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1. Introduction

Let T be a complete discrete valuation ring with fraction field K and residue field k.
Let X be a smooth, projective, geometrically integral curve over K. Let F = K(X)
be the function field of X and let t be an uniformizing parameter of T . Under a mild
assumption on the characteristic p of the residue field of T , we prove a conjecture by
Colliot-Thélène, Suresh and the second author [C-T-P-S, conjecture 1].

Theorem 1.1. (see Th. 5.4) Let G be a reductive F–group and assume that p does
not divide the order of the automorphism group of the absolute root system of Gad.
Let Z be a twisted flag F–variety of G. Then Z(F ) 6= ∅ if and only if Z(Fv) 6= ∅ for
all discrete valuations of F arising from models of X.

The conjecture was known for the cases of smooth projective quadrics and Severi-
Brauer varieties [C-T-P-S]. If we use all rank one valuations, the result holds uncon-
ditionnally (Cor. 4.7). On the other hand, if G extends to a reductive group scheme
over a smooth model X of X, the result is unconditional (Cor. 4.6).

Let us review the contents. Given a henselian couple (A, I) and a reductive A-group
scheme H , section 2 deals with generation of groups H(A) by unipotent elements
and also with the quotient of H(A)/RH(A) by the (normal) subgroup of R-trivial
elements defined in [G-S]. Section 3 is devoted to mild improvements of patching
techniques of Harbater-Hartmann-Krashen involving more analytical functions and
leads to various group decompositions (prop. 3.7); this permits to obtain a patching
theorem for twisted flag varieties (th. 3.9). Section 4 deals with the setting of the
beginning of the introduction and provides a weaker version of the main result. What
remains to do is mostly a local study for a two dimensional complete regular local ring
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R with parameters t, s and torsors over its localization R[t−1, s−1]. This is achieved
in section 5 by making use of the loop torsors over R[t−1, s−1] and of the results of
[Gi2].

Acknowledgements. We thank Gabriel Dospinescu for telling us about Schneider’s
book and David Harbater for comments on a preliminary version of the paper.

Conventions and notation. (a) A variety V over a field F means a separated
F–scheme of finite type which is integral [St, Tag 020D].

(b) Let G be a reductive F–algebraic group and let Fs be a separable closure of F .
Let (B, T ) be a Killing couple of Gks and denote ∆(GFs

) = ∆(GFs
, B, T ) the associ-

ated Dynkin diagram (there is a canonical bijection ∆(GFs
, B, T )

∼
−→ ∆(GFs

, B′, T ′)
for another choice of Killing couple). This diagram ∆(GFs

) is equipped with the
star action of Gal(Fs/F ) [B-T1, §6.4]. We recall that there is a increasing bijec-
tion I → PI between the subsets of ∆(GFs

) and the Fs–parabolic subgroups of GFs

containing B and the G(Fs)–conjugacy classes of parabolic subgroups of GFs
. Since

minimal F–parabolic subgroups are G(F )-conjugated we denote by ∆0(G) ⊂ ∆(GFs
)

be conjugacy class of P0 ×F Fs where P0 is a minimal F–parabolic subgroup of G (it
is stable under the star action). The triple (∆(GFs

), star action,∆0(G)) is called the
Tits index of G. By abuse of notation, ∆0(G) alone is called the Tits index. By a
twisted F–flag variety of G, we mean a G-variety X such becomes isomorphic over
Fs to some GFs

/PI as GFs
-variety (such an I is unique). According to [M-P-W, prop.

1.3], I is invariant under the star action and X is G-isomorphic to the variety of
F–parabolic subgroups of type I which is denoted in this paper by ParI(G).

Those varieties are called sometimes projective homogeneous G–varieties (as in
[C-T-P-S]) but we warn the reader of the danger of this terminology since there exist
in positive characteristic F–subgroups Q which are not smooth such that G/Q is a
projective F–variety [W]. In the appendix 6, we show that a homogeneous G–variety
X is a variety of parabolic subgroups if and only if the action is transitive in the sense
that G(E) acts transitively on X(E) for each F field E (Prop. 6.2).

(c) We use mainly the terminology and notation of Grothendieck-Dieudonné [EGAI,
§9.4 and 9.6] which agrees with that of Demazure-Grothendieck used in [SGA3, Exp.
I.4].Let S be a scheme and let E be a quasi-coherent sheaf over S. For each morphism
f : T → S, we denote by ET = f ∗(E) the inverse image of E by the morphism f .
We denote by V(E) the affine S–scheme defined by V(E) = Spec

(
Sym•(E)

)
; it is

affine over S and represents the S–functor Y 7→ HomOY
(EY ,OY ) [EGAI, 9.4.9]. We

assume now that E is locally free of finite rank and denote by E∨ its dual. In this case
the affine S–scheme V(E) is of finite presentation (ibid, 9.4.11); also the S–functor
Y 7→ H0(Y, EY ) = HomOY

(OY , EY ) is representable by the affine S–scheme V(E∨)
which is also denoted by W(E) [SGA3, I.4.6].
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2. Around Kneser-Tits’ problem

Let A be a semilocal ring, I its radical.

2.1. Subgroups of elementary elements. Let H be a reductive A-group scheme
which is strictly A–isotropic, that is, all factors of Had are isotropic. Let H be a
strictly proper parabolic A–subgroup of H and let P− be a A–parabolic subgroup
opposite to P . The subgroup of H(A) generated by Ru(P )(A) and Ru(P

−)(A) does
not depend of the choice of P and P−, this is a normal subgroup of H(A) which is
denoted by H(A)+ [P-S, Thm. 1 and comments].

Lemma 2.1. We have H(A) = H(A)+ P (A).

Proof. We put U = Ru(P ), U− = Ru(P
−). According to [SGA3, XXVI.5.2], we have

a decomposition H(A) = U(A)U−(A)P (A) whence H(A) = H(A)+ P (A). �

A special case of [G-S, prop. 7.7] is the following.

Lemma 2.2. Assume that (A, I) is an henselian couple and that H is semisimple
simply connected. Then the map H(A)/H(A)+ → H(A/I)/H(A/I)+ is an isomor-
phism.

2.2. R-equivalence. We assume now that A is a nonzero finite k–algebra for a field
k. Then A is an Artinian k–algebra. We denote by I its Jacobson radical and remind
the reader that (A, I) is an henselian couple.

Let H be an A–reductive group scheme and consider the Weil restriction
G = RA/k(H), this is a smooth affine connected algebraic k–group [C-G-P, A.5.9].
We have G(k) = H(A). We use R-equivalence for group schemes over rings as defined
in [G-S].

Lemma 2.3. We decompose A = A1 × · · · × Ad where each Ai is a local artinian
k–algebra of residue field ki.

(1) The map H(A)→
∏

i H(ki) induces isomorphisms

G(k)/RG(k)
∼
−→ H(A)/RH(A)

∼
−→

∏

i

H(ki)/RH(ki).

(2) If H is furthermore simply connected and strictly isotropic, we have a commutative
diagram of isomorphisms

H(A)/H(A)+
∼

//

≀
��

H(A)/RH(A)

≀

��

G(k)/R∼
oo

∏
i H(ki)/H(ki)

+ ∼
//
∏

i H(ki)/RH(ki).
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Proof. (1) The first isomorphism G(k)/RG(k)
∼
−→ H(A)/RH(A) is a formal fact

[G-S, lemma 2.4]. Let n be the smallest positive integer such that In = 0. We put
Aj = A/Ij+1 for j = 0, . . . , n− 1, it comes with the ideal Jj = Ij/Ij+1 = I Aj which
satisfies J2

j = 0. We have Aj/Jj = Aj−1 for j = 1, . . . , n− 1.
We put Gj = RAj/k(HAj

) for j = 0, . . . , n−1; we have a sequence of homomorphisms
G = Gn → Gn−1 → · · · → G1 → G0 =

∏
i Rki/k(Hki). It induces homomorphisms

G(k)/R = Gn(k)/R→ Gn−1(k)/R→ · · · → G1(k)/R→ G0(k)/R =
∏

i

H(ki)/R

and we will show by a dévissage argument that all of them are isomorphisms.
Let j be a an integer satisfying 1 ≤ j ≤ n − 1. According to a variant of [G-P-S,

Lemma 8.3], we have an exact sequence of fppf (resp. étale, Zariski) sheaves on Spec(k)

0→W

(
(tj)∗

(
Lie(H)(Aj−1)⊗Aj−1

Jj

))
→ RAj/k(HAj

))→ RAi/k(HAj−1
)→ 1.

where tj : Spec(Aj)→ Spec(k) is the structural morphism. We have then a sequence
of k–algebraic groups

0→ (Ga)
mj → Gj → Gj−1 → 1.

The map Gj → Gj−1 is a (Ga)
mj -torsor which is trivial since Gj−1 is affine. We have

then a decomposition of k-schemes Gj
∼
−→ Gj−1×k (Ga)

mj which induces an isomor-
phism Gj(k)/R → Gj−1(k)/R. Thus the map G(k)/R → G0(k)/R =

∏
i H(ki)/R is

an isomorphism as desired.

(2) We have A/I = k1×· · ·×kd. Lemma 2.2 provides an isomorphism H(A)/H(A)+
∼
−→

H(A/I)/H(A/I)+ =
∏

i H(ki)/H(ki)
+ and we have an isomorphism H(ki)/H(ki)

+ ∼
−→

H(ki)/RH(ki) for each i [Gi1, thm. 7.2]. This completes the proof by chasing dia-
gram. �

3. Patching, R-equivalence and twisted flag schemes

3.1. Using the implicit function theorem. We consider a variation of the frame-
work of [H-H-K, 2.4]. Let T be a complete DVR of fraction field K and t be an

unformizing parameter. Let R̂0 be ring containing T and which is also a complete

discrete valuation ring having uniformizer t. We denote by F0 the fraction field of R̂0.
Let α > 1 be a real number and we define the absolute value on F0 by | tnu |= α−n

for n ∈ Z and u ∈ (R̂0)
×.

Let F1, F2 be subfields of F0 containing T . We further assume that we are given

t-adically complete T -submodules V ⊂ F1 ∩ R̂0 and W ⊂ F2 ∩ R̂0 satisfying the
following conditions:

(3.1) V +W = R̂0;

(3.2) V ∩ tR̂0 = tV and W ∩ tR̂0 = tW.
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Note that Condition (3.2) is equivalent to

(3.3) V ∩ tnR̂0 = tnV and W ∩ tnR̂0 = tnW for each n ≥ 1.

Remark 3.1. Condition (3.2) above is added there compared with [H-H-K, 2.4] but
we do not require at this stage that F1 is dense in F0.

We equip the submodules V [1
t
] of F0 of the induced metric (and similarly for W [1

t
]).

Lemma 3.2. (1) V is closed in R̂0.

(2) For v ∈ V [1
t
] \ {0}, we have

| v |= Inf{αn | tnv ∈ V }.

(3) We have V = Inf{v ∈ V [1
t
] | | v |≥ 0} and V is a clopen submodule of V [1

t
].

(4) V [1
t
] is closed in F0 and is a Banach K-space.

Proof. (1) Our assumption is that the map V → lim←−V/t
m+1V is an isomorphism.

Let (xn) be a sequence of V which converges in R̂0. For each m ≥ 0, condition (3.3)

shows that the map V/tm+1V → R̂0/t
m+1R̂0 is injective so that the sequence (xn)

modulo tm+1V is stationary to some vm ∈ V/tm+1V . The vm’s define a point v of V
and the sequence (xn) converges to v.

(2) We are given v = tmv′ ∈ V [1
t
] with v′ ∈ V \ tV and we have

| v |= Inf{αn | tnv ∈ R̂0} = αmInf{αn | tnv′ ∈ R̂0}. Condition (II) implies that

v′ ∈ R̂0 \ tR̂0 so that |v |= 0. We conclude that |v |= Inf{αn | tnv ∈ V }.

(3) It readily follows from the assertion (2).

(4) Let (xn) be a sequence of V [1
t
] converging to some x ∈ F0. We want to show that

x belongs to V [1
t
] so that we can assume that x 6= 0 and that |xn |=|x |= αm for all

n ≥ 0. Assertion (2) shows that tmxn is a sequence of V and (1) shows that its limit
tmx belongs to V . Thus x ∈ V [1

t
]. We have shown that V [1

t
] is closed in F0.

Finally since F0 is a Banach K–space so is V [1
t
]. �

The following statement extends partially [H-H-K, th. 2.5] and [H-H-K2, prop.
4.1].

Proposition 3.3. Let a, b, c be positive integers. Let Ω ⊂ (F0)
a × (F0)

b be an open
neighborhood of (0, 0) and let f : Ω → (F0)

c be an analytic map. We denote by
fa : Ω ∩ (F0)

a → (F0)
c and f b : Ω ∩ (F0)

b → (F0)
c. We assume that

(i) f(0, 0) = 0;

(ii) the differentials Dfa
0 : (F0)

a → (F0)
c and Df b

0 : (F0)
a → (F0)

c satisfy

Dfa
0

(
V [

1

t
]a
)
+Df b

0

(
V [

1

t
]b
)
= (F0)

c.
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Then there is a real number ǫ > 0 such that for all y ∈ (F0)
c with |y | ≤ ǫ, there exist

v ∈ V a and w ∈ W b such that (v, w) ∈ Ω and f(v, w) = y.

Proof. We consider the continuous embedding i : V [1
t
]a ×W [1

t
]b → (F0)

a × (F0)
b and

define Ω̃ = i−1(Ω) and the function f̃ = f ◦ i : Ω̃→ (F0)
c.

Claim 3.4. The map f̃ is strictly differentiable at (0, 0) and Df̃(0,0) : V [1
t
]a×W [1

t
]b →

(F0)
c is onto.

Since f is F0–analytic at (0, 0), it is strictly differentiable [Sc, I.5.6], that is, there
exists an open neighborhood Θ of (0, 0) and a positive real number β such that

|f(x2)− f(x1)−Df(0,0).(x2 − x1) | ≤ β |x2 − x1 | ∀x1, x2 ∈ Θ.

It is then strictly derivable as function between the Banach K–spaces (F0)
a×(F0)

b →
(F0)

c. On the other hand the embedding i : V [1
t
]a ×W [1

t
]b → (F0)

a × (F0)
b is 1–

Liftschitz so is strictly differentiable at (0, 0). As composite of strictly differentiable

functions, f̃ is strictly differentiable at (0, 0) [B:F, §1.3.1]. Furthermore the differential

Df̃(0,0) is the composite of

V [
1

t
]a ×W [

1

t
]b

i
−−−−→ (F0)

a × (F0)
b Dfa

0
+Dfb

0−−−−−−−→ (F0)
c.

Condition (ii) says exactly that Df̃(0,0) is surjective. The Claim is proven.

We apply the implicit function theorem to the function f̃ [B:F, §1.5.2] (see [Sc,
§4] for concocting a proof). Lemma 3.2.(4) shows that V [1

t
]a ×W [1

t
]b is a Banach

K–space and so is F0. There exists then an open neighborhood Υ ⊂ Ω̃ of (0, 0) in

V [1
t
]a×W [1

t
]b such that f̃|Υ is open. Up to shrink Υ we can assume that Υ ⊂ V ×W

according to Lemma 3.2.(3). There exists then a real number ǫ > 0 such that
{
y ∈ (F0)

c | |y |≤ ǫ
}
⊂

{
y ∈ (F0)

c | |y |< 2ǫ
}
⊂ f̃(Υ).

We conclude that for all y ∈ (F0)
c with |y | ≤ ǫ, there exist v ∈ V a and w ∈ W b such

that (v, w) ∈ Ω and f(v, w) = y. �

Corollary 3.5. Let n be a positive integer. Let Ω ⊂ (F0)
n × (F0)

n be an open
neighborhood of (0, 0) and let f : Ω→ (F0)

n be an analytic map which satisfies

(i) f(0, 0) = 0;

(ii) f(x, 0) = f(0, x) = x over an open neighborhood Υ of 0.

Then there is a real number ǫ > 0 such that for all a with |a | ≤ ǫ, there exist v ∈ V n

and w ∈ W n such that (v, w) ∈ Ω and f(v, w) = a.

Proof. In this case we have a = b = c = n and Dfa
0 = Df b

0 = Id(F0)n so that
Proposition 3.3 applies. �
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3.2. Kneser-Tits’ subgroups. Continuing in the previous setting, we assume fur-
thermore that F1 is t-adically dense in F0. Let F ⊂ F1∩F2 be a subfield. For dealing
later with Weil restriction issues it is convenient to deal with a finite field extension
E of F .

Proposition 3.6. Let H be a semisimple simply connected E–group scheme as-
sumed strictly isotropic. We put G = RE/F (H). For each overfield L of F , we
put G(L)+ = H(L ⊗F E)+ where the second group is that defined in §2.1. Then we
have the decomposition

G(F0)
+ = G(F1)

+ G(F2)
+.

Proof. Without lost of generality we can assume that F is infinite. The proof is based
on an analytic argument requiring some preparation.

Let P be a strictly proper parabolic E–subgroup of H . Let U be its unipo-
tent radical and Ulast the last part of Demazure’s filtration [G-P-S, §3.2]. Let u :
Gd

a,E
∼
−→ Ulast be a E–group isomorphism. According to [G-P-S, Lemma 3.4(3)],

EP (E).Lie(Ulast)(E) generates Lie(H)(E). There exists g1, . . . , gn ∈ EP (E) such
that

Lie(H)(E) = g1Lie(Ulast)(E)⊕ g2Lie(Ulast)(E)⊕ · · · ⊕ gnLie(Ulast)(E).

We consider the map h : (Gd
a,E)

n → H , h(x1, . . . , xn) = g1u(x1) . . .
gnu(xn). Its

differential at 0 is dh0,0 : Edn ∼= Lie(Ulast)(E)n → Lie(H)(E), (X1, . . . , Xn) 7→∑n
i=1

giXi, so is an isomorphism. The map h is then étale at a neighborhood of
0. It follows that h♯ = RE/F (h) : RE/F

(
(Gd

a,E)
n
)
→ G = RE/F (H) is étale also at a

neighborhood of 0 [C-G-P, A.5.2.(4)]
Since the field F0 is henselian, the local inversion theorem holds [G-G-MB, prop.

2.1.4]. We mean that there exists an open neighborhood Υ ⊂ (F0)
n such that the

restriction h♯|Ω : Υ→ G(F0) is a topological open embedding.
We consider now the product morphism q : Υ× Υ→ G(F0), q(x, y) = h♯(x)h♯(y).

We put Ω = q−1(h♯(Υ)), this an open subset of (F0)
2n. Then the restriction q|Ω defines

an (unique) analytical map f : Ω→ Υ such that q(x, y) = h♯(f(x, y)).
By construction we have f(0, x) = f(x, 0) = x for x in a neighborhood of 0 ∈ (F0)

n.
We apply Corollary 3.5 to f so that there exists ǫ > 0 such that for each a ∈ Υ with
| a | ≤ ǫ, there exist v ∈ V n and w ∈ W n such that (v, w) ∈ Ω and f(v, w) = a. We
denote by Υǫ = Υ ∩ B(0, ǫ). Then h−1

♯ (Υǫ) is an open neighborhood of 0 in (F0)
n.

Let us now prove that G(F0)
+ = G(F1)

+ × G(F2)
+. Since F1 is dense in F0,

G(F1)
+ is dense in G(F0)

+. It is then enough to show that Υǫ ⊂ G(F1)
+ × G(F2)

+.
Let g = h(a) ∈ h♯(Υǫ). Then a = f(v, w) with (v, w) ∈ Ω. It follows that g = h(a) =
h♯(f(v, w)) = q(v, w) = h♯(v)h♯(w) ∈ G(F1)

+ ×G(F2)
+. �

This could be refined as follows.
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Proposition 3.7. Let H be a reductive E-group and put G = RE/F (H).

(1) RG(F1)RG(F2) contains an open neighborhood of 1 in G(F0).

(2) If RG(F1) is dense in RG(F0), then RG(F1)RG(F2) = RG(F0);

(3) If H is semisimple simply connected and HF1⊗FE is strictly isotropic, then we
have

G(F1)
+ RG(F2) = G(F0)

+.

(4) If H is semisimple simply connected and HFi⊗FE is strictly isotropic for i = 1, 2,
then G(F1)

+ G(F2)
+ = G(F0)

+.

The subgroups G(F1)
+, G(F0)

+ are defined as in Proposition 3.6.

Proof. (1) Let T ⊂ H be a maximal E–torus and let 1 → S → Q
s
−→ T → 1

be a resolution of T where Q is a quasitrivial torus and S is a torus. We have
Q = RC/E(Gm) where C is an étale E–algebra so that Q is an open subset of the
affine E–space W(C).

We use now Raghunathan’s technique [R, §1.2]. There exists h1, . . . , hr ∈ H(E)
such that Lie(H)(E) = g1Lie(T )(E)⊕ g2Lie(T )(E)⊕ · · ·⊕ grLie(T )(E). We consider
the map h : (Qn)E → H , h(x1, . . . , xn) =

g1s(x1) . . .
gns(xn). Its differential at 0 is

dh0 : C
r → Lie(H)(E), (c1, . . . , cr) 7→

∑
i

gids(ci), and is onto (observe that Lie(Q)(E)→
Lie(T )(E) is surjective).

We cut now Qr by some suitable affine E–subspace W(Cn) of W(C)r such that
the restriction h′ of h to X = Qr ∩W(Cn) is such that dh′

0 : TanX,1 → Lie(H)(F ) is
an isomorphism. Note that X and E have same dimension n over E.

The map h′ is then étale at a neighborhood of 1. It follows that
h′
♯ = RE/F (h

′) : RE/F

(
X
)
→ G = RE/F (H) is étale also at a neighborhood of 0

[C-G-P, A.5.2.(4)]
Since the field F0 is henselian, the local inversion theorem holds [G-G-MB, prop.

2.1.4]. We mean that there exists an open neighborhood Υ ⊂ (F0)
n such that the

restriction h′
♯|Ω : Υ→ G(F0) is a topological open embedding.

We consider now the product morphism q : Υ×Υ→ G(F0), q(x, y) = h′
♯(x) h

′
♯(y).

We put Ω = q−1(h′
♯(Υ)), this an open subset of (F0)

2n. Then the restriction q|Ω defines
a (unique) analytical map f : Ω→ Υ such that q(x, y) = h′

♯(f(x, y)).
By construction we have f(0, x) = f(x, 0) for x in a neighborhood of 0 ∈ F n

0 . We
apply Corollary 3.5 to f so that there exists ǫ > 0 such that for each a ∈ Υ with
| a | ≤ ǫ, there exist v ∈ V n and w ∈ W n such that (v, w) ∈ Ω and f(v, w) = a. We
denote by Υǫ = Υ ∩ B(0, ǫ). Then h′

♯
−1(Υǫ) is an open neighborhood of 0 in (F0)

n.
We claim that Υǫ ⊂ RG(F1)RG(F2). Let g = h′

♯(a) ∈ h(Υǫ). Then a = f(v, w)
with (v, w) ∈ Ω. It follows that g = h′

♯(a) = h♯(f(v, w)) = q(v, w) = h′
♯(v)h

′
♯(w) ∈

RG(F1)×RG(F2).

(2) If RG(F1) is furthermore dense in RG(F0), then (1) shows that RG(F1)RG(F2)
is a dense open subset of RG(F0). Thus RG(F1)RG(F2) = RG(F0)



LOCAL-GLOBAL PRINCIPLE 9

(3) We assume that H is semisimple simply connected and that GF1⊗FE1
is strictly

isotropic. According to Lemma 2.2.(2), we have G(F1)
+ = RG(F1) = RH(F1⊗FE) =

H+(F1 ⊗F E) and similarly for F0.
Since H+(F1 ⊗F E)+ is dense in H+(F0 ⊗F E), it follows that RG(F1) is dense in

RG(F0). Assertion (2) yields then RG(F1)RG(F2) = RG(F0). Lemma 2.3.(2) states
that G(F1)

+ = RG(F1) and G(F0)
+ = RG(F0). We conclude that G(F1)

+ RG(F2) =
G(F0)

+.

(4) We have furthermore G(F2)
+ = RG(F2) so that (3) yields G(F1)

+ G(F2)
+ =

G(F0)
+. �

Remark 3.8. Note that (1) shows in particular that RG(F0) is an open subgroup of
G(F0).

The main result of the section is the following patching statement on twisted flag
varieties.

Theorem 3.9. We put F = F1 ∩ F2. Let H be a reductive E–group and let X be a
twisted flag E–variety of H. Assume that X is auto-opposite, that is, the stabilizer
P of an Es–point of X is conjugated to an opposite parabolic subgroup of P [B-T1,
§4.9]. We put G = RE/F (H) and Z = RE/F (X). If Z(F1) 6= ∅ and Z(F2) 6= ∅, then
X(F ) 6= ∅.

Proof. Without loss of generality, we can assume that H is semisimple simply con-
nected and that it is absolutely E–simple. This implies that H is strictly Fi ⊗F E–
isotropic for i = 1, 2. Let xi ∈ Z(Fi) = X(Fi⊗FE) and denote by Pi = StabGF2

(x2) its
stabilizer, this is parabolic Fi⊗F E–subgroup of H . We denote by Ui/E its unipotent
radical.

Since the conjugacy class of P1 is autopposite, there exists h ∈ H(E⊗FF0) such that
P1,E⊗FF0

is opposite to hP2,E⊗FF0
[SGA3, XXVI.5.3]. According to Lemma 2.1, we

have H(E⊗FF0) = H+(E⊗FF0)P2(E⊗FF0) so we can assume that h ∈ H+(E⊗FF0).
According to Proposition 3.7.(4), we can write h = h1 h2 with hi ∈ H+(E ⊗F Fi) for

i = 1, 2. Up to replace P1 by h−1

1 P1 and P2 by h−1

2 P2 we can then assume that P1,F0
is

opposite to P2,F0
. According to [SGA3, XXVI.5.1], we have a decomposition

(3.4) H(F0 ⊗F E) = U2(F0 ⊗F E)U1(F0 ⊗F E)P2(F0 ⊗F E).

Let h ∈ H(F0 ⊗F E) such that x1 = h.x2. The preceding decomposition permits to
write h = u2 u1 p2 with u2 ∈ U2(F0 ⊗F E), u1 ∈ U1(F0 ⊗F E) and p2 ∈ P2(F0 ⊗F E).
It follows that

x1 = u−1
1 .x1 = (u−1

1 h).x2 = (u−1
1 u2 u1) . (p2.x2) = (u−1

1 u2 u1) . x2

hence x1 ∈ H(F0 ⊗F E)+.x2. According to Proposition 3.7.(4), we have G(F0)
+ =

G(F1)
+ G(F2)

+ so that u−1
1 u2 u1 = g1 g2 with gi ∈ G(Fi)

+ for i = 1, 2. It follows that
g−1
1 . x1 = g−1

2 . x2, this defines a point of X(E) = Z(F ). �
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4. Relation with the original HHK method

We recall the setting. Let T be an excellent complete discrete valuation ring with
fraction field K, residue field k and uniformizing parameter t. Let F be a one-variable
function field over K and let X be a normal model of F , i.e. a normal connected
projective T -curve with function field F . We denote by Y the closed fiber of X and
fix a separable closure Fs of F .

For each point P ∈ Y , let RP be the local ring of X at P ; its completion R̂P is a
domain with fraction field denoted by FP .

For each subset U of Y that is contained in an irreducible component of Y and
does not meet the other components, we define RU =

⋂
P∈U

RP ⊂ F . We denote by

R̂U the t–adic completion of RU . The rings RU and R̂U are excellent normal domains

and we denote by FU the fraction field of R̂U [H-H-K3, Remark 3.2.(b)].

Each height one prime p in R̂P that contains t defines a branch of Y at P lying
on some irreducible component of Y . The t-adic completion R̂p of the local ring Rp

of R̂P at p is a complete DVR whose fraction field is denoted by Fp. The field Fp

contains also FU if U is an irreducible open subset of Y such that P ∈ U \ U . We
have then a diagram of fields

Fp

FP

>>⑥⑥⑥⑥⑥⑥⑥⑥

FU .

``❇❇❇❇❇❇❇❇

Example 4.1. We assume that T = k[[t]] and take X = P1
K , X = P1

T , P = ∞k,
U = A1

k = Spec(k[x]). The ring RU contains k[[t]][x] and is its localization with
respect to the multiplicative set S of elements which are units modulo t. The t-adic

completion of RU is R̂U = k[x][[t]]; we have FU = Frac(R̂U) = k(x)((t)). The local

ring of X at P =∞k is RP = k[[t]][x−1](x−1,t) so that its completion is R̂P = k[[t, x−1]];
in particular FP = k((t, x−1)).

We take p = tR̂P ⊂ R̂P and the t-adic completion R̂p of the local ring Rp of R̂P at
p is a complete DVR which is k((x−1))[[t]]. In particular Fp = k((x−1))((t)).

Setting 4.2. Let P be a non-empty finite set of closed points of Y that contains all
the closed points at which distinct irreducible components meet. Let U be the set of
connected components of Y \ P and let B be the set of branches of Y at points of
P. This yields a finite inverse system of field FP , FU , Fp (for P ∈ P; U ∈ U , p ∈ B)
where FP , FU ⊂ Fp if p is a branch of Y at P lying in the closure of U .

Lemma 4.3. We assume that X = P1
K, X = P1

T , P =∞k, U = A1
k = Spec(k[x]) and

p the branch of P . We put F1 = FP , F2 = FU and F0 = Fp.



LOCAL-GLOBAL PRINCIPLE 11

(1) F1 is t-dense in F0.

(2) We put V = F1 ∩ R̂p and W = F2 ∩ R̂p. Then V and W satisfy conditions (3.1)
and (3.2).

Proof. (1) We are given u0/v0 ∈ F0 with u0, v0 ∈ R̂p, v0 6= 0. There exists elements
u, v ∈ Rp very close respectively of u0, v0 with v 6= 0. Let s1, s2 ∈ Rp \Rpp such that
s1u ∈ RP and s2v ∈ Rp. Then u0/v0 is very close of (s1s2u)/(s1s2v) ∈ F1.

(2) Condition (3.2) is obviously fullfilled since t ∈ F1 ∩F2. For establishing condition

(3.1), we are given an element f of R̂p and may write it as f =
∞∑
i=0

xmi

(∑∞
j=0 ai,j

1
xj

)
ti

where the mi’s are non-negative integers and ai,j ∈ T . We decompose

f = f1 + f2 =
∞∑

i=0

xmi

( ∞∑

j=mi

ai,j
1

xj

)
ti +

∞∑

i=0

xmi

(mi−1∑

j=0

ai,j
1

xj

)
ti

We observe that f2 belongs to R̂P so belongs to V . We recall that RU is the localization
of T [x] with respect to the elements which are units modulo t. We conclude that f2
belongs to W as desired. �

Theorem 4.4. Let G be a reductive F–algebraic group.

(1) Let Z be a twisted flag projective F–variety for G. Then Z(F ) 6= ∅ if and only if
Z(FU) 6= ∅ for each U ∈ U and Z(FP ) 6= ∅ for each P ∈ P.

(2) For each U ∈ U (resp. each P ∈ P), we fix an F–embeddings iU : Fs → FU,s (resp.

iP : Fs → FP,s) providing identifications ∆(GFs
)

∼
−→ ∆(GFU,s

) (resp. ∆(GFs
)

∼
−→

∆(GFP,s
)). The Tits index ∆0(G) is the smallest subset of ∆(GFs

) which is stable
under the ⋆–action of Gal(Fs/F ) and such that ∆0(G) ⊂ ∆0(GFU

) for each U ∈ U
and ∆0(G) ⊂ ∆0(GFP

) for each P ∈ P.

The recollection for star action and Tits index is done in the beginning of the paper.

Proof. The outline is to prove (1) under an assumption of autoppositeness, to prove
(2) and then to prove (1) in the general case.

(1) We assume that Z parameterizes an auto-opposite conjugacy class of parabolic
subgroups of G. We use a Weil restriction argument as in the proof of [H-H-K2, Thm.
4.2]. This involves a finite morphism f : X → P1

T such that P = f−1(∞k). Write F
for the function field of P1

T , and let d = [F : F ′]. We put U = P1
k \ {∞}, P =∞k and

p = (U, p) and F0 = Fp, F1 = FP and F2 = FU. Also patching holds for the diamond

(F, F1, F2, F0) according to [H-H, thm 3.9] so in particular K(x) = F = F1 ∩F2 ⊂ F0.

We put V = F1 ∩ R̂p and W = F2 ∩ R̂p. Lemma 4.3 shows that F1 is dense in F0 and
that V and W satisfy conditions (3.1) and (3.2).



12 P. GILLE AND R. PARIMALA

We consider the Weil restriction G = RF/F(G), it is a reductive F–group which
acts on the F–variety Z = RF/F(Z). We have

Z(F1) = Z(F1 ⊗F F ) =
∏

P∈P

Z(FP )

according to [H-H, Lemma 6.2.(a)]. Similarly we have

Z(F2) = Z(F2 ⊗F F ) =
∏

U∈U

Z(FU)

Our assumptions imply that Z(F1) 6= ∅ and Z(F2) 6= ∅. Theorem 3.9 implies that
Z(F) 6= ∅. Thus Z(F) = Z(F ) is non-empty.

(2) Let Θ be the smallest subset of ∆(GFs
) which is stable under the ⋆–action of

Gal(Fs/F ) and such that ∆0(G) ⊂ ∆0(GFU
) for each U ∈ U and ∆0(G) ⊂ ∆0(GFP

)
for each P ∈ P. Since Θ is an intersection of auto-opposite subsets of ∆(GFs

), it is
auto-opposite.

We observe that ∆0(G) ⊂ Θ since it is stable under the star action and satisfies
∆0(G) ⊂ ∆0 for each U ∈ U and ∆0(G) ⊂ ∆0(GFP

) for each P ∈ P. For the converse
inclusion we consider the F–variety Z of parabolic subgroups of type Θ (which is
auto-opposite). For each U ∈ U , we have Θ ⊂ ∆0(GFU

) so that Z(FU) 6= ∅; similarly
we have Θ ⊂ ∆0(GFP

) for each P ∈ P so that Z(FP ) 6= ∅. Part (1) yields that
Z(F ) 6= ∅. Thus Θ ⊂ ∆0(G) and Θ = ∆0(G)

(3) We consider now the case of an arbitrary flag F–variety Z for G. It is associated
to a subset Υ of ∆(GFs

) which is invariant under the ⋆–action of Gal(Fs/F ). If
Z(F ) 6= ∅, we have that Z(FU) 6= ∅ for each U ∈ U and that Z(FP ) 6= ∅ for each
P ∈ P. Conversely if Z(FU) 6= ∅ for each U ∈ U and Z(FP ) 6= ∅ for each P ∈ P.
It follows that Υ ⊂ ∆0(GFU

) for each U ∈ U . Part (2) of the statement yields
Υ ⊂ ∆0(G) so that Z(F ) 6= ∅. �

Corollary 4.5. Let G be a reductive F–algebraic group.

(1) Let Z be a twisted flag projective F–variety for G. Then Z(F ) 6= ∅ if and only if
Z(FP ) 6= ∅ for each P ∈ Y .

(2) For each P ∈ Y , we fix an F–embedding iP : Fs → FP,s providing identifications

∆(GFs
)

∼
−→ ∆(GFP,s

). The Tits index ∆0(G) is the smallest subset of ∆(GFs
) which

is stable under the ⋆–action of Gal(Fs/F ) and such that ∆0(G) ⊂ ∆0(GFP
) for each

P ∈ Y .

Proof. (1) We assume Z(FP ) 6= ∅ for each P ∈ Y . Let Y1, . . . , Yd be the irreducible
components of Y with respective generic points η1, . . . , ηd. According to [H-H-K2,
prop. 5.8], there exists non-empty affine subsets Ui ⊂ Yi (i = 1, . . . , d) such that
Z(FUi

) 6= ∅ for i = 1, . . . , d and Ui ∩ Uj = ∅ for i < j. We apply Theorem 4.4 to
U = {U1, . . . , Ud}, P = Y \ ∩iUi and get that Z(F ) 6= ∅.

(2) This readily follows of (1).
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�

Corollary 4.6. Let G be a reductive F–algebraic group and assume that G is the
generic fiber of a reductive X-group scheme G.

(1) Let Z be a twisted flag projective F–variety for G. Then Z(F ) 6= ∅ if and only if
Z(Fv) 6= ∅ for each discrete valuation v of F .

(2) For each discrete valuation v of F , we fix an F–embedding iv : Fs → Fv,s providing

identifications ∆(GFs
)

∼
−→ ∆(GFv,s

). The Tits index ∆0(G) is the smallest subset of
∆(GFs

) which is stable under the ⋆–action of Gal(Fs/F ) and such that ∆0(G) ⊂
∆0(GFv

) for each discrete valuation v on F .

Proof. (1) We assume that Z(Fv) 6= ∅ for each discrete valuation v of F . Let G be a
reductive X–group of generic fiber G. Then Z is the generic fiber of an X–scheme of
parabolic subgroups Z. For applying Corollary 4.5, we have to check that Z(FP ) 6= ∅
for each P ∈ Y . If Q is a point of codimension 1 of X, it defines a discrete valuation
vQ on F whose completion is FQ. Our assumption implies then that Z(FQ) 6= ∅ in
that case. We deal now with the case of a closed point P of X. Let D be an irreducible
component of Y = Xk containing P and let Q be the generic point of D. Since Z is
proper over T , we have Z(R̂Q) = Z(FQ) which is not empty by the preceding case. It
follows that Zk(k(D)) 6= ∅. Again Zk is projective so that Zk(D) = Zk(k(D)) is not
empty and in particular Zk(k(P )) is not empty. Since Z is smooth over X, the Hensel

lemma shows that Zk(R̂X,P ) → Zk(k(P )) is surjective. Thus Z(R̂X,P ) is not empty
and so is Z(FP ).

(2) It readily follows of (1).
�

Corollary 4.7. Let G be a reductive F–algebraic group. We denote by Ω1
F the set of

rank one valuations of F .

(1) Let Z be a twisted flag projective F–variety for G. Then Z(F ) 6= ∅ if and only if
Z(Fv) 6= ∅ for each v ∈ Ω1

F .

(2) For each v ∈ Ω1
F , we fix an F–embedding iv : Fs → Fv,s providing identifications

∆(GFs
)

∼
−→ ∆(GFv,s

). The Tits index ∆0(G) is the smallest subset of ∆(GFs
) which

is stable under the ⋆–action of Gal(Fs/F ) and such that ∆0(G) ⊂ ∆0(GFv
) for each

v ∈ Ω1
F .

Proof. (1) We assume that Z(Fv) 6= ∅ for each v ∈ Ω1
F . According to [H-H-K-P, Thm

2.5], there exists a regular model X′ of F such that Z(FP ) 6= ∅ for each P ∈ X′ ×T k.
Then Corollary 4.6.(1) shows that Z(F ) 6= ∅.

(2) This readily follows of (1). �
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5. Local-global principle for discrete valuations

Let T be an excellent DVR of fraction field K and residue field k. Let X be
a smooth, projective, geometrically integral curve over K. Let F = K(X) be the
function field of X.

Lemma 5.1. Let X be a projective, flat curve over A which is connected and regular
such that XK = X. Let H be a flat affine X–group scheme of finite presentation and
assume that there exists a Zariski cover (Ui)i∈I of X such that each HUi

admits a closed
embedding HUi

⊂ GLni
such that GLni

/HUi
is representable by an affine Ui–scheme,

Let γ ∈ H1
fppf(F,H) and let D be a divisor of X which contains the irreducible

components of Y = Xk and such that γ extends to X \DK.

Then there exists a proper birational morphism q : X′ ∼
−→ X such that X′ is a

regular model of X and such that D′ = q∗D is a strict normal crossing divisor and

γ ∈ Im
(
H1(X′ \D′,H)→ H1(F,H)

)
.

Proof. Using a passage to the limit argument [Mg], there exists an open affine sub-
scheme U1 ⊂ X \ D such that γ extends to a class γ1 ∈ H1(U1,H). According to
[G-P1, cor 1.8], γ1 extends to a class γ2 ∈ H1(U2,H) where U2 is an open subscheme
of X \D containing U1 and X \DK .

By purity (i.e. Theorem 7.1 of the appendix 7), we have H1(X\D,H) = H1(U2,H).
Thus γ extends over X \D.

According to Lipman’s theorem we can resolve the singularities of X and transform
D in a strict normal crossing divisor, see [H-H-K, lemma 4.7]. �

Proposition 5.2. Let G be a reductive F–group and assume that p does not divide
the order of the automorphism group of the absolute root system of Gad.

Let Z be a twisted flag variety of G. We assume that Z(Fv) 6= ∅ for all discrete
valuations of F arising from models of X.

Then there exists a regular model X of X and a finite subset P of Y = Xk (contain-
ing) all the closed points at which distinct irreducible components meet) such that for
each triple of fields {FU , FP , Fp} as in Setting 4.2, we have Z(FU) 6= ∅ and Z(FP ) 6= ∅.

Proof. Without loss of generality we can assume that G is adjoint. Let G0 be the
Chevalley form of G and let (B0, T0) be a Killing couple for G0 and let ∆0 be the
associated Dynkin diagram. The variety Z is a form of the variety ParI(G0) of
parabolic subgroups of type I where I ⊂ ∆0 is stable under the star action defined by
the Aut(G0)–torsor Q = Isom(G0, G). In particular Q admits a reduction QI to the
stabilizer AutI(G0) for the action Aut(G0) on ∆0 through the morphism Aut(G0)→
Out(G0)

∼
−→ Aut(∆0). Furthermore Z is isomorphic to QIParI(G0).

We apply now Theorem 1.1.(b) of [C-G-R] to the Z–group scheme AutI(G0).
It provides a finite Z–subgroup S0 of AutI(G0) such that the map H1(F, S0) →
H1(F,Aut(G0)) is onto. Furthermore the construction of S0 is explicit in the proof,
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it is an extension of the finite constant group AutI(G0)/T0 by a finite subgroup of T0.
In particular S0 is finite free over Z and our assumption on the characteristic implies
that S0,T is finite étale of rank prime to p. It follows that QI admits a reduction to
an F–torsor E under S0.

The finite flat Z–group scheme S0,A admits a faitful representation S0 →֒ GLN,Z

[BT, §1.4.5] and the quotient GLN,Z /S0 is representable by an affine Z-scheme [D-G,
§III.2.6].

According to Lemma 5.1, there exists a regular model X of X and a strict normal
crossing divisor D containing the irreducible components Yk such that E extends to a
X \D–torsor E under S0. We put QI = E∧S0 AutI(G0) and consider the X \D-group
scheme G = QIG0 of generic fiber G.

Let Y1, . . . , Yd be the irreducible components of the closed fiber Y = Xk with
respective generic points η1, . . . , ηd. According to [H-H-K2, prop. 5.8], there exists
non-empty affine subsets Ui ⊂ Yi (i = 1, . . . , d) such that Z(FUi

) 6= ∅ for i = 1, . . . , d
and Ui ∩ Uj = ∅ for i < j. Up to refine the model, we can assume that Yi \ Ui ⊂ Dk

for i = 1, ..., d.
We put P = Y \ ∪iYi and want to establish that Z(FP ) 6= ∅ for each P ∈ P. We

are given a point P ∈ P and pick a height one prime p in R̂P that contains t. It
defines a branch of Y at P lying on some irreducible component Yi of Y . We deal
now with U = Ui.

We consider the local ring A = RP of X at P and denote by AD its localization at
D. Since S0,T is finite étale of degree prime to p, H1(AD, S0) consists in loop torsors as
defined in [Gi2, §2.3, lemma 2.3.(2)], i.e. those arising from cocycles related to tame
Galois covers of AD. It follows that the AD–torsor QI is a loop AutI(G)–torsor [Gi2,
lemma 2.3.(3)], so that G×X\D AD is by definition a loop reductive group scheme.

Let FP,v be the completion of the field FP for the valuation associated to the blow-up
of Spec(A) at its closed point. Our assumption states in particular that Z(FP,v) 6= ∅,
that is, GFP,v

admits a parabolic subgroup of type I. According to [Gi2, th. 4.1 , (iii)
=⇒ (i)], G×X\D AD admits a parabolic subgroup of type I. A fortiori GFP

admits a
parabolic subgroup of type I so that Z(FP ) 6= ∅. �

Remarks 5.3. (a) If p = 0, the result used [Gi2, th. 4.1] admits a simple proof,
see [Gi2, Ex. 4.2], by using the analogous result over Laurent polynomials [G-P2, th.
7.1].

(b) In nice cases inspection of the proof permits to weaken the assumption on p.
The precise condition is that the Aut(G0)–torsor Isom(G0, G) admits a reduction to
a finite F–subgroup whose degree is prime to p. For example in type G2, we need to
assume only that p is prime to 2.

Together with Theorem 4.4.(1), we obtain the following consequence.

Theorem 5.4. Let G be a reductive F–group and assume that p does not divide the
order of the automorphism group of the absolute root system of Gad. Let Z be a
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twisted flag F–variety of G. Then Z(F ) 6= ∅ if and only if Z(Fv) 6= ∅ for all discrete
valuations of F arising from models of X.

6. Appendix: characterization of parabolic subgroups.

Let G be a reductive F–group over a field F . We remind the reader that an
algebraic F–subgroup P of G is parabolic if P is smooth and G/P is a projective
F–variety. The interest of the probably known statement below is only in positive
characteristic since in this case there exist F–subgroups Q which are not smooth such
that G/Q is a projective F–variety [W].

Proposition 6.1. Let P be a k–subgroup of G such that the quotient variety G/P is
projective. Then the following assertions are equivalent:

(i) P is an F–parabolic subgroup;

(ii) For each F–field E, G(E) acts transitively on (G/P )(E);

(iii) The quotient map G→ G/P admits a rational section;

(iv) P is smooth connected;

(v) P is smooth.

Proof. (i) =⇒ (ii). Since (G/P )(E) parameterizes the E–parabolic subgroups of GE

of same type that P , Borel-Tits’ conjugacy theorem [B-T1, th. 4.13.c] shows that
G(E) acts transitively on (G/P )(E).

(ii) =⇒ (iii). Our assumption rephrases by saying that the map G(E)→ (G/P )(E)
is onto for each F–field E. Applying that to the function field E = F (G/P ) of the
smooth connected F - variety G/P provides a rational section of the map G→ G/P .

(iii) =⇒ (iv). To show the smoothness of P we can assume that F is algebraically
closed. Then the neutral component Q = (Pred)

0 of the reduced F–subgroup Pred of
P is smooth. Furthermore the quotient F–variety P/Q is finite. It follows that the
morphism q : G/Q→ G/P is finite and a fortiori projective [St, Tag 0B3I]. Since the
composition of projective morphisms (of qcqs schemes) is projective [St, Tag 0C4P],
it follows that G/Q is projective. The F–subgroup Q of G is then parabolic. Our
assumption is that the morphism G → G/P has a rational section and so has a
fortiori the finite morphism q : G/Q→ G/P . According to [EGAII, cor. 6.1.15], q is
an isomorphism. Thus Q = P and we conclude that P is smooth connected.

(iv) =⇒ (v). Obvious.

(v) =⇒ (i). This is by definition. �

A variant is the following.

Proposition 6.2. Let X be a smooth projective G–variety. Then the following state-
ments are equivalent:

(i) X is a F–variety of parabolic subgroups of G;

(ii) For each F–field E, G(E) acts transitively on X(E).
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Proof. The implication (i) =⇒ (ii) is again Borel-Tits’ conjugacy theorem. We as-
sume (ii). According to [M-P-W, prop. 1.3], we can assume that F is separably
closed. Since X is smooth, we have X(F ) 6= ∅ and denote by P the stabilizer of
some F–point x. According to [D-G, prop. III.3.2.1]. condition (ii) implies that the

orbit map G → X, g 7→ g.x induces an isomorphism fx : G/P
∼
−→ X. Proposition

6.1, (ii) =⇒ (i), shows that P is a F–parabolic subgroup. Thus X is a F–variety of
parabolic subgroups of G; �

Remark 6.3. The condition (ii) is called transitive action of G on X by Harbater-
Hartmann-Krashen. It occurs in [H-H-K, th. 3.7]. Projective homogeneous varieties
in the result quoted above are exactly the various varieties of parabolic subgroups.

7. Appendix: extending torsors

We come back to a purity result of Colliot-Thélène and Sansuc.

Theorem 7.1. Let X be a regular scheme of dimension 2. Let U be an open subcheme
of X which contains X(1). Let G be an affine X–group scheme. In the following cases

(i) G is reductive,

(ii) There exists a Zariski cover (Ui)i∈I of X such that each GUi
admits a closed

embedding GUi
⊂ GLni

such that GLni
/GUi

is representable by an affine Ui–scheme,

then we have the equality H1
fppf(X,G)

∼
−→ H1

fppf(U,G).

Proof. The case (i) is [C-T-S2, th. 6.13]. The case (ii) goes by inspection of the
proof. �
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