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In this paper, we show that any displacement of a plate is the sum of a Kirchhoff-Love displacement and two terms, one for shearing and one for warping. Then, the plate is loaded in order to get that the bending and shearing contribute the same order of magnitude to the rotations of the fibers.

Introduction

Modeled from the beam theory in the 19th century the theory of thin plates was developed assuming that the fibers of the plate remain non-deformable and perpendicular to the mid-surface (Kirchoof-Love displacements) and neglecting some components of the stress tensor. Later, Mindlin, Timoshenko, Reissner and Uflyang developed the theory of thick plates taking into account the shear (see [START_REF] Mindlin | Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates[END_REF]). From the 3D variational formulation of the elasticity problem for a plate, it has been proven that the limit displacement is of Kirchoff-Love type. The limit of all the components of the stress tensor has been also obtained (see e.g. [START_REF] Ciarlet | Mathematical Elasticity. Theory of plates[END_REF][START_REF] Destuynder | Une théorie asymptotique des plaques minces en élasticité linéaire[END_REF]). This justifies the first hypothesis and assumptions. The aim of this paper is to give an a priori decomposition of a plate displacement as the sum of a Kirchhoff-Love displacement, shearing and warping. Consider a plate Ω δ whose mid-surface is a bounded domain ω and whose thickness is 2δ. We show that every displacement u ∈ W 1,p (Ω δ ) can be written as Here, U m = U 1 e 1 + U 2 e 2 is the membrane displacement, it represents the displacement of the midsurface of the plate, U 3 is the bending. The map x 3 ∈ R -→ x 3 ∂U 3 ∂x 1 (x )e 1 + ∂U 3 ∂x 2 (x )e 2 stands for a small rotation of the fiber {x } × (-δ, δ) whose axis is directed by ∂U 3 ∂x 2 (x )e 1 -∂U 3 ∂x 1 (x )e 2 and whose 1 angle is approximately equal to the euclidian norm of this vector. Since we are in the framework of small displacements, the symmetric part of the rotation is neglected. After rotation, the fiber remains perpendicular to the plate mid-surface. The second term in the above writing represents the shear: x 3 r 1 (x )e 1 + r 2 (x )e 2 , that is two small rotations of the fiber {x } × (-δ, δ), the first one with axis e 2 and angle -r 1 (x ) and axis e 1 and angle r 2 (x ) for the second. The last displacement is the warping, it gives informations on the deformations of the fibers. It satisfies 4 simple relations (α ∈ {1, 2})

u(x) =      U 1 (x ) -x 3 ∂U 3 ∂x 1 (x ) U 2 (x ) -x 3 ∂U 3 ∂x 2 (x ) U 3 (x )      Kirchhoff-Love displacement +      x 3 r 1 (x )
δ -δ u α (x , x 3 )dx 3 = δ -δ
u α (x , x 3 )x 3 dx 3 = 0 for a.e. x ∈ ω.

(1.2) Such a decomposition is of interest only if we can give an order of the different terms that compose it. For a loading of the plate whose elastic strain energy (the square of the L 2 norm of the strain tensor) of order δ 5 , usually the membrane displacement is of order δ 2 , the bending of order δ, the rotations of the fibers of order δ 2 , r 1 and r 2 of order δ 2 and so the shearing is of order δ 3 (all the estimates in Theorem 3.1).

A few years ago, we introduced other decompositions to study thin structures made up of straight or curbed rods, plates or shells. We have proven that any displacement of a curved or straight rod is the sum of an elementary rod displacement plus a warping (see [START_REF] Griso | Décomposition des déplacements d'une poutre: simplification d'un problème d'élasticité[END_REF][START_REF] Griso | Asymptotic behavior of rods by the unfolding method[END_REF][START_REF] Griso | Decomposition of displacements of thin structures[END_REF][START_REF] Griso | Asymptotic behavior of structures made of curved rods[END_REF][START_REF] Griso | Straight rod with different order of thickness[END_REF][START_REF] Griso | Asymptotic behavior of stable structures made of beams[END_REF][START_REF] Griso | Asymptotic behavior of unstable structures made of beams[END_REF][START_REF] Griso | Asymptotic analysis for domains separated by a thin layer made of periodic vertical beams[END_REF]). This decomposition method has been also applied for plates, shells and structures made up plates (see [START_REF] Griso | Decomposition of displacements of thin structures[END_REF][START_REF] Griso | Asymptotic behavior of structures made of plates[END_REF][START_REF] Blanchard | Microscopic effects in the homogenization of the junction of rods and a thin plate[END_REF][START_REF] Falconi | Asymptotic behavior for textiles with loose contact[END_REF]) or structures combining rods and plates (see [START_REF] Blanchard | Junction of a periodic family of elastic rods with a thin plate[END_REF][START_REF] Griso | Asymptotic Behavior for Textiles[END_REF][START_REF] Falconi | Asymptotic behavior for textiles with loose contact[END_REF][START_REF] Griso | Junctions between two plates and a family of beams[END_REF]). Later, the same ideas were applied to decompose the deformations of thin structures (see [START_REF] Blanchard | Junction between a plate and a rod of comparable thickness in nonlinear elasticity[END_REF][START_REF] Blanchard | Decomposition of deformations of thin rods. Application to nonlinear elasticity[END_REF][START_REF] Blanchard | Decomposition of the deformations of a thin shell. Asymptotic behavior of the Green-St Venant's strain tensor[END_REF] for curved rods or shells). As a general reference on elasticity, we refer the reader to [START_REF] Ciarlet | Mathematical Elasticity[END_REF][START_REF] Marsden | Mathematical Foundations of Elasticity[END_REF]. For mathematical modeling of plates we refer to [START_REF] Ciarlet | Mathematical Elasticity. Theory of plates[END_REF][START_REF] Destuynder | Une théorie asymptotique des plaques minces en élasticité linéaire[END_REF]. The paper is organized as follows:

• In Section 2 we introduce the main notations and we recall the first result on the decomposition of a plate displacement.

• In Section 3 the new decomposition (1.1) of a plate displacement is introduced. Theorem 3.1 give all the estimates of the terms of this decomposition with respect to δ and the L p norm of the strain tensor. Then, if the plate is fixed on a part of its lateral boundary, Korn-type inequalities are given.

• In Section 4, we choose a sequence of displacements of the clamped plate Ω δ whose strain tensor has a L p norm of order δ 2+1/p . In Theorem 4.2, besides the limits of the terms of the decomposition, we give the asymptotic behavior of the strain tensor using the limits of the terms of the decomposition.

• In Section 5 we give an application of our decomposition, we load a straight plate in order to obtain that the bending and the shearing contribute with the same order of magnitude to the rotations of the fibers.

• In Section 6 we conclude this study by giving a shorter decomposition for thin plate displacements (see (6.1)).

• Appendix (Section 7) is concerned with calculations needed in Section 3.

In this work, the constants appearing in the estimates will always be independent from δ. As a rule the Latin indices i, j, k and l take values in {1, 2, 3} while the Greek indices α and β in {1, 2}. We also use the Einstein convention of summation over repeated indices. This paper is inspired by [START_REF] Griso | Decomposition of rod displacements via Bernoulli-Navier displacements[END_REF] and follows the same lines.

Notations and recalls

We denote by | • | the euclidian norm of R 3 and by • the associated scalar product. In this paper, ω denotes a bounded domain in R 2 with Lipschitz boundary. We refer ω to an orthonormal frame O; e 1 , e 2 . We set e 3 = e 1 ∧ e 2 . So, the space R 3 is referred to the orthonormal frame O; e 1 , e 2 , e 3 . Denote

• Ω δ the plate with mid-surface ω and thickness 2δ

Ω δ . = ω × (-δ, δ) • Y . = (0, 1) 2 , Z . = (-1/2, 1/2) 2 , Z = (-1/2, 3/2) 2 = interior Z ∪ (e 1 + Z) ∪ (e 2 + Z) ∪ (e 1 + e 2 + Z) , Y = (0, 2) 2 = interior Y ∪ (e 1 + Y ) ∪ (e 2 + Y ) ∪ (e 1 + e 2 + Y ) , (2.1) 
• ω η . = x ∈ R 2 | dist(x , ω) < η and Ω δ = ω 3δ × (-δ, δ) • for every v ∈ W 1,p (Ω δ ) 3 , 1 ≤ p ≤ ∞, e(v) = 1 2 (∇v) T + ∇v , e ij (v) = 1 2 
∂v i ∂x j + ∂v j ∂x i .
e(v) is the 3 × 3 symmetric matrix whose entries are the e ij (v)'s.

Proposition 2.1. There exists δ 0 > 0 such that for every δ ∈ (0, δ 0 ], there exists an extension operator

P δ from W 1,p (Ω δ ) 3 into W 1,p (Ω δ ) 3 , 1 < p < ∞, satisfying ∀u ∈ W 1,p (Ω δ ) 3 , P δ (u) ∈ W 1,p (Ω δ ) 3 , P δ (u) |Ω δ = u, e(P δ (u)) L p (Ω δ ) ≤ C e(u) L p (Ω δ ) .
The constant does not depend on δ.

Proof. From [24, Lemma 5.22], there exists δ 0 > 0 (which only depend on the boundary of ω) such that the boundaries ∂ω η , for η ∈ (0, δ 0 ], are uniformly Lipschitz. Besides, if ω is a bounded domain with Lipschitz boundary, in [START_REF] Griso | Decomposition of displacements of thin structures[END_REF]Lemma 4.2] we show that there exist δ 0 ∈ (0, δ 0 /2] (which only depend on the boundary of ω ) and for every δ ∈ (0, δ 0 ] an extension operator

P δ from W 1,p ω × (-δ, δ) 3 into W 1,p (ω 2δ × (-δ, δ)) 3 , 1 < p < ∞, satisfying ∀u ∈ W 1,p ω × (-δ, δ) 3 , e(P δ (u)) L p (ω 2δ ×(-δ,δ)) ≤ C e(u) L p (Ω δ )
where the constant does not depend on δ (it depends on p and ∂ω , it is the same constant for all the open sets ω η , η ∈ (0, δ 0 ]). Now, let u be a displacement in W 1,p (Ω δ ) 3 , if δ ≤ δ 0 /2, using the above result with ω = ω, we extend u in oder to obtain a displacement belonging to W 1,p (ω 2δ × (-δ, δ)) 3 . Then, since 2δ ≤ δ 0 , the open set ω 2δ has a Lipschitz boundary. So, we can still apply the above extension result. We extend the extension of u and we get a displacement belonging to W 1,p (ω 4δ × (-δ, δ)) 3 . This gives the result of the proposition.

For simplicity, we will always write u instead of P δ (u) the extension of u to the plate Ω δ .

Below we recall the definition of an elementary displacement of the plate.

Definition 2.2. An elementary displacement of the plate

Ω δ is a displacement v ∈ L 1 (Ω δ ) 3 written in the form v(x , x 3 ) = V(x ) + x 3 A(x ) for a.e. x = (x , x 3 ) ∈ Ω δ . The component V belongs to L 1 (ω 3δ ) 3 while A is in L 1 (ω 3δ ) 2 , A = A 1 e 1 + A 2 e 2 .
Here, V gives the mid-surface displacement and x 3 A(x ) represents a "small rotation" of the fiber {x }×(-δ, δ), whose axis is directed by -A 2 (x )e 1 +A 1 (x )e 2 and whose angle is approximately |A(x )|.

To any displacement u ∈ L 1 (Ω δ ) 3 we associate a unique elementary displacement U * e ∈ L 1 (Ω δ ) 3 and a warping u

* ∈ L 1 (Ω δ ) 3 u(x) = U * e (x) + u * (x) U * e (x) = U * (x ) + x 3 R * (x ) for a.e. x = (x , x 3 ) ∈ Ω δ (2.2) so that δ -δ u * (x , x 3 )dx 3 = 0, δ -δ u * α (x , x 3 )x 3 dx 3 = 0 for a.e. x ∈ ω 3δ . (2.3) 
The above equalities determine U * (x ) and R * (x ) in terms of u and integrals over the fiber {x }×(-δ, δ) (see [START_REF] Griso | Decomposition of displacements of thin structures[END_REF] and [START_REF] Cioranescu | The Periodic Unfolding Method: Theory and Applications to Partial Differential Problems[END_REF]Chapter 11]). We have

U * (x ) = 1 2δ δ -δ u(x , x 3 )dx 3 , R * (x ) = 3 2δ 3 δ -δ
x 3 u 1 (x , x 3 )e 1 +u 2 (x , x 3 )e 2 dx 3 , for a.e. x ∈ ω 3δ .

Theorem 2.3 (Theorem 4.1 in [START_REF] Griso | Decomposition of displacements of thin structures[END_REF]). Let u be a displacement belonging to W 1,p (Ω δ ) 3 , 1 < p < ∞, decomposed as (2.2). The terms U * , R * and u * of this decomposition satisfy

u * L p (Ω δ ) ≤ Cδ e(u) L p (Ω δ ) , ∇u * L p (Ω δ ) ≤ C e(u) L p (Ω δ ) , δ ∇R * L p (ω 3δ ) + e αβ (U * ) L p (ω 3δ ) + ∂U * 3 ∂x α + R * α L p (ω 3δ ) ≤ C δ 1/p e(u) L p (Ω δ ) .
(2.4)

The constant does not depend on δ.

Proof. All the estimates of (2.4) are the consequences of the ones in [START_REF] Griso | Decomposition of displacements of thin structures[END_REF]Theorem 4.1] except that of ∇R * which is replaced by

δ e αβ (R * ) L p (ω 3δ ) ≤ C δ 1/p e(u) L p (Ω δ ) .
The above estimate and the 2D-Korn inequality give a rigid 2D-displacement r(x

) = a 1 -bx 2 a 2 + bx 1 , (a 1 , a 2 , b) ∈ R 3 such that R * -r W 1,p (ω 3δ ) ≤ C e αβ (R * ) L p (ω 3δ ) ≤ C δ 1+1/p e(u) L p (Ω δ ) .
Thus, the above and (2.4) 5 yield

∂U * 3 ∂x α + r α L p (ω 3δ ) ≤ C δ 1+1/p e(u) L p (Ω δ ) . Now, let φ 0 be in D(ω) such that ω φ 0 dx = 1. We have ω ∂U * 3 ∂x 1 (x ) + a 1 -bx 2 ∂φ 0 ∂x 2 - ∂U * 3 ∂x 2 (x ) + a 2 + bx 1 ∂φ 0 ∂x 1 dx = 2b ω φ 0 dx = 2b.
Besides, the Hölder inequality leads to

ω ∂U * 3 ∂x 1 (x ) + a 1 -bx 2 ∂φ 0 ∂x 2 - ∂U * 3 ∂x 2 (x ) + a 2 + bx 1 ∂φ 0 ∂x 1 dx ≤ C ∂U * 3 ∂x 1 + r 1 L p (ω 3δ ) + ∂U * 3 ∂x 2 + r 2 L p (ω 3δ ) ∇φ 0 L p (ω) .
So, |b| ≤ C δ 1+1/p e(u) L p (Ω δ ) which in turn gives (2.4) 3 .

Remark 2.4. Suppose that the plate is clamped on a part of its lateral boundary

Γ δ . = γ × (-δ, δ)
where γ ⊂ ∂ω is a set with non-null measure. Since the fields U * and R * are defined via integrals over the fibers, we have U * = 0, R * = 0, a.e. on γ, u * = 0 a.e. on Γ δ .

(2.5)

3 Decomposition of a plate displacement via a Kirchhoff-Love displacement

In this section we decompose every displacement as the sum of a Kirchoof-Love displacement and shearing plus warping. This decomposition suits our purpose better and simplifies the way to obtain estimates and later the asymptotic behaviors of sequences of displacements. Denote

Ξ δ . = ξ ∈ ZZ 2 | δ ξ + Y ∩ ω = / o , Ξ δ . = Ξ δ ∪ e 1 + Ξ δ ∪ e 2 + Ξ δ ∪ e 1 + e 2 + Ξ δ , ω δ . = Interior ξ∈Ξ δ δ ξ + Y .
Observe that ω ⊂ ω δ ⊂ ω 3δ and note that for every ξ ∈ Ξ δ , we have

δ ξ + Z ⊂ ω 3δ , δ ξ + e 1 + Z ⊂ ω 3δ , δ ξ + e 2 + Z ⊂ ω 3δ , δ ξ + e 1 + e 2 + Z ⊂ ω 3δ .
So for every ξ ∈ Ξ δ we have δ ξ + Z ⊂ ω 3δ . For every φ ∈ L 1 (ω 3δ ) we set

M δ (φ)(t) = 1 δ 2 δZ φ t + z dz 1 dz 2 , ∀t = (t 1 , t 2 ) ∈ ω 3δ such that t + δZ ⊂ ω 3δ , M δ (φ)(δξ) = 1 δ 2 δY φ δξ + z dz 1 dz 2 = M δ (φ) δξ + δ 2 (e 1 + e 2 ) , ∀ξ ∈ Ξ δ .
Now, let u be a displacement in W 1,p (Ω δ ) 3 , extended in an element belonging to W 1,p (Ω δ ) 3 and then decomposed as (2.2).

The Kirchhoff-Love displacement associated with u

We first set

U 1 = U * 1 , U 2 = U * 2 a.e. in ω. (3.1)
Below, we define the third component U 3 in ω δ . In the cell δ(ξ + Y ), ξ ∈ Ξ δ , we set

U 3 (x ) = Φ A,B,C x 1 -δξ 1 , x 2 -δξ 2 , ∀x = (x 1 , x 2 ) ∈ δ(ξ + Y ), ξ = (ξ 1 , ξ 2 )
where Φ A,B,C is given in Appendix (see Subsection 7.2)

A = M δ (U * 3 )(δξ), M δ (U * 3 )(δξ + δe 1 ), M δ (U * 3 )(δξ + δe 1 + δe 2 ), M δ (U * 3 )(δξ + δe 2 ) , B = -M δ (R * 1 )(δξ), M δ (R * 1 )(δξ + δe 1 ), M δ (R * 1 )(δξ + δe 1 + δe 2 ), M δ (R * 1 )(δξ + δe 2 ) , C = -M δ (R * 2 )(δξ), M δ (R * 2 )(δξ + δe 1 ), M δ (R * 2 )(δξ + δe 1 + δe 2 ), M δ (R * 2 )(δξ + δe 2 ) .
By construction, U 3 belongs to W 2,p ( ω δ ). The Kirchhoff-Love displacement associated with u is

U KL (x , x 3 ) . =      U 1 (x ) -x 3 ∂U 3 ∂x 1 (x ) U 2 (x ) -x 3 ∂U 3 ∂x 2 (x ) U 3 (x )      for a.e. x = (x , x 3 ) = (x 1 , x 2 , x 3 ) ∈ Ω δ .

The decomposition of the displacement u

Now, we write

u(x) = U KL (x) + x 3 r(x ) + u(x), for a.e. x in Ω δ . (3.2)
The above equality defines r = r 1 e 1 + r 2 e 2 and u by (α ∈ {1, 2})

r α = R * α + ∂U 3 ∂x α , u = u * + U * 3 -U 3 )e 3 . (3.3) 
Theorem 3.1. The fields U m = U 1 e 1 + U 2 e 2 , U 3 , r and u satisfy U m , r ∈ W 1,p (ω) 2 , U 3 ∈ W 2,p (ω), u ∈ W 1,p (Ω δ ) 3
and the following estimates:

e αβ (U m ) L p (ω) ≤ C δ 1/p e(u) L p (Ω δ ) , ∂ 2 U 3 ∂x 2 1 L p (ω) + ∂ 2 U 3 ∂x 2 2 L p (ω) + ∂ 2 U 3 ∂x 1 ∂x 2 L p (ω) ≤ C δ 1+1/p e(u) L p (Ω δ ) , r L p (ω) + δ ∇r L p (ω) ≤ C δ 1/p e(u) L p (Ω δ ) , u L p (Ω δ ) + δ ∇u L p (Ω δ ) ≤ Cδ e(u) L p (Ω δ ) . (3.4)
The constants do not depend on δ.

Proof. Estimate (3.4) is the consequence of (2.4) 3 and (3.1). Below in the estimates the constants do not depend on ξ and δ.

Step 1. We prove (3.4) 2 . From the estimates (7.1) in Lemma 7.1 we get for every ξ ∈ Ξ δ , (α, β) ∈ {1, 2} 2 , (see also (2.1) 2 )

δ 2 M δ (U * 3 )(δξ + δe α ) -M δ (U * 3 )(δξ) δ + 1 2 M δ (R * 1 )(δξ + δe α ) + M δ (R * α )(δξ) p ≤ 1 2 δ(ξ+Y) ∂U * 3 ∂x α + R * α p dx 1 dx 2 + δ p δ(ξ+Y) ∂R * α ∂x α p dx 1 dx 2 δ 2 M δ (R * α )(δξ + δe β ) -M δ (R * α )(δξ) δ p ≤ δ(ξ+Y) ∂R * α ∂x β p dx 1 dx 2 (3.5)
Now, as a consequence of the above estimates, the expressions of the second order partial derivatives of U 3 given in Subsection 7.2 of the Appendix we obtain

∂ 2 U 3 ∂x 2 1 L p (ω) + ∂ 2 U 3 ∂x 2 2 L p (ω) + ∂ 2 U 3 ∂x 1 ∂x 2 L p (ω) ≤ C 1 δ ∂U * 3 ∂x α + R * α L p (ω 3δ ) + ∇R α L p (ω 3δ ) .
Then, we get (3.4) 2 thanks to (2.4) 3 .

Step 2. We prove (3.4) 3 .

First, the Poincaré-Wirtinger inequality applied in the cells δ(ξ + Z), δ(ξ + Y ) and then in δ(ξ

+ Z) ∪ δ(ξ + Y ), ξ ∈ Ξ δ , allows to compare M δ (R * α )(δξ) and M δ (R * α )(δξ)
. We obtain

δ 2 |M δ (R * α )(δξ) -M δ (R * α )(δξ)| p ≤ Cδ p ∇R * α p L p (δ(ξ+Z)∪δ(ξ+Y )) . (3.6) 
Besides, we have

∂U 3 ∂x α + R * α p L p (δ(ξ+Y )) ≤C R * α -M δ (R * α )(δξ) p L p (δ(ξ+Y )) +δ 2 | M δ (R * α )(δξ) -M δ (R * α )(δξ)| p + ∂U 3 ∂x α + M δ (R * α )(δξ) p L p (δ(ξ+Y ))
.

Then, using equality (7.3), estimates (3.5), (2.4) 3 and the above one, after summation over ξ ∈ Ξ δ we obtain

∂U 3 ∂x α + R * α L p (ω) ≤ C δ 1/p e(u) L p (Ω δ ) . (3.7) 
We have

r α = R * α + ∂U 3 ∂x α (see (3.3)), so r α L p (ω) ≤ C δ 1/p e(u) L p (Ω δ ) .
Observe that ∇r α = ∇R * α + ∇ ∂U 3 ∂x α , this leads to the estimates of ∇r using (3.4) 2 and (2.4) 3 .

Step 3. We prove (3.4) 4 . For a moment, set

u = U * 3 -U 3 . Thus ∂U * 3 ∂x α + R * α = r α + ∂u ∂x α which gives ∂u ∂x α + r α L p (ω) ≤ C δ 1/p e(u) L p (Ω δ ) . Using (3.4) 3 , this leads to ∇u L p (ω) ≤ C δ 1/p e(u) L p (Ω δ ) .
(3.8)

The above together with (2.4) 2 and equality (3.3) 2 yield the estimate of ∇u. First, consider the function U ♦ 3 defined in the cell δ(ξ + Y ) by

U ♦ 3 (x ) = U * 3 (x ) -M δ (U * 3 )(δξ) + M δ (R * 1 )(δξ)(x 1 -δξ 1 -δ/2) + M δ (R * 2 )(δξ)(x 2 -δξ 2 -δ/2
). Applying the Poincaré-Wirtinger inequality leads to

∇U ♦ 3 p L p (δ(ξ+Y )) ≤ C 2 α=1 ∂U * 3 ∂x α + M δ (R * α )(δξ) p L p (δ(ξ+Y )) ≤ C 2 α=1 ∂U * 3 ∂x α + R * α p L p (δ(ξ+Y )) + δ p ∇R * α p L p (δ(ξ+Y ))
and

U ♦ 3 p L p (δ(ξ+Y )) ≤ Cδ p 2 α=1 ∂U * 3 ∂x α + R * α p L p (δ(ξ+Y )) + δ p ∇R * α p L p (δ(ξ+Y )) .
Then, consider the function U 3 defined in the cell δ(ξ + Y ) by

U 3 (x ) = U 3 (x ) -M δ (U 3 )(δξ) + M δ (R * 1 )(δξ)(x 1 -δξ 1 -δ/2) + M δ (R * 2 )(δξ)(x 2 -δξ 2 -δ/2
). Again, thanks to the Poincaré-Wirtinger inequality and (3.6)-(3.7) we have

U 3 p L p (δ(ξ+Y )) ≤ Cδ p 2 α=1 ∂U 3 ∂x α + R * α p L p (δ(ξ+Z)) + δ p ∇R * α p L p (δ(ξ+Z)) .
The above estimates lead to (observe that u

= U * 3 -U 3 = U ♦ 3 -U 3 + M δ (U * 3 -U 3 )(δξ) in δ(ξ + Y )) u -M δ (U * 3 -U 3 )(δξ) p L p (δ(ξ+Y )) ≤ Cδ p 2 α=1 ∂U * 3 ∂x α + R * α p L p (δ(ξ+Z)) + δ p ∇R * α p L p (δ(ξ+Z)) . (3.9) It remains to estimate M δ (U * 3 -U 3 )(δξ) p L p (δ(ξ+Y ))
. From equality (7.4) we obtain

δ 2 M δ (U * 3 -U 3 )(δξ) p ≤ Cδ 2 1 k=0 1 =0 M δ (U * 3 )(δξ + δ(ke 1 + e 2 ) -4 M δ (U * 3 )(δξ) 4 p +δ 2p 1 =0 M δ (R * 1 )(δξ + δe 1 + δ e 2 ) -M δ (R * 1 )(δξ + δ e 2 ) 24δ p +δ 2p 1 k=0 M δ (R * 2 )(δξ + δe 2 + δke 1 ) -M δ (R * 2 )(δξ + δke 1 ) 24δ p . (3.10)
The third estimate in (7.1) implies

δ 2p+2 1 =0 M δ (R * 1 )(δξ + δe 1 + δ e 2 ) -M δ (R * 1 )(δξ + δ e 2 ) 24δ p +δ 2p+2 1 k=0 M δ (R * 2 )(δξ + δe 2 + δke 1 ) -M δ (R * 2 )(δξ + δke 1 ) 24δ p ≤ δ 2p 2 α=1 ∇R * α p L p (δ(ξ+Z)) . (3.11) Now, observe that 1 k=0 1 =0 M δ (U * 3 )(δξ + δ(ke 1 + e 2 )) -4 M δ (U * 3 )(δξ) = M δ (U * 3 )(δξ + δe 1 + δe 2 ) -2M δ (U * 3 ) δξ + δ 2 e 1 + δe 2 + M δ (U * 3 )(δξ + δe 2 ) + M δ (U * 3 )(δξ + δe 1 ) -2M δ (U * 3 ) δξ + δ 2 e 1 + M δ (U * 3 )(δξ) +2 M δ (U * 3 ) (δξ + δ 2 e 1 + δe 2 -2 M δ (U * 3 )(δξ) + M δ (U * 3 ) δξ + δ 2 e 1 Remind that M δ (U * 3 )(δξ) = M δ (U * 3 ) δξ + δ 2 e 1 + δ 2 e 2 .
Thanks to (7.1) 2 we get 

δ 2 1 k=0 1 =0 M δ (U * 3 )(δξ + δ(ke 1 + e 2 )) -4 M δ (U * 3 )(δξ)
u L p (ω) ≤ Cδ 1-1/p e(u) L p (Ω δ ) . (3.13)
Using the above, (2.4) 1 and equality (3.3) 2 completes the proof of (3.4) 4 .

Corollary 3.2. We have

u -U KL L p (Ω δ ) ≤ Cδ e(u) L p (Ω δ ) , ∇(u -U KL ) L p (Ω δ ) ≤ C e(u) L p (Ω δ ) . (3.14) 
The constants do not depend on δ.

Proof. Estimates (3.14) are the immediate consequences of (3.4).

Remark 3.3. It worth to note that the Kirchhoff-Love displacement U KL is close to the initial displacement u (see (3.14)), but we cannot replace u by U KL in an elasticity problem. Shear and warping, even though much smaller than the membrane displacement and the bending, they can not be neglected.

If the plate is made up of a homogeneous and isotropic material with Lamé's constants λ and µ, at the limit in the bending or stretching systems, these constants are replaced by the Young modulus E and the Poisson coefficient ν, this is due to the limit shearing and warping (see e.g. [START_REF] Griso | Asymptotic behavior of structures made of curved rods[END_REF][START_REF] Griso | Straight rod with different order of thickness[END_REF] or the proof of Theorem 5.3).

Lemma 3.4. If the plate is clamped on Γ δ then we have U 1 = U 2 = 0 a.e. on γ (see Remark 2.4 and equalities (3.1)). Moreover, we have

U 3 L p (γ) ≤ Cδ 1-2/p e(u) L p (Ω δ ) , ∇U 3 L p (γ) ≤ C δ 2/p e(u) L p (Ω δ ) . (3.15) 
The constants do not depend on δ.

Proof. The boundary of ω being Lipschitz, so from (3.8) and (3.13) we have the trace result

u p L p (∂ω) ≤ C δ u p L p (ω) + Cδ p-1 ∇u p L p (ω) ≤ Cδ p-2 e(u) p L p (Ω δ ) .
Remind that u = U * 3 -U 3 and U * 3 = 0 a.e. on γ, thus we get (3.15) 1 . Similarly, (3.4) 3 yields

r L p (∂ω) ≤ C δ 2/p e(u) L p (Ω δ ) . Since r α = R * α + ∂U 3 ∂x α and R * α = 0 a.e. on γ, this gives (3.15) 2 .
As a consequence of the above Theorem 3.1 and Lemma 3.4, one has Proposition 3.5 (Korn type inequalities). Let u be a displacement in W 1,p (Ω δ ), 1 < p < ∞. Assume the plate clamped on Γ δ . Then, we have

u 1 L p (Ω δ ) + u 2 L p (Ω δ ) + δ u 3 L p (Ω δ ) ≤ C e(u) L p (Ω δ ) , 2 α, β=1 ∂u β ∂x α L p (Ω δ ) + ∂u 3 ∂x 3 L p (Ω δ ) ≤ C e(u) L p (Ω δ ) , 2 α=1 ∂u 3 ∂x α L p (Ω δ ) + ∂u α ∂x 3 L p (Ω δ ) ≤ C δ e(u) L p (Ω δ ) .
(3.16)

The constants do not depend on δ.

Proof. First, we decompose u as (3.2). Then, (3.4) 1 , the clamped condition satisfied by U 1 , U 2 and the 2D-Korn inequality lead to

U 1 W 1,p (ω) + U 2 W 1,p (ω) ≤ C δ 1/p e(u) L p (Ω δ ) .
We recall the following classical result: there exists a strictly positive constant C (which only depends on p, ∂ω and γ) such that

∀Φ ∈ W 1,p (ω), Φ W 1,p (ω) ≤ C ∇Φ L p (ω) + Φ L p (γ) .
Estimate (3.4) 2 together with (3.15) and the above yield

∇U 3 W 1,p (ω) ≤ C δ 1+1/p e(u) L p (Ω δ ) =⇒ U 3 W 2,p (ω) ≤ C δ 1+1/p e(u) L p (Ω δ ) .
Then, the estimates of the proposition are the consequences of those in (3.4) 3,4 and those above.

Asymptotic behavior of a sequence of displacements

First, we recall the definition of the dimension reduction operator. Definition 4.1. For φ measurable function on Ω δ , the dimension reduction operator Π δ (φ) is defined as follows:

Π δ (φ)(x 1 , x 2 , X 3 ) = φ(x 1 , x 2 , δX 3 ) for a.e. (x 1 , x 2 , X 3 ) ∈ Ω. Π δ (φ) is a measurable function on Ω . = ω × (-1, 1).
We easily check that

1. for any φ ∈ L p (Ω δ ), 1 ≤ p ≤ ∞ Π δ (φ) L p (Ω) = 1 δ 1/p φ L p (Ω δ ) , (4.1) 

for any

φ ∈ W 1,p (Ω δ ), 1 ≤ p ≤ ∞ ∂Π δ (φ) ∂x 1 = Π δ ∂φ ∂x 1 , ∂Π δ (φ) ∂x 2 = Π δ ∂φ ∂x 2 , ∂Π δ (φ) ∂X 3 = δΠ δ ∂φ ∂x 3 . (4.2) 
Let u be a displacement belonging to W 1,p (Ω δ ), decomposed as (3.2). The strain tensor of u is given by the following 3 × 3 symmetric matrix defined a.e. in Ω δ by: 

e(u) =         e 11 (U m ) -x 3 ∂ 2 U 3 ∂x 2 1 + x 3 e 11 (
        (4.3) where r = r 1 e 1 + r 2 e 2 , U m = U 1 e 1 + U 2 e 2 . For every Φ m , Φ 3 , ψ, Φ ∈ W 1,p (ω) 2 × W 2,p (ω) × W 1,p (ω) 2 × L p (ω; W 1,p (-1, 1)) 3 we denote E(Φ m , Φ 3 , ψ, Φ =          e 11 (Φ m ) -X 3 ∂ 2 Φ 3 ∂x 2 1 * * e 12 (Φ m ) -X 3 ∂Φ 3 ∂x 1 ∂x 2 e 22 (Φ m ) -X 3 ∂ 2 Φ 3 ∂x 2 2 * 1 2 ψ 1 + 1 2 ∂Φ 1 ∂X 3 1 2 ψ 2 + 1 2 ∂Φ 2 ∂X 3 ∂Φ 3 ∂X 3          (4.4)
where Φ m = Φ 1 e 1 + Φ 2 e 2 , ψ = ψ 1 e 1 + ψ 2 e 2 .

Theorem 4.2. Let {u δ } δ be a sequence of displacement belonging to W 1,p (Ω δ ), 1 < p < ∞, decomposed as (3.2). Suppose the plate clamped on Γ δ and

e(u δ ) L 2 (Ω δ ) ≤ Cδ 2+1/p
where the constant does not depend on δ. Then, there exist a subsequence of {δ}, still denoted {δ} and

U m = U 1 e 1 + U 2 e 2 ∈ W 1,p (ω) 2 , U 3 ∈ W 2,p (ω), r ∈ L p (ω) 2 and U ∈ L p (ω; W 1,p (-1, 1)) 3 , such that 1 δ 2 U m,δ U m weakly in W 1,p (ω) 2 , 1 δ U 3,δ U 3 weakly in W 2,p (ω). (4.5) 
U m , U 3 satisfy the following boundary conditions:

U m = 0 a.e. on γ, U 3 = 0, ∇U 3 = 0 a.e. on γ.

We also have (α ∈ {1, 2})

1 δ 3 Π δ (u δ ) U weakly in L p (ω; W 1,p (-1, 1)) 3 , 1 δ 2 Π δ ∂u δ ∂x α 0 weakly in L p (Ω) 3 , 1 δ 2 r δ r weakly in L p (ω) 2 , 1 δ ∇r δ 0 weakly in L p (ω) 4 (4.6) 
and The limit warping U satisfies (α ∈ {1, 2})

1 δ 2 Π δ (u α,δ ) U 1 -X 3 ∂U 3 ∂x α weakly in L p (ω; W 1,p (-1, 1)), 1 δ Π δ (u 3,δ ) -→ U 3 strongly in L p (ω; W 1,p (-1, 1)). 
1 -1 U α (•, X 3 )dX 3 = 1 -1 U α (•, X 3 )X 3 dX 3 = 0 a.e. in ω.
We denote W p the following subspace of L p (ω; W 1,p (-1, 1)) 3 :

W p . = V ∈ L p (ω; W 1,p (-1, 1)) 3 | 1 -1 V α (•, X 3 )dX 3 = 1 -1 V α (•, X 3 )X 3 dX 3 = 0 a.e. in ω α ∈ {1, 2} .

A particular loading of the plate

For simplicity we assume that the plate is made of a homogeneous and isotropic material whose Lamé constants are λ and µ. We also assume that the plate is clamped on its lateral boundary.

In this section we want to investigate a plate loaded with applied body and surface forces, these forces are chosen so that they do not see the Kirchhoff-Love displacements. We denote

H 1 Γ δ (Ω δ ) . = φ ∈ H 1 (Ω δ ) | φ = 0 a.e. on ∂ω δ × (-δ, δ) , a ijkl . = λδ ij δ kl + µ δ ik δ jl + δ il δ jk , {i, j, k, l} ∈ {1, 2, 3} 4
where δ ij is the Kronecker symbol. We recall that there exists a strictly positive constant C such that

C|||ζ||| 2 ≤ a ijkl ζ ij ζ kl for all 3 × 3 symmetric matrices ζ (5.1)
where ||| • ||| is the Frobenius norm. We denote

σ ij (v) = a ijkl e ij (v) ∀v ∈ H 1 (Ω δ ).
The 3 × 3 symmetric matrix σ whose entries are the σ ij (v) is the stress tensor of v.

We consider the following elasticity problem given in the variational form:

     Find u δ ∈ H 1 Γ δ (Ω δ ) 3 such that ∀v ∈ H 1 Γ δ (Ω δ ) 3 , Ω δ σ ij (u δ )e ij (v) dx = Ω δ F δ • v dx + ∂Ω ± δ G ± δ • v dx (5.2)
where

F δ belongs to L 2 (Ω δ ) 3 , G ± δ ∈ L 2 (ω) 2 and ∂Ω ± δ .
= ω × {±δ}. The existence and uniqueness of the solution to problem (5.2) is a classical result. Now, we suppose that the applied forces are given by

F δ (x) = f δ (x ) for a.e. x ∈ Ω δ , f δ ∈ L 2 (ω) 3 . G + δ (x ) = -G - δ (x ) = g δ,1 (x )e 1 + g δ,2 ( 
x )e 2 , for a.e. x ∈ ω, g δ,1 , g δ,2 ∈ L 2 (ω).

These forces satisfiy

Ω δ F δ • V KL dx + ∂Ω ± δ G ± δ • V KL dx = 0 for every Kirchhoff-Love displacement V KL =      V 1 -x 3 ∂V 3 ∂x 1 V 2 -x 3 ∂V 3 ∂x 2 V 3      belonging to H 1 Γ δ (Ω δ ) 3 .
This first leads to f δ,1 = f δ,2 = 0 and then

2δ ω f δ,3 (x )V 3 (x )dx - ω 2δ g δ,1 (x ) ∂V 3 ∂x 1 (x ) + g δ,2 (x ) ∂V 3 ∂x 2 (x ) dx = 0, ∀V 3 ∈ H 2 0 (ω). Hence f δ,3 + ∂g δ,1 ∂x 1 + ∂g δ,2 ∂x 2 = 0 in H -1 (ω).
Let g 1 , g 2 be two functions in H 1 (ω). We choose (α ∈ {1, 2})

g δ,α = δ 2 g α , f 3 = -div(g) = - ∂g 1 ∂x 1 + ∂g 2 ∂x 2 , f δ,3 = δ 2 f 3 .
So, for every admissible displacement u ∈ H 1 Γ δ (Ω δ ) 3 decomposed as (3.2), we have

Ω δ F δ • u dx + ∂Ω ± δ G ± δ • u dx =δ 2 Ω δ f 3 u 3 dx + 2δ 3 ω g α r α dx + δ 2 ω g α u α (x , δ) -u α (x , -δ) dx =δ 2 Ω δ g α ∂u 3 ∂x α dx + δ 2 Ω δ g α r α dx + δ 2 Ω δ g α ∂u α ∂x 3 dx =2δ 2 Ω δ
g α e α3 (u) dx.

(5.3)

As a consequence of the above equality and estimates (3.4) the solution u δ to problem (5.2) satisfies

e(u δ ) L 2 (Ω δ ) ≤ Cδ 5/2
where the constant C does not depend on δ.

Proposition 5.1. Let u δ be the solution to problem (5.2). We decompose u δ as (3.2). Then, we first have

1 δ 2 U m,δ -→ 0 strongly in H 1 (ω), 1 δ U 3,δ -→ 0 strongly in H 2 (ω), 1 δ 3 Π δ (u δ,1 ) 0 weakly in L 2 (ω; H 1 (-1, 1)), 1 δ 3 Π δ (u δ,i ) -→ 0 strongly in L 2 (ω; H 1 (-1, 1)), i ∈ {2, 3}. Moreover, there exist r 1 , r 2 ∈ L 2 (ω), such that (α ∈ {1, 2}) 1 δ 2 r α,δ 1 µ g α weakly in L 2 (ω).
Proof. Theorem 4.2 gives a subsequence of {δ}, still denoted {δ} and U m ∈ H 1 0 (ω) 2 , U 3 ∈ H 2 0 (ω), U ∈ W 2 and r 1 , r 2 ∈ L 2 (ω) such that convergences (4.5)-(4.6)-(4.7) and (4.8) hold. We choose

Φ m = Φ 1 e 1 + Φ 2 e 2 ∈ H 1 0 (ω) 2 , Φ 3 ∈ H 2 0 (ω), Φ ∈ W 2 ∩ H 1 Γ (Ω) 3 and ψ 1 , ψ 2 ∈ H 1 0 (ω)
where

H 1 Γ (Ω) . = V ∈ H 1 (Ω) 3 | V = 0 a.e. on ∂ω × (-1, 1) .
We define the test displacement φ δ by

φ δ (•, x 3 ) =       δ 2 Φ 1 -x 3 δ ∂Φ 3 ∂x 1 + x 3 δ 2 ψ 1 + x 3 δ 2 ψ 2 + δ 3 Φ 1 •, x 3 δ δ 2 Φ 2 -x 3 δ ∂Φ 3 ∂x 2 + δ 3 Φ 2 •, x 3 δ δΦ 3 + δ 3 Φ 2 •, x 3 δ       .
We have (see (4.3) for the strain tensor of φ δ )

1 δ 2 Π δ e(φ δ ) -→          e 11 (Φ m ) -X 3 ∂ 2 Φ 3 ∂x 2 1 * * e 12 (Φ m ) -X 3 ∂Φ 3 ∂x 1 ∂x 2 e 22 (Φ m ) -X 3 ∂ 2 Φ 3 ∂x 2 2 * 1 2 ψ 1 + 1 2 ∂Φ 1 ∂X 3 1 2 ψ 2 + 1 2 ∂Φ 2 ∂X 3 ∂Φ 3 ∂X 3         
strongly in L 2 (Ω) 6 . Now, in (5.2) we choose this test displacement, we transform the left and right hand sides using Π δ , divide by δ 5 and pass to the limit. Thanks to (5.3), we obtain

Ω a ijkl E ij U m , U 3 , r, U E kl Φ m , Φ 3 , ψ, Φ dx dX 3 = 2 ω g α ψ α dx + Ω δ g α ∂U α ∂X 3 dx dX 3 .
This first gives

Ω a iikk E ij U m , U 3 , r, U E kk Φ m , Φ 3 , ψ, Φ dx dX 3 +µ Ω e 12 (U m ) -X 3 ∂U 3 ∂x 1 ∂x 2 e 12 (Φ m ) -X 3 ∂Φ 3 ∂x 1 ∂x 2 dx dX 3 = 0 (5.4)
and

µ Ω r α + ∂U α ∂X 3 ψ α + ∂Φ α ∂X 3 dx dX 3 = Ω g α ψ α + ∂Φ α ∂X 3 dx dX 3 . (5.5) 
By density of

W 2 ∩ H 1 Γ (Ω) 3 in W 2 and H 1 0 (ω) in L 2 (ω)
, the above equalities are still satisfied for every Φ ∈ W 2 and ψ 1 , ψ 2 ∈ L2 (ω). So, from (5.4) we get U 1 = U 2 = U 3 = 0 and U 3 = 0 (up to a function belonging to L 2 (ω)) since (5.1) and (5.4) imply

2 α,β=1 e αβ (U m ) 2 L 2 (Ω) + ∂ 2 U 3 ∂x α ∂x β 2 L 2 (Ω) + ∂U 3 ∂X 3 2 L 2 (Ω) ≤ C 2 α,β=1 e αβ (U m ) -X 3 ∂ 2 U 3 ∂x α ∂x β 2 L 2 (Ω) + ∂U 3 ∂X 3 2 L 2 (Ω) ≤ 0.
Then, (5.5) gives (α ∈ {1, 2})

r α = 1 µ g α a.
e. in ω, U α = 0 a.e. in Ω.

Since the limit problems admit a unique solution, the whole sequences of fields converge towards their limit. As usual we prove the strong convergence of the strain tensor which in turn gives the strong convergences in the proposition.

The displacement

u ap δ (x) = δ 2 x 3 r 1 (x )e 1 + r 2 (x )e 2 for a.e. x ∈ Ω δ
is an approximation of the solution u δ to problem (5.2). Below, we give an error estimate.

Lemma 5.2. Assume g 1 and g 2 ∈ H1 0 (ω) 1 , then we have

e(u δ -u ap δ ) ≤ Cδ 7/2 ( g 1 H 1 (ω) + g 2 H 1 (ω) ). (5.6)
The constant is independent of δ.

Proof. First observe that under the assumption of the lemma, u ap δ is an admissible displacement of the plate. We first have

e αβ (u ap δ ) L 2 (Ω δ ) ≤ Cδ 7/2 ( g 1 H 1 (ω) + g 2 H 1 (ω) ) (5.7) 
and Hence

e 13 (u ap δ ) = δ 2 2 r 1 , e 23 (u ap δ ) = δ 2 2 r 2 , e 33 (u ap δ ) = 0. Now, let φ be a displacement in H 1 Γ δ (Ω δ ) 3 ,
Ω δ σ ij e ij (u δ -u ap δ )e kl (φ) dx = - Ω δ σ αβ (u ap δ )e αβ (φ) dx (5.8) 
which in turn due to (5.7) give (5.6).

Theorem 5.3. Under the assumption of Lemma 5.2, we have

1 δ 3 Π δ (u δ,1 ) -→ -X 3 ∂U ♦ 3 ∂x 1 + X 3 r 1 strongly in L 2 (ω; H 1 (-1, 1)), 1 δ 3 Π δ (u δ,2 ) -→ -X 3 ∂U ♦ 3 ∂x 2 + X 3 r 2 strongly in L 2 (ω; H 1 (-1, 1)), 1 δ 2 Π δ (u δ,3 ) -→ U ♦ 3 strongly in L 2 (ω; H 1 (-1, 1))
where

U ♦ 3 ∈ H 2 0 (ω) is the unique solution to ω (1 -ν) ∂ 2 U ♦ 3 ∂x α ∂x β -e αβ (r) ∂ 2 Φ 3 ∂x α ∂x β + ν ∆U ♦ 3 -e αα (r) ∆Φ 3 ) dx = 0, ∀Φ 3 ∈ H 2 0 (ω).
Moreover we have the following strong convergence in L 2 (Ω) 6 : Proof. We decompose u δ -u ap δ as (3.2), we write

1 δ 3 Π δ e(u δ -u ap δ ) → X 3         - ∂ 2 U ♦ 3 ∂x 2 1 + e 11 (r) - ∂ 2 U ♦ 3 ∂x 1 ∂x 2 + e 12 (r) 0 - ∂ 2 U ♦ 3 ∂x 1 ∂x 2 + e 12 (r) - ∂ 2 U ♦
u δ (x) -u ap δ (x) = U ♦ KL,δ (x) + x 3 r ♦ δ (x ) + u ♦ δ (x), for a. e. x ∈ Ω δ .
Due to Theorems 3.1 and 4.2, there exist a subsequence of {δ}, still denoted {δ} and

U ♦ 1 , U ♦ 2 ∈ H 1 0 (ω), U ♦ 3 ∈ H 2 0 (ω), U ♦ ∈ W 2 and r ♦ ∈ L 2 (ω) 2 such that 1 δ 3 U ♦ δ,m U ♦ m weakly in H 1 0 (ω), 1 δ 2 U ♦ δ,3 U ♦ 3 weakly in H 2 0 (ω), 1 δ 4 Π δ (u ♦ δ ) U ♦ weakly in L 2 (ω; H 1 (-1, 1)) 3 , 1 δ 3 Π δ ∂u ♦ δ ∂x α 0 weakly in L 2 (Ω) 3 , 1 δ 3 r ♦ δ r ♦ weakly in L 2 (ω) 2 , 1 δ 2 ∇r ♦ δ 0 weakly in L 2 (ω) 2 and 1 δ 3 Π δ e(u δ -u ap δ ) E U ♦ m , U ♦ 3 , r ♦ , U ♦ weakly in L p (Ω) 6 .
(5.9) Now, in (5.8) we choose the test displacement introduced in the proof of Proposition 5.1, we transform the left and right hand sides using Π δ , divide by δ 6 and pass to the limit. We obtain

Ω a ijkl E ij U ♦ m , U ♦ 3 , r ♦ , U ♦ E kl Φ m , Φ 3 , ψ, Φ dx dX 3 = - Ω a αβα β e αβ (r)X 3 E α β Φ m , Φ 3 , ψ, Φ dx dX 3 .
(5.10)

By density of W 2 ∩ H 1 Γ (Ω) 3 in W 2 and H 1 0 (ω) in L 2 (ω), the above equality is still satisfied for every Φ ∈ W 2 and ψ ∈ L 2 (ω) 2 . The above equality yields

µ Ω r ♦ α + ∂U ♦ α ∂X 3 ψ α + ∂Φ α ∂X 3 dx dX 3 = 0
Hence r ♦ α = 0 and U ♦ α = 0. Equation (5.10) also gives

Ω (λ + 2µ) e 11 (U ♦ m ) -X 3 ∂ 2 U ♦ 3 ∂x 2 1 + λ e 22 (U ♦ m ) -X 3 ∂ 2 U ♦ 3 ∂x 2 2 + λ ∂U ♦ 3 ∂X 3 e 11 (Φ m ) -X 3 ∂ 2 Φ 3 ∂x 2 1 + λ e 11 (U ♦ m ) -X 3 ∂ 2 U ♦ 3 ∂x 2 1 + (λ + 2µ) e 22 (U ♦ m ) -X 3 ∂ 2 U ♦ 3 ∂x 2 2 + λ ∂U ♦ 3 ∂X 3 e 22 (Φ m ) -X 3 ∂ 2 Φ 3 ∂x 2 2 + λ e 11 (U ♦ m ) -X 3 ∂ 2 U ♦ 3 ∂x 2 1 + λ e 22 (U ♦ m ) -X 3 ∂ 2 U ♦ 3 ∂x 2 2 + (λ + 2µ) ∂U ♦ 3 ∂X 3 ∂Φ 3 ∂X 3 +µ e 12 (U ♦ m ) -X 3 ∂U ♦ 3 ∂x 1 ∂x 2 e 12 (Φ m ) -X 3 ∂Φ 3 ∂x 1 ∂x 2 dx dX 3 = - Ω a αβα β e αβ (r)X 3 E α β Φ m , Φ 3 , ψ, Φ dx dX 3 .
(5.11)

In (5.11) we choose Φ = 0, this yields

∂U ♦ 3 ∂X 3 = - λ λ + 2µ e 11 (U ♦ m ) + e 22 (U ♦ m ) -X 3 ∆U ♦ 3 .
Replacing ∂U

♦ 3 ∂X 3 in (5.11) leads to E 1 -ν 2 ω (1 -ν)e αβ (U ♦ m )e αβ (Φ m ) + νe αα (U ♦ m )e αα (Φ m ) dx + E 3(1 -ν 2 ) ω (1 -ν) ∂ 2 U ♦ 3 ∂x α ∂x β -e αβ (r) ∂ 2 Φ 3 ∂x α ∂x β + ν ∆U ♦ 3 -e αα (r) ∆Φ 3 ) dx = 0
where E = µ(3λ + 2µ) λ + µ is the Young modulus and ν = λ 2(λ + µ) the Poisson coefficient. Hence, U ♦ m = 0 and we get the equation satisfied by U ♦ 3 . Since the limit problem admits a unique solution, the whole sequences of the different fields converge towards their limit. As usual we prove the strong convergence of the strain tensor which in turn gives the strong convergences in the theorem.

As a consequence of Proposition 5.1 and Theorem 5.3, regarding the stress tensors, of u δ and u δ -u ap δ we have the following strong convergences in L 2 (Ω) 6 :

1 δ 2 Π δ σ(u δ ) -→ 1 2   0 0 g 1 0 0 g 2 g 1 g 2 0   , 1 δ 3 Π δ σ(u δ -u ap δ ) -→ E 1 -ν 2 X 3       - ∂ 2 U ♦ 3 ∂x 2 1 + e 11 (r) 2(1 -ν) - ∂ 2 U ♦ 3 ∂x 1 ∂x 2 + e 12 (r) 0 2(1 -ν) - ∂ 2 U ♦ 3 ∂x 1 ∂x 2 + e 12 (r) - ∂ 2 U ♦ 3 ∂x 2 2 + e 22 (r) 0 0 0 0      
.

Conclusion

If we are dealing with a very thin plate, it will be better to replace the decomposition (1.1) with a shorter one. So, any displacement u ∈ W 1,p (Ω δ ) 3 , 1 < p < ∞, is also decomposed as

u(x) =      U 1 (x ) -x 3 ∂U 3 ∂x 1 (x ) U 2 (x ) -x 3 ∂U 3 ∂x 2 (x ) U 3 (x )      Kirchhoff-Love displacement + u(x)
residual displacement for a.e. x in Ω δ . (6.1)

The residual displacement is u(x) = x 3 r 1 (x )e 1 + r 2 (x )e 2 + u(x) for a.e. x in Ω δ .

It satisfies the following two conditions:

δ -δ u 1 (x , x 3 )dx 3 = δ -δ u 2 (x , x 3 )dx 3 = 0 for a.e. x ∈ ω.
As immediate consequence of Theorem 3.1 we have Theorem 6.1. The fields U m = U 1 e 1 + U 2 e 2 , U 3 and u satisfy

U m ∈ W 1,p (ω) 2 , U 3 ∈ W 2,p (ω), u ∈ W 1,p (Ω δ ) 3
and the following estimates:

e αβ (U m ) L p (ω) ≤ C δ 1/p e(u) L p (Ω δ ) , ∂ 2 U 3 ∂x 2 1 L p (ω) + ∂ 2 U 3 ∂x 2 2 L p (ω) + ∂ 2 U 3 ∂x 1 ∂x 2 L p (ω) ≤ C δ 1+1/p e(u) L p (Ω δ ) , u L p (Ω δ ) + δ ∇ u L p (Ω δ ) ≤ Cδ e(u) L p (Ω δ ) .
The constants do not depend on δ.

If the plate is clamped on Γ δ , then the estimates of Lemma 3.4 are still valid and we have U m = 0 on γ. Of course, Proposition 3.5 is also still valid. Proceeding as in [START_REF] Griso | Asymptotic behavior of structures made of plates[END_REF] the above decomposition (6.1) can be extended to structures made up of a large number of plates.

Appendix

7.1 A lemma Lemma 7.1. Let Φ and Ψ two functions belonging to W 1,p (0, 2δ) × (0, δ) , 1 ≤ p < ∞. We have

M δ (Φ)(δ) -M δ (Φ)(0) δ + 1 2 M δ (Ψ)(0) + M δ (Ψ)(δ) p ≤ C δ 2 2δ 0 δ 0 ∂Φ ∂x + Ψ p dxdy + δ p 2δ 0 δ 0 ∂Ψ ∂x p dxdy , M δ (Φ)(δ) -2M δ (Φ)(δ/2) + M δ (Φ)(0) δ p ≤ C δ 2 2δ 0 δ 0 ∂Φ ∂x + Ψ p dxdy + δ p 2δ 0 δ 0 ∂Ψ ∂x p dxdy , M δ (Ψ)(δ) -M δ (Ψ)(0) δ p ≤ C δ 2 2δ 0 δ 0 ∂Ψ ∂x p dxdy. (7.1) 
where for every Θ ∈ L 1 (0, 2δ) × (0, δ)

M δ (Θ)(t) = 1 δ 2 δ 0 δ 0 Θ(s 1 + t, s 2 )ds 1 ds 2 , t ∈ [0, δ].
The constants depend only on p.

Proof. Step 1. A preliminary result. Let φ and ψ be two functions belonging to C 1 ([0, 2δ]). In this step we prove that (1 ≤ p < ∞)

m δ (φ)(δ) -m δ (φ)(0) δ + m δ (ψ)(0) p ≤ 2 p-1 δ 2δ 0 dφ dx (t) + ψ(t) p dt + δ p 2δ 0 dψ dx (t) p dt , m δ (φ)(δ) -2m δ (φ)(δ/2) + m δ (φ)(0) δ p ≤ 2 p+3 δ 2δ 0 dφ dx (t) + ψ(t) p dt + δ p 2δ 0 dψ dx (t) p dt , m δ (ψ)(δ) -m δ (ψ)(0) δ p ≤ 1 δ 2δ 0 dψ dx (t) p dt (7.2)
where for every θ ∈ L 1 (0, 2δ)

m δ (θ)(t) = 1 δ δ 0 θ(t + s)ds, t ∈ [0, δ].
We prove (7.2) 1 . We have We prove (7.2) 2 . We have Hence, (7.2) 3 is proved.

φ(x + δ) -φ(x) = δ 0 dφ dx (x + t)dt ∀x ∈ [0, δ].
m δ (φ)(δ) -m δ (φ)(δ/2) = 1 δ δ 0 φ(s + δ) -φ(s + δ/2) ds = 1 δ δ 0 s+δ s+δ/2 dφ dx (t)dtds, m δ (φ)(δ/2) -m δ (φ)(0) = 1 δ δ 0 φ(s + δ/2) -φ(s) ds = 1 δ δ 0 s+δ/2 s dφ dx (t)dtds, Thus m δ (φ)(δ) -2m δ (φ)(δ/2) + m δ (φ)(0) = 1 
Step 2. We prove the inequality of the lemma. We first choose two functions Φ and Ψ belonging to C 1 [0, 2δ] × [0, δ] . From (7.2), we have where for all (x 1 , x 2 ) ∈ [0, δ] 2 P 0,0 (x 1 , x 2 ) = Q 0 (x 1 )Q 0 (x 2 ), P 0,1 (x 1 , x 2 ) = Q 0 (x 1 )Q 1 (x 2 ), P 1,0 (x 1 , x 2 ) = Q 1 (x 1 )Q 0 (x 2 ), P 1,1 (x 1 , x 2 ) = Q 1 (x 1 )Q 1 (x 2 ), d 1 P 0,0 (x 1 , x 2 ) = Q0 (x 1 )Q 0 (x 2 ), d 1 P 0,1 (x 1 , x 2 ) = Q0 (x 1 )Q 1 (x 2 ), d 1 P 1,0 (x 1 , x 2 ) = Q1 (x 1 )Q 0 (x 2 ), d 1 P 1,1 (x 1 , x 2 ) = Q1 (x 1 )Q 1 (x 2 ), d 2 P 0,0 (x 1 , x 2 ) = Q 0 (x 1 ) Q0 (x 2 ), d 2 P 0,1 (x 1 , x 2 ) = Q 0 (x 1 ) Q1 (x 2 ),

d 2 P 1,0 (x 1 , x 2 ) = Q 1 (x 1 ) Q0 (x 2 ), d 2 P 1,1 (x 1 , x 2 ) = Q 1 (x 1 ) Q1 (x 2 ).
By construction, we have + A 0,1 Q 0 (x 1 ) + A 1,1 Q 1 (x 1 ) + B 0,1 Q0 (x 1 ) + B 1,1 Q1 (x 1 ) Q 1 (x 2 ) + C 0,0 Q0 (x 2 ) + C 0,1 Q1 (x 2 ) Q 0 (x 1 ) + C 1,0 Q0 (x 2 ) + C 1,1 Q1 (x 2 ) Q 1 (x 1 ) = A 0,0 Q 0 (x 2 ) + A 0,1 Q 1 (x 2 ) + C 0,0 Q0 (x 2 ) + C 0,1 Q1 (x 2 ) Q 0 (x 1 )

+ A 1,0 Q 0 (x 2 ) + A 1,1 Q 1 (x 2 ) + C 1,0 Q0 (x 2 ) + C 1,1 Q1 (x 2 ) Q 1 (x 1 )
+ B 0,0 Q0 (x 1 ) + B 1,0 Q1 (x 1 ) Q 0 (x 2 ) + B 0,1 Q0 (x 1 ) + B 1,1 Q1 (x 1 ) Q 1 (x 2 ).

We have

∂ x1 Φ A,B,C (x 1 , x 2 ) = A 0,0 -A 1,0 δ + 1 2 (B 0,0 + B 1,0 ) P (x 1 ) + B 0,0 δ -x 1 δ + B 1,0 x 1 δ Q 0 (x 2 ) + A 0,1 -A 1,1 δ + 1 2 (B 0,1 + B 1,1 ) P (x 1 ) + B 0,1 δ -x 1 δ + B 1,1 x 1 δ Q 1 (x 2 )
+ (C 0,0 -C 1,0 )(x 2 -δ) + (C 0,1 -C 1,1 )x 2 P (x 2 ) 6 P (x 1 ),

∂ x2 Φ A,B,C (x 1 , x 2 ) = A 0,0 -A 0,1 δ + 1 2 (C 0,0 + C 0,1 ) P (x 2 ) + C 0,0 δ -x 2 δ + C 0,1 x 2 δ Q 0 (x 1 ) + A 1,0 -A 1,1 δ + 1 2 (C 1,0 + C 1,1 ) P (x 2 ) + C 1,0 δ -x 2 δ + C 1,1 x 2 δ Q 1 (x 1 )
+ (B 0,0 -B 0,1 )(x 1 -δ) + (B 1,0 -B 1,1 )x 1 P (x 1 ) 6 P (x 2 ).

x 3 r 2

 2 

L

  p (δ(ξ+Z))+ δ p ∇R * α p L p (δ(ξ+Z)) .(3.12) So, (3.9)-(3.10)-(3.11) and (3.12) after summation over ξ ∈ Ξ δ lead to the estimate of u L p (ω)

(4. 7 ) 1 δ 2 Π

 712 Moreover δ e(u δ ) E U m , U 3 , r, U weakly in L p (Ω) 6 . (4.8) Proof. Convergences (4.5)-(4.6)-(4.8) are the immediate consequences of the estimates (3.4), the ones in Proposition 3.5 and the properties (4.1)-(4.2) of the operator Π δ . Convergences (4.7) come from those in (4.5)-(4.6) and again the properties of the operator Π δ .

  from (5.3) we have 4µ Ω δ e 13 (u ap δ )e 13 (φ) + e 23 (u ap δ )e 23 (φ) dx = 2δ 2 Ω δ g α e α3 (φ) dx.

3 -

 3 e 11 (r) -e 22 (r)

  +ψ(x+t) dxdt.Above, the first termof the RHS isδ 0 δ 0 ψ(x + t) -ψ(x) dxdt =

  + δ/2) -ψ(t) dtds.Then, the Hölder inequality leads tom δ (φ)(δ) -2m δ (φ)(δ/2) + m δ (φ)(0)The above inequality yields (7.2) 2 . We prove (7.2) 3 . We start withδ m δ (ψ(δ) -m δ (ψ(0) = δ 0 ψ(δ + t) -ψ(t) dt = Hölder inequality, this yields δ m δ (ψ(δ) -m δ (ψ(0) p ≤ δ 2p-

  x + δ, y)dxy) + Ψ(x, y)p dx + δ p 2δ 0 ∂Ψ ∂x (x, y) p dx

Φ

  A,B,C (kδ, pδ) = A k,p , ∂ x1 Φ A,B,C (kδ, pδ) = B k,p , ∂ x2 Φ A,B,C (kδ, pδ) = C k,p , (k, p) ∈ {0, 1} 2 .Moreover, (k, p) ∈ {0, 1} 2• Φ A,B,C (x 1 , pδ) only depends on A 0,p , A 1,p , B 0,p and B 1,p ,• Φ A,B,C (kδ, x 2 ) only depends on A k,0 , A k,1 , C k,0 and C k,1 , • ∂ x1 Φ A,B,C (x 1 , pδ) only depends on A 0,p , A 1,p , B 0,p and B 1,p , • ∂ x1 Φ A,B,C (kδ, x 2 ) only depends on B k,0 and B k,1 , • ∂ x2 Φ A,B,C (x 1 , pδ) only depends on C 0,p and C 1,p , • ∂ x2 Φ A,B,C (kδ, x 2 ) only depends on A k,0 , A k,1 , C k,0 and C k,1 ,Now, observe that Φ A,B,C can be rewritten as Φ A,B,C (x 1 , x 2 ) = A 0,0 Q 0 (x 1 ) + A 1,0 Q 1 (x 1 ) + B 0,0 Q0 (x 1 ) + B 1,0 Q1 (x 1 ) Q 0 (x 2 )

If we only assume g 1 and g

∈ H 1 (ω) we can prove that e(u δ -u ap δ ) ≤ Cδ

( g 1 H 1 (ω) + g 2 H 1 (ω) ).

Now, using Hölder inequality we obtain Thanks to a symmetry argument, we also obtain

From the two inequalities above, we obtain (7.1)

. Similarly, we show (7.1) 2,3 starting from (7.2) 2,3 . A density argument gives the estimates for every Φ and Ψ belonging to W 1,p (0, 2δ) × (0, δ) , 1 ≤ p < ∞.

7.2

The function Φ A,B,C (see also [START_REF] Falconi | Periodic unfolding for lattice structures[END_REF])

Note that

We define the polynomial function Φ

The second order partial derivatives are

and a similar expression for ∂ 2 x2x2 Φ A,B,C (x 1 , x 2 ) and

x 2 δ R(x 2 ) 6 P (x 1 ) + C 0,0 -C 1,0 δ + C 0,1 -C 1,1 δ P (x 2 ) 6 R(x 1 ).

We also have

(7.4)