3.3)

shows that the map V/tm+1V → R̂0/t
m+1R̂0 is injective so that the sequence (xn)

modulo tm+1V is stationary to some vm ∈ V/tm+1V . The vm’s define a point v of V
and the sequence (xn) converges to v.

(2) We are given v = tmv′ ∈ V [1
t
] with v′ ∈ V \ tV and we have

| v |= Inf{αn | tnv ∈ R̂0} = αmInf{αn | tnv′ ∈ R̂0}. Condition (II) implies that

v′ ∈ R̂0 \ tR̂0 so that |v |= 0. We conclude that |v |= Inf{αn | tnv ∈ V }.

(3) It readily follows from the assertion (2).

(4) Let (xn) be a sequence of V [1
t
] converging to some x ∈ F0. We want to show that

x belongs to V [1
t
] so that we can assume that x 6= 0 and that |xn |=|x |= αm for all

n ≥ 0. Assertion (2) shows that tmxn is a sequence of V and (1) shows that its limit
tmx belongs to V . Thus x ∈ V [1

t
]. We have shown that V [1

t
] is closed in F0.

Finally since F0 is a Banach K–space so is V [1
t
]. �

The following statement extends partially [H-H-K, th. 2.5] and [H-H-K2, prop. 4.1].
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Proposition 3.3. Let a, b, c be positive integers. Let Ω ⊂ (F0)
a × (F0)

b be an open
neighborhood of (0, 0) and let f : Ω → (F0)

c be an analytic map. We denote by
fa : Ω ∩ (F0)

a → (F0)
c and f b : Ω ∩ (F0)

b → (F0)
c. We assume that

(i) f(0, 0) = 0

(ii) the differentials Dfa
0 : (F0)

a → (F0)
c and Df b

0 : (F0)
a → (F0)

c satisfy

Dfa
0

(
V [

1

t
]a
)
+Df b

0

(
V [

1

t
]b
)
= (F0)

c.

Then there is a real number ǫ > 0 such that for all y ∈ (F0)
c with |y | ≤ ǫ, there exist

v ∈ V a and w ∈ W b such that (v, w) ∈ Ω and f(v, w) = y.

Proof. We consider the continuous embedding i : V [1
t
]a ×W [1

t
]b → (F0)

a × (F0)
b and

define Ω̃ = i−1(Ω) and the function f̃ = f ◦ i : Ω̃→ (F0)
c.

Claim 3.4. The map f̃ is strictly differentiable at (0, 0) and Df̃(0,0) : V [1
t
]a×W [1

t
]b →

(F0)
c is onto.

Since f is F0–analytic at (0, 0), it is strictly differentiable [Sc, I.5.6], that is, there
exists an open neighborhood Θ of (0, 0) and a positive real number β such that

|f(x2)− f(x1)−Df(0,0).(x2 − x1) | ≤ β |x2 − x1 | ∀x1, x2 ∈ Θ.

It is then strictly derivable as function between the Banach K–spaces (F0)
a×(F0)

b →
(F0)

c. On the other hand the embedding i : V [1
t
]a ×W [1

t
]b → (F0)

a × (F0)
b is 1–

Liftschitz so is strictly differentiable at (0, 0). As composite of strictly differentiable

functions, f̃ is strictly differentiable at (0, 0) [B, §1.3.1]. Furthermore the differential

Df̃(0,0) is the composite of

V [
1

t
]a ×W [

1

t
]b

i
−−−−→ (F0)

a × (F0)
b Dfa

0
+Dfb

0−−−−−−−→ (F0)
c.

Condition (ii) says exactly that Df̃(0,0) is surjective. The Claim is proven.

We apply the implicit function theorem to the function f̃ [B, §1.5.2] (see [Sc, §4] for
concocting a proof). Lemma 3.2.(4) shows that V [1

t
]a ×W [1

t
]b is a Banach K–space

and so is F0. There exists then an open neighborhood Υ ⊂ Ω̃ of (0, 0) in V [1
t
]a×W [1

t
]b

such that f̃|Υ is open. Up to shrink Υ we can assume that Υ ⊂ V ×W according to
Lemma 3.2.(3). There exists then a real number ǫ > 0 such that

{
y ∈ (F0)

c | |y |≤ ǫ
}
⊂

{
y ∈ (F0)

c | |y |< 2ǫ
}
⊂ f̃(Υ).

We conclude that for all y ∈ (F0)
c with |y | ≤ ǫ, there exist v ∈ V a and w ∈ W b such

that (v, w) ∈ Ω and f(v, w) = y. �
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Corollary 3.5. Let n be a positive integer. Let Ω ⊂ (F0)
n × (F0)

n be an open
neighborhood of (0, 0) and let f : Ω→ (F0)

n be an analytic map which satisfies

(i) f(0, 0) = 0

(ii) f(x, 0) = f(0, x) = x over an open neighborhood Υ of 0.

Then there is a real number ǫ > 0 such that for all a with |a | ≤ ǫ, there exist v ∈ V n

and w ∈ W n such that (v, w) ∈ Ω and f(v, w) = a.

Proof. In this case we have a = b = c = n and Dfa
0 = Df b

0 = Id(F0)n so that
Proposition 3.3 applies. �

3.2. Kneser-Tits’ subgroups. Continuing in the previous setting, we assume fur-
thermore that F1 is t-adically dense in F0. Let F ⊂ F1∩F2 be a subfield. For dealing
later with Weil restriction issues it is convenient to deal with a finite field extension
E of F (not assumed necessarily separable).

Proposition 3.6. Let H be a semisimple simply connected E–group scheme as-
sumed strictly isotropic. We put G = RE/F (H). For each overfield L of F , we
put G(L)+ = H(L ⊗F E)+ where the second group is that defined in §2.1. Then we
have the decomposition

G(F0)
+ = G(F1)

+ G(F2)
+.

Proof. Without lost of generality we can assume that F is infinite. The proof is based
on an analytic argument requiring some preparation. We put d = [E : F ] and fix an
isomorphism E ∼= F d of F–vector spaces.

Let P be a strictly proper parabolic E–subgroup of H . Let U be its unipo-
tent radical and Ulast the last part of Demazure’s filtration [G-P-S, §3.2]. Let

u : Gd
a,E

∼
−→ Ulast be an E–group isomorphism. According to [G-P-S, Lemma 3.3.(3)],

H(E)+.Lie(Ulast)(E) generates Lie(H)(E) as a vector space over E. There exists
h1, . . . , hn ∈ H(E)+ such that

Lie(H)(E) = h1Lie(Ulast)(E) + h2Lie(Ulast)(E) + . . . + hnLie(Ulast)(E).

We consider the map b : (Gd
a,E)

n → H , b(x1, . . . , xn) =
h1u(x1) . . .

hnu(xn). Its dif-

ferential at 0 is db0 : E
dn ∼= Lie(Ulast)(E)n → Lie(H)(E), (X1, . . . , Xn) 7→

∑n
i=1

hiXi,
so is surjective. We cut now the affine space (Gd

a,E)
n by some suitable affine E–

subspace Gr
a,E such that the restriction b′ of b to (Gd

a,E)
n is such that db′0 is an

isomorphism. The map b′ is then étale at a neighborhood of 0. It follows that
b′♯ = RE/F (b

′) : RE/F

(
Gr

a,E

)
→ G = RE/F (H) is étale also at a neighborhood of 0

[C-G-P, A.5.2.(4)].
Since the field F0 is henselian, the local inversion theorem holds [G-G-MB, prop.

2.1.4]. We mean that there exists an open neighborhood Υ ⊂ (E ⊗F F0)
r such that

the restriction b′♯|Υ : Υ→ G(F0) is a topological open embedding.

We consider now the product morphism q : Υ× Υ → G(F0), q(x, y) = b′♯(x) b
′
♯(y).

We put Ω = q−1(b′♯(Υ)), this an open subset of (E ⊗F F0)
2r ∼= (F0)

2dr. Then the
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restriction q|Ω defines an (unique) analytical map f : Ω → Υ such that q(x, y) =
b′♯(f(x, y)).

By construction we have f(0, x) = f(x, 0) = x for x in a neighborhood of 0 ∈
(E ⊗F F0)

r ∼= F dr
0 . We apply Corollary 3.5 to f so that there exists ǫ > 0 such

that for each a ∈ Υ with | a | ≤ ǫ, there exist v ∈ W dr and w ∈ W dr such that
(v, w) ∈ Ω and f(v, w) = a. We denote by Υǫ = Υ ∩ B(0, ǫ). Then b′♯(Υǫ) is an open
neighborhood of 0 in (F0)

r.
Let us now prove that G(F0)

+ = G(F1)
+ × G(F2)

+. Since F1 is dense in F0,
G(F1)

+ is dense in G(F0)
+. It is then enough to show that Υǫ ⊂ G(F1)

+ × G(F2)
+.

Let g = b′♯(a) ∈ b′♯(Υǫ). Then a = f(v, w) with (v, w) ∈ Ω. It follows that g = b′♯(a) =
b′♯(f(v, w)) = q(v, w) = b′♯(v) b

′
♯(w) ∈ G(F1)

+ ×G(F2)
+. �

This could be refined as follows.

Proposition 3.7. Let H be a reductive E-group and put G = RE/F (H).

(1) RG(F1)RG(F2) contains an open neighborhood of 1 in G(F0).

(2) If RG(F1) is dense in RG(F0), then RG(F1)RG(F2) = RG(F0).

(3) If H is semisimple simply connected and HF1⊗FE is strictly isotropic, then we
have

G(F1)
+ RG(F2) = G(F0)

+.

(4) If H is semisimple simply connected and HFi⊗FE is strictly isotropic for i = 1, 2,
then G(F1)

+ G(F2)
+ = G(F0)

+.

The subgroups G(F1)
+, G(F0)

+ are defined as in Proposition 3.6.

Proof. Once again we put d = [E : F ] and fix an isomorphism E ∼= F d of F–vector
spaces.

(1) Let T ⊂ H be a maximal E–torus and let 1→ S → Q
s
−→ T → 1 be a resolution

of T where Q is a quasitrivial torus and S is a torus. We have Q = RC/E(Gm) where
C is an étale E–algebra so that Q is an open subset of the affine E–space W(C).

We use now Raghunathan’s technique [R, §1.2]. There exists h1, . . . , hn ∈ H(E)
such that Lie(H)(E) = h1Lie(T )(E) + h2Lie(T )(E) + . . . + hnLie(T )(E). We define
the open E-subvariety U ⊂ WE(C

n) where 1 + x1, . . . , 1 + xn belongs to Q. We
consider the map b : U → H , b(x1, . . . , xn) =

h1s(1+x1) . . .
hns(1+xn). Its differential

at 0 is

db0 : C
n → Lie(H)(E), (c1, . . . , cn) 7→

n∑

i=1

hids(ci),

and is onto (observe that Lie(Q)(E) → Lie(T )(E) is surjective since Q → E is
smooth). We cut now the E-affine space WE(C

n) by some suitable affine E–subspace
WE(E

r) of WE(C
n) such that the restriction b′ of b to the E–variety Y = U∩WE(E

r)
is such that db′0 : TanY,0 → Lie(H)(E) is an isomorphism. Note that Y and H have
same dimension r over E.
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The map b′ is then étale at a neighborhood of 0. It follows that
b′♯ = RE/F (b

′) : X = RE/F

(
Y
)
→ G = RE/F (H) is étale also at a neighborhood of 0

[C-G-P, A.5.2.(4)]. Note that X is an open subset of RE/F

(
WE(E

r)
)
∼= W(Er) ∼=

A
dr
F .
Since the field F0 is henselian, the local inversion theorem holds [G-G-MB, prop.

2.1.4]. We mean that there exists an open neighborhood Υ ⊂ X(F0) ⊂ (F0⊗F E)r ∼=
(F0)

dr of 0 such that the restriction b′♯|Υ : Υ→ G(F0) is a topological open embedding.

We consider now the product morphism q : Υ× Υ → G(F0), q(x, y) = b′♯(x) b
′
♯(y).

We put Ω = q−1(b′♯(Υ)), this an open subset of (F0)
2dr. Then the restriction q|Ω

defines a (unique) analytical map f : Ω→ Υ such that q(x, y) = b′♯(f(x, y)).
By construction we have f(0, x) = f(x, 0) for x in a neighborhood of

0 ∈ (F0 ⊗F E)r ∼= F dr
0 . We apply Corollary 3.5 to f so that there exists ǫ > 0

such that for each a ∈ Υ with | a | ≤ ǫ, there exist v ∈ V dr and w ∈ W dr such that
(v, w) ∈ Ω and f(v, w) = a. We denote by Υǫ = Υ ∩ B(0, ǫ). Then b′♯(Υǫ) is an open

neighborhood of 1 in (F0)
dr.

We claim that Υǫ ⊂ RG(F1)RG(F2). Let g = b′♯(a) ∈ b(Υǫ). Then a = f(v, w)
with (v, w) ∈ Ω. It follows that g = b′♯(a) = b′♯(f(v, w)) = q(v, w) = b′♯(v) b

′
♯(w) ∈

RG(F1)×RG(F2).

(2) If RG(F1) is furthermore dense in RG(F0), then (1) shows that RG(F1)RG(F2)
is a dense open subset of RG(F0). Thus RG(F1)RG(F2) = RG(F0)

(3) We assume that H is semisimple simply connected and that GF1⊗FE1
is strictly

isotropic. According to Lemma 2.3.(2), we have G(F1)
+ = RG(F1) = RH(F1⊗FE) =

H(F1 ⊗F E)+ and similarly for F0. Since H(F1 ⊗F E)+ is dense in H(F0 ⊗F E)+, it
follows that RG(F1) is dense in RG(F0). Assertion (2) yields then RG(F1)RG(F2) =
RG(F0). Lemma 2.3.(2) states that G(F1)

+ = RG(F1) and G(F0)
+ = RG(F0). We

conclude that G(F1)
+RG(F2) = G(F0)

+.

(4) We have furthermore G(F2)
+ = RG(F2) so that (3) yields G(F1)

+ G(F2)
+ =

G(F0)
+. �

Remark 3.8. Note that (1) shows in particular that RG(F0) is an open subgroup of
G(F0).

The main result of the section is the following patching statement on twisted flag
varieties.

Theorem 3.9. We put F = F1 ∩ F2. Let H be a reductive E–group and let X be a
twisted flag E–variety of H. We put G = RE/F (H) and Z = RE/F (X). If Z(F1) 6= ∅
and Z(F2) 6= ∅, then Z(F ) 6= ∅.

Proof. Without loss of generality, we can assume that H is semisimple simply con-
nected.

Case H is absolutely E–simple. If X = Spec(k), the statement is obvious so that
we can assume that dim(X) ≥ 1. Since X(Fi ⊗F E) = Z(Fi) is not empty for
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i = 1, 2, this implies that H is strictly Fi ⊗F E–isotropic for i = 1, 2. Let xi ∈
Z(Fi) = X(Fi ⊗F E) and denote by Pi = StabGFi

(xi) its stabilizer, this is parabolic
Fi ⊗F E–subgroup of H . Since Fi ⊗F E is a semilocal algebra, we have x1 = h.x2

for some h ∈ H(E ⊗F F0) [SGA3, XXVI.5.2]. According to Lemma 2.1, we have
H(E ⊗F F0) = H(E ⊗F F0)

+ P2(E ⊗F F0) so we can assume that h ∈ H(E ⊗F F0)
+.

According to Proposition 3.7.(4), we can write h = h1 h2 with hi ∈ H(E ⊗F Fi)
+

for i = 1, 2. Since x1 = h.x2, we obtain h−1
1 .x1 = h−1

2 .x2. This defines a point of
X(E) = Z(F ).
General case. We use the decomposition H = RE1/E(H1)×E · · ·×E REc/E(Hc) where
each Ei is a finite separable field extension of E and Hj is an absolutely simple simply
connected Ej–group. According to [M-P-W2, Introduction], we have a decomposition
X = RE1/E(X1) ×E · · · × REc/E(Xc) where each Xj is a twisted flag variety for Hj.
Using basic functorial properties of the Weil restriction (e.g. [C-G-P, A.5.2.(3)]), it
follows that

Z = RE/F (X) = RE1/F (X1)×F · · · ×REc/F (Xc) = Z1 ×F · · · ×F Zc

with Zj = REj/F (Xj) for j = 1, . . . , c. Our assumption is that Z(F1) 6= ∅ and
Z(F2) 6= ∅ so that Zj(F1) 6= ∅ and Zj(F2) 6= ∅ for j = 1, .., c. Applying the first case
to the extension Ej/F and Hj yields that Zj(F ) 6= ∅ for j = 1, . . . , c. Thus Z(F ) 6= ∅
as desired. �

4. Relation with the original HHK method

We recall the setting. Let T be a complete discrete valuation ring with fraction field
K, residue field k and uniformizing parameter t. Let F be a one-variable function
field over K and let X be a normal model of F , i.e. a normal connected projective T -
curve with function field F . We denote by Y the closed fiber of X and fix a separable
closure Fs of F .

For each point P ∈ Y , let RP be the local ring of X at P ; its completion R̂P is a
domain with fraction field denoted by FP .

For each affine non-empty subset U of Y that is contained in an irreducible compo-
nent of Y and does not meet the other components, we define RU =

⋂
P∈U

RP ⊂ F . We

denote by R̂U the t–adic completion of RU . The rings RU and R̂U are excellent normal
domains and we denote by FU the fraction field of R̂U [H-H-K3, Remark 3.2.(b)].

Each height one prime p in R̂P that contains t defines a branch of Y at P lying

on some irreducible component of Y . The t-adic completion R̂p of the local ring Rp

of R̂P at p is a complete DVR whose fraction field is denoted by Fp. The field Fp

contains also FU if U is an irreducible open subset of Y such that P ∈ U \ U . We
have then a diagram of fields
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Fp

FP

>>⑥⑥⑥⑥⑥⑥⑥⑥

FU .

``❇❇❇❇❇❇❇❇

Example 4.1. We assume that T = k[[t]] and take X = P1
K , X = P1

T , P = ∞k,
U = A1

k = Spec(k[x]). The ring RU contains k[[t]][x] and is its localization with
respect to the multiplicative set S of elements which are units modulo t. The t-adic
completion of RU is R̂U = k[x][[t]]; we have FU = Frac(R̂U) = k(x)((t)). The local

ring of X at P =∞k is RP = k[[t]][x−1](x−1,t) so that its completion is R̂P = k[[t, x−1]];
in particular FP = k((t, x−1)).

We take p = tR̂P ⊂ R̂P and the t-adic completion R̂p of the local ring Rp of R̂P at
p is a complete DVR which is k((x−1))[[t]]. In particular Fp = k((x−1))((t)).

Setting 4.2. Let P be a non-empty finite set of closed points of Y that contains all
the closed points at which distinct irreducible components meet. Let U be the set
of connected components of Y \ P (observe that each U ∈ U is affine) and let B be
the set of branches of Y at points of P. This yields a finite inverse system of field
FP , FU , Fp (for P ∈ P; U ∈ U , p ∈ B) where FP , FU ⊂ Fp if p is a branch of Y at P
lying in the closure of U .

Lemma 4.3. We assume that X = P1
K, X = P1

T , P =∞k, U = A1
k = Spec(k[x]) and

p the branch of P . We put F1 = FP , F2 = FU and F0 = Fp.

(1) F1 is t-dense in F0.

(2) We put V = F1 ∩ R̂p and W = F2 ∩ R̂p. Then V and W satisfy conditions (3.1)
and (3.2).

Proof. (1) We are given u0/v0 ∈ F0 with u0, v0 ∈ R̂p, v0 6= 0. There exists elements
u, v ∈ Rp very close respectively of u0, v0 with v 6= 0. Let s1, s2 ∈ Rp \Rpp such that
s1u ∈ RP and s2v ∈ Rp. Then u0/v0 is very close of (s1s2u)/(s1s2v) ∈ F1.

(2) Condition (3.2) is obviously fullfilled since t ∈ F1 ∩F2. For establishing condition

(3.1), we are given an element f of R̂p and may write it as f =
∞∑
i=0

xmi

(∑∞
j=0 ai,j

1
xj

)
ti

where the mi’s are non-negative integers and ai,j ∈ T . We decompose

f = f1 + f2 =

∞∑

i=0

xmi

( ∞∑

j=mi

ai,j
1

xj

)
ti +

∞∑

i=0

xmi

(mi−1∑

j=0

ai,j
1

xj

)
ti

We observe that f2 belongs to R̂P so belongs to V . We recall that RU is the localization
of T [x] with respect to the elements which are units modulo t. We conclude that f2
belongs to W as desired. �
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Theorem 4.4. Let G be a reductive F–algebraic group.

(1) Let Z be a twisted flag projective F–variety for G. Then Z(F ) 6= ∅ if and only if
Z(FU) 6= ∅ for each U ∈ U and Z(FP ) 6= ∅ for each P ∈ P.

(2) For each U ∈ U (resp. each P ∈ P), we fix an F–embeddings iU : Fs → FU,s (resp.

iP : Fs → FP,s) providing identifications ∆(GFs
)

∼
−→ ∆(GFU,s

) (resp. ∆(GFs
)

∼
−→

∆(GFP,s
)). The Tits index ∆0(G) is the smallest subset of ∆(GFs

) which is stable
under the ⋆–action of Gal(Fs/F ) and such that ∆0(G) ⊂ ∆0(GFU

) for each U ∈ U
and ∆0(G) ⊂ ∆0(GFP

) for each P ∈ P.

The recollection for star action and Tits index is done in the beginning of the paper.

Proof. (1) We use a Weil restriction argument as in the proof of [H-H-K2, Thm. 4.2].
This involves a finite morphism f : X → P1

T such that P = f−1(∞k). Write F for
the function field of P1

T , and let d = [F : F]. We put U = P1
k \ {∞}, P = ∞k and

p = (U, p) and F0 = Fp, F1 = FP and F2 = FU. Also patching holds for the diamond

(F, F1, F2, F0) according to [H-H, thm 3.9] so in particular K(x) = F = F1 ∩F2 ⊂ F0.

We put V = F1 ∩ R̂p and W = F2 ∩ R̂p. Lemma 4.3 shows that F1 is dense in F0 and
that V and W satisfy conditions (3.1) and (3.2).

We consider the Weil restriction G = RF/F(G), it is a reductive F–group which
acts on the F–variety Z = RF/F(Z). We have

Z(F1) = Z(F1 ⊗F F ) =
∏

P∈P

Z(FP )

according to [H-H, Lemma 6.2.(a)]. Similarly we have

Z(F2) = Z(F2 ⊗F F ) =
∏

U∈U

Z(FU)

Our assumptions imply that Z(F1) 6= ∅ and Z(F2) 6= ∅. Theorem 3.9 implies that
Z(F) 6= ∅. Thus Z(F) = Z(F ) is non-empty.

(2) Let Θ be the smallest subset of ∆(GFs
) which is stable under the ⋆–action of

Gal(Fs/F ) and such that ∆0(G) ⊂ ∆0(GFU
) for each U ∈ U and ∆0(G) ⊂ ∆0(GFP

)
for each P ∈ P. We observe that ∆0(G) ⊂ Θ since it is stable under the star action
and satisfies ∆0(G) ⊂ ∆0 for each U ∈ U and ∆0(G) ⊂ ∆0(GFP

) for each P ∈ P. For
the converse inclusion we consider the F–variety Z of parabolic subgroups of type
Θ. For each U ∈ U , we have Θ ⊂ ∆0(GFU

) so that Z(FU) 6= ∅; similarly we have
Θ ⊂ ∆0(GFP

) for each P ∈ P so that Z(FP ) 6= ∅. Part (1) yields that Z(F ) 6= ∅.
Thus Θ ⊂ ∆0(G) and Θ = ∆0(G). �
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Corollary 4.5. Let G be a reductive F–algebraic group.

(1) Let Z be a twisted flag projective F–variety for G. Then Z(F ) 6= ∅ if and only if
Z(FP ) 6= ∅ for each P ∈ Y .

(2) For each P ∈ Y , we fix an F–embedding iP : Fs → FP,s providing identifications

∆(GFs
)

∼
−→ ∆(GFP,s

). The Tits index ∆0(G) is the smallest subset of ∆(GFs
) which

is stable under the ⋆–action of Gal(Fs/F ) and such that ∆0(G) ⊂ ∆0(GFP
) for each

P ∈ Y .

Proof. (1) We assume Z(FP ) 6= ∅ for each P ∈ Y . Let Y1, . . . , Yd be the irreducible
components of Y with respective generic points η1, . . . , ηd. According to [H-H-K2,
prop. 5.8], there exists non-empty affine subsets Ui ⊂ Yi (i = 1, . . . , d) such that
Z(FUi

) 6= ∅ for i = 1, . . . , d and Ui ∩ Uj = ∅ for i < j. We apply Theorem 4.4 to
U = {U1, . . . , Ud}, P = Y \ ∪iUi and get that Z(F ) 6= ∅.

(2) This readily follows of (1).
�

Corollary 4.6. Let G be a reductive F–algebraic group and assume that G is the
generic fiber of a reductive X-group scheme G.

(1) Let Z be a twisted flag projective F–variety for G. Then Z(F ) 6= ∅ if and only if
Z(Fv) 6= ∅ for each discrete valuation v of F .

(2) For each discrete valuation v of F , we fix an F–embedding iv : Fs → Fv,s providing

identifications ∆(GFs
)

∼
−→ ∆(GFv,s

). The Tits index ∆0(G) is the smallest subset of
∆(GFs

) which is stable under the ⋆–action of Gal(Fs/F ) and such that ∆0(G) ⊂
∆0(GFv

) for each discrete valuation v on F .

Proof. (1) We assume that Z(Fv) 6= ∅ for each discrete valuation v of F . Let G be a
reductive X–group of generic fiber G. Without loss of generality we can assume that
G is adjoint. Let G0 be the Chevalley form of G and let (B0,T0) be a Killing couple
for G0 and let ∆0 be the associated Dynkin diagram. Since G0 is adjoint, we have an
exact sequence of Z–group schemes [SGA3, XXIV.1.3 and 3.6]

1→ G0 → Aut(G0)→ Aut(∆0)→ 1

The Aut(G0)–torsor Q = Isom(G0,G) over X defines then an Aut(∆0)-torsor over
X. Since Aut(∆0) is a finite constant group, Grothendieck’s theory of fundamental
groups tells us that this torsor is the data of a morphism v : Π1(X, •) → Aut(∆0)
where the base point is Spec(Fs) → Spec(F ) → X. The star action associated to G
is the composite

Gal(Fs/F )→ Π1(X, •)→ Aut(∆0).

Claim 4.7. Z is the generic fiber of an X–scheme of parabolic subgroups Z of G.

The variety Z is a form of the variety ParI(G0) of parabolic subgroups of type I
where I ⊂ ∆0 is stable the star action. Since X is normal, the map Gal(Fs/F ) →
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Π1(X, •) is onto so that I is stable under the action of Π1(X, •) on ∆0. In particular
Q admits a reduction QI to the stabilizer AutI(G0) for the action of Aut(G0) on
∆0. The X–scheme Z = QIParI(G0) is the scheme of parabolic subgroups of type I of
G =QIG0, so that Z is the generic fiber of Z.

For applying Corollary 4.5, we have to check that Z(FP ) 6= ∅ for each P ∈ Y . If
Q is a point of codimension 1 of X, it defines a discrete valuation vQ on F whose
completion is FQ. Our assumption implies then that Z(FQ) 6= ∅ in that case. We
deal now with the case of a closed point P of X. Let D be an irreducible component
of Y = Xk containing P and let Q be the generic point of D. Since Z is proper over

T , we have Z(R̂Q) = Z(FQ) which is not empty by the preceding case. It follows that
Zk(k(D)) 6= ∅. Again Zk is projective so that Zk(D) = Zk(k(D)) is not empty and in
particular Zk(k(P )) is not empty. Since Z is smooth over X, the Hensel lemma shows

that Zk(R̂X,P )→ Zk(k(P )) is surjective. Thus Z(R̂X,P ) is not empty and so is Z(FP ).

(2) It readily follows of (1).
�

Corollary 4.8. Let G be a reductive F–algebraic group. We denote by Ω1
F the set of

rank one valuations of F .

(1) Let Z be a twisted flag projective F–variety for G. Then Z(F ) 6= ∅ if and only if
Z(Fv) 6= ∅ for each v ∈ Ω1

F .

(2) For each v ∈ Ω1
F , we fix an F–embedding iv : Fs → Fv,s providing identifications

∆(GFs
)

∼
−→ ∆(GFv,s

). The Tits index ∆0(G) is the smallest subset of ∆(GFs
) which

is stable under the ⋆–action of Gal(Fs/F ) and such that ∆0(G) ⊂ ∆0(GFv
) for each

v ∈ Ω1
F .

Proof. (1) We assume that Z(Fv) 6= ∅ for each v ∈ Ω1
F . According to [H-H-K-P, Thm

2.5], there exists a regular model X′ of F such that Z(FP ) 6= ∅ for each P ∈ Y ′ =
X′ ×T k. Then Corollary 4.5.(1) shows that Z(F ) 6= ∅.

(2) This readily follows of (1). �

5. Local-global principle for discrete valuations

Let T be an excellent DVR of fraction field K and residue field k. Let X be
a smooth, projective, geometrically integral curve over K. Let F = K(X) be the
function field of X.

Lemma 5.1. Let X be a projective, flat curve over T which is connected and regular
such that XK = X. Let H be a flat affine X–group scheme of finite presentation and
assume that there exists a Zariski cover (Ui)i∈I of X such that each HUi

admits a
closed embedding HUi

⊂ GLni
×Z Ui such that (GLni

×Z Ui)/HUi
is representable by an

affine Ui–scheme.
Let γ ∈ H1

fppf(F,H) and let D be a divisor of X which contains the irreducible
components of Y = Xk and such that γ extends to X \DK.
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Then there exists a proper birational morphism q : X′ ∼
−→ X such that X′ is regular

model of X, such that the support of D′ = q∗D is a strict normal crossing divisor and

γ ∈ Im
(
H1(X′ \D′,H)→ H1(F,H)

)
.

Proof. Using a passage to the limit argument [Mg], there exists an open affine sub-
scheme U1 ⊂ X \ D such that γ extends to a class γ1 ∈ H1(U1,H). According to
[G-P1, cor 1.8], γ1 extends to a class γ2 ∈ H1(U2,H) where U2 is an open subscheme
of X \ D containing U1 and X \ DK . By purity (i.e. Theorem 7.1 of the appendix
7), we have H1(X \ D,H) = H1(U2,H). Thus γ extends over X \ D. According to
Lipman’s theorem we can resolve the singularities of X and transform D such that the
support of D′ = q∗D is a strict normal crossing divisor see [H-H-K, lemma 4.7]. �

Proposition 5.2. Let G be a reductive F–group and assume that p does not divide
the order of the automorphism group of the absolute root system of Gad. Let Z be a
twisted flag variety of G. We assume that Z(Fv) 6= ∅ for all discrete valuations of F
arising from normal models of X. Then there exists a regular proper model X of X
with special fiber Y = Xk such that for every point y ∈ Y , then Z(Fy) 6= ∅.

Proof. Without loss of generality we can assume that G is adjoint. Let G0 be the
Chevalley form of G and let (B0, T0) be a Killing couple for G0 and let ∆0 be the
associated Dynkin diagram. The variety Z is a form of the variety ParI(G0) of
parabolic subgroups of type I where I ⊂ ∆0 is stable under the star action defined by
the Aut(G0)–torsor Q = Isom(G0, G). In particular Q admits a reduction QI to the
stabilizer AutI(G0) for the action Aut(G0) on ∆0 through the morphism Aut(G0)→
Out(G0)

∼
−→ Aut(∆0). Furthermore Z is isomorphic to QIParI(G0).

We apply now Theorem 1.1.(b) of [C-G-R] to the Z–group scheme AutI(G0).
It provides a finite Z–subgroup S0 of AutI(G0) such that the map H1(F, S0) →
H1(F,Aut(G0)) is onto. Furthermore the construction of S0 is explicit in the proof,
it is an extension of the finite constant group AutI(G0)/T0 by a finite subgroup of T0.
In particular S0 is finite free over Z and our assumption on the characteristic implies
that S0,T is finite étale of rank prime to p. It follows that QI admits a reduction to
an F–torsor E under S0.

The finite flat Z–group scheme S0,A admits a faithful representation S0 →֒ GLN,Z

[Br-T, §1.4.5] and the quotient GLN,Z /S0 is representable by an affine Z-scheme [D-G,
§III.2.6].

According to Lemma 5.1, there exists a regular model X of X and a strict normal
crossing divisor D containing the irreducible components of Y such that E extends to
a X\D–torsor E under S0. We put QI = E∧S0 AutI(G0) and consider the X\D-group
scheme G = QIG0 of generic fiber G.

We are given a closed point P ∈ Y . If y is of codimension one, by hypothesis,
Z(Fy) is not empty. We therefore look at a closed point P ∈ Y . We are given a point
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P ∈ Y and pick a height one prime p in R̂P that contains t. It defines a branch of Y
at P lying on some irreducible component Y1 of Y .

We consider the local ring A = RP of X at P and denote by AD its localization at
D. Since S0,T is finite étale of degree prime to p, H1(AD, S0) consists in loop torsors as
defined in [Gi3, §2.3, lemma 2.3.(2)], i.e. those arising from cocycles related to tame
Galois covers of AD. It follows that the AD–torsor QI is a loop AutI(G)–torsor [Gi3,
lemma 2.3.(3)], so that G×X\D AD is by definition a loop reductive group scheme.

Let FP,v be the completion of the field FP for the valuation associated to the blow-up
of Spec(A) at its closed point. Our assumption states in particular that Z(FP,v) 6= ∅,
that is, GFP,v

admits a parabolic subgroup of type I. According to [Gi3, th. 4.1 , (iii)
=⇒ (i)], G×X\D AD admits a parabolic subgroup of type I. A fortiori GFP

admits a
parabolic subgroup of type I so that Z(FP ) 6= ∅. �

Remarks 5.3. (a) If p = 0, the result used [Gi3, th. 4.1] admits a simple proof, see
[Gi3, Ex. 4.2], by using the analogous result over Laurent polynomials [G-P2, th.
7.1].

(b) In nice cases inspection of the proof permits to weaken the assumption on p.
The precise condition is that the Aut(G0)–torsor Isom(G0, G) admits a reduction to
a finite F–subgroup whose degree is prime to p. For example in type G2, we need to
assume only that p is prime to 2.

Together with Corollary 4.5, we obtain the following consequence:

Theorem 5.4. Let G be a reductive F–group and assume that p does not divide the
order of the automorphism group of the absolute root system of Gad. Let Z be a
twisted flag F–variety of G. Then Z(F ) 6= ∅ if and only if Z(Fv) 6= ∅ for all discrete
valuations of F arising from normal models of X.

Remark 5.5. By inspection of the proof, is that we use only valuations which are
non trivial over K. This answers a question raised by K. Becher.

6. Appendix: characterization of parabolic subgroups.

Let G be a reductive F–group over a field F . We remind the reader that an
algebraic F–subgroup P of G is parabolic if P is smooth and G/P is a projective
F–variety. The interest of the probably known statement below is only in positive
characteristic since in this case there exist F–subgroups Q which are not smooth such
that G/Q is a projective F–variety [W].
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Proposition 6.1. Let P be a k–subgroup of G such that the quotient variety G/P is
projective. Then the following assertions are equivalent:

(i) P is an F–parabolic subgroup;

(ii) For each F–field E, G(E) acts transitively on (G/P )(E);

(iii) The quotient map G→ G/P admits a rational section;

(iv) P is smooth connected;

(v) P is smooth.

Proof. (i) =⇒ (ii). Since (G/P )(E) parameterizes the E–parabolic subgroups of GE

of same type that P , Borel-Tits’ conjugacy theorem [B-T, th. 4.13.c] shows that G(E)
acts transitively on (G/P )(E).

(ii) =⇒ (iii). Our assumption rephrases by saying that the map G(E)→ (G/P )(E)
is onto for each F–field E. Applying that to the function field E = F (G/P ) of the
smooth connected F -variety G/P provides a rational section of the map G→ G/P .

(iii) =⇒ (iv). To show the smoothness of P we can assume that F is algebraically
closed. Then the neutral component Q = (Pred)

0 of the reduced F–subgroup Pred of
P is smooth. Furthermore the quotient F–variety P/Q is finite. It follows that the
morphism q : G/Q→ G/P is finite and a fortiori projective [St, Tag 0B3I]. Since the
composition of projective morphisms (of qcqs schemes) is projective [St, Tag 0C4P],
it follows that G/Q is projective. The F–subgroup Q of G is then parabolic. Our
assumption is that the morphism G → G/P has a rational section and so has a
fortiori the finite morphism q : G/Q→ G/P . According to [EGAII, cor. 6.1.15], q is
an isomorphism. Thus Q = P and we conclude that P is smooth connected.

(iv) =⇒ (v). Obvious.

(v) =⇒ (i). This is by definition. �

A variant is the following.

Proposition 6.2. Let X be a smooth projective G–variety. Then the following state-
ments are equivalent:

(i) X is a twisted flag variety of G;

(ii) For each F–field E, G(E) acts transitively on X(E).

Proof. The implication (i) =⇒ (ii) is again Borel-Tits’ conjugacy theorem. We as-
sume (ii). According to [M-P-W1, prop. 1.3], we can assume that F is separably
closed. Since X is smooth, we have X(F ) 6= ∅ and denote by P the stabilizer of
some F–point x. According to [D-G, prop. III.3.2.1]. condition (ii) implies that the

orbit map G → X, g 7→ g.x induces an isomorphism fx : G/P
∼
−→ X. Proposition

6.1, (ii) =⇒ (i), shows that P is a F–parabolic subgroup. Thus X is a F–variety of
parabolic subgroups of G. �
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Remark 6.3. The condition (ii) is called transitive action of G on X by Harbater-
Hartmann-Krashen. It occurs in [H-H-K, th. 3.7]. Projective homogeneous varieties
in the result quoted above are exactly the various varieties of parabolic subgroups.

7. Appendix: extending torsors

We come back to a purity result of Colliot-Thélène and Sansuc.

Theorem 7.1. Let X be a regular scheme of dimension 2. Let U be an open subcheme
of X which contains X(1). Let G be an affine X–group scheme. In the following cases

(i) G is reductive,

(ii) There exists a Zariski cover (Ui)i∈I of X such that each GUi
admits a closed

embedding GUi
⊂ GLni

such that GLni
/GUi

is representable by an affine Ui–scheme,

then we have the equality H1
fppf(X,G)

∼
−→ H1

fppf(U,G).

Proof. The case (i) is [C-T-S, th. 6.13]. The case (ii) goes by inspection of the
proof. �

Remark 7.2. In view of the proof [C-T-S, th. 6.13], the case (i) of Theorem 7.1 is a
special case of (ii).
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