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Abstract

In this paper, we show that any displacement of a plate is the sum of a Kirchhoff-Love displace-
ment and two terms, one for shearing and one for warping. Then, the plate is loaded in order to
get that the bending and shearing contribute the same order of magnitude to the rotations of the
fibers.

Key Words: linear elasticity, elementary displacement, Kirchhoff-Love displacement, shearing, warp-
ing.
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1 Introduction

Modeled from the beam theory in the 19th century the theory of thin plates was developed assuming
that the fibers of the plate remain non-deformable and perpendicular to the mid-surface (Kirchoof-Love
displacements) and neglecting some components of the stress tensor. Later, Mindlin, Timoshenko,
Reissner and Uflyang developed the theory of thick plates taking into account the shear (see [1]). From
the 3D variational formulation of the elasticity problem for a plate, it has been proven that the limit
displacement is of Kirchoff-Love type. The limit of all the components of the stress tensor has been
also obtained (see e.g. [3,[4]). This justifies the first hypothesis and assumptions.

The aim of this paper is to give an a priori decomposition of a plate displacement as the sum of a
Kirchhoff-Love displacement, shearing and warping.

Consider a plate €25 whose mid-surface is a bounded domain w and whose thickness is 26. We show
that every displacement u € W1P(Qs) can be written as

U (o) — 23 223 (o) 7t ()
/
u(zr) = 3 + | x3ve(x + u(x for a.e. x in Q. 1.1
D= |ty -y @) [+ 30 NCRY
Us (l‘/) 0 warping
g
Kirchhoff-Love displacement shearing

Here, U,, = Uie; + Uszes is the membrane displacement, it represents the displacement of the mid-
OU- ou

surface of the plate, U3 is the bending. The map z3 € R +— z3 (a—d(x')el + Ts(x')@) stands for a
X1 xro

O
small rotation of the fiber {2’} x (=4, ) whose axis is directed by 8—3(x’)e1 - ﬁ(x’)eg and whose

o o1



angle is approximately equal to the euclidian norm of this vector. Since we are in the framework of
small displacements, the symmetric part of the rotation is neglected. After rotation, the fiber remains
perpendicular to the plate mid-surface.

The second term in the above writing represents the shear: z3(t1(2')e; + t2(2')es), that is two small
rotations of the fiber {2/} x (=4, d), the first one with axis e; and angle —t;(2’) and axis e; and angle
tao(2’) for the second. The last displacement is the warping, it gives informations on the deformations
of the fibers. It satisfies 4 simple relations (a € {1,2})

5 5
/ Ug (2, 23)dxs = / Ug (2, w3)x3drs =0  for ae. 2’ € w. (1.2)
-5 -5

Such a decomposition is of interest only if we can give an order of the different terms that compose it.
For a loading of the plate whose elastic strain energy (the square of the L? norm of the strain tensor)
of order §°, usually the membrane displacement is of order §2, the bending of order §, the rotations
of the fibers of order 62, v; and tp of order 62 and so the shearing is of order §° (all the estimates in
Theorem |3.1]).

A few years ago, we introduced other decompositions to study thin structures made up of straight
or curbed rods, plates or shells. We have proven that any displacement of a curved or straight rod
is the sum of an elementary rod displacement plus a warping (see [0 [7, [8, [0l [10] [14], 15 [16]). This
decomposition method has been also applied for plates, shells and structures made up plates (see
[8, 1T, 19, [17]) or structures combining rods and plates (see [12} 13} 17, [25]). Later, the same ideas were
applied to decompose the deformations of thin structures (see [21], 22] 20] for curved rods or shells).

As a general reference on elasticity, we refer the reader to [2} [5]. For mathematical modeling of plates
we refer to [3 [4].
The paper is organized as follows:

e In Section [2] we introduce the main notations and we recall the first result on the decomposition
of a plate displacement.

e In Sectionthe new decomposition (|1.1)) of a plate displacement is introduced. Theorem give
all the estimates of the terms of this decomposition with respect to 0 and the LP norm of the
strain tensor. Then, if the plate is fixed on a part of its lateral boundary, Korn-type inequalities
are given.

e In Section 4] we choose a sequence of displacements of the clamped plate Q5 whose strain tensor
has a L? norm of order §27/?. In Theorem besides the limits of the terms of the decompo-
sition, we give the asymptotic behavior of the strain tensor using the limits of the terms of the
decomposition.

e In Section [5] we give an application of our decomposition, we load a straight plate in order to
obtain that the bending and the shearing contribute with the same order of magnitude to the
rotations of the fibers.

e In Section[6we conclude this study by giving a shorter decomposition for thin plate displacements

(see (6.1))).

e Appendix (Section [7]) is concerned with calculations needed in Section

In this work, the constants appearing in the estimates will always be independent from §. As a rule
the Latin indices 4, j, k and [ take values in {1, 2,3} while the Greek indices o and § in {1,2}. We also
use the Einstein convention of summation over repeated indices.

This paper is inspired by [26] and follows the same lines.



2 Notations and recalls

We denote by | - | the euclidian norm of R? and by - the associated scalar product.
In this paper, w denotes a bounded domain in R? with Lipschitz boundary. We refer w to an orthonormal
frame (O;el,eg). We set e3 = e; A es. So, the space R3? is referred to the orthonormal frame

(O;e1,e2,e3).
Denote

e ()5 the plate with mid-surface w and thickness 26

Qs = w x (—5,0)

o Y =(0,1)2, Z = (-1/2,1/2)2,

Z =(-1/2,3/2)* = interior(Z U (e; + Z) U (e2 + Z) U (e1 + ez + Z)),

- - — — (2.1)
Y =(0,2)> = interior (Y U (e; + Y) U (e2 + Y) U (e1 + €2 + Y)),

o w, = {2/ € R? | dist(z,w) < n} and Qf = wss x (—6,0)

o for every v € WHP(Qf)3, 1 < p < oo,

e(v) = %((V’U)T + Vv), eij(v) = ;<ng + ZZ)

e(v) is the 3 x 3 symmetric matrix whose entries are the e;;(v)’s.

Proposition 2.1. There exists §o > 0 such that for every ¢ € (0, dy], there exists an extension operator
Ps from WP(Q5)3 into WHP(Q5)3, 1 < p < oo, satisfying

Vu € Wl)p(Qf;)gv PJ(U) € Wl,p(Qg)Sa Pé(u)lﬂg =u He(‘PS(u))HLp(QS) < CHe(u)||LP(Qa)'
The constant does not depend on 6.

Proof. From [24] Lemma 5.22], there exists ¢; > 0 (which only depend on the boundary of w) such that
the boundaries dw,, for n € (0, d], are uniformly Lipschitz.

Besides, if w’ is a bounded domain with Lipschitz boundary, in [8, Lemma 4.2] we show that there
exist 6, € (0,0)/2] (which only depend on the boundary of w’) and for every § € (0,4, ] an extension

operator Py from Wl’p(w’ X (—0, 6))3 into WP (whs x (—6,0))%, 1 < p < oo, satisfying
3
Yu € Wl,p(w/ x (—6,6))", He(Pé(u))HLP(%SX(_M)) < Clle(u) Le(as)

where the constant does not depend on 4 (it depends on p and dw’, it is the same constant for all the
open sets wy, 1 € (0,07]).

Now, let u be a displacement in W' ()3, if § < &, /2, using the above result with w’ = w, we extend
w in oder to obtain a displacement belonging to WP (wys x (—4,d))3. Then, since 26 < §j, the open
set wos has a Lipschitz boundary. So, we can still apply the above extension result. We extend the
extension of u and we get a displacement belonging to WP (w5 x (—6,8))2. This gives the result of
the proposition. O

For simplicity, we will always write u instead of Ps(u) the extension of u to the plate .

Below we recall the definition of an elementary displacement of the plate.



Definition 2.2. An elementary displacement of the plate Qs is a displacement v € L'(Q5)3 written in
the form
vz’ x3) = V(2') + z3A(z") for a.e. x = (2',x3) € Q.

The component V belongs to L' (wss)® while A is in L' (wss)?, A= Aje; + Ases.
Here, V gives the mid-surface displacement and x3A(x’) represents a ”small rotation” of the fiber
{2’} x (=4,9), whose axis is directed by —Az(z')e1 +.A1 (2 )es and whose angle is approzimately | A(x')]|.

To any displacement u € L'(2})3 we associate a unique elementary displacement U*, € L*(Q})? and a
warping u* € L*(Qf)3
u(z) = Ugy(x) + " (x)

for a.e. © = (2/,23) € Q] 2.2
:Z(I) Z/{*(.T/) —|—1’3R*(I‘/) ( 3) 5 ( )

so that s s
/ u*(2', x3)drs = 0, / ul (2, z3)rsdrs =0 for a.e. 2’ € wss. (2.3)
5 _5

The above equalities determine U* () and R*(z') in terms of u and integrals over the fiber {2’} x (=4, )
(see [8] and [24] Chapter 11]). We have

1 3

6 6
(2" = 2—6/6u(x/,x3)dx3, R*(z') = 253 /6xg(ul(x/,zg)e1+u2(m’,x3)e2)dx3, for a.e. 2’ € wss.

Theorem 2.3 (Theorem 4.1 in [§]). Let u be a displacement belonging to WP(Qf)3, 1 < p < oo,

decomposed as (2.2)). The terms U*, R* and u* of this decomposition satisfy

@ | ;) < Cdlle(u)llLry)s V|| Le0q) < Clle(u )HLP(Q’)»
(2.4)

) . oUu; X
SIVR | Lo (wss) + lleap @) Lo(wss) + H or, TR

s < 575 le@ e,

The constant does not depend on 6.

Proof. All the estimates of (2.4) are the consequences of the ones in [8, Theorem 4.1] except that of
VR* which is replaced by

* C
Olleas(R Lr(wss) < m”e(u)nm(ﬂg)-

The above estimate and the 2D-Korn inequality give a rigid 2D-displacement r(z') = <Zl _T_Z?),
2 1

(a1, az,b) € R? such that
* * C
IR = xllwr sy < Clleas(RY)Lrwss) < gz le(wlizr@y)-

Thus, the above and (2.4))5 yield

|5+ =
0xq

le(u)llzr )

Lp(wgg) - 51+1/p

Now, let ¢ be in D(w) such that / ¢odz’ = 1. We have

oUs b )90 U5 0] 11 _ / _
/Kaml( "N+ ay bx2>ax2 <8x2 (x)—!—ag—i—ba:l)axl]da: =2b w(boda: = 2b.




Besides, the Holder inequality leads to

‘ / 81/[3 )+ a1 — be)% _ (8U§ (') + as + bxl)%} da’

8$1 8x2 81'2 axl
ous ous
(|2 . |2 v Tl
(] R bttt S |22 P
So, |b] < 51“/]0\\ e(u)||Lr (o) which in turn gives (2.4)s. O

Remark 2.4. Suppose that the plate is clamped on a part of its lateral boundary
s = v X (_5a 5)

where v C Ow is a set with non-null measure. Since the fields U* and R* are defined via integrals over
the fibers, we have

u* =0, R*=0, a.e on-, u" =0a.e. on L. (2.5)

3 Decomposition of a plate displacement via a Kirchhoff-Love
displacement

In this section we decompose every displacement as the sum of a Kirchoof-Love displacement and
shearing plus warping. This decomposition suits our purpose better and simplifies the way to obtain
estimates and later the asymptotic behaviors of sequences of displacements.

Denote
Es = {56%2 | 6(E+Y) ﬂw7é¢}, 5 =EsU (e1 +Z5) U (e2 4+ Zs) U (e + 2 + Ey),

ws = Interior U §(E+Y).
€SS

Observe that w C W5 C w3s and note that for every £ € =5, we have
5(E+Z)C(JJ35, 6(£—|—e1+Z)Cw35, 5(§+82+Z)CW35, 5(€+81+92+Z)Cw35.
So for every & € E5 we have 5(5 + Z) C wss.

For every ¢ € L (wss) we set

1
Ms(9)(t) = 5 /6Zgz5(t + 2)dzidzy, Yt = (t1,t2) € ws such that t + 62 C wss,

M;(6)(5€) = %/éy ¢(6€ + 2)dz1dze = Ms(9) (5£ + g(el + 82)), V¢ € Bs.

Now, let u be a displacement in W1?(2;)3, extended in an element belonging to W?(Q%)? and then

decomposed as (2.2)).

3.1 The Kirchhoff-Love displacement associated with u

We first set
Lﬁ = Z/{f, UQ = UQ* a.e. in w. (31)

Below, we define the third component U3 in @s. In the cell §(6 +Y), € € =5, we set

Z/{3($/) = (I)A,B7C (371 - 661,.’132 - 652)7 Vl‘/ = (331,(1}2) € 6(6 +?)a 6 = (51752)



where ® 4 B¢ is given in Appendix (see Subsection

= ( s(Uz)(68), Ms(U3)(0 + ber), Ms(Usz) (66 + dey + dey), Ms(Usz)(6¢ + des)),
—(Ms(RT)(8E), Ms(RY)(6E + der), Ms(R})(6E + der + des), Ms(RT)(6E + des)),
C= *( 5(R3)(68), Ms(R3)(6¢ 4 der), Ms(R3) (66 + dey + dez), Ms(R3)(5¢ + dez)).

By construction, Us belongs to W2P(&s).

The Kirchhoff-Love displacement associated with w is

U
Uy (z') — xga—z?(x’)
/ - _ / _
Ukr (2, z3) = Up (') — xg%(x') for a.e. x = (2, 23) = (x1, 22, 23) € Qs.
T2
Ug(.%'/)

3.2 The decomposition of the displacement u

Now, we write
u(z) = Ugp(x) + z3v(a) +a(x), for a.e. x in 5. (3.2)

The above equality defines t = t1e; + tae2 and @ by (a € {1,2})

oUs
0zs’

to =R+ u=u"+ (Ui — Us)es. (3.3)
Theorem 3.1. The fields U,, = Ure1 + Uzes, Us, ¢ and w satisfy
Uy, t€ WHP(W)2 Uz € WPP(w), 7€ WHP(Q5)?
and the following estimates:
c
leas Um)llrw) < si7lle(@lLr@s),

H 0%Us ‘ 0%Us ‘ 0%Us ‘

022 v (w) H 0x3 LP(w Hal‘16$2

e
Le(w) — O1F1/p Lr(@s) (3.4)

Iellzote) + 819el ooy < 575 leC@lzrca,
[l g2y + SV Locas) < Cllew)llzoger)-

The constants do not depend on 9.

Proof. Estimate (3.4]) is the consequence of (2.4))s and (3.1)).

Below in the estimates the constants do not depend on £ and §.

Step 1. We prove (3.4)5.
From the estimates (7.1]) in Lemmawe get for every £ € 2, (a, 8) € {1,2}2, (see also (2.1))2)

52’/\/15(“;)(55 + deq) — Ms(Us)(68)
1)

4 5 (Mo(R)(5€ + o) + My (R2)(56))|

1 *
<2(f R K R B L Ty (3.5)
2\ Jseqy) | 02a 5(5+y)
52 [ MaRA)GE + des) ~ MA(RL)OD) / 3Ra ’ dwydy
) s(e+y) | O




Now, as a consequence of the above estimates, the expressions of the second order partial derivatives
of Uz given in Subsection [7.2] of the Appendix we obtain

|58 s * Nt L * Mg ey = € Gl

0z? 023 e (w) Ox10zs llLr(w) = \8 1l 0zq

Then, we get (3.4)2 thanks to (2.4)s.
Step 2. We prove (3.4))3.
First, the Poincaré-Wirtinger inequality applied in the cells §(§£ + Z), 6(§ +Y) and then in §(§ + Z) U
§(E+Y), £ € Zs, allows to compare Ms(R2%)(6€) and Ms(R%)(5E). We obtain

% Ms(R3)(5€) = Ms(RL)(GE)P < CO[VRLIL 564 210841 (3.6)

+ IVRallLo s )-

P( (w3s)

Besides, we have

e +:
0xq

(HR* Ms(R;)(0 6)‘ ZP(6(£+Y))

Lr(3(s+Y))
ou:
FOMB(RE)(08) ~ Ms(RA)GE + || 52 + MsR) 00| ).

Then, using equality (7.3), estimates (3.5)), (2.4)s and the above one, after summation over ¢ € =5 we
obtain

OUs C
Haza oy = g le@llze@s): (3.7)
We have t, = R}, + % (see (3.3)), so

vallLrw) < 75 le(w) | Lr(as)-
oL/p

Observe that Vt, = VR, + Vgu this leads to the estimates of Vt using 2 and .3
Step 8. We prove 4.
For a moment, set u = U5 — Us. Thus

ous Ou

R, =ta+—
(‘3xa+ @ a+6wa

which gives

E(U)HLID(QJ)'

| <
8% “Nrr(w) = 61/p

Using (3.4)3, this leads to
o
IVullzr ) < 577 le(lizes)- (3.8)

The above together with (2.4)2 and equality (3.3))2 yield the estimate of V.
First, consider the function L{é> defined in the cell §(£ +Y) by

U (@') = Us (a') = Ms(Us)(5€) + Ms(RT) (06) (w1 — 861 — 8/2) + M5(R5)(5€) (w2 — 62 — 5/2).
Applying the Poincaré-Wirtinger inequality leads to

2o P
VU < :
| 3|| S(E+Y)) = g «)(0 O‘Lv(é(fﬂ/))
61/{3 P *
(Haxa wrerry T O TV Ral, 5(5”)))



and

*

H 82/13

+ 07 IVREIL

W o <00 S (|58 il ey

Then, consider the function L{B defined in the cell 6(£ +Y) by

U (a') = Us(a') — Mo (Us) (66) + Ma(RT) (66) (21 ael = 8/2) + Ms(R3)(66) (w2 — 62 — 5/2).
Again, thanks to the Poincaré—Wirtinger inequality and (| — we have

s 117, ySCo” Yy

5(E4+Y)) (H O AR;

SP|VRE|Y :
Lp(§(€+2))+ | °‘””<5<€+Z>>)

The above estimates lead to (observe that u = U5 — Us = US — Z/{3A + Ms(Us —Us)(6€) in (£ +Y))

[ — Mo (U — Us) ) < OO (H‘%’s R+

Q3] [ + VRN ss(e 1 2) - (39)

(5(¢+2))

It remains to estimate ||//\;l/5(lxl3 Us3)(08) || From equality (7.4]) we obtain

3(E+Y))”
Sk v M (U3) (56 + d(key + les) — AMs(UZ)(5€) |»
4

S Ms(RY) (S + dey + dley) — M (RY)(5E + dley) p
246

S _o Ms(R3)(5€ + Seq + Skey) — Ms(R3)(5¢ + Skey) ‘p)
246 )

0% M (U — s)(06)|” < o

+6°7

The third estimate in (7.1) implies

62p+2’ Sh_o Ms(R3)(6E + ey + 6ley) — Ms(R;)(6E + 6les) ‘p
246
L5 > b0 Ms(R5) (56 + des + dker) — Ms(R5) (6 + dker) )
246§

(3.11)

<o Z VR0 (5642

a=1
Now, observe that
11

DT M U)(0€ + d(keq + Lea)) — AM s (Us ) (5€)

k=0 £=0

= (M (U)(5€ + ey + deg) — 2M (L) (55 + gel + 5e2) + M (U) (88 + dey))
F(M)0E + ber) — 2M5045) (96 + Jen ) + My (24)(56))
+2(M5(u§) (((sg + gel + 5e2) — IM(U)(5E)) + Mo (L) (55 + gel)>

Remind that M (Us)(5¢)) = Mé(u;)(ag + gel + geQ). Thanks to (7-1)2 we get

5| Z S M (U3 ) (66 + 6(kex + les)) — AN (U (56)|”

k=0£=0 (3.12)

+ 6P IVRLIY,

SC(SP (H 3“3 R S §+Z)))




So, (3.9)-(3.10)-(3.11)) and (3.12)) after summation over £ € Zs lead to the estimate of |[ul| s ()

[l ey < C8* P le(w)]| o (oy)- (3.13)
Using the above, (2.4); and equality (3.3)2 completes the proof of (3.4),. O
Corollary 3.2. We have
lu = Ukcllee o, < Colle)llzeas),  IV(u—=Ukr)llLeos) < Clle()lzeas)- (3.14)
The constants do not depend on 9.
Proof. Estimates are the immediate consequences of (3.4). 0O

Remark 3.3. It worth to note that the Kirchhoff-Love displacement Uk, is close to the initial dis-
placement u (see ), but we cannot replace u by Uk, in an elasticity problem. Shear and warping,
even though much smaller than the membrane displacement and the bending, they can not be neglected.
If the plate is made up of a homogeneous and isotropic material with Lamé’s constants X and p, at the
limit wn the bending or stretching systems, these constants are replaced by the Young modulus E and
the Poisson coefficient v, this is due to the limit shearing and warping (see e.g. [9, [I0] or the proof of

Theorem .

Lemma 3.4. If the plate is clamped on T's then we have Uy = Uy = 0 a.e. on vy (see Remark and
equalities (3.1)). Moreover, we have

_ C
HZ/[gHLp(A/) < 051 2/p||e(u)||LP(Qs)a HVU?)HLP(’Y) < m”e(u)”L”(Q@' (315)
The constants do not depend on 9.

Proof. The boundary of w being Lipschitz, so from (3.8)) and (3.13|) we have the trace result

e _ _
[l 0oy < < Il ) + COP VUL, () < CP2le(w)]], q,)-
o) =g (@) (@) ()

Remind that u = U5 — Uz and U5 = 0 a.e. on ~, thus we get (3.15);. Similarly, (3.4))5 yields

C
llelle (o) < m“e(u)”Ll’(Qs)'

ou
Since to, = R, + 8—3 and R} =0 a.e. on v, this gives (3.15))s. O

As a consequence of the above Theorem and Lemma one has

Proposition 3.5 (Korn type inequalities). Let u be a displacement in WP (Qs), 1 < p < co. Assume
the plate clamped on U's. Then, we have

lluillzeas) + luallzeas) + 0llusllrs) < Clle(w)l| ey

2 811/,3 8u
3
o < Clle(u ,
DY sl P o S LGS .
2
Ous Ol C
el Ol < .
2(“8% LP(Qs) H8x3 LP(Qs)) = 5”6(“)”LP(95)

The constants do not depend on 9.



Proof. First, we decompose u as (3.2)). Then, (3.4)1, the clamped condition satisfied by U;, Us and the
2D-Korn inequality lead to

C
Uy [l oy + [[U]lwew) < MHG(U)HLP(Q@-

We recall the following classical result: there exists a strictly positive constant C' (which only depends
on p, Ow and ) such that

VO e WP (W), [ ®@llwirgw) < CIVellLrw) + 1®llLry)-
Estimate (3.4)2 together with (3.15) and the above yield

C C
IVUslwrp ) < WW(“)HLP(QJ) = Usllw2rw) < W"e(u)HLP(QJ)~

Then, the estimates of the proposition are the consequences of those in (3.4))3 4 and those above. O

4 Asymptotic behavior of a sequence of displacements

First, we recall the definition of the dimension reduction operator.

Definition 4.1. For ¢ measurable function on s, the dimension reduction operator Is(¢) is defined
as follows:
II5(¢)(x1, x2, X3) = ¢(21,T2,0X3) for a.e. (x1,29,X3) € Q.

II5(¢) is a measurable function on Q =w x (—1,1).
We easily check that
1. for any ¢ € LP(Qs), 1 <p < o0

1
MTs(@)llze () = 5175 19122 (20); (4.1)

2. for any ¢ € WHP(Q5), 1 <p < oo

olls(¢) ¢ olls(¢) 99 olls(¢)
or, H‘S(afgl)’ ory H‘*(aTZ)’ X5

= 511, (g—i). (4.2)

Let u be a displacement belonging to W1 (£25), decomposed as (3.2)).
The strain tensor of u is given by the following 3 x 3 symmetric matrix defined a.e. in s by:

0%Us _
ell(um) — I3W + xzeq1(v) + ell(u) * *
1
_ ou _ o*U. _
e(w) = | ey (Up) — x3 8:1:163562 + x3e12(t) + e12(a)  exn(Um) — 9638723 + w3e22(t) + ez () *
2
1 1
§t1 + e13 (ﬂ) 5172 + €23 (ﬂ) 633(@)
(4.3)

where v = tie1 + taes, U, = Ur1e1 + Uses.
For every (®.,, ®3,1,®) € WhP(w)? x W2P(w) x WHP(w)? x LP(w; WHP(—1,1))% we denote

0203
611(‘1),n) — Xgi * *
0z?
— 0P3 0%®;
E(®py, B3, 0, ) = D,,) — D,,) — X3 ——2 4.4
( 3,9 ) e12(Prm) 38m18x2 e22(®Pr) 3 c’)x% * (4.4)
1 109, 1 1 0P, 0,
21T 20x, PR Y > > &
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where @, = ®1e; + Pres, ¥ = 1€ + Yes.

Theorem 4.2. Let {us}s be a sequence of displacement belonging to W1P(Qs), 1 < p < oo, decomposed
as (3.2). Suppose the plate clamped on T's and

le(us)|lz2(os) < C2H1/P

where the constant does not depend on 6. Then, there exist a subsequence of {J}, still denoted {6} and
Up = Urer +Uses € WHP(w)2, Us € WP (w), v € LP(w)? and U € LP(w; W1P(—1,1))3, such that

1
6—2Um,5 —~U,, weakly in Wl’p(o./)z7
(4.5)

1
gu&g —Us weakly in WP (w).

Uy, Us satisfy the following boundary conditions:
U, =0 a.e on-~, Us =0, VU3=0 a.e. on~.

We also have (o € {1,2})

1 — )
—s(us) = U  weakly in LP(w; WhP(—=1,1))3,

53
1 )
5—21_[5(?%) — 0 weakly in LP(Q), (4.6)
1
oA weakly in LP(w)?, th(; — 0 weakly in LP(w)*
and ) o
s (tas) = U — X3—=  weakly in LP(w;WhP(=1,1)),
52 ’ 8.%,1 (4 7)
1 .
5H5(U3,5) — Us  strongly in LP(w; WHP(—1,1)).
Moreover 1
5—21_[5 (e(us)) = E(Um,Us,v,U)  weakly in LP(Q)°. (4.8)
Proof. Convergences (4.5)-(4.6)-(4.8) are the immediate consequences of the estimates (3.4), the ones
in Proposition and the properties (4.1)-(4.2) of the operator IIs. Convergences (4.7) come from
those in (4.5))-(4.6) and again the properties of the operator IIs. O

The limit warping U satisfies (« € {1,2})
1 1
/ Ua(, X3)d X3 :/ Ua(r, X3)X3dX3 =0 a.e. inw.
-1 -1

We denote 25, the following subspace of LP(w; WhP(—1,1))3:

1 1
20, = {V € LP(w;WhP(=1,1))? | /1 Vo, X3)d X3 = /1 Vol X3)X3dX35=0 ae inw a€ {172}}.
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5 A particular loading of the plate

For simplicity we assume that the plate is made of a homogeneous and isotropic material whose
Lamé constants are A and p. We also assume that the plate is clamped on its lateral boundary.
In this section we want to investigate a plate loaded with applied body and surface forces, these forces
are chosen so that they do not see the Kirchhoff-Love displacements.

We denote
H%5(95) ={p e H'(Q)| ¢ =0 ae. on dws x (—4,0)},

Qijrt = N0ij0k + p(8iu0 + 6u85),  {i,4,k, 1} € {1,2,3}*

where d;; is the Kronecker symbol.
We recall that there exists a strictly positive constant C' such that

CII[¢II1? < aijraCijCr for all 3 x 3 symmetric matrices ¢ (5.1)

where ||| - ||| is the Frobenius norm.

We denote
0ij(v) = aijrei;(v) Yv € Hl(Q(;).

The 3 x 3 symmetric matrix o whose entries are the o;;(v) is the stress tensor of v.

We consider the following elasticity problem given in the variational form:

Find us € Hp, (Qs)? such that Yo € Hp (2s5)°,

/CWWWMWM:/IWUM+/ G -vdd
s Qs Gloks

where Fj belongs to L?(Q5)?, Gf € L*(w)? and 99F = w x {46} The existence and uniqueness of the
solution to problem ([5.2)) is a classical result.
Now, we suppose that the applied forces are given by

(5.2)

F5(z) = f5(2') forae. x€Q5 fs€ L*(w)>
Gi(a') = -G53 (') = gs.1(2)e1 + gs2(a')es, forae. 2/ €w, gs51, gs2 € L*(w).

These forces satisfiy
/ Fs - Vi dx + G?'VKLCZJU/:O
Qs

oqt
Vs
Vi — gat3
1— T3 O
for every Kirchhoff-Love displacement Vi = Vo — 9V3 | belonging to H%é (Q5)3.
2 3 Dy
V3

This first leads to f51 = f52 = 0 and then

2% [ fralaWa(e)de’ - | 23 (g3, (a") 222 (a') + giale’) 22 (@) ) =0, WV € H3(w)
w w axl 53@2

Hence
0951 09s,2

8951 (9.’172
Let g1, g2 be two functions in H'(w). We choose (« € {1,2})

=0 in Hﬁl(w).

fs3+

li dg1 092
9 2
gﬁ,a—5ga7 f3_ 1”(9)_ (9 1 ) 2)7 )5,3—6 fS-
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So, for every admissible displacement u € Hllé (925)® decomposed as (3.2)), we have
/ Fs-udx + Gﬁi-udz’
Qs ont
=5 / fatizdx 4 263 / Gatads' + 62 / 9o (Ta (2, 8) — Ua(2', —6))da’
Qs w w

:62/ ga%d:v+52/ gatadx+52/ ga%d:ﬂ
Qs 8Z‘a Qs Qs 83)3

=242 / Jatas(u) de.
Qs

(5.3)

As a consequence of the above equality and estimates (3.4) the solution us to problem (5.2)) satisfies
le(us) L2 (o) < C6°/2
where the constant C' does not depend on J.
Proposition 5.1. Let us be the solution to problem (5.2]). We decompose us as (3.2)). Then, we first
have 1
6—21/{,”,5 — 0 strongly in H'(w),
1
1)
Ms(us1) — 0 weakly in L?(w; H'(—1,1)),

Uz s — 0 strongly in H?(w),

1
53
1 . .
5—3H5(H57i) — 0 strongly in L*(w; H'(—1,1)), i€ {2,3}.
Moreover, there exist v1, to € L*(w), such that (o € {1,2})

1 1
5—2%’5 — ﬁga weakly in Lz(w).

Proof. Theorem gives a subsequence of {§}, still denoted {§} and U, € H}(w)?, Us € HE(w),
U € 2 and ty, to € L?(w) such that convergences ([4.5)-(4.6)-(4.7) and (4.8) hold.
We choose @, = ®1e; + Paep € Hi(w)?, @3 € HE(w), € Wo N HE(Q)? and 1, ¥o € HE (w) where

HA(Q) = {V e HYQ)? |V =0 ae. on dw x (—1, 1)}.
We define the test displacement ¢s5 by

[ _
52(1)1 — $35g + (E3(521/11 + .T3(52’¢2 + 53(P1 (-, E)
Xr1 5

0

[6)) —

¢5(+,13) = 50y — 13000 + 0%, (-, %)
aiCQ . )
TR 7 el
603+ %0, (- )
We have (see (4.3) for the strain tensor of ¢s)
0?®s
611(¢m) — 3871‘% * *

1 03 foalio . r2/\6
5—21'[5 (e(%)) — | e12(Pp,) — 38x13$2 e22(Pp,) — Xng% * strongly in L*(Q)°.
1 1 0%, 1 109, 0,

31 20x, PACRIE Y S &
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Now, in (5.2)) we choose this test displacement, we transform the left and right hand sides using Il;,
divide by §° and pass to the limit. Thanks to (5.3)), we obtain

/aijklEij(umaUSataU)Ekl(‘I)mv‘b37¢76)dz/dX3 =2/9a¢ad$'+/ gaa 'dXs.
Q w Qs an,
This first gives
/aiikkEij (U, Uz, v, U) By (®rm, 3,1, @) da’d X5
; au 00 (54)
_ 3 - 3 / —
i /Q (elz(um) Xsge 8@)(@12(@,%) Xsg axQ)}dx dX; =0
and _
au., 9B
“/Q (ta aXs)(qpa - )dx dXs = /an (wa + 8X3) dz' dXs. (5.5)

By density of 2, N H{(Q)? in W, and Hj(w) in L?(w), the above equalities are still satisfied for every
® € W, and Py, Py € LQ(LU).
So, from (5.4) we get Uy =Us =Us = 0 and Us = 0 (up to a function belonging to L?(w)) since (5.1)

and (5.4)) imply

3 (leorth] gy + o ) + 1
& B M aq) 02,025 1L2(2) 0XsllL2 (@)
U5 1|2 OU5 (12
<O( 3 e [
( ;1 caplth é)xaaxﬁ L2(Q) 0X3 L2(Q)> -
Then, (5.5)) gives (a € {1,2})
ta = —Jo a.e. inw, U, =0 ae. in Q.
1

Since the limit problems admit a unique solution, the whole sequences of fields converge towards their
limit. As usual we prove the strong convergence of the strain tensor which in turn gives the strong
convergences in the proposition. O]

The displacement
ug? (z) = 6%x5(v1(2')er + ra(z')es) for a.e. z € Qs
is an approximation of the solution us to problem (5.2]). Below, we give an error estimate.

Lemma 5.2. Assume g1 and go € H} (w)ﬂ then we have
lle(us — ug?) | < C§2(llg1 |l a2 (w) + 921l 7 (w)- (5.6)
The constant is independent of §.

Proof. First observe that under the assumption of the lemma, u3” is an admissible displacement of the
plate. We first have

leap (15" z2(as) < CO2(llgallrrswy + llg2ll 1) (5.7)

If we only assume g; and go € H'(w) we can prove that |le(us —uz")|| < C§3(||91HH1(M) +ll92[l g1 ()
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and 52 52
elg(ugp) = ftl’ egg(ugp) = gtg, 633(ugp) =0.

Now, let ¢ be a displacement in Hll(; (925)3, from (5.3) we have

" / (e15(uP)ers(9) + eaa(uP)ess(6)) da = 257 / Jacas($) d.
Qg QS

Hence
/ oijeij(us — ug’)eg(¢) doe = —/ oap(us’)eap(9) dx (5.8)
Qs Qs
which in turn due to (5.7) give (5.6]). O

Theorem 5.3. Under the assumption of Lemma[5.3, we have

1 o
6—3H5(u(571) — - X strongly in L*(w; H*(—1,1)),
Ly Uy R L
5 s (us2) — — X?’BT + Xzva  strongly in L7 (w; H (—1,1)),
1
ﬁﬂg(u(syg) — U strongly in L*(w; H(—1,1))

where U € HZ(w) is the unique solution to

822/1;? 82(1)3 O / 2
/w ((1 - ”)(axaaxﬁ - eaﬁ(r)) 5o0; + (AU — em(t))mg))dx =0, Ve H2(w).

Moreover we have the following strong convergence in L*(2)°:

92u? Uy
_ 8:17%0 +e11(t) _6x18§2 + eq2(t) 0
1 22U, o*U
gné( (U5—u5 )) - X *Waiz + 612(t) - 6$§ + 622(t) 0
A
0 0 (AU — e11(t) — e22(x))

A+ 2u
Proof. We decompose us — ug” as (3.2)), we write
us(z) — ug’ (z) = UI%L,(S( )+x3t§( )+u5( x), fora.e x€Qs.

Due to Theorems (3.1 and there exist a subsequence of {5}, still denoted {8} and UY, US € H} (w),
U e Hg(w)7 % e 20, and t© € L?(w)? such that

Z/l = US  weakly in Hj(w),

53
1
5—21/[5,3 — U weakly in HZ(w),
L0 70 72 1 3 1 oug 120003
5—4H5(u5) —U" weakly in L*(w;H" (—1,1)), 53 Hé(ax ) — 0 weakly in L*(02),
1
gtg — 1% weakly in L*(w)?, 5 th;> — 0 weakly in L*(w)?

and
T (e(us — ul?)) = E@US,UY,x0,T°)  weakly in LP(Q)°. (5.9)
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Now, in (5.8]) we choose the test displacement introduced in the proof of Proposition we transform
the left and right hand sides using Ils, divide by 6° and pass to the limit. We obtain

/ aijriEij (U27U§7t07ﬁo) Bt (P, 3,0, ®)da’d X3
Q (5.10)
= — / aagafgleag(t)XgEargl (‘I)m7 @37 ¢76)d$/dX3.
Q

By density of 20, N H{(Q)? in W, and Hj(w) in L?(w), the above equality is still satisfied for every
® € W, and ¢ € L?(w)%

The above equality yields
ou? 0%
O [e] o !/ X _
“/Q (0 + axg)(%‘L axg,)da’d 3=0

Hence t© = 0 and Ug =0.
Equation (5.10) also gives

o2 Ul ol 92®

Oy _ x. 3 oy _ y, 73 73 _x, 2 =3
/QH(“M(e“(“m) Xs 502 )“(eﬂ(um) Xs 502 ) Aaxgﬂ(e“(@m) Xs g2 )
U R

Ul . oU.
Tt ) FAgx ) (en(®n) - XaTg)

02U 02U OUg N\ 0®5 (5.11)
Oy 3 O\ 3 3 3 .
+[/\<en(um) X358 ) n A(e22(um) X0 ) O G )} %

83??;2) <e12(¢’m) - X3 aff;;z ) }dx’ng

:7\/ aaga/gleag(t)XgEa/gl(@m,q)g,w,a)dm,ng.
Q

+ {)\(ell(uﬁl) - X3 922 ) + (A +2p) (622(1/{1?1) - X3 922

+1u (612(1/{1?1) - X3

In (5.11]) we choose ® = 0, this yields

ou; A
3X3_ )\"‘2#

(611(“,%) + 622(“,%) — X3AZ/[§>)

=<
Replacing ?)[)](3 in (5.11) leads to
3
b 0 0 /
1_.2 (1- V)eaﬁ(um)eaﬁ(q)m) + Veaa(um)eoza(q)m))dx
E U 0?3
—_— 1- 3 _ AUS — AD '=
+3(1 —v?) /w (( V)(&va(?mg eag(t)) 014,023 v (AU~ caa(v)) 3))dz 0
2
where E = p(3A+2) is the Young modulus and v = A the Poisson coefficient. Hence, U = 0
A+ 2(A + )

and we get the equation satisfied by UP? .

Since the limit problem admits a unique solution, the whole sequences of the different fields converge
towards their limit. As usual we prove the strong convergence of the strain tensor which in turn gives
the strong convergences in the theorem. O
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As a consequence of Proposition|5.1{and Theorem regarding the stress tensors, of us and us—ug”
we have the following strong convergences in L?(Q)°:

1 1 0 0 g1
ﬁﬂé(a(ud)) —3 0 0 g2,
g 92 O
RIAd oAU
. 5 — ax23 + 611(’C) 2(1 — V)( — 31'18?;2 + 612(t)) 0
1
<15 (o (us — ug’)) — X3 U U
3 o 1—02 21-v)( — g -2
v ( V)< 0x10x9 + 612(t>) 0x3 +exn(r) 0
0 0 0

6 Conclusion

If we are dealing with a very thin plate, it will be better to replace the decomposition (1.1]) with a
shorter one. So, any displacement u € W'P(Q5)3, 1 < p < o0, is also decomposed as

U
Up(a') — 963873‘13(55')
u(z) = Up(z') — x?’%(agl) + u(x) for a.e. = in Q5. (6.1)
Us (x/)xz residual displacement

Kirchhoff-Love displacement
The residual displacement is
u(x) = z3(vi(a")er + va(x)ez) + u(x) for ae. x in Q.
It satisfies the following two conditions:
s s
/ uy (2, v3)dxs = / (2, w3)drz =0 for a.e. ' € w.
-5 -5
As immediate consequence of Theorem [3.1] we have
Theorem 6.1. The fields U,, = Uye1 + Uses, Uz and u satisfy
Upn € WHP ()2 Us € WHP(w), @€ WHP(Qs)?
and the following estimates:
C
||ea,8(um)HLP(w) < 51/ HG(U)HLP(Q@,
H 621/{3 ‘ 821/{3 821/{3 ’

023 llLr(w) + H 023 llLr(w) + Haxlaxg
Il 2 sy + SIVUl L () < COlle(u) |l zr ()

C
Do) = m”e(u)ﬂmmm

The constants do not depend on 9.

If the plate is clamped on I's, then the estimates of Lemma |3.4] are still valid and we have U,,, = 0
on 7. Of course, Proposition is also still valid. Proceeding as in [T1] the above decomposition (6.1))
can be extended to structures made up of a large number of plates.
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7 Appendix

7.1 A lemma

Lemma 7.1. Let ® and ¥ two functions belonging to Wl’p((0,2§) X (0,5)), 1<p<oo. We have

Ms(2)(0) = Ms(®)(0)
)

*(Mé( )(0) + Ms()(6))
26 P 26 o P
59 / /‘ xp’ dxdy+§p/0 /0‘68\:15]
Ms(2)(0) — 2M5(P)(6/2) + Ms(P)(0 )‘p
26 p 26 ) P
/‘ \1/’ dxdy+6p/o /0‘88\:15/
26
eI

‘ p

IN

)

(7.1)

IN

).

5
c
57

()(0

’Ms(‘l/)(5) -
)

where for every © € L'((0,26) x (0,4))

1 [0 g9
M5(@)(t) = (572_/ / @(81 + t,Sg)dSldSQ, te [0,5}
o Jo
The constants depend only on p.

Proof. Step 1. A preliminary result.
Let ¢ and v be two functions belonging to C1([0,24]). In this step we prove that (1 < p < o)

mo@O =@ | o) < 2?(51(/02‘3 W+ v dt+6p/026‘ji)() "ar).

ms(¢)(6) — 2ms(9)(8/2) +ms(9)(0) p _ 2743 1 (21 dg L, [P dy
: < ([ |Rorvofare [ |Fo

ms(1)(8) — ms(1)(0 20 dep

: ) ‘< /0 daj()’ dt

dt) (7.2)

where for every 6 € L1(0,26)

5
ms(0)(t) = %/0 0(t+ s)d t €1[0,0]
We prove 1. We have
ol +0) — d(x) = d¢(m—|—t)d Va € [0,0].
O x

So

/O (6(z+0)—¢(x))dz+d / Y(x)de = / / P(z+t))dedt+ / / ——(w+t)+¢ :v+t))d:vdt.

Above, the first termof the RHS is
) ) T+t
/ / (z+t) — ¢(x))dodt = / / / @(s)dsdxdt.
0 Jo Jz dx
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Hence, using the Holdér inequality

[ [ v —vpaf <svt [7]2 )

The second term in the RHS is bounded by

\/:/05 (fl‘j<x+t>+w<x+t>)dmt|”sa?p-l/o 95) + wts)| s

Finally, we get (7.2));.
We prove (7.2))2. We have

ds.

) s+d
ms@)0) ~maf)/2) = [ (00549 ~ots+5/2)as =1 [ [ " % (tivds,
§ 5+5/2
ms(8)(6/2) = ms(@)(0) = 5 [ (0s-+3/2) = o) ds = 3 / | R,
Thus
_1 o ps+o do s+6/2 d¢
ms(0)(6) ~2ms(@)6/2) + ms(@)0) =5 [ [ (G204 w0 )i 5 oy 1) (1)) deds

) s+6/2
_%/o/ (0t + 6/2) — (1)) dds.

Then, the Holder inequality leads to

ms@)®) 262+ ma@y o <52 [0 i
ms ms ms ="gp 201 o ldz 5
3p 1 52p 2 26
S / / +u(t)| dds
3p 1 53p 3 26 26 d¢
T / / ‘ dydtds.
The above inequality yields 2.
We prove (7.2])3. We start with
) 5+t
5 (ms ((8) — ms((0)) :/ (0(6 + 1) — () dt = / / dm §)dsd.
0

Then, using Holder inequality, this yields

[6(ms (6(8) — ms((0))|” < 527 / % s)|dsat

T

Hence, ([7.2)3 is proved.
Step 2. We prove the inequality of the lemma.

We first choose two functions ® and ¥ belonging to C*([0,24] x [0,4]). From (7.2), we have

19 §
< d +6 d - <

é
< %(/0 gq)(x y) + ¥(x, y)‘ dx+5”/026 ‘g—i(a@,y)‘pdw)

19



Now, using Holder inequality we obtain

‘Ms(q))(@ — M5(2)(0)
0

0, y)d. )dx g
_5/’ fo @+9y) er’SfO @y) —i—l/\llxydm‘dy

+ Ms(0)(0)]

4

26 26
752 / /’8 (x,y) +¥(x,y) dxdy+5p/ /‘ dxdy)

Thanks to a symmetry argument, we also obtain

’Ma( )(6) — Ma( )(0)

p

+ Ms(¥)(0)

(% /26 / v ‘pdxdy o /025 /05 ‘%(ax y) ’pdxdy)

From the two inequalities above, we obtain (7.1)); for ® and ¥ in C*([0, 26] x [0, ]). Similarly, we show
(7.1)2,5 starting from (7.2)2,3. A density argument gives the estimates for every ® and ¥ belonging to
WP ((0,26) x (0,6)),1 < p < oo. O

7.2 The function ¢ g ¢ (see also [18])

Denote Qo, Q1, Qo and Q; the following polynomial functions (t €10,1])

@y = B Qi = 0
o = "2, o =0

~6t(t— 9) 12t— 66
P = R(#) = =2

Note that

Q=00 Gn=-06-0.  Gn="Te-s amn="

6
dQ 6t(t—08) 1 dQ, 616 —1) 1

=" =P =" =5F0,

dQo .  (t—08)3t—08) 1 §—t Qi . t(3t—25) 1 t
W(t)_T_ip(tH—T’ W(t)_T_ip(tH_g'

Set
A = (Ao, A1, A1, Ao), B = (Bo,o, Bi1,o, B1,1, Bo,), C = (Co,0, C1,0, C1,1, Co,1).
We define the polynomial function ®a g.c € W2>(5Y) by

DA B c(x1,2) =A0,0P0,0(x1,22) + Ao 1Po1(z1,22) + A1 0Pro(x1, 22) + A11 P11 (21, 22)
+Bo,0d1Poo(x1,x2) + Bi,od1 Pio(z1,22) + Bo1d1 Po 1 (21, 22) + Bi,1d1 Py (21, 22)
+Co0daPyo(x1,22) + CordaPoi(z1, 22) + CrodaPro(x1, 22) + Ciada P (21, 22)
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where for all (z1,x2) € [0, 6]?

Poo(x1,72) = Qo(21)Qo(z2), Py 1 (21, 72) = Qo(21)Q1(22),
Pro(a1,22) = Qi(z1)Qo(22),  Pra(1,@2) = Q1(21)Q1(22),
d1Poo(a1,22) = Qo(1)Qo(x2), dy Py i (21, 22) = Qo(1)Q1 (w2),
dy Pyo(21,72) = Q1(1)Qo(2), dy Py (21, 22) = Q1 (21)Q1 (22),
daPoo(x1,22) = Qo(x1)Qo(x2), doPo1(x1,22) = Qo(1)Q1 (22),
dzpl,o(xlyl”z) = Q1(l’1)©0($2)a d2P1,1($1,$2) = Ql(xl)@1($2)-
By construction, we have
@A B.c(kd, pd) = Ay p, 0z, ®a B,c(kd, pd) = By p, 0z,®a B,c(k6, pd) = Cj.p,

Moreover, (k,p) € {0,1}?

o Op g c(z1,pd) only depends on Ay, A1, Bop and By p,

05, PA B,C
. c

)

(K6, z2)
02,%Pa,B,c( )
( )

DA B c(kd, z2) only depends on Ak o, Ak 1, Cro and Cy 1,
0z, ®A B,.c(x1,pd) only depends on Ag p, A1 p, Bop and B p,
ké,x2) only depends on By ¢ and By 1,

x1,pd) only depends on Cp, and Cf p,

® 0,,Pa B c(kd, z2) only depends on Ay o, Ak 1, Cro and Cj 1,

Now, observe that ® o B,c can be rewritten as

®aB.C(T1,22) = ) (
Ao 1Qo(z1) + A1 1Q1(
Co, 0Qo(x2) + 00,1@1(962

)

)

)

(
Ay, oQo x2) + A1,1Q1(
(
We have

Oz, PA B,c(T1,22) =

0z, PA B,c(T1,22) =

)
)
)
)
)
)

By, 0Qo(x1 +B1,OCO21 1)) Qo(w2) +

0)+ (Coq — C1,1)332)
1 §—
5(0004—00 1)) (x2) + Coo——

1 §—
5(010 +C 1)) (x2) + C1o——

1) + A10Q1(x1) + BO,OQDO(xl) + Bl,oél(ffl))Qo(fz)
r1) + Bo,léo(xl) + Bl,lQol(xl))Ql(l'Z)

)Qo(x1) + (01,0620(:52) + C1,1Q1($2))Q1($1)

+ Ap1Q1(x2) + 00,0@0(552) + 00,1@1(1;2))@0(371)
x2) + 01,0620(»’52) + 01,1521(332))@1@1)

(30,1620(331) + B1,1@1($1))Q1($2)-

Lt Bio— :|Q0(l'2)

|@ie2)

1)
T

]

5

B
5+11

P(6$2) Pa1)

)

2 4 Cop— 5 ]Qo(ah)

+Cl 15 ]Q1($1)

5

5
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Now, since Qq(t) + Q1(t) = 1 we obtain

Apo— A 1
0z, PaB,c(®1,22) — Boo = {(w +

4 {(AO,I g Al,l

(Bo,o + B1,o))P(!171) + (B1,o — Bo,o)%} Qo(z2)
6 — I

}g( | (7.3)

+

2

1

5(30,1 + Bl,l))P(IE1) + (Bo,1 — Bo,o)

i

1)
P

+((Co,o — 0170)(1‘2 — 5) + (0071 — 01,1)$2> (gz)P(l‘l)

+ ((B1,1 — B1,o) + (B1,0 — Boy))

The second order partial derivatives are

1 (Ao,o —Ajp
) 1)

s
Jr(C'o,o g Cip

1
92 ., ®aB.clz1,22) :[ + 5(30,0 + Bl,o))R(ﬂh) + %}Qo(w)
]_ _
+ 5(3071 + Bl’1)>R($1) + —F—
Co,l - 01,1 xg) P(IQ)

]

(IQ - 6) +
and a similar expression for 02, , ®a B,c(z1,22) and

92 ., ®aB,c(21,22)

L Agp—A1p 1 Boo—DBo16—x1  Bio—Biqxxi

L, )+ (BBt B By
1/4),— A 1

—= (M +5(Boa + Bl,l))P(ﬂfl)P(ﬁw)

1) 1)
-0 R
+<(Co,0 - Cl,o)gc2 + (Coa — 01,1)%2) (6$2)

Coo—C Coq1—C P
0,0 1,0+ 0,1 1,1) (1‘2)R(x1).

P(z1) + ( 5 5 6

We also have

1

7/ A B,c(71,22)dr1d2o

62 Jsy

= Ao+ Aos + Aro + A1 + Bo,o — Bio+ Bo,y — Bia 5+ Coo+Cio—Cop1—Cia

4 24 24

(7.4)
s.
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