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The transmission eigenvalue problem is a system of two second-order elliptic equations of two unknowns equipped with the Cauchy data on the boundary. In this work, we establish the Weyl law for the eigenvalues and the completeness of the generalized eigenfunctions for a system without complementing conditions, i.e., the two equations of the system have the same coecients for the second order terms, and thus being degenerate. These coecients are allowed to be anisotropic and are assumed to be of class C 2 . One of the keys of the analysis is to establish the well-posedness and the regularity in L p -scale for such a system. As a result, we largely extend and rediscover known results for which the coecients for the second order terms are required to be isotropic and of class C ∞ using a new approach.

The transmission eigenvalue problem plays a role in the inverse scattering theory for inhomogeneous media. This eigenvalue problem is connected to the injectivity of the corresponding 1 scattering operator [START_REF] Colton | The inverse scattering problem for time-harmonic acoustic waves in an inhomogeneous medium[END_REF], [START_REF] Kirsch | The denseness of the far eld patterns for the transmission problem[END_REF]. Transmission eigenvalues are related to interrogating frequencies for which there is an incident eld that is not scattered by the medium. In the acoustic setting, the transmission eigenvalue problem is a system of two second-order elliptic equations of two unknowns equipped with the Cauchy data on the boundary. After four decades of extensive study, the spectral properties are known to depend on a type of contrasts of the media near the boundary. Natural and interesting questions on the interior transmission eigenvalue problem include: the discreteness of the spectrum (see e.g. [START_REF] Cakoni | The interior transmission eigenvalue problem[END_REF][START_REF] Bonnet-Ben Dhia | On the use of T -coercivity to study the interior transmission eigenvalue problem[END_REF][START_REF] Sylvester | Discreteness of transmission eigenvalues via upper triangular compact operators[END_REF][START_REF] Lakshtanov | Ellipticity in the interior transmission problem in anisotropic media[END_REF][START_REF] Nguyen | Discreteness of interior transmission eigenvalues revisited[END_REF][START_REF] Cakoni | Singularities almost always scatter: Regularity results for non-scattering inhomogeneities[END_REF]), the location of transmission eigenvalues (see [START_REF] Cakoni | The existence of an innite discrete set of transmission eigenvalues[END_REF][START_REF] Leung | Complex transmission eigenvalues for spherically stratied media[END_REF][START_REF] Vodev | Transmission eigenvalue-free regions[END_REF][START_REF]High-frequency approximation of the interior Dirichlet-to-Neumann map and applications to the transmission eigenvalues[END_REF], and also [START_REF] Cakoni | Analysis of the linear sampling method for imaging penetrable obstacles in the time domain[END_REF] for the application in time domain), the Weyl law of transmission eigenvalues and the completeness of the generalized eigenfunctions (see e.g. [START_REF] Lakshtanov | Ellipticity in the interior transmission problem in anisotropic media[END_REF][START_REF]Remarks on interior transmission eigenvalues, Weyl formula and branching billiards[END_REF][START_REF]Sharp Weyl law for signed counting function of positive interior transmission eigenvalues[END_REF][START_REF]Counting function for interior transmission eigenvalues[END_REF]). We refer the reader to [START_REF] Cakoni | Inverse scattering theory and transmission eigenvalues[END_REF] for a recent, and self-contained introduction to the transmission eigenvalue problem and its applications.

Let us describe its mathematical formulation. Let Ω be a bounded, simply connected, open subset of R d of class C 3 with d ≥ 2. Let A 1 , A 2 be two real, symmetric matrix-valued functions, and let Σ 1 , Σ 2 be two bounded positive functions that are all dened in Ω. Assume that A 1 and A 2 are uniformly elliptic, and Σ 1 and Σ 2 are bounded below by a positive constant in Ω, i.e., for some constant Λ ≥ 1, one has, for = 1, 2, (1.1)

Λ -1 |ξ| 2 ≤ A (x)ξ, ξ ≤ Λ|ξ| 2 for all ξ ∈ R d , for a.e. x ∈ Ω, and (1.2)

Λ -1 ≤ Σ (x) ≤ Λ for a.e. x ∈ Ω. Here and in what follows, •, • denotes the Euclidean scalar product in C d and | • | is the corresponding norm.

A complex number λ is called an eigenvalue of the transmission eigenvalue problem associated with the pairs (A 1 , Σ 1 ) and (A 2 , Σ 2 ) in Ω if there is a non-zero pair of functions (u 1 , u 2 ) ∈ [H 1 (Ω)] 2 that satises the system (1.3)

       div(A 1 ∇u 1 ) -λΣ 1 u 1 = 0 in Ω, div(A 2 ∇u 2 ) -λΣ 2 u 2 = 0 in Ω, u 1 = u 2 , A 1 ∇u 1 • ν = A 2 ∇u 2 • ν on Γ.
Here and in what follows, Γ denotes ∂Ω, and ν denotes the outward, normal, unit vector on Γ. Such a pair (u 1 , u 2 ) is then called an eigenfunction pair.

Assume that A 1 , A 2 , Σ 1 , Σ 2 are continuous in Ω, and the following conditions on the boundary Γ hold, with ν = ν(x) : (1.4)

A 2 (x)ν, ν A 2 (x)ξ, ξ -A 2 (x)ν, ξ 2 = A 1 (x)ν, ν A 1 (x)ξ, ξ -A 1 (x)ν, ξ 2 ,
for all x ∈ Γ and for all ξ ∈ R d \ {0} with ξ, ν = 0, and (1.5)

A 2 (x)ν, ν Σ 2 (x) = A 1 (x)ν, ν Σ 1 (x), ∀ x ∈ Γ.
(Q. H.) Nguyen and the second author [START_REF]The Weyl law of transmission eigenvalues and the completeness of generalized transmission eigenfunctions[END_REF] established the Weyl law of eigenvalues and the completeness of the generalized eigenfunctions for transmission eigenvalue problem under conditions (1.4) and (1.5) via the Fourier analysis assuming that A 1 , A 2 , Σ 1 , Σ 2 are continuous in Ω. Condition (1.4) is equivalent to the celebrated complementing conditions due to Agmon, Douglis, and Nirenberg [START_REF]Estimates near the boundary for solutions of elliptic partial dierential equations satisfying general boundary conditions[END_REF] (see also [START_REF] Shmuel Agmon | Estimates near the boundary for solutions of elliptic partial dierential equations satisfying general boundary conditions[END_REF]). The explicit formula given here was derived in [START_REF]Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coecients[END_REF] in the context of the study of negative index materials. Conditions (1.4) and (1.5) were derived by (Q. H.) Nguyen and the second author in [START_REF] Nguyen | Discreteness of interior transmission eigenvalues revisited[END_REF] in their study of the discreteness of the eigenvalues for transmission eigenvalue problem.

In the case (1.6)

A 1 = A 2 = A in Ω, it was also shown by (Q. H.) Nguyen and the second author [START_REF] Nguyen | Discreteness of interior transmission eigenvalues revisited[END_REF] (see also [START_REF] Sylvester | Discreteness of transmission eigenvalues via upper triangular compact operators[END_REF]) using the multiplier technique that the discreteness holds if (1.7)

Σ 1 = Σ 2 on Γ. The goal of this paper is to study the Weyl law of the eigenvalues and the completeness of the generalized eigenfunctions under conditions (1.6) and (1.7). It is worth noting that results in this direction have been obtained previously with more constraints on the coecients than (1.6) and (1.7). Robbiano [START_REF]Counting function for interior transmission eigenvalues[END_REF] (see also [START_REF] Robbiano | Spectral analysis of the interior transmission eigenvalue problem[END_REF]) gives the sharp order of the counting number when A = I in Ω, Σ 1 = 1, Σ 2 = Σ 1 near the boundary and Σ 2 is smooth. The analysis is based on both the microanalysis (see, e.g., [START_REF] Grigis | Microlocal analysis for dierential operators[END_REF][START_REF] Zworski | Semiclassical analysis[END_REF]) and the regularity theory for the transmssion eigenvalue problem. In the isotropic case, the Weyl law was established by Petkov and Vodev [START_REF] Petkov | Asymptotics of the number of the interior transmission eigenvalues[END_REF] and Vodev [START_REF]High-frequency approximation of the interior Dirichlet-to-Neumann map and applications to the transmission eigenvalues[END_REF][START_REF]Parabolic transmission eigenvalue-free regions in the degenerate isotropic case[END_REF][START_REF]Improved parametrix in the glancing region for the interior Dirichlet-to-Neumann map[END_REF] for C ∞ coecients. Their analysis is heavily based on microanalysis and the smoothness condition is strongly required. In addition, their work involved a delicate analysis on the Dirichlet to Neumann maps using non-standard parametrix construction initiated by Vodev [START_REF] Vodev | Transmission eigenvalue-free regions[END_REF], which have their own interests. It is not clear how one can improve the C ∞ condition and extend their results to the anisotropic setting using their approach. Concerning the completeness of the generalized eigenfunctions, we want to mention the work of Robbiano [START_REF] Robbiano | Spectral analysis of the interior transmission eigenvalue problem[END_REF] where the case A = I and Σ 1 = Σ 2 in Ω was considered.

We are ready to state the main results of this paper. From now on, we will assume in addition that (1.8)

(A 1 , A 2 ) C 2 ( Ω) + (Σ 1 , Σ 2 ) C 1 ( Ω) ≤ Λ.
We denote by (λ j ) j the set of transmission eigenvalues associated with the transmission eigenvalue problem (1.3).

Concerning the Weyl law, we have Theorem 1.1. Assume (1.1)-(1.2) and (1.6)- (1.8). Let N (t) denote the counting function, i.e.

N (t) = #{j ∈ N : |λ j | ≤ t}.
Then

N (t) = ct d 2 + o(t d 2 ) as t → +∞, where c := 1 (2π) d 2 =1 Ω ξ ∈ R d ; A (x)ξ, ξ < Σ (x) dx.
For a measurable subset D of R d , we denote |D| its (Lebesgue) measure. Concerning the completeness, we obtain Theorem 1.2. Assume (1.1)-(1.2) and (1.6)- (1.8). The set of generalized eigenfunction pairs of

(1.3) is complete in L 2 (Ω) × L 2 (Ω).
Remark 1.1. As a direct consequence of either Theorem 1.1 or Theorem 1.2, the number of eigenvalues of the transmission eigenvalue problem is innite. As far as we know, this fact is new under the assumption that A is allowed to be anisotropic and the regularity of the coecients are only required up to the order 2.

The analysis used in the proof of Theorem 1.1 and/or Theorem 1.2 also allows us to obtain the following result on the transmission eigenvalue free region of the complex plane C. Proposition 1.1. Assume (1.1)-(1.2) and (1.6)- (1.8). For γ > 0, there exists λ 0 > 0 such that if λ ∈ C with | (λ)| ≥ γ|λ| and |λ| ≥ λ 0 , then λ is not a transmission eigenvalue.

Here and and in what follows, for z ∈ C, let (z) denote the imaginary part of z.

A more general result of Proposition 1.1 is given in Proposition 3.1.

Remark 1.2. Since γ > 0 can be chosen arbitrary small, combining the discreteness result in [START_REF] Nguyen | Discreteness of interior transmission eigenvalues revisited[END_REF] mentioned above and Proposition 1.1, one derives that all the transmission eigenvalues, but nitely many, lie in a wedge of arbitrary small angle.

Some comments on Theorem 1.1 and Theorem 1.2 are in order. In the conclusion of Theorem 1.1, the multiplicity of eigenvalues is taken into account and the multiplicity is associated with some operator T λ * , which is introduced in Section 4 (see (4.5) and (4.32)). Concerning T λ * , the following facts hold (see Remark 4.3 and Remark 4.5 for more information): if µ is a characteristic value of the operator T λ * associated with an eigenfunction (u, v) and λ * + µ = 0, then λ * + µ is a transmission eigenvalue of (1.3) with an eigenfunction pair (u 1 , u 2 ) given by

u 1 = (λ * + µ)u + v and u 2 = v.
Moreover, if λ j is a transmission eigenvalue problem, then λ j = λ * and λ j -λ * is a characteristic value of T λ * . In Theorem 1.2, the generalized eigenfunctions are also associated to such an operator T λ * . We recall that the generalized eigenfunctions are complete in

[L 2 (Ω)] 2 if the subspace spanned by them is dense in [L 2 (Ω)] 2 .
Theorem 1.1 and Theorem 1.2 provide the Weyl laws and the completeness under the assumptions (1.6) and (1.7) assuming the regularity conditions in (1.8). Our results hold for A 1 = A 2 = A being anisotropic in contrast to the isotropic setting considered previously. Moreover, the regularity assumption (1.8) on the coecients was out of reach previously.

Our approach is in the spirit of [START_REF]The Weyl law of transmission eigenvalues and the completeness of generalized transmission eigenfunctions[END_REF] and is hence dierent from the ones used to study these problems given in the previous works mentioned above. The key idea is to establish the regularity theory for the transmission eigenvalue problem under the stated assumptions (see Theorem 3.1). Nevertheless, several new ingredients and observations are required for the regularity theory due to the fact that (1.6), which is degenerate, is considered instead of (1.4). One of the key steps to capture the phenomena is to derive appropriate estimates in a half plane setting. It is important to note that since A 1 = A 2 = A, the setting is non-standard, and the classical arguments pioneered in [START_REF] Shmuel Agmon | Estimates near the boundary for solutions of elliptic partial dierential equations satisfying general boundary conditions[END_REF][START_REF]Estimates near the boundary for solutions of elliptic partial dierential equations satisfying general boundary conditions[END_REF] cannot be applied since the role of Σ 1 and Σ 2 are ignored there. To this end, our arguments for the Cauchy problems not only require the information of the rst derivatives and their structure of the data but also involve the information of the second derivatives and their structure (see, e.g., Lemma 3.2). This is quite distinct from the complementing case where the arguments for the Cauchy problems only require the information of the rst derivatives and no structure of the data is required [START_REF]The Weyl law of transmission eigenvalues and the completeness of generalized transmission eigenfunctions[END_REF] (see, e.g., [START_REF]The Weyl law of transmission eigenvalues and the completeness of generalized transmission eigenfunctions[END_REF]Lemma 2 and Corollary 2]). One might note that the arguments used to derive the discreteness in [START_REF] Nguyen | Discreteness of interior transmission eigenvalues revisited[END_REF] requires less assumption on the regularity of the coecients but only give the information for one direction of λ (arg λ = π/2) for large λ. This is not sucient to apply the theory of Hilbert-Schmidt operators.

We have so far discuss the transmission eigenvalue problem in the acoustic setting. Known results for the transmission eigenvalue problem in the electromagnetic setting are much less. In this direction, we mention the work of Cakoni and Nguyen [START_REF] Cakoni | On the Discreteness of Transmission Eigenvalues for the Maxwell Equations[END_REF] on the state of art on the discreteness of the eigenvalues, the work of Fornerod and Nguyen [START_REF] Fornerod | The completeness of the generalized eigenfunctions and an upper bound for the counting function of the transmission eigenvalue problem for Maxwell equations[END_REF] on the completeness of generalized of eigenfunctions and the upper bound of the eigenvalues for the setting considered in [START_REF] Cakoni | On the Discreteness of Transmission Eigenvalues for the Maxwell Equations[END_REF], and the work of Vodev [START_REF]Semiclassical parametrix for the Maxwell equation and applications to the electromagnetic transmission eigenvalues[END_REF] on the free region of eigenvalues for a setting considered in [START_REF] Cakoni | On the Discreteness of Transmission Eigenvalues for the Maxwell Equations[END_REF], and the references therein.

The Cauchy problem also naturally appears in the context of negative-index materials after using reections as initiated in [START_REF] Nguyen | Asymptotic behavior of solutions to the Helmholtz equations with sign changing coecients[END_REF] (see also [START_REF]Superlensing using complementary media and reecting complementary media for electromagnetic waves[END_REF]). The well-posedness and the limiting absorption principle for the Helmholtz equation with sign-changing coecients were developed by the second author [START_REF]Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coecients[END_REF] using the Fourier and multiplier approach (see also [START_REF] Nguyen | Limiting Absorption Principle and Well-Posedness for the Time-Harmonic Maxwell Equations with Anisotropic Sign-Changing Coecients[END_REF]). The work [START_REF]Limiting absorption principle and well-posedness for the Helmholtz equation with sign changing coecients[END_REF] deals with the stability question of negative index materials, and is the starting point for the analysis of the transmission eigenvalue problems in [START_REF] Nguyen | Discreteness of interior transmission eigenvalues revisited[END_REF][START_REF]The Weyl law of transmission eigenvalues and the completeness of generalized transmission eigenfunctions[END_REF] (see also [START_REF] Cakoni | On the Discreteness of Transmission Eigenvalues for the Maxwell Equations[END_REF]). Other aspects and applications of negative-index materials as well as the stability and instability the Cauchy problem are discussed in [START_REF]Superlensing using complementary media[END_REF][START_REF]Cloaking using complementary media in the quasistatic regime[END_REF][START_REF]Cloaking via anomalous localized resonance for doubly complementary media in the quasistatic regime[END_REF][START_REF]Cloaking an arbitrary object via anomalous localized resonance: the cloak is independent of the object[END_REF] and the references therein. A survey is given in [START_REF]Negative index materials: some mathematical perspectives[END_REF].

The paper is organized as follows. Section 2 is devoted to dene some notations used throughout the paper. In Section 3, we establish the well-posedness and the regularity theory for the Cauchy systems associated with the transmission eigenvalue problems. The analysis is then developed in such a way that the theory of Hilbert-Schmidt operators can be used. This is given in Section 4 where the Weyl laws are established. The completeness is considered in Section 5.

Notations

Here are some useful notations used throughput this paper. We denote, for τ > 0, (2.1)

Ω τ = x ∈ Ω : dist(x, Γ) < τ . For d ≥ 2, set R d + = x ∈ R d ; x d > 0 and R d 0 = x ∈ R d ; x d = 0 .
We will identify R d 0 with R d-1 in several places. For s > 0, we denote

B s = {x ∈ R d : |x| < s}.
For m ≥ 1, p ≥ 1, and λ ∈ C * and u ∈ W m,p (Ω), we dene (2.2)

u W m,p λ (Ω) =   m j=0 |λ| m-j 2 ∇ j u p L p (Ω)   1/p .

Well-posedness and regularity theory for the transmission eigenvalue problems

In this section, we study the well-posedness and the regularity theory of the Cauchy problem

(3.1)        div(A 1 ∇u 1 ) -λΣ 1 u 1 = f 1 in Ω, div(A 2 ∇u 2 ) -λΣ 2 u 2 = f 2 in Ω, u 1 -u 2 = 0, (A 1 ∇u 1 -A 2 ∇u 2 )
• ν = 0 on Γ, under the assumptions (1.1)-(1.2), and (1.7)-(1.8), and (3.2)

A 1 = A 2 = A in Ω τ , for some τ > 0, instead of (1.6) for appropriate λ ∈ C and (f 1 , f 2 ) in L p -scale.
Here is the main result of this section. 

|λ| (u 1 , u 2 ) L p (Ω) + u 1 -u 2 W 2,p λ (Ω) ≤ C (f 1 , f 2 ) L p (Ω) .
Assume in addition that

f 1 -f 2 ∈ W 1,p (Ω). Then (u 1 , u 2 ) ∈ [W 1,p (Ω)] 2 , u 1 -u 2 ∈ W 3,p (Ω τ /2 ), and (3.4) |λ| (u 1 , u 2 ) W 1,p λ (Ω) + u 1 -u 2 W 3,p λ (Ω τ /2 ) ≤ C |λ| 1/2 (f 1 , f 2 ) L p (Ω) + f 1 -f 2 W 1,p λ (Ω) .
Remark 3.1. The boundary conditions must be understood as

u 1 -u 2 = 0 on Γ and A∇(u 1 -u 2 ) • ν = 0 on Γ, which make sense since u 1 -u 2 ∈ W 2,p (Ω).
Remark 3.2. In (3.4), we only estimate

u 1 -u 2 W 3,p λ (Ω τ /2 ) not u 1 -u 2 W 3,p λ (Ω)
since f 1 and f 2 are not supposed to be in W 1,p (Ω). Nevertheless, when

A 1 = A 2 in Ω, the estimate is also valid for u 1 -u 2 W 3,p λ (Ω) .
Remark 3.1. As a consequence of (3.3) and the theory of regularity of elliptic equations, one

derives that (u 1 , u 2 ) ∈ [W 2,p loc (Ω)] 2 and for Ω Ω 1 , it holds (u 1 , u 2 ) W 2,p λ (Ω ) ≤ C (f 1 , f 2 ) L p (Ω) ,
where C depends also on Ω (see, e.g., [START_REF] Hörmander | The analysis of linear partial dierential operators. IV, Grundlehren der mathematischen Wissenschaften[END_REF]Lemma 17.1.5] and [START_REF] Gilbarg | Elliptic partial dierential equations of second order[END_REF]Theorem 9.11]). As a consequence of Theorem 3.1, we obtain the following result on the free-region of the eigenvalues. The rest of this section, containing two subsections, is devoted to the proof of Theorem 3.1. The rst one is on the analysis in the half space. The proof of Theorem 3.1 is then given in the second subsection.

3.1. Half space analysis. Let 1 < p < +∞. For j = 1, 2, • • • , and λ ∈ C \ {0}, we denote

ψ W j-1/p,p λ (R d 0 ) = |λ| 1/2-1/(2p) ψ W j-1,p λ (R d 0 ) + |∇ j-1 ψ| W 1-1/p,p (R d 0 )
,

where ψ W j-1,p λ (R d 0 ) is dened as in (2.
2) with Ω = R d 0 , and

|ψ| p W 1-1/p,p (R d 0 ) = R d-1 R d-1 |ψ(x ) -ψ(y )| p |x -y | d+p-2 dx dy .
By the trace theory, there exists a positive constant C depending only on p and j such that

u W j-1/p,p λ (R d 0 ) ≤ C u W j,p λ (R d + ) for u ∈ W j,p (R d + ).
In fact, this inequality holds for λ ∈ C with |λ| = 1; the general case follows by scaling.

The starting point and the key ingredient of our analysis is Lemma 3.2. Lemma 3.1 below is a special case of Lemma 3.2 and is later used to derive Lemma 3.2.

1 Recall that Ω Ω means Ω ⊂ Ω.
Lemma 3.1. Let A ∈ R d×d be a constant symmetric matrix and let Σ 1 , Σ 2 be two positive constants

such that Λ -1 |ξ| 2 ≤ Aξ, ξ ≤ Λ|ξ| 2 for all ξ ∈ R d , Λ -1 ≤ Σ 1 , Σ 2 ≤ Λ,
and

|Σ 1 -Σ 2 | ≥ Λ -1 , for some Λ ≥ 1. Let γ ∈ (0, 1), 1 < p < +∞, and let ϕ ∈ W 2-1/p,p (R d 0 ). Given λ ∈ C with |λ| ≥ 1 and | (λ)| ≥ γ|λ|, there exists a unique solution (u 1 , u 2 ) ∈ [L p (R d + )] 2 with u 1 -u 2 ∈ W 2,p (R d + ) of the following Cauchy problem        div(A∇u 1 ) -λΣ 1 u 1 = 0 in R d + , div(A∇u 2 ) -λΣ 2 u 2 = 0 in R d + , u 1 -u 2 = ϕ, A∇(u 1 -u 2 ) • e d = 0 on R d 0 .
Moreover, (3.5)

|λ| (u 1 , u 2 ) L p (R d + ) + u 1 -u 2 W 2,p λ (R d + ) ≤ C ϕ W 2-1/p,p λ (R d 0 )
.

Assume in addition that

ϕ ∈ W 3-1/p,p (R d 0 ). Then (u 1 , u 2 ) ∈ [W 1,p (R d + )] 2 with u 1 -u 2 ∈ W 3,p (R d + ), and (3.6 
)

|λ| (u 1 , u 2 ) W 1,p λ (R d + ) + u 1 -u 2 W 3,p λ (R d + ) ≤ C ϕ W 3-1/p,p λ (R d 0 ) .
Here C is a positive constant depending only on Λ, γ, p, and d.

Proof. For a function u : R d → C (resp. ϕ : R d-1 → C) we denote by û the Fourier transform of u with respect to the rst (d -1) variables (resp. by φ the Fourier transform of ϕ), i.e., for

(ξ , x d ) ∈ R d-1 × (0, ∞), û(ξ , x d ) = R d-1 u(x , x d )e -ix •ξ dx and φ(ξ ) = R d-1
ϕ(x )e -ix •ξ dx .

Since, for = 1, 2, div(A∇u )

-λΣ u = 0 in R d + ,
it follows that aû (ξ , t) + 2ib(ξ )û (ξ , t) -(c(ξ ) + λΣ )û (ξ , t) = 0 for t > 0, where (3.7)

a = Ae d , e d , b(ξ ) = d-1 j=1 A jd ξ j , c(ξ ) = d-1 i,j=1
A ij ξ i ξ j , and ac(ξ

) -b(ξ ) 2 > 0,
since A is symmetric and positive. One then obtains, see, e.g., [34, proof of Lemma 2] for the details, (3.8) û (ξ , t) = α (ξ )e η (ξ )t where (3.9)

η (ξ ) = 1 a -ib(ξ ) -∆ (ξ )

and

(3.10)

α (ξ ) = φ(ξ ) ∆ +1 (ξ ) ∆ 2 (ξ ) -∆ 1 (ξ ) with ∆ (ξ ) = -b 2 (ξ ) + a c(ξ ) + λΣ .
Here we use the convention ∆ 2+ = ∆ , and √ ∆ denotes the square root of ∆ with the positive real part.

Let v ∈ W 1,p (R d + ) for = 1, 2 be the unique solution of the system div(A∇v )

-λΣ v = 0 in R d + , v = ϕ on R d 0 .
We have 2 , for = 1, 2, (3.11)

v W j,p λ (R d + ) ≤ C ϕ W j-1/p,p λ (R d 0 ) for j = 2, 3, and (3.12) v (ξ , t) = φ(ξ )e η (ξ )t .
Extend u (x , t) and ∂ 2 tt v (x , t) by 0 for t < 0 for = 1, 2 and still denote these extensions by u (x , t) and ∂ 2 tt v (x , t). Let F denote the Fourier transform in R d . We then obtain from (3.8) and (3.12) that, with

ξ = (ξ , ξ d ) ∈ R d , Fu (ξ) = - φ(ξ ) η (ξ ) -iξ d ∆ +1 (ξ ) ∆ 2 (ξ ) -∆ 1 (ξ ) and F∂ 2 tt v (ξ) = - φ(ξ )η 2 (ξ ) η (ξ ) -iξ d .

It follows that

Fu (ξ) = m ,λ (ξ)F∂ 2 tt v (ξ), where (3.13) 
m ,λ (ξ) = ∆ +1 (ξ ) η 2 (ξ )( ∆ 2 (ξ ) -∆ 1 (ξ )) .
Note that

∆ 2 (ξ ) -∆ 1 (ξ ) = aλ(Σ 2 -Σ 1 ) = 0 and 1 η (ξ ) (3.9) = a -ib(ξ ) -∆ (ξ ) = a -ib(ξ ) + ∆ (ξ ) -b(ξ ) 2 -∆ (ξ ) (3.10) = a -ib(ξ ) + ∆ (ξ ) -a c(ξ ) + λΣ = ib(ξ ) -∆ (ξ ) c(ξ ) + λΣ .
We derive from (3.13) that

(3.14) m ,λ (ξ) = ∆ +1 (ξ )( ∆ 1 (ξ ) + ∆ 2 (ξ ))(ib(ξ ) -∆ (ξ )) 2 aλ(Σ 2 -Σ 1 )(c(ξ ) + λΣ ) 2 .
We have, by (3.7) and (3.10), 3

|∆ (ξ )| ∼ (|ξ | 2 + |λ|), |b(ξ )| ≤ C|ξ |, and |c(ξ ) + λΣ | ∼ |ξ | 2 + |λ|. We then derive from (3.14) that (3.15) |ξ| j |∇ j m ,λ (ξ)| ≤ C j |λ| -1 for j ∈ N.
2

The results hold for |λ| = 1, see, e.g. [2, Theorem 14.1], the general case follows by scaling.

3

Given two functions, p1(ξ , λ) and p2(ξ , λ) the notation p1(ξ, λ) ∼ p2(ξ , λ) means that there exists a constant C ≥ 1 independent of ξ and λ such that

C -1 |p1(ξ , λ)| ≤ |p2(ξ , λ)| ≤ C|p1(ξ , λ)|.
It follows from Mikhlin-Hörmander's multiplier theorem, see, e.g., [START_REF]The analysis of linear partial dierential operators[END_REF]Theorem 7.9.5], that (3.16)

|λ| u L p (R d ) ≤ C ∂ 2 tt v L p (R d ) ,
which implies (3.17)

|λ| u L p (R d ) (3.11) ≤ C ϕ W 2-1/p,p λ (R d ) .
On the other hand, one has

div A∇(u 1 -u 2 ) -λΣ 1 (u 1 -u 2 ) = λ(Σ 1 -Σ 2 )u 2 in R d + , u 1 -u 2 = 0 on R d 0 .
This yields

u 1 -u 2 W 2,p λ (R d + ) ≤ C λ(Σ 1 -Σ 2 )u 2 L p (R d + ) (3.17) ≤ C ϕ W 2-1/p,p λ (R d + ) .
We next deal with (3.6). By taking the derivative of the system with respect to x j for 1 ≤ j ≤ d -1 and applying (3.5), we have, for

1 ≤ j ≤ d -1, (3.18) |λ| (∂ x j u 1 , ∂ x j u 2 ) L p (R d + ) + (∂ x j u 1 -∂ x j u 2 ) W 2,p λ (R d + ) ≤ C ∂ x j ϕ W 2-1/p,p λ (R d 0 ) .
Extend ∂ t u (x , t) and ∂ 3 ttt v (x , t) by 0 for t < 0 for = 1, 2 and still denote these extensions by

∂ t u (x , t) and ∂ 3 ttt v (x , t).
We then obtain from (3.8) and (3.12) that, with

ξ = (ξ , ξ d ) ∈ R d , F∂ t u (ξ) = - φ(ξ )η (ξ ) η (ξ ) -iξ d ∆ +1 (ξ ) ∆ 2 (ξ ) -∆ 1 (ξ )
and

F∂ 3 ttt v (ξ) = - φ(ξ )η 3 (ξ ) η (ξ ) -iξ d .
This yields

F∂ t u (ξ) = m ,λ (ξ)F∂ 3 ttt v (ξ).
As in the proof of (3.16), we obtain

|λ| ∂ t u L p (R d ) ≤ C ∂ 3 ttt v L p (R d ) ,
which implies

(3.19) |λ| ∂ t u L p (R d ) (3.11) ≤ C ϕ W 3-1/p,p λ (R d ) .
Combining (3.18) and (3.19), we derive that (3.20)

|λ| (∇u 1 , ∇u 2 ) L p (R d + ) + ∇(u 1 -u 2 ) W 2,p λ (R d + ) ≤ C ϕ W 3-1/p,p λ (R d 0 ) .
Assertion (3.6) now follows from (3.20) and (3.5). The proof is complete.

We now state and prove a more general version of Lemma 3.1, which is the main ingredient of the proof of Theorem 3.1. Lemma 3.2. Let A ∈ R d×d be a constant symmetric matrix and let Σ 1 , Σ 2 be two positive constants

such that Λ -1 |ξ| 2 ≤ Aξ, ξ ≤ Λ|ξ| 2 for all ξ ∈ R d , and 
Λ -1 ≤ Σ 1 , Σ 2 ≤ Λ, and |Σ 1 -Σ 2 | ≥ Λ -1 , for some Λ ≥ 1. Let γ ∈ (0, 1), 1 < p < +∞, and let f 1 , f 2 ∈ L p (R d + ), G 1 , G 2 ∈ [L p (R d + )] d with G 1 -G 2 ∈ [W 1,p (R d + )] d , ϕ ∈ W 2-1/p,p (R d 0 ), ψ ∈ W 1-1/p,p (R d 0 ), and let r (ij) 1 , r (ij) 2 ∈ L p (R d + ) with r (ij) 1 -r (ij) 2 ∈ W 2,p (R d + ) for 1 ≤ i, j ≤ d. Given λ ∈ C with |λ| ≥ 1 and | (λ)| ≥ γ|λ|, there exists a unique solution (u 1 , u 2 ) ∈ [L p (R d + )] 2 with u 1 -u 2 ∈ W 2,p (R d + ) of the following Cauchy problem (3.21)        div(A∇u 1 ) -λΣ 1 u 1 = f 1 + div(G 1 ) + d i,j=1 ∂ 2 ij r (ij) 1 in R d + , div(A∇u 2 ) -λΣ 2 u 2 = f 2 + div(G 2 ) + d i,j=1 ∂ 2 ij r (ij) 2 in R d + , u 1 -u 2 = ϕ, A∇(u 1 -u 2 ) • e d = ψ on R d 0 .
Moreover,

C |λ| (u 1 , u 2 ) L p (R d + ) + u 1 -u 2 W 2,p λ (R d + ) (3.22) ≤ (f 1 , f 2 ) L p (R d + ) + |λ| 1/2 (G 1 , G 2 ) L p (R d + ) + d i,j=1
|λ| (r

(ij) 1 , r (ij) 2 ) L p (R d + ) + ϕ W 2-1/p,p λ (R d 0 ) + ψ W 1-1/p,p λ (R d 0 ) + G 1 -G 2 W 1,p λ (R d + ) + d i,j=1 r (ij) 1 -r (ij) 2 W 2,p λ (R d + )
.

Assume in addition that

f 1 -f 2 ∈ W 1,p (R d + ), G 1 -G 2 ∈ W 2,p (R d + ), ϕ ∈ W 3-1/p,p (R d 0 ), ψ ∈ W 2-1/p,p (R d 0 ), and r (ij) 1 = r (ij) 2 = 0 for all 1 ≤ i, j ≤ d. Then (u 1 , u 2 ) ∈ W 1,p (R d + ) with u 1 -u 2 ∈ W 3,p (R d + )
, and it holds

(3.23) C |λ| (u 1 , u 2 ) W 1,p λ (R d + ) + u 1 -u 2 W 3,p λ (R d + ) ≤ |λ| 1/2 (f 1 , f 2 ) L p (R d + ) + |λ| (G 1 , G 2 ) L p (R d + ) + ϕ W 3-1/p,p λ (R d 0 ) + ψ W 2-1/p,p λ (R d 0 ) + f 1 -f 2 W 1,p λ (R d + ) + G 1 -G 2 W 2,p λ (R d + ) .
Here C denotes a positive constant depending only on Λ, γ, d, and p.

Remark 3.3. Concerning (3.23), the assumption

r (ij) 1 = r (ij) 2
= 0 for all 1 ≤ i, j ≤ d is just to avoid the redundancy; the same estimate holds for the appropriate assumptions on r (ij) but this can be put into the conditions of f and G instead.

Proof. Since the problem is linear, (3.22) and (3.23) follow from the corresponding estimates in the following two cases:

• Case 1: f 1 = f 2 = 0, G 1 = G 2 = 0, and r (ij) 1 = r (ij) 2 = 0 for all 1 ≤ i, j ≤ d.
• Case 2: ϕ = 0 and ψ = 0. We now proceed the proof for these cases.

Case 1:

f 1 = f 2 = 0, G 1 = G 2 = 0, and r (ij) 1 = r (ij) 2 = 0 for all 1 ≤ i, j ≤ d. We have        div(A∇u 1 ) -λΣ 1 u 1 = 0 in R d + , div(A∇u 2 ) -λΣ 2 u 2 = 0 in R d + , u 1 -u 2 = ϕ, A∇(u 1 -u 2 ) • e d = ψ on R d 0 . Let v ∈ W 1,p (R d + ) be the unique solution of div(A∇v) -λΣ 1 v = 0 in R d + , A∇v • e d = ψ on R d 0 .
As a consequence of [17, Theorem 2.3.2.7] and a scaling argument, we have

(3.24) v W 2,p λ (R d + ) ≤ C ψ W 1-1/p,p λ (R d 0 )
and

v W 3,p λ (R d + ) ≤ C ψ W 2-1/p,p λ (R d 0 )
.

By the trace theory, it follows that (3.25)

v W 2-1/p,p λ (R d 0 ) ≤ C ψ W 1-1/p,p λ (R d 0 )
and

v W 3-1/p,p λ (R d 0 ) ≤ C ψ W 2-1/p,p λ (R d 0 ) .
Considering the system of (u 1 -v, u 2 ) and using (3.24), and (3.25), the conclusion of this case follows from Lemma 3.1.

Case 2: ϕ = 0, ψ = 0. In this case, we have

       div(A∇u 1 ) -λΣ 1 u 1 = f 1 + div(G 1 ) + d i,j=1 ∂ 2 ij r (ij) 1 in R d + , div(A∇u 2 ) -λΣ 2 u 2 = f 2 + div(G 2 ) + d i,j=1 ∂ 2 ij r (ij) 2 in R d + , u 1 -u 2 = 0, A∇(u 1 -u 2 ) • e d = 0 on R d 0 .
For = 1, 2, consider the following systems

   div(A∇v (0) ) -λΣ v (0) = f in R d + , A∇v (0) • e d = 0 on R d 0 ,    div(A∇v (j) ) -λΣ v (j) = (G ) j in R d + , A∇v (j) • e d = 0 on R d 0 (1 ≤ j ≤ d),
where (G ) j denotes the j-th component of G , and

   div(A∇v (ij) ) -λΣ v (ij) = r (ij) in R d + , A∇v (ij) • e d = 0 on R d 0 (1 ≤ i, j ≤ d).
We have, see, e.g., [2, Theorem 14.1], for

1 ≤ i, j ≤ d, (3.26) 
         v (0) W 2,p λ (R d + ) ≤ C f L p (R d + ) , v (j) W 2,p λ (R d + ) ≤ C G L p (R d + ) , v (ij) W 2,p λ (R d + ) ≤ C r (ij) L p (R d + ) .
Since, we have

   div(A∇(v (0) 1 -v (0) 2 )) -λΣ 1 (v (0) 1 -v (0) 2 ) = f 1 -f 2 + λ(Σ 1 -Σ 2 )v (0) 2 in R d + , A∇(v (0) 1 -v (0) 2 ) • e d = 0 on R d 0 ,
and the equations for v (j)

1 -v (j) 2 and v (ij) 1 -v (ij) 2
are similar, we also get, for 1 ≤ i, j ≤ d, by using (3.26),

(3.27)          C v (0) 1 -v (0) 2 W 2,p λ (R d + ) ≤ (f 1 , f 2 ) L p (R d + ) , C v (j) 1 -v (j) 2 W 3,p λ (R d + ) ≤ G 1 -G 2 W 1,p λ (R d + ) + |λ| 1/2 G 2 L p (R d + ) , C v (ij) 1 -v (ij) 2 W 4,p λ (R d + ) ≤ r (ij) 1 -r (ij) 2 W 2,p λ (R d + ) + |λ| r (ij) 2 L p (R d + ) ,

and

(3.28)

C v (0) 1 -v (0) 2 W 3,p λ (R d + ) ≤ f 1 -f 2 W 1,p λ (R d + ) + |λ| 1/2 f 2 L p (R d + ) , C v (j) 1 -v (j) 2 W 4,p λ (R d + ) ≤ G 1 -G 2 W 2,p λ (R d + ) + |λ| G 2 L p (R d + )
.

For = 1, 2, set w = v (0) + d j=1 ∂ j v (j) + d i,j=1 ∂ 2 ij v (ij) .
We have

div(A∇w ) -λΣ w = f + div(G ) + d i,j=1 ∂ 2 ij r (ij) in R d + .
Moreover,

(3.29) C|λ| (w 1 , w 2 ) L p (R d + ) (3.26) ≤ (f 1 , f 2 ) L p (R d + ) + |λ| 1/2 (G 1 , G 2 ) L p (R d + ) + |λ| d i,j=1
(r

(ij) 1 , r (ij) 2 ) L p (R d + ) .
Using (3.27) and the trace theory, we derive that

(3.30) w 1 -w 2 W 2,p λ (R d + ) + w 1 -w 2 W 2-1/p,p λ (R d 0 ) + A∇(w 1 -w 2 ) • e d W 1-1/p,p λ (R d 0 ) ≤ C f 2 L p (R d + ) + |λ| 1/2 (G 1 , G 2 ) L p (R d + ) + d i,j=1 |λ| r ij 2 L p (R d + ) + f 1 -f 2 L p (R d + ) + G 1 -G 2 W 1,p λ (R d + ) + d i,j=1 r (ij) 1 -r (ij) 2 W 2,p λ (R d + ) .
Considering the system of (u 1 -w 1 , u 2 -w 2 ), and using (3.29) and (3.30), assertion (3.22) now follows from case 1.

To deal with assertion (3.23), instead of (3.29) and (3.30), we use, since

r (ij) 1 = r (ij) 2 = 0, (3.31 
)

|λ| (w 1 , w 2 ) W 1,p λ (R d + ) (3.26) ≤ C |λ| 1/2 (f 1 , f 2 ) L p (R d + ) + |λ| (G 1 , G 2 ) L p (R d + ) ,
and

(3.32) w 1 -w 2 W 3,p λ (R d + ) + w 1 -w 2 W 3-1/p,p λ (R d 0 ) + A∇(w 1 -w 2 ) • e d W 2-1/p,p λ (R d 0 ) (3.28) ≤ C (f 1 -f 2 ) W 1,p λ (R d + ) + G 1 -G 2 W 2,p λ (R d + ) .
By considering the system of (u 1 -w 1 , u 2 -w 2 ), assertion (3.23) now follows from case 1.

The proof is complete.

3.2. Proof of Theorem 3.1. The proof is divided into two steps:

• Step 1: Assuming the solution exists, we establish (3.3) and (3.4).

• Step 2: We establish the existence of the solutions. We now proceed these two steps.

Step 1:

For (f 1 , f 2 ) ∈ [L p (Ω)] 2 , let (u 1 , u 2 ) ∈ [L p (Ω)] 2 with u 1 -u 2 ∈ W 2,p (Ω)
be a solution of (3.1). We prove that (3.3) and (3.4) hold.

Applying Lemma 3.2 and the freezing coecient technique, we deduce that there exists τ * ∈ (0, τ /2) depending only on Ω, Λ, τ , and p, such that

(3.33) C |λ| (u 1 , u 2 ) L p (Ωτ * ) + u 1 -u 2 W 2,p λ (Ωτ * ) ≤ (f 1 , f 2 ) L p (Ω) + |λ| 1/2 (u 1 , u 2 ) L p (Ωτ ) + u 1 -u 2 W 1,p λ (Ωτ ) and (3.34) C |λ| (u 1 , u 2 ) W 1,p λ (Ωτ * ) + u 1 -u 2 W 3,p λ (Ωτ * ) ≤ |λ| 1/2 (f 1 , f 2 ) L p (Ω) + f 1 -f 2 W 1,p λ (Ω) + |λ| (u 1 , u 2 ) L p (Ωτ ) + |λ| (u 1 , u 2 ) L p (Ωτ ) + u 1 -u 2 W 2,p λ (Ωτ ) , for every λ ∈ C with | (λ)| ≥ c|λ| and |λ| ≥ 1.
Here and in what follows, C denotes a positive constant depending only on Ω, Λ, τ , and p.

Let us emphasize here that the terms (r 1,ij , r 2,ij ) in Lemma 3.2, play a crucial role in the proof of (3.33) since the solutions 2 . Indeed, let consider a small neighborhood of x 0 ∈ Γ. Using a change of variables, without loss of generality, one might assume that the boundary in this neighbourhood is at already and A 1 = A 2 = A there. In the freezing process, one has, in such a neighborhood,

(u 1 , u 2 ) considered are only in [L p (Ω)] 2 , but not in [W 1,p (Ω)]
div(A(x 0 )∇u ) -λΣ (x 0 )u = div (A(x 0 ) -A(x))∇u + div A(x)∇u -λΣ (x 0 )u = d i,j=1 ∂ 2 ij (A ij (x 0 ) -A ij (x))u - d i,j=1 ∂ i u ∂ j (A ij (x 0 ) -A ij (x)) + f + λ Σ (x) -Σ (x 0 ) u . Let χ ∈ C ∞ (R d )
with the support in a suciently small neighborhood of x 0 , then with v = χu for = 1, 2, we have

(3.35) div(A(x 0 )∇v ) -λΣ (x 0 )v = χ d i,j=1 ∂ 2 ij (A ij (x 0 ) -A ij (x))u - d i,j=1 χ∂ i u ∂ j (A ij (x 0 ) -A ij (x)) + χf + λ Σ (x) -Σ (x 0 ) v -u div(A(x 0 )∇χ) + 2 div(u A(x 0 )∇χ).
The terms r ,ij are then

(A ij (x 0 ) -A ij (x))χu = (A ij (x 0 ) -A ij (x))v . Since A 1 = A 2 = A in Ω τ , u 1 -u 2 = 0 in Γ, and A∇(u 1 -u 2 ) • ν = 0 on Γ, it follows that v 1 -v 2 = 0 on Γ and A(x 0 )∇(v 1 -v 2 ) • ν = χ(A(x 0 ) -A(x))∇(u 1 -u 2 ) • ν on Γ.
We are thus in the situation to apply Lemma 3.2 and the freezing coecient technique to derive (3.33).

Concerning (3.34), in (3.35), one writes

∂ 2 ij (A ij (x 0 ) -A ij (x))u (x)
under the form

∂ i (A ij (x 0 ) -A ij (x))∂ j u + ∂ i ∂ j (A ij (x 0 ) -A ij (x))u .
We are thus in the situation to apply Lemma 3.2 and the freezing coecient technique to derive (3.34). The details of the rest of the proof of (3.33) and (3.34) are omitted.

On the other hand, since

div(A ∇u ) -λΣ u = f
in Ω, we have, for |λ| ≥ 1, (3.36)

u W 1,p λ (Ω\Ω τ * /4 ) ≤ C |λ| -1/2 f L p (Ω) + u L p (Ωτ * ) ,

and

(3.37)

u W 2,p λ (Ω\Ω τ * /2 ) ≤ C f L p (Ω) + u W 1,p λ (Ωτ * \Ω τ * /4 ) .
Combining (3.36) and (3.37) yields (3.38)

u W 2,p λ (Ω\Ω τ * /2 ) ≤ C f L p (Ω) + u L p (Ωτ * ) .
From (3.33) and (3.38), we obtain

|λ| (u 1 , u 2 ) L p (Ω) + u 1 -u 2 W 2,p λ (Ω) ≤ C (f 1 , f 2 ) L p (Ω)
for |λ| ≥ λ 0 and for λ 0 large enough. This completes the proof of (3.3). From (3.34), (3.36), after using (3.3), we obtain

|λ| (u 1 , u 2 ) W 1,p λ (Ω) + u 1 -u 2 W 3,p λ (Ωτ * ) ≤ C|λ| 1/2 (f 1 , f 2 ) L p (Ω) + f 1 -f 2 W 1,p λ (Ω)
for |λ| ≥ λ 0 and for λ 0 large enough. This completes the proof of (3.4).

Step 2: Set

X = (u 1 , u 2 ) ∈ [L p (Ω)] 2 : div(A 1 ∇u 1 ), div(A 2 ∇u 2 ) ∈ L p (Ω), u 1 -u 2 ∈ W 2,p (Ω), u 1 -u 2 = 0 on Γ, and (A 1 ∇u 1 -A 2 ∇u 2 ) • ν = 0 on Γ .
The space X is a Banach space endowed with the norm (3.39)

(u 1 , u 2 ) X := (u 1 , u 2 ) L p (Ω) + div(A 1 ∇u 1 ), div(A 2 ∇u 2 ) L p (Ω) + u 1 -u 2 W 2,p (Ω) . Dene B λ : X → [L p (Ω)] 2 by B λ (u 1 , u 2 ) = (div(A 1 ∇u 1 ) -λΣ 1 u 1 , div(A 2 ∇u 2 ) -λΣ 2 u 2 ).
Clearly, B λ is bilinear and continuous on X.

We claim that (3.40)

B λ has a closed and dense range. Assuming this, we derive that (3.41)

B λ (X) = [L p (Ω)] 2 ,
which yields the existence of the solutions.

It remains to prove (3.40).

We rst prove that B λ has a closed range. Let

((u 1,n , u 2,n )) n ⊂ X be such that (f 1,n , f 2,n ) := B λ (u 1,n , u 2,n ) → (f 1 , f 2 ) in [L p (Ω)] 2 . It follows from (3.3) by Step 1 that ((u 1,n , u 2,n )) n is a Cauchy sequence in X. Let (u 1 , u 2 ) denote its limit. One can then show that (f 1,n , f 2,n ) → (f 1 , f 2 ) := B λ (u 1 , u 2 ) since B λ is continuous. Thus B λ has a closed range.
We next establish that the range of B λ is dense. To this end, it suces to show that if

(f 1 , f 2 ) ∈ [L q (Ω)] 2 with 1 p + 1 q = 1 is such that (3.42) Ω B λ (u 1 , u 2 ), (f 1 , f 2 ) dx = 0 for all (u 1 , u 2 ) ∈ X, then (f 1 , f 2 ) = (0, 0). Since (3.42) holds for all (u 1 , u 2 ) ∈ [C ∞ c (Ω)]
2 ⊂ X, it follows that, for = 1, 2, (3. [START_REF]Parabolic transmission eigenvalue-free regions in the degenerate isotropic case[END_REF] div(A ∇f ) -λΣ f = 0 in Ω. Since A ∈ C 1 ( Ω) and f ∈ L q (Ω), using the standard regularity theory in L q -scale, see also [START_REF] Hörmander | The analysis of linear partial dierential operators. IV, Grundlehren der mathematischen Wissenschaften[END_REF]Lemma 17.1.5], one has

f ∈ W 2,q loc (Ω).
Set, in Ω, (3.44)

g 1 = f 1 and g 2 = -f 2 .
Then, by (3.43), (3.45) div(A ∇g ) -λΣ g = 0 in Ω, and, by (3.42), for (u 1 , u 2 ) ∈ X, (3.46)

Ω div(A 1 ∇u 1 )ḡ 1 -λΣ 1 u 1 ḡ1 - Ω div(A 2 ∇u 2 )ḡ 2 -λΣ 2 u 2 ḡ2 = 0. From (3.46), we have, taking (u 1 , u 2 ) ∈ X ∩ [W 2,p (Ω)] 2 , (3.47) Ω div A 1 ∇(u 1 -u 2 ) ḡ1 + div(A 1 ∇u 2 )(ḡ 1 -ḡ2 ) + div (A 1 -A 2 )∇u 2 ḡ2 -λΣ 1 u 1 ḡ1 + λΣ 2 u 2 ḡ2 = 0.
Using that g 2 ∈ W 2,q loc (Ω) and A 1 = A 2 in Ω τ , an integration by parts leads to (3.48)

Ω div (A 1 -A 2 )∇u 2 ḡ2 = Ω div (A 1 -A 2 )∇ḡ 2 u 2 .
Since u 1 -u 2 ∈ W 2,p (Ω), u 1 -u 2 = 0 on Γ and A∇(u 1 -u 2 ) • ν = 0 on Γ, there exists a sequence

(v n ) n ⊂ C 2 c (Ω) such that v n → u 1 -u 2 in W 2,p (Ω).
An integration by parts yields (3.49)

Ω div A 1 ∇(u 1 -u 2 ) ḡ1 = lim n→+∞ Ω div A 1 ∇v n ḡ1 = lim n→+∞ Ω div A 1 ∇ḡ 1 v n = Ω div A 1 ∇ḡ 1 (u 1 -u 2 ).
Combining (3.47), (3.48), and (3.49) yields

(3.50) Ω div(A 1 ∇u 2 )(ḡ 1 -ḡ2 ) = - Ω div (A 1 -A 2 )∇ḡ 2 u 2 - Ω div A 1 ∇ḡ 1 (u 1 -u 2 ) + Ω λΣ 1 u 1 ḡ1 - Ω λΣ 2 u 2 ḡ2 (3.45) = Ω div(A 1 ∇(ḡ 1 -ḡ2 ))u 2 .
Since u 2 can be chosen arbitrary 4 in W 2,p (Ω), and for every

ξ ∈ [C 1 ( Ω)] d there exists u 2 ∈ W 2,p (Ω) with u 2 | Γ = 0 such that div(A 1 ∇u 2 ) = div ξ with u 2 W 2,p (Ω) ≤ C ξ L p (Ω)
, it follows that, see, e.g., [START_REF] Brezis | Functional analysis, Sobolev spaces and partial dierential equations[END_REF]Proposition 9.18],

g 1 -g 2 ∈ W 1,q 0 (Ω).
This in turn implies, by (3.50), that g 1 -g 2 ∈ W 2,q (Ω) and A∇(g 1 -g 2 ) • ν = 0 on Γ. It follows that g 1 = g 2 = 0 in Ω after applying Step 1 to (g 1 , g 2 ) and λ (instead of λ). Thus f 1 = f 2 = 0 by (3.44) and the proof of Step 2 is complete.

The Weyl law for the transmission eigenvalues

Throughout this section, we assume (1.6).

4.1. The operator T λ and its adjoint T * λ . We rst reformulate the Cauchy problem (3.1) in a form for which we can apply the theory of Hilbert-Schmidt operators.

Given (f, g) ∈ [L p (Ω)] 2 (1 < p < +∞), assume that (u 1 , u 2 ) ∈ [L p (Ω)] 2 with u 1 -u 2 ∈ W 2,p (Ω)
is a solution of (3.1) with λ ∈ C * where, in Ω,

f 1 = Σ 1 f + λ -1 Σ 2 g
and

f 2 = λ -1 Σ 2 g.
Dene, in Ω,

u = u 1 -u 2 and v = λu 2 .
Then the pair

(u, v) ∈ W 2,p (Ω) × L p (Ω) is a solution of (4.1)        div(A∇u) -λΣ 1 u -(Σ 1 -Σ 2 )v = Σ 1 f in Ω, div(A∇v) -λΣ 2 v = Σ 2 g in Ω, u = 0, A∇u • ν = 0 on Γ.
As a direct consequence of Theorem 3.1 (see also (3.4)), we have 4

Taking then u1 := u2 so that (u1, u2) ∈ X. 

v L p (Ω) + u W 2,p λ (Ω) ≤ C|λ| -1/2 |λ| 1/2 f L p (Ω) + |λ| -1/2 g L p (Ω)
and (4.3)

v W 1,p λ (Ω) + u W 3,p λ (Ω) ≤ C f W 1,p λ (Ω) + |λ| -1/2 g L p (Ω) ,
for some positive constant C independent of λ, f , and g.

As a consequence, we have ). Let c ∈ (0, 1), and 1 < p < +∞. There exists λ 0 > 0 depending on p, c, Λ, and Ω such that the following holds: for (f, g) ∈ W 1,p (Ω)×L p (Ω), and for λ ∈ C with | (λ)| ≥ c|λ| and |λ| > λ 0 , there exists a unique solution (u, v) ∈ W 3,p (Ω)×W 1,p (Ω) of (4.1); moreover, for (1) either 1 < p < d and p ≤ q ≤ dp d-p , (2) either d = p ≤ q < +∞, (3) or p > d and q = +∞, we have (4.4)

v L q (Ω) + u W 2,q λ (Ω) ≤ C|λ| d 2 1 p -1 q -1 2 f W 1,p λ (Ω) + |λ| -1/2 g L p (Ω) ,
for some positive constant C independent of λ, f , and g. Proof. Choose λ 0 such that the conclusion of Proposition 4.1 holds. By Gagliardo-Nirenberg's interpolation inequalities (see [START_REF] Gagliardo | Ulteriori proprietà di alcune classi di funzioni in più variabili[END_REF][START_REF] Nirenberg | On elliptic partial dierential equations[END_REF]), we have

v L q (Ω) ≤ C p,q,Ω v 1-a L p (Ω) v a W 1,p (Ω) ≤ C p,q,Ω v 1-a L p (Ω) v a W 1,p λ (Ω) ,
where

a = d 1 p - 1 q .
This implies

v L q (Ω) ≤ C p,q,Ω |λ| -1 2 (1-a) f W 1,p λ (Ω) + |λ| -1/2 g L p (Ω) .
The other assertions can be proved similarly. 

T λ : L 2 (Ω) × L 2 (Ω) → L 2 (Ω) × L 2 (Ω) (f, g) → (u, v)
where (u, v) is the unique solution of (4.1).

Remark 4.2. Let λ ∈ C satisfy the conclusion of Proposition 4.1 with p = 2. Then system (4.1) is well-posed in L 2 (Ω) × L 2 (Ω) and T λ is dened.

Remark 4.3. Let λ * ∈ C be such that T * λ is dened. If µ is a characteristic value of the operator T λ * associated with an eigenfunction (u, v) and if λ * + µ = 0 we have (4.6) λ * + µ is a transmission eigenvalue of (1.3) with an eigenfunction pair (u 1 , u 2 ) given by (4.7)

u 1 = u + 1 λ * + µ v and u 2 = 1 λ * + µ v.
Moreover, the converse holds (see Remark 4.5).

Remark 4.4. Let λ * ∈ C be such that T * λ is dened. By (4.2) and (4.3) the range of

T 2 λ * is a subset of H 1 (Ω) × H 1 (Ω). It follows that the operator T 2 λ * is compact from L 2 (Ω) × L 2 (Ω) into itself.
By the spectral theory of compact operators, see, e.g., [START_REF] Brezis | Functional analysis, Sobolev spaces and partial dierential equations[END_REF], the spectrum of T 2 λ * consists in a discrete set of eigenvalues and the generalized eigenspace associated to each eigenvalue is of nite dimension. As a consequence, the set of eigenvalues of T λ * is discrete. This in turn implies that the set of the transmission eigenvalues of (1.3) is discrete. This fact is previously established in [START_REF] Nguyen | Discreteness of interior transmission eigenvalues revisited[END_REF] but the arguments presented here are dierent. Remark 4.5. Let λ * ∈ C be such that T * λ is dened. If λ j is an eigenvalue of the transmission eigenvalue problem, then λ j = λ * and λ j -λ * is a characteristic value of T λ * . One can show that the multiplicity of the characteristic values of λ j -λ * and λ j -λ associated with T λ * and T λ are the same. Hence the multiplicity of the eigenvalues associated with T λ * is independent of λ * . With this observation we dene the multiplicity of λ j as the one of the characteristic value λ j -λ * of T λ * .

The rest of this section is devoted to characterize the adjoint T * λ of T λ . This will be used in the proof of Proposition 4.2. To this end, for ( f , g) ∈ [L p (Ω)] 2 with 1 < p < +∞, we consider the system, for ( u, v) ∈ W 1,p (Ω) × L p (Ω) 5 (4.8)

       div(A∇ u) -λΣ 2 u -(Σ 1 -Σ 2 ) v = Σ 2 f in Ω, div(A∇ v) -λΣ 1 v = Σ 1 g in Ω, u = 0, A∇ u • ν = 0 on Γ. Assume (1.1)-(1.
2), and (1.6)-(1.8). Let c ∈ (0, 1) and 1 < p < +∞. By Proposition 4.1, there exists λ 0 > 0 depending on p, c, Λ, and Ω such that (4.8) is well-posed in L p (Ω) × L p (Ω) for λ ∈ C with | (λ)| ≥ c|λ| and |λ| > λ 0 , i.e., for (f, g) ∈ L p (Ω) × L p (Ω), there exists a unique solution ( u, v) ∈ W 1,p (Ω) × L p (Ω) of (4.8); moreover,

u W 2,p λ (Ω) + v L p (Ω) ≤ C|λ| -1/2 |λ| 1/2 f L p (Ω) + |λ| -1/2 g L p (Ω)
and 

u W 3,p λ (Ω) + v W 1,p λ (Ω) ≤ C f W 1,p λ (Ω) + |λ| -1/2 g L p (Ω) .
T λ : L 2 (Ω) × L 2 (Ω) → L 2 (Ω) × L 2 (Ω) ( f , g) → ( u, v)
where ( u, v) is the unique solution of (4.8).

5

We emphasize here that in the rst equation of (4.8), we have Σ2 u not Σ1 u, compare with (4.1). 

P (x) = 0 Σ 1 (x) Σ 2 (x) 0 .
We have (4.11)

T * λ = P T λ P -1 . Proof. Fix (f, g) ∈ [L 2 (Ω)] 2 and (f * , g * ) ∈ [L 2 (Ω)] 2 . Set (u, v) = T λ (f, g) and (u * , v * ) = T λ P -1 (f * , g * ).
Then (4.12)

Ω (f, g), P T λ P -1 (f * , g * ) = Ω Σ 1 f v * + Σ 2 gu * .
Since (u, v) = T λ (f, g), we have (4.13)

Ω Σ 1 f v * + Σ 2 gu * = Ω (div(A∇u) -λΣ 1 u -(Σ 1 -Σ 2 )v)v * + Ω (div(A∇v) -λΣ 2 v)u * .
As in Step 2 of the proof of Theorem 3.1, an integration by parts yields (4. 14)

Ω (div(A∇u) -λΣ 1 u -(Σ 1 -Σ 2 )v)v * + Ω (div(A∇v) -λΣ 2 v)u * = Ω u(div(A∇v * ) -λΣ 1 v * ) + Ω v(div(A∇u * ) -λΣ 2 u * -(Σ 1 -Σ 2 )v * ).
Since (u * , v * ) = T λ P -1 (f * , g * ), we have

(4.15) Ω u(div(A∇v * ) -λΣ 1 v * ) + Ω v(div(A∇u * ) -λΣ 2 u * -(Σ 1 -Σ 2 )v * ) = Ω T λ (f, g), (f * , g * ) .
Combining (4.12)-(4.15) yields (4. 16)

Ω (f, g), P T λ P -1 (f * , g * ) = Ω T λ (f, g), (f * , g * ) ,
and the conclusion follows.

4.2. Hilbert-Schmidt operators. In this section, we recall the denition and several properties of Hilbert-Schmidt operators. We begin with Denition 4.3. Let H be a separable Hilbert space and let (φ j ) ∞ j=1 be an orthonormal basis of H. (1) Let T be a linear and bounded operator on H. We say that T is Hilbert-Schmidt if its double norm is nite, i.e.

~T ~:=   ∞ j=1 T φ j 2 H   1/2 < +∞.
(2) Let T 1 and T 2 be two Hilbert-Schmidt operators on H. The trace of the composition T 1 T 2 is dened by

trace(T 1 T 2 ) := ∞ j=1 (T 1 T 2 φ j , φ j ) H .
Remark 4.6. One can check that Denition 4.3 does not depend on the choice of the basis (φ j ) ∞ j=1 and the trace of T 1 T 2 is well dened as an absolutely convergent series (see [1, Theorems 12.9 and 12.12]).

Let m ∈ N and T : [L 2 (Ω)] m → [L 2 (Ω)
] m be a Hilbert-Schmidt operator. There exists a unique kernel Note that [1, Theorems 2.18 and 12.19] state for m = 1, nevertheless, the same arguments hold for m ∈ N as noted in [START_REF]The Weyl law of transmission eigenvalues and the completeness of generalized transmission eigenfunctions[END_REF].

K ∈ [L 2 (Ω × Ω)] m×m , see e.
We have, see [START_REF] Shmuel Agmon | Lectures on elliptic boundary value problems[END_REF] (see also [START_REF]The Weyl law of transmission eigenvalues and the completeness of generalized transmission eigenfunctions[END_REF]Lemma 4]): Lemma 4.1. Let m ∈ N and let T 1 , T 2 be two Hilbert-Schmidt operators in [L 2 (Ω)] m with the corresponding kernels K 1 and K 2 . Then T := T 1 T 2 is a Hilbert-Schmidt operator with the kernel K given by (4.19)

K(x, y) = Ω K 1 (x, z)K 2 (z, y) dz.
Moreover, (4.20)

trace(T 1 T 2 ) = Ω trace(K(x, x))dx.
We have, see, e.g., [START_REF]The Weyl law of transmission eigenvalues and the completeness of generalized transmission eigenfunctions[END_REF]Lemma 3

]. Lemma 4.2. Let d ≥ 2, m ∈ N, and T : [L 2 (Ω)] m → [L 2 (Ω)] m be such that T(φ) ∈ [C( Ω)] m for ϕ ∈ [L 2 (Ω)] m , and (4.21) T(φ) L ∞ (Ω) ≤ M φ L 2 (Ω) ,
for some M ≥ 0. Then T is a Hilbert-Schmidt operator,

~T~≤ C m |Ω| 1/2 M, (4.22)
and the kernel K of T satises (4.23)

sup x∈Ω Ω |K(x, y)| 2 dy 1/2 ≤ C m |Ω| 1/2 M.
Assume in addition that (4.24)

T(φ) L ∞ (Ω) ≤ M ||φ|| L 1 (Ω) for φ ∈ [L 2 (Ω)] m ,
for some M ≥ 0, then the kernel K of T satises 

T = T 1 T 2 .
Then the kernel K of T is continuous on Ω × Ω (4.25) holds for every (x, y) ∈ Ω × Ω. Proof. Let K 1 (resp. K 2 ) be the kernel of T 1 (resp. T 2 ) and let K * 2 be the kernel of T * 2 . We claim that for ε > 0, there exists δ > 0 such that for every

(x, x ) ∈ Ω × Ω with |x -x | < δ we have (4.26) Ω |K 1 (x, z) -K 1 (x , z)| 2 dz 1/2 ≤ ε and Ω |K * 2 (x, z) -K * 2 (x , z)| 2 dz 1/2 ≤ ε.
Admitting (4.26), we continue the proof. We have, see, e.g., [START_REF] Shmuel Agmon | Lectures on elliptic boundary value problems[END_REF]Theorem 12.20], (4.27) It remains to prove (4.26). We have

K 2 (z, y) = K * 2 (y, z). Since K(x, y) (4.19),(4.27) = Ω K 1 (x, z)K * 2 (z, y)dz, it follows from (4.26) that K is continuous in Ω × Ω.
Ω |K 1 (x, z) -K 1 (x , z)| 2 dz 1/2 ≤ C sup ϕ∈[L 2 (Ω)] m ; ϕ L 2 (Ω) ≤1 Ω (K 1 (x, z) -K 1 (x , z))ϕ(z)dz . Given ε > 0, let ϕ ε ∈ [L 2 (Ω)] m with ϕ ε L 2 (Ω) ≤ 1 be such that Ω |K 1 (x, z) -K 1 (x , z)| 2 dz 1/2 ≤ Ω (K 1 (x, z) -K 1 (x , z))ϕ ε (z)dz + ε 2 .
This yields (4.28)

Ω |K 1 (x, z) -K 1 (x , z)| 2 dz 1/2 ≤ |(T 1 ϕ ε )(x) -(T 1 ϕ ε )(x )| + ε 2 .
The rst inequality of (4.26) now follows from (4.28) and the fact that

T 1 ϕ ε ∈ [C( Ω)] m .
Similarly, we obtain the second inequality of (4.26).

4.3. The operators T θ,t and their properties. Denote (4.29)

k = d 2 + 1,
the smallest integer greater than d/2. Fix (4.30)

2 = p 1 < p 2 < • • • < p k < +∞ such that (4.31) p j-1 < p j < dp j-1 d -p j-1 and p k > d.

Denote (4.32)

λ * = t * e i π 2 ,
for some large t * > 0 such that, for t ≥ t * , (4.1) with λ = te i π 2 is well-posed in L p (Ω) × L p (Ω) and (4.8)

with λ = te -i π 2 is well-posed in L p (Ω) × L p (Ω) with p = p 1 , • • • , p k . Let (4.33) ω j ∈ C with 1 ≤ j ≤ k + 1 be the (distinct) (k + 1)-th roots of 1 (thus ω k+1 j = 1)
and let (4.34) Viewing (4.2) and (4.3), it is convenient to modify T λ j,θ,t to capture the scaling with respect to t ∼ λ j,θ,t there, as in [START_REF]Counting function for interior transmission eigenvalues[END_REF]. Denote (4.38)

Θ = R \ π k + 1 Z . Denition 4.4. For θ ∈ Θ, 1 ≤ j ≤ k + 1
M t = t 1/2 0 0 t -1/2 . Let θ ∈ Θ and t ≥ t θ . Dene, for 1 ≤ j ≤ k + 1, (4.39) T j,θ,t = M t T λ j,θ,t M -1 t and T θ,t = T k+1,θ,t • T k,θ,t • • • • • T 1,θ,t .
Here is the main result of this section. Proposition 4.2. Let θ ∈ Θ and let t θ be given in Denition 4.4. Then, for t ≥ t θ , (4.40)

T θ,t L 2 (Ω)→L 2 (Ω) ≤ Ct -k-1 , the range of T θ,t is in [C( Ω)] 2 , (4.41) T θ,t L 2 (Ω)→L ∞ (Ω) ≤ Ct -k-1+ d 4 ,
and (4.42) 

T θ,t L 1 (Ω)→L 2 (Ω) ≤ Ct -k-1+
~Tθ,t ~≤ Ct -k-1+ d 4 ,
for some positive constant C independent of t.

We now give

Proof of Proposition 4.2. We rst deal with (4.41). By using (4.37), we derive that

T j,θ,t L 2 (Ω)→L 2 (Ω) Proposition 4.1 ≤ Ct -1
and hence

T θ,t L 2 (Ω)→L 2 (Ω) ≤ k+1 j=1 T j,θ,t L 2 (Ω)→L 2 (Ω) ≤ Ct -k-1 .
This establishes (4.40).

Next we deal with (4.41).

For j = 1, • • • , k + 1 and (f, g) ∈ [L 2 (Ω)] 2 , we write (4.44) 
(u (j) , v (j) ) = T j,θ,t • T j-1,θ,t • • • • • T 1,θ,t (f, g). By (4.37), we have (4.45) 
t -1/2 u (1) W 1,2 t (Ω) + v (1) L 2 (Ω) Proposition 4.1 ≤ Ct -1 (f, g) L 2 (Ω)×L 2 (Ω) ,
and, for 2 ≤ j ≤ k,

(4.46) t -1/2 u (j) W 1,p j t (Ω) + v (j) L p j (Ω) Corollary 4.1 ≤ Ct -1+ d 2 1 p j-1 -1 p j t -1/2 u (j-1) W 1,p j-1 t (Ω) + v (j-1) L p j-1 (Ω) , and 
(4.47) t -1/2 u (k+1) W 1,∞ t (Ω) + v (k+1) L ∞ (Ω) Corollary 4.1 ≤ Ct -1+ d 2p k t -1/2 u (k) W 1,p k t (Ω) + v (k) L p k (Ω) .
We derive from (4.45), (4.46) and (4.47),

(4.48) u (k+1) L ∞ (Ω) + v (k+1) L ∞ (Ω) ≤ Ct -1 t -1+ d 2p k k j=2 t -1+ d 2 1 p j-1 -1 p j (f, g) L 2 (Ω)×L 2 (Ω) = Ct -k-1+ d 4 (f, g) L 2 (Ω)×L 2 (Ω) .
Thus (4.41) is proved. We next establish (4.42). We have, by Lemma 4.1,

T * j,θ,t = M -1 t P T λ j,θ,t P -1 M t ,
where P is given by (4.10). This implies

T * θ,t = M -1 t P T λ 1,θ,t • • • • • T λ k+1,θ,t P -1 M t .
Similarly to (4.48), we have (4.49)

T * θ,t L 2 (Ω)→L ∞ (Ω) ≤ Ct -k-1+ d 4 .
By a standard dual argument, we derive from (4.49) that

T θ,t L 1 (Ω)→L 2 (Ω) ≤ Ct -k-1+ d 4 .
The properties for T θ,t are established.

The properties for T * θ,t can be derived similarly. Then (4.51) α, β ∈ Θ and e iα(k+1) + e iβ(k+1) = 0. Recall that Θ is dened in (4.34). Lemma 4.2. For t ≥ max{t α , t β }, where t α and t β are given in Denition 4.4, we have (1) the operator T α,t T β,t is Hilbert-Schmidt, and

(4.52) ~Tα,t T β,t ~≤ Ct -2k-2+ d 2 ;
(2) the range of T α,t T β,t is in [C( Ω)] 2 , and (4.53)

T α,t T β,t L 1 (Ω)→L ∞ (Ω) ≤ Ct -2k-2+ d 2 ;
(3) the kernel K t of T α,t T β,t is continuous in Ω × Ω, and (4.54)

|K t (x, y)| ≤ Ct -2k-2+ d 2
for all (x, y) ∈ Ω × Ω; for some positive constant C independent of t.

Proof. Assertion (4.52) follows from Corollary 4.3 and

~Tα,t T β,t ~≤ ~Tα,t ~~T β,t ~.
Applying Proposition 4.2 and using the fact

T α,t T β,t L 1 (Ω)→L ∞ (Ω) ≤ T α,t L 2 (Ω)→L ∞ (Ω) T β,t L 1 (Ω)→L 2 (Ω) ,
we obtain (4.53).

Since both the range of T α,t and T * β,t are contained in [C( Ω)] 2 , the continuity of K t and (4.54) follow from Corollary 4.2 and (4.53). For = 1, 2, θ ∈ Θ, and t > 1, consider, with λ = te iθ , (4.55)

S ,λ,x 0 : L 2 (R d ) → L 2 (R d ) f → v where v ∈ H 1 (R d ) is the unique solution of (4.56) div(A(x 0 )∇v ) -λΣ (x 0 )v = Σ (x 0 )f in R d .
One then has (4.57)

S ,λ,x 0 f (x) = R d F ,λ (x 0 , x -y)f (y)dy,
where (4.58)

F ,λ (x 0 , z) = - 1 (2π) d R d e iz•ξ Σ (x 0 ) -1 A(x 0 )ξ • ξ + λ dξ.
Set, for = 1, 2,

S ,t,x 0 = S ,λ k+1,α,t ,x 0 • • • • • S ,λ 1,α,t ,x 0 • S ,λ k+1,β,t ,x 0 • • • • • S ,λ 1,β,t ,x 0 .
Dene, for = 1, 2,

(4.59) F ,t (x 0 , z) = 1 (2π) d R d e izξ dξ k+1 j=1 (Σ (x 0 ) -1 A(x 0 )ξ • ξ + λ j,α,t ) (Σ (x 0 ) -1 A(x 0 )ξ • ξ + λ j,β,t ) . Then (4.60) S ,t,x 0 f (x) = R d F ,t (x 0 , x -y)f (y)dy. Since 2k + 2 > d, the integrand appearing in (4.59) belongs to L 1 (R d ) ∩ L 2 (R d ), and thus (4.61) z → F ,t (x 0 , z) is continuous and belongs to L 2 (R d ).
To introduce the freezing coecient version of (4.1) in the whole space, we use the following result in which (4.62) is the system of (u, v) := (v 1 -v 2 , λv 1 ), where v ( = 1, 2) is dened by (4.56). 

(f, g) ∈ [L p (R d )] 2 . Then there exists a unique solution (u, v) ∈ [W 1,p (R d )] 2 of (4.62) div(A(x 0 )∇u) -λΣ 1 (x 0 )u -(Σ 1 (x 0 ) -Σ 2 (x 0 ))v = Σ 1 (x 0 )f in R d , div(A(x 0 )∇v) -λΣ 2 (x 0 )v = Σ 2 (x 0 )g in R d . Moreover, (4.63) u W 2,p λ (R d ) + |λ| -1 v W 2,p λ (R d ) ≤ C f L p (R d ) + |λ| -1 g L p (R d ) ,
for some C > 0 depending only on Λ,c and p. As a consequence, (1) either 1 < p < d and p ≤ q ≤ dp d-p , (2) either d = p ≤ q < +∞, (3) or p > d and q = +∞, we have

u W 1,q λ (R d ) + |λ| -1 v W 1,q λ (R d ) ≤ C|λ| d 2 1 p -1 q -1 2 f L p (R d ) + |λ| -1 g L p (R d ) .
Proof. We emphasize here that (4.62) is a system with constant coecients imposed in R d . The proof is quite standard. The idea is rst to obtain the existence, uniqueness, and the estimate for v using the second equation of (4.62), and then using these to derive the ones for u using the rst equation of (4.62). The details are omitted.

For x 0 ∈ Ω, j = 1, • • • , k + 1, θ ∈ Θ, and t > 1, dene, for 1 < p < +∞, R λ j,θ,t ,x 0 : [L p (R d )] 2 → [L p (R d )] 2 (f, g) → (u, v)
where

(u, v) ∈ [W 1,p (R d )]
2 is the unique solution (4.62) with λ = λ j,θ,t . Recall that λ j,θ,t is dened in (4.35). We also introduce (4.64)

R j,θ,t,x 0 = M t R λ j,θ,t ,x 0 M -1 t and R θ,t,x 0 = R k+1,θ,t,x 0 • • • • • R 1,θ,t,x 0 .
As in the proof of Proposition 4.2, however, using Lemma 4.3 instead of Proposition 4.1 and Corollary 4.1, we obtain Lemma 4.4. Let θ ∈ Θ and t > 1. Then, the range of R θ,t,x 0 and R *

θ,t,x 0 are in [C(R d )] 2 for all t > 1. Moreover, (4.65) R θ,t,x 0 L 2 (R d )→L ∞ (R d ) + R θ,t,x 0 L 1 (R d )→L 2 (R d ) ≤ Ct -k-1+ d 4 and (4.66) R * θ,t,x 0 L 2 (R d )→L ∞ (R d ) + R * θ,t,x 0 L 1 (R d )→L 2 (R d ) ≤ Ct -k-1+ d 4 ,
for some positive constant C independent of t.

Dene

(4.67)

R t,x 0 = R α,t,x 0 R β,t,x 0 .
One can then write R t,x 0 under the form

R t,x 0 = (R t,x 0 ) 11 (R t,x 0 ) 12 (R t,x 0 ) 21 (R t,x 0 ) 22 .
Note that, by the denition of S ,λ,x 0 , R λ j,θ,t ,x 0 = S 1,λ j,θ,t ,x 0 Σ 1 (x 0 ) -1 (Σ 1 (x 0 ) -Σ 2 (x 0 ))S 1,λ j,θ,t ,x 0 S 2,λ j,θ,t ,x 0 0 S 2,λ j,θ,t ,x 0 .

It follows that R λ j,θ,t ,x 0 is an upper triangular matrix operator, and so is R t,x 0 . We deduce that (R t,x 0 ) 21 = 0

and, for = 1, 2, (R t,x 0 ) = S ,t,x 0 .

These simple observations are useful in computing the approximation of the trace of the kernel of R t,x 0 . As an immediate consequence of (4.60), R t,x 0 is an integral operator whose kernel veries, for = 1, 2, (4.68) (K t,x 0 ) (x, y) = F (x 0 , x -y) for x, y ∈ R d . Further properties of K t,x 0 are given in the following lemma. 

|(K t,x 0 ) (x, y)| ≤ Ct -2k-2+ d 2 .
Moreover, (4.70) trace(K t,x 0 (x 0 , x 0 ))

= t -2k-2+ d 2 (2π) d 2 =1 R d dξ (Σ (x 0 ) -1 A(x 0 )ξ • ξ) 2k+2 -i + o(t -2k-2+ d
2 ) as t → +∞. Proof. From (4.68), it follows that (K t,x 0 ) (x, y) is continuous on R d × R d . By the choice of α, β, and ω j in (4.50), (4.51), and (4.33), one has

k+1 j=1 Σ (x 0 ) -1 A(x 0 )ξ • ξ + λ * + ω j te iα Σ (x 0 ) -1 A(x 0 )ξ • ξ + λ * + ω j te iβ = (Σ (x 0 ) -1 A(x 0 )ξ • ξ + λ * ) 2(k+1) -it 2(k+1) .
It follows from (4.59) that, for every x 0 ∈ Ω and every z ∈ R d ,

F ,t (x 0 , z) = 1 (2π) d R d e iz•ξ dξ (Σ (x 0 ) -1 A(x 0 )ξ • ξ + λ * ) 2(k+1) -it 2(k+1) .
A change of variables yields (4.71)

F ,t (x 0 , z) = t -2k-2+ d 2 (2π) d R d e it 1/2 z•ξ dξ (Σ (x 0 ) -1 A(x 0 )ξ • ξ + t -1 λ * ) 2(k+1) -i .
Assertion (4.69) follows from (4.71) since |e it 1/2 z•ξ | = 1 and λ * t -1 is uniformly bounded with respect to t ≥ 1.

By taking z = 0 in (4.71), we obtain (4.70) after using the dominated convergence theorem. The proof is complete.

We now prove the main result of this section concerning the trace of T α,t T β,t where α, β are given in (4.50) and T θ,t is dened in (4.39). Proposition 4.3. We have

trace(T α,t T β,t ) = ct -2k-2+ d 2 + o(t -2k-2+ d
2 ) as t → +∞, where (4.72)

c = 1 (2π) d 2 =1 Ω R d dξ dx Σ -1 (x)A(x)ξ • ξ 2k+2 -i .
The proof of Proposition 4.3 uses the following result.

Lemma 4.6. Let δ 0 ∈ (0, 1) and θ ∈ Θ. For every ε > 0, there exists δ ε ∈ (0, δ 0 /2) depending on ε such that the following holds: There exists t ε > 0 depending on ε and δ ε such that for every t > t ε and every x 0 ∈ Ω \ Ω δ 0 , we have (4.73) 

T θ,t -R θ,t,x 0 1 Ω L 2 (Ω)→L ∞ (B(x 0 ,δε)) ≤ εt -k-1+ d
T θ,t 1 Ω -R θ,t,x 0 L 2 (R d )→L ∞ (B(x 0 ,δε)) ≤ εt -k-1+ d 4 ,
and similar facts for T * θ,t and R * θ,t,x 0 . Recall that R θ,t,x 0 is dened in (4.64). We admit Lemma 4.6 and give the proof of Proposition 4.3. The proof of Lemma 4.6 is presented right after the one of Proposition 4.3.

Proof of Proposition 4.3. For ε > 0, let δ 0 > 0 be such that (4.75)

|Ω 2δ 0 | < ε,
where Ω τ is given in (2.1).

We claim that there exists τ * > 0, depending on Ω, and ε but independent of x 0 , and a positive constant C, independent of ε and x 0 , such that, for t > τ * , (4.76)

|trace(K t (x 0 , x 0 )) -trace(K t,x 0 (x 0 , x 0

))| ≤ Cεt -2k-2+ d 2 for x 0 ∈ Ω \ Ω δ 0 . Indeed, let χ ∈ C ∞ c (R d ) be such that χ = 1 in B 1 and supp χ ⊂ B 2 . Denote, for δ ∈ (0, δ 0 /10), χ δ,x 0 = χ (• -x 0 )/δ ,
and dene (4.77)

P 1,t,δ = χ δ,x 0 (R α,t,x 0 1 Ω -T α,t )T β,t χ δ,x 0 , P 2,t,δ = χ δ,x 0 R α,t,x 0 (R β,t,x 0 -1 Ω T β,t )χ δ,x 0 .
Then (4.78)

χ δ,x 0 (R α,t,x 0 R β,t,x 0 -T α,t T β,t )χ δ,x 0 = P 1,t,δ + P 2,t,δ .
By applying Lemma 4.6 below with θ ∈ {α, β}, there exist δ ε > 0 and t ε > 0 depending on ε such that for every t > t ε , (4.79) 

χ δε,x 0 (T α,t -R α,t,x 0 1 Ω ) L 2 (Ω)→L ∞ (Ω) ≤ εt -k-1+ d
χ δε,x 0 (T * β,t 1 Ω -R * β,t,x 0 ) L 2 (R d )→L ∞ (Ω) ≤ εt -k-1+ d 4 .
Since

(1 Ω T β,t -R β,t,x 0 )χ δε,x 0 * = χ δε,x 0 (T * β,t 1 Ω -R * β,t,x 0 ),
we derive from (4.80), using a dual argument, that (4.81)

(1 Ω T β,t -R β,t,x 0 )χ δε,x 0 L 1 (Ω)→L 2 (R d ) ≤ εt -k-1+ d 4 .
By Proposition 4.2 and Lemma 4.4, we have (4.82)

T β,t χ δε,x 0 L 1 (Ω)→L 2 (Ω) + χ δε,x 0 R α,t,x 0 L 2 (R d )→L ∞ (Ω) ≤ Ct -k-1+ d 4
for some constant C > 0 independent of ε and t.

Using the fact, for appropriate linear operators L 1 and L 2 ,

L 1 L 2 L 1 (Ω)→L ∞ (Ω) ≤ L 1 L 2 (Ω)→L ∞ (Ω) L 2 L 1 (Ω)→L 2 (Ω) ,
and

L 1 L 2 L 1 (Ω)→L ∞ (Ω) ≤ L 1 L 2 (R d )→L ∞ (Ω) L 2 L 1 (Ω)→L 2 (R d ) ,
we derive from (4.79), (4.81), and (4.82) that

P 1,t,δε + P 2,t,δε L 1 (Ω)→L ∞ (Ω) ≤ P 1,t,δε L 1 (Ω)→L ∞ (Ω) + P 2,t,δε L 1 (Ω)→L ∞ (Ω) ≤ Cεt -2k-2+ d 2 .
This yields, by (4.78), (4.83)

χ δε,x 0 (R α,t,x 0 R β,t,x 0 -T α,t T β,t )χ δε,x 0 L 1 (Ω)→L ∞ (Ω) ≤ Cεt -2k-2+ d 2 .
where (4.90

) Σ 1 (x 0 )f j,δ = (Σ 1 (x) -Σ 1 (x 0 ))u j-1,δ -λ j,θ,t (Σ 1 (x 0 ) -Σ 1 (x))u j,δ + A(x)∇χ δ • ∇u j -(Σ 1 (x 0 ) -Σ 1 (x) -Σ 2 (x 0 ) + Σ 2 (x))v j,δ + div (A(x 0 ) -A(x))∇u j,δ + u j A(x)∇χ δ and (4.91) Σ 2 (x 0 )g j,δ = (Σ 2 (x) -Σ 2 (x 0 ))v j-1,δ -λ j,θ,t (Σ 2 (x 0 ) -Σ 2 (x))v j,δ + A(x)∇χ δ • ∇v j + div (A(x 0 ) -A(x))∇v j,δ + v j A(x)∇χ δ .
Similarly, we have

(u j,δ 0 , v j,δ 0 ) = S λ j,θ,t ,x 0 (u j-1,δ 0 , v j-1,δ 0 ) + S λ j,θ,t ,x 0 (f j,δ 0 , g j,δ 0 ),
where

Σ 1 (x 0 )f j,δ 0 = A(x 0 )∇χ δ • ∇u j 0 + div u j 0 A(x 0 )∇χ δ and Σ 2 (x 0 )g j,δ 0 = A(x 0 )∇χ δ • ∇v j 0 + div v j 0 A(x 0 )∇χ δ .
For r > 0, dene

Φ(r) = min 1, sup |x-y|<r |A(x) -A(y)| + 2 =1 |Σ (x) -Σ (y)| .
We claim that (4.92) f j,δ L p j-1 (Ω\Ω δ 0 /2 ) + t -1 g j,δ

L p j-1 (Ω\Ω δ 0 /2 ) ≤ C δ 0 Φ(δ) + 1 δt 1/2 + 1 δ 2 t u j-1 L p j-1 (Ω) + t -1 v j-1 L p j-1 (Ω) ,
and

(4.93) f j,δ 0 L p j-1 (Ω\Ω δ 0 /2 ) + t -1 g j,δ 0 L p j-1 (Ω\Ω δ 0 /2 ) ≤ C δ 0 1 δt 1/2 + 1 δ 2 t u j-1 0 L p j-1 (Ω) + t -1 v j-1 0 L p j-1 (Ω) .
We rst admit (4.92) and (4.93) and continue the proof. Since, in Ω, (u 0,δ , v 0,δ ) = (u 0,δ 0 , v 0,δ 0 ), using (4.89), (4.92) and (4.93) and Lemma 4.3, for j = 1 and then for j = 2, . . . , k + 1, we have

(4.94) u j,δ -u j,δ 0 L p j (Ω\Ω δ 0 /2 ) + t -1 v j,δ -v j,δ 0 L p j (Ω\Ω δ 0 /2 ) ≤ C δ 0 Φ(δ) + 1 δt 1/2 + 1 δ 2 t t -d 2p j -j+ d 4 f L 2 (Ω) + t -1 g L 2 (Ω) . Fix δ = δ ε > 0 such that C δ 0 Φ(δ ε ) < ε/2. Take t ε > 0 suciently large such that C δ 0 (δ -1 ε t -1/2 + δ -2 ε t -1 ) < ε/2 for every t > t ε . Taking j = k + 1 in (4.94) gives (4.73).
The proof of (4.74) is similar to the one of (4.73) by considering (u 0 , v 0 ) and (u 0 0 , v 0 0 ) dened as follows

(u 0 , v 0 ) = 1 Ω (f, g) and (u 0 0 , v 0 0 ) = (f, g) in R d , instead of (4.88).
Similar facts for T * θ,t and R * θ,t,x 0 by analogous arguments. It remains to establish (4.92) and (4.93). From the denition of (u j , v j ) and the theory of elliptic equations (see e.g. [START_REF] Gilbarg | Elliptic partial dierential equations of second order[END_REF]Theorem 9.11]), we have, for Ω 1 Ω 2 ⊂ Ω, (4.95)

u j W 2,p t (Ω 1 ) + t -1 v j W 2,p t (Ω 1 ) ≤ C u j-1 L p (Ω 2 ) + t -1 v j-1 L p (Ω 2 )
and, similarly, (4.96)

u j 0 W 2,p t (Ω 1 ) + t -1 v j 0 W 2,p t (Ω 1 ) ≤ C u j-1 0 L p (Ω 2 ) + t -1 v j-1 0 L p (Ω 2 ) ,
for some positive constant C independent of f , g, and t. It follows that (4.97)

∇u j,δ L p (Ω 1 ) + t -1 ∇v j,δ L p (Ω 1 ) ≤ C 1 δt + 1 t 1/2 u j-1 L p (Ω 2 ) + t -1 v j-1 L p (Ω 2 ) , (4.98) ∇ 2 u j,δ L p (Ω 1 ) + t -1 ∇ 2 v j,δ L p (Ω 1 ) ≤ C 1 + 1 δt 1/2 + 1 δ 2 t u j-1 L p (Ω 2 ) + t -1 v j-1 L p (Ω 2 ) , and 
(4.99) u j,δ 0 W 1,p t (Ω 1 ) + t -1 v j,δ 0 W 1,p t (Ω 1 ) ≤ C 1 δt + 1 t 1/2 u j-1 0 L p (Ω 2 ) + t -1 v j-1 0 L p (Ω 2 ) .
By (4.90) and (4.91), we have

C ( f j,δ L p j-1 (Ω 1 ) + t -1 g j,δ L p j-1 (Ω 1 ) ≤ Φ(δ) u j-1 L p j-1 + t -1 v j-1 L p j-1 (Ω 1 ) + Φ(δ) + 1 δ 2 t + 1 δt 1/2 u j W 2,p j-1 t (Ω 1 ) + t -1 v j W 2,p j-1 t (Ω 1 ) + ∇u j,δ L p j-1 (Ω 1 ) + t -1 ∇v j,δ L p j-1 (Ω 1 ) + Φ(δ) ∇ 2 u j,δ L p j-1 (Ω 1 ) + t -1 ∇ 2 v j,δ L p j-1 (Ω 1 ) .
Combining (4.95)-(4.99) yields (4.92). Estimate (4.93) follows similarly.

The proof is complete.

4.5.

A connection of the counting function and the trace of T α,t T β,t for large t. We start this section by recalling the denition of the modied resolvent of an operator (see, e.g., [START_REF] Shmuel Agmon | Lectures on elliptic boundary value problems[END_REF]Denition 12.3]).

Denition 4.5. Let H be a Hilbert space and T : H → H be a linear and bounded operator. The modied resolvent set ρ m (T ) of T is the set of all non-zero complex numbers s such that I -sT is bijective and (I -sT ) -1 is bounded on H. For s ∈ ρ m (T ) the transformation (T ) s = T (I -sT ) -1 is the modied resolvent of T .

Recall that, for s ∈ ρ m (T ), we have (4.100)

(T ) s = T (I -sT ) -1 = (I -sT ) -1 T . Let T : L 2 (Ω) × L 2 (Ω) → L 2 (Ω) × L 2 ( 
Ω) be a linear and bounded operator. We have for z ∈ C (see e.g. [START_REF] Robbiano | Spectral analysis of the interior transmission eigenvalue problem[END_REF]) I -z k+1 T k+1 is invertible ⇐⇒ I -ω j zT is invertible for every j.

Recall that ω 

(T k+1 λ * ) γ = M -1 t T θ,t M t .
Proof. We have, by the denition of γ, 

T λ j,θ,t = T λ * (I -ω j te iθ T λ * ) -1 = (I -ω j te iθ T λ * ) -1 T λ * and thus, (4.108) M -1 t T θ,t M t (4.39) = k+1 j=1 T λ j,θ,t (4.107) = T k+1 λ * k+1 j=1 (I -ω j e iθ tT λ * ) -1 = T k+1 λ * (I -γT k+1 λ * ) -1 def. = (T k+1 λ * ) γ .
The proof is complete.

The following proposition establishes a connection between the trace of the operator T α,t T β,t and the counting function for large t. The arguments of the proof are in the spirit of [START_REF]The Weyl law of transmission eigenvalues and the completeness of generalized transmission eigenfunctions[END_REF] (see also [START_REF] Robbiano | Spectral analysis of the interior transmission eigenvalue problem[END_REF]). Proposition 4.4. We have

N (t) = (c) d 8(k+1) ∞ 0 s d 8(k+1) -1 (1 + s) -1 ds t d 2 + o(t d 2 ) as t → +∞,
where c is given by (4.72).

Proof. For t suciently large, by Lemma 4.7, we have

(T k+1 λ * ) t k+1 e i(k+1)α = M -1 t T α,t M t .
Note that (4.109)

(T k+1 λ * ) γ 1 γ 2 = (T k+1 λ * ) γ 1 +γ 2 provided that γ 1 ,γ 1 + γ 2 ∈ ρ m (T k+1 λ * ).
It follows from Lemma 4.7 that, for large t and for s ≥ 0,

-2(t + s) k+1 e i(k+1)α ∈ ρ m M -1 t T α,t M t .
Let s 1 , s 2 , . . . be the characteristic values of M -1 t T θ,t M t repeated a number of times equal to their multiplicities. Applying [1, Theorem 12.17], we have

(4.110) trace M -1 t T α,t M t (M -1 t T α,t M t ) -2(t+s) k+1 e i(k+1)α = j 1 s j (s j + 2e iα(k+1) (t + s) k+1 ) + c t .
We claim that (4.111)

c t = 0.
Assume this, we continue the proof. As a consequence of (4.110) with s = 0, we have

(4.112) trace M -1 t T α,t M t (M -1 t T α,t M t ) -2t k+1 e i(k+1)α = j 1 s j (s j + 2e iα(k+1) t k+1 )
.

Let (µ j ) j be the set of characteristic values of T λ * repeated according to their multiplicity. It is well-known that µ k+1 j are the characteristic values of T k+1 λ * and the multiplicity of µ k+1 j is equal to the sum of the one of the characteristic values µ of T λ * such that µ k+1 = µ k+1 j . By Lemma 4.7, for large t, e iα(k+1) t k+1 is not a characteristic value of T k+1 λ * . We obtain, by [START_REF] Shmuel Agmon | Lectures on elliptic boundary value problems[END_REF]Theorem 12.4], that the set of the characteristic values of (T k+1 λ * ) t k+1 e i(k+1)α is given by µ k+1 j -t k+1 e i(k+1)α ; j ≥ 1 .

We now derive from (4.112) that trace M -1 t T α,t M t (M -1 t T α,t M t ) -2t k+1 e i(k+1)α = j 1 (µ k+1 j -t k+1 e i(k+1)α )(µ k+1 j + t k+1 e i(k+1)α ) , which yields, since Considering the imaginary part of (4.118) we get, for τ = t 4k+4 , Since λ j = µ j + λ * , it follows that, as τ → +∞, Using the fact as t → +∞, which is the conclusion.

It remains to prove (4.111). Applying (4.109) with γ 1 = t k+1 e i(k+1)α and γ 2 = -2(t + s) k+1 e i(k+1)α and using Lemma 4.7, we derive that Thus by [ The conclusion now follows from Proposition 4.4.

(c) = 1 (2π) d Ω 2 =1 R d 1 (Σ (x 0 ) -1 A(x 0 )ξ • ξ) 4k+4 + 1 dξdx = 1 (2π) d

Completeness of the generalized eigenfunctions of the transmission

eigenvalue problem -Proof of Theorem 1.2 By Lemma 4.7, for all θ ∈ (0, 2π) \ {π}, there exists t θ > 0 such that, for t > t θ , (5.1) In particular, T k+1 λ * is a Hilbert-Schmidt operator; moreover, for t > t θ , (5.3) 4(k+1) .

(T k+1 λ * ) te i θ = M -1 t k T θ,
~(T k+1 λ * ) te i θ ~≤ C θ t -1+ 1 k+1 + d
Since k = [d/2] + 1, it follows that -1 + 1 k+1 + d 4(k+1) ≤ 0. This implies that (5.4) for all θ ∈ (0, 2π) \ {π} there exist t θ > 0 and C θ > 0 such that sup with respect to the L 2 -topology. In fact, in order to be able to apply [START_REF] Shmuel Agmon | Lectures on elliptic boundary value problems[END_REF]Theorem 16.4], one requires the assumptions on the directions of the minimal growth of the modied resolvent of T k+1 λ * . We have only proved (5.3) and (5.4) instead of this requirement. Nevertheless, this is sucient to derive 1) using almost the same arguments in [START_REF] Shmuel Agmon | Lectures on elliptic boundary value problems[END_REF] (see also [START_REF]Counting function for interior transmission eigenvalues[END_REF]).

The rest of the proof is as in [START_REF]The Weyl law of transmission eigenvalues and the completeness of generalized transmission eigenfunctions[END_REF][START_REF] Fornerod | The completeness of the generalized eigenfunctions and an upper bound for the counting function of the transmission eigenvalue problem for Maxwell equations[END_REF]. We have ii) range T k+1 λ * is dense in [L 2 (Ω)] 2 since range T λ * is dense in [L 2 (Ω)] 2 and T λ * is continuous, ii) the space spanned by the general eigenfunctions of T k+1 λ * associated to the non-zero eigenvalues of T k+1 λ * is equal to the space spanned by the general eigenfunctions of T λ * associated to the non-zero eigenvalues of T λ * . This can be done as in the last part of the proof of [START_REF] Shmuel Agmon | Lectures on elliptic boundary value problems[END_REF]Theorem 16.5]. Consequently, the space spanned by all generalized eigenfunctions of T k+1 λ * is equal to the space spanned by all generalized eigenfunctions of T λ * . The conclusion now follows from i), ii), and iii).
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 31 Assume (1.1)-(1.2), (1.7)-(1.8), and (3.2). For γ > 0, there exists λ 0 > 0 such that if λ ∈ C with | (λ)| ≥ γ|λ| and |λ| ≥ λ 0 , then λ is not a transmission eigenvalue.
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Remark 4 . 1 .
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 42 Assume (1.1)-(1.2) and (1.6)-(1.8). For p = 2 and for λ ∈ C being such that (4.8) is well-posed in L 2 (Ω) × L 2 (Ω), we dene (4.9)

  g. [1, Theorems 12.18 and 12.19], such that (Tu)(x) = Ω K(x, y)u(y)dy for a.e. x ∈ Ω, for all u ∈ [L 2 (Ω)] m . , y)| 2 dx dy.
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 4 The approximation of the trace of a kernel. Denote(4.50) 
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 43 Let x 0 ∈ Ω, c ∈ (0, 1), λ ∈ C with |λ| ≥ 1 and | (λ)| ≥ c|λ|. Let p > 1 and let

Lemma 4 . 5 .

 45 Let t ≥ 1 and x 0 ∈ Ω. Then K t,x 0 is continuous on R d ×R d, and, for (x, y) ∈ R d ×R d , it holds, for = 1, 2,

Remark 4 . 1 .

 41 Assertion (4.70) holds uniformly with respect to x 0 ∈ Ω.

  ω j te iθ T λ * ).

1

 1 |µ j | 2k+2 -it 2k+2 = ct -2k-2+ d 2 + o(t -2k-2+ d 2 ).

j 1

 1 |µ j | 4k+4 + τ = (c)τ d 8k+8 -1 + o(τ d 8k+8 -1 ) as τ → +∞.

  ) ) s + τ = (c)τ d 8k+8 -1 + o(τ d 8k+8 -1 ) as τ → +∞.Applying a Tauberian Theorem of Hardy and Littlewood (see, e.g., [1, Theorem 14.5]), we obtain

(M - 1 t

 1 T α,t M t ) -2(t+s) k+1 e i(k+1)α = M -1 r T α,r M r .whereα = α + π k + 1 and r = (2(t + s) k+1 -t k+1 ) 1 k+1 .

  |{ξ : A(x)ξ • ξ < Σ (x)}| dx d 8(k + 1) ) -1 (1 + s) -1 ds.

  t>t θ ~(T k+1 λ * ) te i θ ~≤ C θ . Since T k+1 λ *is a Hilbert-Schmidt operator, it follows from [1, Theorem 16.4] that i) the space spanned by the generalized eigenfunctions of T k+1 λ * is equal to range(T k+1 λ * ), the closure of the range of T k+1 λ *
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  +∞ and γ ∈ (0, 1). There exist constants λ 0 > 0 and C > 0 depending on Ω, Λ, τ , p, and γ such that for λ ∈ C with |λ| > λ 0 and | (λ)| ≥ γ|λ| and for (f 1 , f 2 ) ∈ [L p (Ω)] 2 , there is a unique solution (u 1 , u 2 ) ∈ [L p (Ω)] 2 with u 1 -u 2 ∈ W 2,p (Ω) of the Cauchy problem (3.1).

	Theorem 3.1. Assume (1.1)-(1.2), (1.7)-(1.8), and (3.2). Let 1 < p < Moreover,
	(3.3)

  Proposition 4.1. Assume (1.1)-(1.2), and (1.6)-(1.8). Let c ∈ (0, 1) and 1 < p < +∞. There exists λ 0 > 0 depending on p, c, Λ, and Ω such that the following holds: for (f, g) ∈ [L p (Ω)] 2 and for λ ∈ C with | (λ)| ≥ c|λ| and |λ| > λ 0 , there exists a unique solution (u, v) ∈ W 2,p (Ω) × L p (Ω)

	of the Cauchy problem (4.1); moreover, we have
	(4.2)

  Lemma 4.1. Assume (1.1)-(1.2) and (1.6)-(1.8). Let p = 2 and let λ be such that T λ and Tλ are dened. Set, for x ∈ Ω,

	(4.10)

  |K(x, y)| ≤ M for a.e. x, y ∈ Ω. (4.25) Here C m denotes a positive constant depending only on m. As a consequence of Lemma 4.2, we derive the following result. Corollary 4.2. Let T 1 and T 2 two Hilbert-Schmidt operators on [L 2 (Ω)] m be such that the ranges of T 1 and T * 2 are in [C( Ω)] m and (4.21) holds for T 1 and T * 2 . Assume that (4.24) holds for

  , and t > 0, we dene (4.35)λ j,θ,t = λ * + ω j te iθ ,

and t θ > t * such that the following properties hold, for t ≥ t θ , (4.36) (4.1) with λ = λ j,θ,t is well-posed in L p (Ω) × L p (Ω) and (4.8) with λ = λj,θ,t is well-posed in L p (Ω) × L p (Ω) with p = p 1 , • • • , p k , and (4.37) t 2 ≤ |λ j,θ,t | < 2t. Such a t θ > t * exists by Proposition 4.1 after noting that, for θ ∈ Θ, ω j e iθ = 0, and, for 1 ≤ j ≤ k + 1, lim t→+∞ λ * + tω j e iθ |λ * + tω j e iθ | = ω j e iθ > 0.

  d for some positive constant C independent of t. Similar facts hold for T * θ,t . As a direct consequence of Lemma 4.2 and Proposition 4.2, we obtain Corollary 4.3. Let θ ∈ Θ and let t θ be given in Denition 4.4. Then, for t ≥ t θ , the operator

	T θ,t is Hilbert-Schmidt, and
	(4.43)

  Lemma 4.7. Let θ ∈ R \ {πZ}. Set θ := θ k+1 ∈ Θ. There exists t θ > 1 such that, for every t > t θ , := t k+1 e i θ ∈ ρ m (T k+1 λ

	k+1 j prove the following lemma. = 1. Using the decomposition (4.101), and the equivalence in (4.102), one can
	it holds
	(4.103)

γ * ) and (4.104)

  By Proposition 4.1, there exists t θ > 0 such that T λ * +ωte iθ is dened for t ≥ t θ . Hence (4.106) ω j te iθ ∈ ρ m (T λ * ) and (T λ * ) ω j te iθ = T λ * +ω j te iθ = T λ j,θ,t for t ≥ t θ .

	It follows from (4.100) that, for t ≥ t θ ,
	(4.107)

(see, e.g.

[START_REF] Fornerod | The completeness of the generalized eigenfunctions and an upper bound for the counting function of the transmission eigenvalue problem for Maxwell equations[END_REF] Lemma 3.1] 

for the arguments in a similar setting). Combining (4.105) and (4.106) leads γ ∈ ρ m (T k+1 λ * ) for t ≥ t θ .

  |µ j | 2k+2 -it 2k+2 = o(t -2k-2+ d 2 ) as t → +∞.Combining (4.113) and (4.114) yield(4.115) trace M -1 t T α,t M t (M -1 t T α,t M t ) -2t k+1 e i(k+1)α = j 1 |µ j | 2(k+1) -it 2(k+1) + o(t -2k-2+ d 2 ) as t → +∞.Applying (4.109) with γ 1 = t k+1 e i(k+1)α and γ 2 = -2t k+1 e i(k+1)α and using Lemma 4.7, we derive that (4.116)(M -1 t T α,t M t ) -2t k+1 e i(k+1)α = M -1 t T β,t M t . Since trace M -1 t T α,t T β,t M t = trace (T α,t T β,t ) , it follows from (4.115) and (4.116) that (4.117) trace (T α,t T β,t ) = | 2(k+1) -it 2(k+1) + o(t -2k-2+ d 2 ) as t → +∞. Applying Proposition 4.3, we derive from (4.117) that, as t → +∞

	We have, by Proposition 4.1,	
					lim sup |µ j |→+∞	(µ j ) µ j	= 0.
	As a consequence and as in [34, Proof of Corollary 3], we derive that
	(4.114)	j	µ 2k+2 j	1 -it 2k+2	-
		α = π 4(k+1) ,	
	(4.113)	trace M -1		2(k+1) j	-it 2(k+1)	.

t T α,t M t (M -1 t T α,t M t ) -2t k+1 e i(k+1)α = j 1 µ j 1 j 1 |µ j

  1, Theorem 12.14], (4.121)s j + 2(t + s) k+1 e iα(k+1) ; j ≥ 1 is the set of characteristic values ofM -1 r T α,r M r . ~M -1 t T α,t M t ~≤ Ct -k+ d 4 and ~M -1 r T α,r M r ~≤ Cr -k+ d 4for some constant C > 0 which does not depend on s (and t). By [1, Theorem 12.12] we have(4.123) |trace M -1 t T α,t M t (M -1 t T α,t M t ) -2α k+1 (t+s) k+1 | ≤ ~M -1 t T α,t M t ~~M -1 r T α,r M r ~. T α,t M t (M -1 t T α,t M t ) -2α k+1 (t+s) k+1 = 0. (s j + 2e iα(k+1) (t + s) k+1 ) ≤ ~M -1 t T α,t M t ~2~M -1 r T α,r M r ~2(4.122)→ 0 as s → +∞.Combining (4.124) and (4.125) yields c t = 0, which is (4.111) .The proof is complete. 4.6. Proof of Theorem 1.1. As in [34, p.34], we derive from Proposition 4.3 that

	Applying Corollary 4.3 and using (4.38), we have	
	(4.122)						
	Since -k + d 4 < 0 it follows from (4.122) and (4.123) that
	(4.124)	lim s→+∞	trace M -1				
	On the other hand, by [1, Theorem 12.14],				
	(4.125)		2	≤	j	1 |s j | 2	j	1 |s j + 2e iα(k+1) (t + s) k+1 | 2
			(4.121)				

t j 1 s j

  t k M t k , ~M -1 t k T θ,t k M t k ~≤ Ct T θ,t k M t k L 2 (Ω)→L 2 (Ω) ≤ Ct -k k .

	where			
		θ =	θ k + 1	and t k = t	1 k+1 .
	By Proposition 4.1 and Corollary 4.3,		
	(5.2)	-k+ d 4 k	and	M -1 t k
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Since, for x ∈ Ω, = 1, 2 and f ∈ L 2 (Ω), χ δε,x 0 (R α,t,x 0 R β,t,x 0 ) -(T α,t T β,t ) χ δε,x 0 f (x) = χ δε,x 0 (x) Ω χ δε,x 0 (y) (K t,x 0 ) (x, y) -(K t ) (x, y) f (y)dy, it follows that χ δε,x 0 (x)χ δε,x 0 (y)((K t,x 0 ) (x, y) -(K t (x, y)) ) is the kernel of the operator

By Lemma 4.2 and Lemma 4.5, this kernel is continuous on Ω × Ω. Using (4.83) and applying Lemma 4.2, we derive that, since χ δε,x 0 (x 0 ) = 1,

Since the LHS of (4.84) does not depend on ε > 0, the claim (4.76) is proved. By Lemma 4.2 we have, for t > 0 large enough, (4.85) 

)

Combining (4.76),(4.85), and (4.86) yields (4.87)

The conclusion follows from Lemma 4.5 and (4.87).

We now give

Proof of Lemma 4.6. Let ε > 0 and θ ∈ Θ. First, we prove (4.73

where (4.88)

and

and (u j,δ 0 , v j,δ 0 ) = (χ δ u j 0 , χ δ v j 0 ).

We have (4.89) (u j,δ , v j,δ ) = S λ j,θ,t ,x 0 (u j-1,δ , v j-1,δ ) + S λ j,θ,t ,x 0 (f j,δ , g j,δ ),