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THE WEYL LAW OF TRANSMISSION EIGENVALUES AND THE
COMPLETENESS OF GENERALIZED TRANSMISSION EIGENFUNCTIONS
WITHOUT COMPLEMENTING CONDITIONS

JEAN FORNEROD AND HOAI-MINH NGUYEN

ABSTRACT. The transmission eigenvalue problem is a system of two second-order elliptic equa-
tions of two unknowns equipped with the Cauchy data on the boundary. In this work, we estab-
lish the Weyl law for the eigenvalues and the completeness of the generalized eigenfunctions for
a system without complementing conditions, i.e., the two equations of the system have the same
coefficients for the second order terms, and thus being degenerate. These coefficients are allowed
to be anisotropic and are assumed to be of class C2. One of the keys of the analysis is to establish
the well-posedness and the regularity in LP-scale for such a system. As a result, we largely extend
and rediscover known results for which the coefficients for the second order terms are required to
be isotropic and of class C*° using a new approach.

MSC: 47A10, 47A40, 35A01, 35A15, 7T8A25.
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1. INTRODUCTION

The transmission eigenvalue problem plays a role in the inverse scattering theory for inho-
mogeneous media. This eigenvalue problem is connected to the injectivity of the corresponding
1



2 JEAN FORNEROD AND H.-M. NGUYEN

scattering operator [12], [20]. Transmission eigenvalues are related to interrogating frequencies
for which there is an incident field that is not scattered by the medium. In the acoustic setting,
the transmission eigenvalue problem is a system of two second-order elliptic equations of two un-
knowns equipped with the Cauchy data on the boundary. After four decades of extensive study,
the spectral properties are known to depend on a type of contrasts of the media near the boundary.
Natural and interesting questions on the interior transmission eigenvalue problem include: the dis-
creteness of the spectrum (see e.g. [6], 4, 40l 211, 33, [I1]), the location of transmission eigenvalues
(see [8] 24] 411, [42], and also [9] for the application in time domain), the Weyl law of transmission
eigenvalues and the completeness of the generalized eigenfunctions (see e.g. [21], 22, 23], 39]). We
refer the reader to [7] for a recent, and self-contained introduction to the transmission eigenvalue
problem and its applications.

Let us describe its mathematical formulation. Let © be a bounded, simply connected, open
subset of RY of class C3 with d > 2. Let Ay, Ay be two real, symmetric matrix-valued functions,
and let X1, Y5 be two bounded positive functions that are all defined in 2. Assume that A; and
Ao are uniformly elliptic, and ¥ and X5 are bounded below by a positive constant in 2, i.e., for
some constant A > 1, one has, for £ =1, 2,

(1.1) AYE? < (Ag(2)€,€) < AJE]> for all € € RY, for ae. z € Q,

and

(1.2) A7t < 3y(x) < Afor ae. z € Q.

Here and in what follows, (-,-) denotes the Euclidean scalar product in C% and | - | is the corre-

sponding norm.

A complex number A is called an eigenvalue of the transmission eigenvalue problem associated
with the pairs (A1, Y1) and (Ag, ¥g) in Q if there is a non-zero pair of functions (u1, uz) € [H(£2)]?
that satisfies the system

div(A;Vuy) — AX1u; =0 in Q,
(1.3) diV(AQV'LLQ) - )\ZQUQ =0 in Q,
Uup = ug, A1Vu1 V= AQV’U,Q 2 onI.

Here and in what follows, I" denotes 02, and v denotes the outward, normal, unit vector on I.
Such a pair (ui,us2) is then called an eigenfunction pair.

Assume that Ay, As, 31, 3o are continuous in 2, and the following conditions on the boundary
I hold, with v = v(x) :

(14)  (Ae(2)r,v)(As(2)€,€) — (A2(2)1,€)* # (A1 (2)r, v)(A1(2), €) — (Ar(2)r, €)?,
for all € T and for all £ € RY\ {0} with (£,v) =0, and
(1.5) (Ag(z)v,v)Sa(z) # (Ar1(z)v,v)51 (z), Vo €T

(Q. H.) Nguyen and the second author [34] established the Weyl law of eigenvalues and the com-
pleteness of the generalized eigenfunctions for transmission eigenvalue problem under conditions
and via the Fourier analysis assuming that A, Ay, X1, ¥o are continuous in €. Con-
dition is equivalent to the celebrated complementing conditions due to Agmon, Douglis, and
Nirenberg [3] (see also [2]). The explicit formula given here was derived in [29] in the context of
the study of negative index materials. Conditions and were derived by (Q. H.) Nguyen
and the second author in [33] in their study of the discreteness of the eigenvalues for transmission
eigenvalue problem.
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In the case
(1.6) A=Ay =Ain Q,

it was also shown by (Q. H.) Nguyen and the second author [33] (see also [40]) using the multiplier
technique that the discreteness holds if

(1.7) Y1 # Yo on I

The goal of this paper is to study the Weyl law of the eigenvalues and the completeness of the
generalized eigenfunctions under conditions and (L.7). It is worth noting that results in this
direction have been obtained previously with more constraints on the coefficients than ([1.6) and
(1.7). Robbiano [39] (see also [38]) gives the sharp order of the counting number when A = T
in Q, X1 = 1, ¥ # ¥; near the boundary and s is smooth. The analysis is based on both
the microanalysis (see, e.g., [16], 46]) and the regularity theory for the transmssion eigenvalue
problem. In the isotropic case, the Weyl law was established by Petkov and Vodev [37] and
Vodev [42, 43], 44] for C*° coefficients. Their analysis is heavily based on microanalysis and the
smoothness condition is strongly required. In addition, their work involved a delicate analysis on
the Dirichlet to Neumann maps using non-standard parametrix construction initiated by Vodev
[41], which have their own interests. It is not clear how one can improve the C*° condition and
extend their results to the anisotropic setting using their approach. Concerning the completeness
of the generalized eigenfunctions, we want to mention the work of Robbiano [38] where the case
A =1 and ¥ # Xy in Q was considered.

We are ready to state the main results of this paper. From now on, we will assume in addition
that

(1.8) 1(A1, A2)l[c2) + [[(X1, B2) [l @) < A

We denote by (\;); the set of transmission eigenvalues associated with the transmission eigenvalue
problem (|1.3)).

Concerning the Weyl law, we have

Theorem 1.1. Assume (L.1)-(1.2) and (1.6)-(1.8). Let N'(t) denote the counting function, i.e.
N(t)=#{j e N: |)j| <t}
Then

d
2

./\/'(t):ct%—l—o(t ) as t — +o0,

where

;2
(27)d ;/ﬂ Hﬁ € R% (Ay()€,¢) < Ez(l‘)}‘ dz.

For a measurable subset D of R%, we denote |D| its (Lebesgue) measure.

C =

Concerning the completeness, we obtain

Theorem 1.2. Assume (1.1)-(1.2) and (1.6)-(1.8). The set of generalized eigenfunction pairs of
(1.3) is complete in L*(Q) x L?(52).

Remark 1.1. As a direct consequence of either Theorem or Theorem the number of
eigenvalues of the transmission eigenvalue problem is infinite. As far as we know, this fact is new
under the assumption that A is allowed to be anisotropic and the regularity of the coefficients are
only required up to the order 2.
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The analysis used in the proof of Theorem and/or Theorem also allows us to obtain the
following result on the transmission eigenvalue free region of the complex plane C.

Proposition 1.1. Assume (L.1)-(1.2) and (L.6))-(1.8)). For > 0, there exists Ao > 0 such that if

A € C with |[S(N)| > v|A| and |\ > Ao, then X is not a transmission eigenvalue.

Here and and in what follows, for z € C, let J(z) denote the imaginary part of z.
A more general result of Proposition [I.1]is given in Proposition

Remark 1.2. Since v > 0 can be chosen arbitrary small, combining the discreteness result in
[33] mentioned above and Proposition , one derives that all the transmission eigenvalues, but
finitely many, lie in a wedge of arbitrary small angle.

Some comments on Theorem [I.I]and Theorem|[I.2]are in order. In the conclusion of Theorem [I.1]
the multiplicity of eigenvalues is taken into account and the multiplicity is associated with some
operator T+, which is introduced in Section [ (see and (£.32))). Concerning Ty, the following
facts hold (see Remark and Remark for more information): if p is a characteristic value
of the operator Th~ associated with an eigenfunction (u,v) and A\* + p # 0, then \* 4+ p is a
transmission eigenvalue of with an eigenfunction pair (uj,us) given by

u =N+ pu+wv and ug = .

Moreover, if A; is a transmission eigenvalue problem, then A; # A* and A; — A* is a characteristic
value of Th«. In Theorem the generalized eigenfunctions are also associated to such an operator
Ty« We recall that the generalized eigenfunctions are complete in [L?(£2)]? if the subspace spanned
by them is dense in [L?(Q)]?.

Theorem and Theorem provide the Weyl laws and the completeness under the assump-
tions and assuming the regularity conditions in (L.8). Our results hold for A; = Ay = A
being anisotropic in contrast to the isotropic setting considered previously. Moreover, the regular-
ity assumption on the coefficients was out of reach previously.

Our approach is in the spirit of [34] and is hence different from the ones used to study these
problems given in the previous works mentioned above. The key idea is to establish the regularity
theory for the transmission eigenvalue problem under the stated assumptions (see Theorem [3.1)).
Nevertheless, several new ingredients and observations are required for the regularity theory due
to the fact that , which is degenerate, is considered instead of . One of the key steps to
capture the phenomena is to derive appropriate estimates in a half plane setting. It is important to
note that since A1 = Ay = A, the setting is non-standard, and the classical arguments pioneered in
[2, B] cannot be applied since the role of ¥; and Xy are ignored there. To this end, our arguments
for the Cauchy problems not only require the information of the first derivatives and their structure
of the data but also involve the information of the second derivatives and their structure (see, e.g.,
Lemma . This is quite distinct from the complementing case where the arguments for the
Cauchy problems only require the information of the first derivatives and no structure of the data
is required [34] (see, e.g., [34, Lemma 2 and Corollary 2|). One might note that the arguments
used to derive the discreteness in [33] requires less assumption on the regularity of the coefficients
but only give the information for one direction of A (arg A = 7w /2) for large A. This is not sufficient
to apply the theory of Hilbert-Schmidt operators.

We have so far discuss the transmission eigenvalue problem in the acoustic setting. Known
results for the transmission eigenvalue problem in the electromagnetic setting are much less. In
this direction, we mention the work of Cakoni and Nguyen [10] on the state of art on the discreteness
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of the eigenvalues, the work of Fornerod and Nguyen [I3] on the completeness of generalized of
eigenfunctions and the upper bound of the eigenvalues for the setting considered in [10], and
the work of Vodev [45] on the free region of eigenvalues for a setting considered in [10], and the
references therein.

The Cauchy problem also naturally appears in the context of negative-index materials after
using reflections as initiated in [25] (see also [31]). The well-posedness and the limiting absorption
principle for the Helmholtz equation with sign-changing coefficients were developed by the second
author [29] using the Fourier and multiplier approach (see also [35]). The work [29] deals with
the stability question of negative index materials, and is the starting point for the analysis of the
transmission eigenvalue problems in [33] B34] (see also [I0]). Other aspects and applications of
negative-index materials as well as the stability and instability the Cauchy problem are discussed
in [27, 28], 26, [30] and the references therein. A survey is given in [32].

The paper is organized as follows. Section|2|is devoted to define some notations used throughout
the paper. In Section [3| we establish the well-posedness and the regularity theory for the Cauchy
systems associated with the transmission eigenvalue problems. The analysis is then developed in
such a way that the theory of Hilbert-Schmidt operators can be used. This is given in Section
where the Weyl laws are established. The completeness is considered in Section

2. NOTATIONS
Here are some useful notations used throughput this paper. We denote, for 7 > 0,
(2.1) 0, = {:B € Q:dist(z,I') < 7‘}.
For d > 2, set
Ri = {m eR%: 24 > O} and RY= {m eR%: 4= O}.
We will identify Rg with R%! in several places. For s > 0, we denote
B, ={z eR?: |z| < s}.
Form>1,p>1,and A € C* and u € W™P(Q), we define

1/p

(2.2) lullweeiy = | SN Voul,
j=0

3. WELL-POSEDNESS AND REGULARITY THEORY FOR THE TRANSMISSION EIGENVALUE
PROBLEMS

In this section, we study the well-posedness and the regularity theory of the Cauchy problem
div(A1Vuy) — AXu1 = fi in Q,
(3.1) div(A2Vug) — AXqus = fo in Q,
up —uz =0, (A1Vu; — AsVug)-v=0 onT,
under the assumptions —, and —, and
(3.2) A=Ay =Ain Q,,
for some 7 > 0, instead of for appropriate A € C and (fi1, f2) in LP-scale.

Here is the main result of this section.
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Theorem 3.1. Assume (L.1)-(1.2), (1.7)-(L.8), and (3.2)). Let 1 <p < +o0 and v € (0,1). There

exist constants Ao > 0 and C > 0 depending on Q, A, 7, p, and 7y such that for X € C with |\| > Ao
and |S(N)| > |\ and for (f1, f2) € [LP()]?, there is a unique solution (u1,us) € [LP()]* with
up — ug € W2P(Q) of the Cauchy problem (3.1). Moreover,

(3.3) Al Curs w2)l[ o) + llun = w2lly 20 gy < Cl(fL f2)llLr(e)
Assume in addition that fi — fo € WYP(Q). Then (u1,u) € [WHP(Q)]?, up —up € W3P(Q,5),

and
(3:4) l(ur, u)llyrn(gy + llur = wallysna, oy < C (2101 ) ooy + 11 = Follyroy ) -
Remark 3.1. The boundary conditions must be understood as

up—uz=0onT and AV(u; —uz)-v=0onT,
which make sense since u; — ug € W2P(Q).
Remark 3.2. In (3.4)), we only estimate [Ju; _U2|’W§,p(QT/2) not ||u; — u2||W§,p(Q) since f1 and f,
are not supposed to be in W1P(Q). Nevertheless, when A; = A in €, the estimate is also valid
for ||u1 — u2”W3,p(Q).

Remark 3.1. As a consequence of and the theory of regularity of elliptic equations, one
derives that (uy,us) € [W2P(Q)]2 and for e QI it holds

loc
(s w2)llyy2r gy < (G f2)llLe(e)
where C depends also on € (see, e.g., [I8, Lemma 17.1.5] and [I5, Theorem 9.11]).

As a consequence of Theorem [B.I] we obtain the following result on the free-region of the
eigenvalues.

Proposition 3.1. Assume (L.1)-(1.2)), (1.7)-(1.8), and (3.2). For v > 0, there exists N\g > 0 such
that if X € C with |S(N\)| > y|A| and |A| > Ao, then X is not a transmission eigenvalue.

The rest of this section, containing two subsections, is devoted to the proof of Theorem
The first one is on the analysis in the half space. The proof of Theorem is then given in the
second subsection.

3.1. Half space analysis. Let 1 < p < +o0. For j =1,2,---, and A € C\ {0}, we denote
1 yyg=17pp gty = Wl/%l/@p)Hlﬁng*W(Rg) + VI g1 rg)

where WHWFLP(RCJ) is defined as in (2.2)) with Q = Rg, and
A 0

‘w| ( /)|p df]f/ d /
Wi=1/pp(RF) Rd-1 JRd—1 ‘x —y |d+p 2 v
By the trace theory, there exists a positive constant C depending only on p and j such that

] d
lllyyg-1/00 gy < Cllullyygr gy for w e WH(RS).

In fact, this inequality holds for A € C with |A| = 1; the general case follows by scaling.

The starting point and the key ingredient of our analysis is Lemma [3.2] Lemma [3.1] below is a
special case of Lemma and is later used to derive Lemma [3.2]

1Recall that Q' € Q means Q' C Q.
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Lemma 3.1. Let A € R¥*? pe a constant symmetric matriz and let $q, X9 be two positive constants
such that
ATHEP < (A& €) < AJEP for all € € RY,
ATV <S8 <A, and B -S| > AT
for some A > 1. Let v € (0,1), 1 < p < +o0, and let p € W2~ V/PP(RE). Given \ € C with |\| > 1
and |S(N)| > ||, there exists a unique solution (u1,u2) € [LP(RE)]? with u; — ug € W2P(R) of
the following Cauchy problem

div(AVu;) — AXju; =0 in R,
diV(AVUQ) — /\EQUQ =0 m Ri,
up —ug =@, AV(u; —uz)-eg=0 onRI
Moreover,
(3.5) ’/\|H(u17u2)”LP(Ri) + Hul - UQHW)?*P(I[@F) < CHSOHWf_I/p’p(Rg)'

Assume in addition that ¢ € W3~V/PP(RE). Then (u1,uz) € [WP(RL)]? with ug —ug € W3P(RE),
and

Here C is o positive constant depending only on A, v, p, and d.

Proof. For a function u : RY — C (resp. ¢ : R™! — C) we denote by @ the Fourier transform

of u with respect to the first (d — 1) variables (resp. by ¢ the Fourier transform of ¢), i.e., for
(§I7xd) e R x (07 OO),

ﬂ(&’,xd):/ u(a,zg)e” ™ da’ and @(5'):/ p(a)e ™ ¢ da.
Rd-1 Rd-1

Since, for £ =1, 2,
diV(AV’LLg) — AE(U@ =0in Ri,
it follows that
atiy (&', t) + 2ib(&)ay(E 1) — (e(&) + AXp) (€', t) = 0 for t > 0,

where

d—1 d—1
(37) a = <A€d, ed>7 b(gl) = ZAJdé.;a C(fl) = Z Aljfgggv and ac(gl) - b(£/)2 > Oa
j=1

ij=1
since A is symmetric and positive. One then obtains, see, e.g., [34, proof of Lemma 2] for the
details,

(3.8) (€, 1) = ap(g)en €t

where

(39) &) = = (— ib(€)) ~ V/BaE)

and

(310) Oég(fl) @(f') AZ—G—I(&’) with Az(ﬁl) _ _b2(£l) + a(c<£l) + )\Eﬁ)

T VA(@) - /AE)
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Here we use the convention As s = Ay, and /Ay denotes the square root of A, with the positive
real part.
Let v, € WIP(R?) for £ = 1, 2 be the unique solution of the system

div(AVvy) — AXpp =0 in R‘i,
Vg =@ on ]Rg.
We havd?] , for £ =1, 2,

(311) H’UEHW)J\’I’(Ri) S CH‘PHW§—1/1>7P(R3) fOI‘ ] = 2737
and
(3.12) (€, 1) = p(&)em !,

Extend wuy(2',t) and 92v,(2',t) by 0 for t < 0 for £ = 1, 2 and still denote these extensions by
Ug(:E/,t) and O%ve(2',t). Let F denote the Fourier transform in RY. We then obtain from (3.8)

and ) that, with & = (¢/,&4) € RY,

SN (1 Bea® e o SEMRE)
Ful) =t — it me) — e T = e iy
It follows that
Fug(€) = me (&) Fve(€),
where
- Az+1(f’)
(3.13) ex(§) = ) (/B E) — VAD))
Note that
Ag(&) — A1) = aA(Z2 — 1) #0
and
1 @9 a _a(—ib(€) + VAL(E))
(&) —ib(&) — \/DA(E) —b(€)? — A(&)
E10) a( — i f’ +VALL)) b)) — /A
( -l- )\24) 0(5/) + )\Eg '

We derive from (§3.13]) that

VAL (E)(VALE) + VA(€)) (ib(E) — VAIE))?

aX(¥2 — ¥1)(c(§) + /\Ee)2

(3.14) mex(§) =

We have, by (3.7) and (3.10) f]

AN~ (IETP+AD, BEN<CIE],  and  [e(€) +AZ] ~ [€] + A,
We then derive from (3.14) that
(3.15) €IV mea(€)] < Cj|A[7! for j € N.

2The results hold for [A| = 1, see, e.g. [2, Theorem 14.1], the general case follows by scaling.
3Given two functions, p1 (&', \) and p2(€, A) the notation pi(€,\) ~ p2(€', ) means that there exists a constant
C > 1 independent of ¢’ and A such that C~}p1 (&, N)| < |p2(&, N)| < Clpi (€, ).
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It follows from Mikhlin-Hérmander’s multiplier theorem, see, e.g., [I9] Theorem 7.9.5], that

(3.16) IAl[well o ®ay < CllOFvell 1o a),
which implies
(3.17) Allwell pogay < CH@”w/\Qfl/PvP(Rd)‘

On the other hand, one has
div (AV(u1 — u2)) — AX 1 (u1 —u2) = A(X1 — X2)ug in Ri,
{ Ul—UQZOOHRg.
This yields

lur = uallyy 2o ey < ClIAEL = Bo)uallppge) = CHSOHWAzfl/p,p(Ri)-

We next deal with (3.6). By taking the derivative of the system with respect to x; for 1 < j <
d — 1 and applying (3.5)), we have, for 1 <j <d -1,

(318) MOy 1, 0,02 sty + 1011 = Doy 02) gy < Cluy Pl

Extend dyuy(2',t) and 95,ve(2',t) by 0 for t < 0 for £ = 1, 2 and still denote these extensions by
Opug(x',t) and 93,ve(a’,t). We then obtain from (3.8) and (3.12) that, with & = (¢/,&4) € RY,
~p(E)me(€) Ara(€) _ pE)nf(E)

(&) — i&a /Da(€) — \/AL(E) ne(€’) — i&a

Fopu(§) = and f@%tvg(f) =

This yields
Fopue() = myx(§) Fve(E).
As in the proof of (3.16)), we obtain
IM1Ocuell poray < CllOgvell o ray,
which implies
(3.19) Moty = Oy simo gy

Combining (3.18) and (3.19), we derive that
(3.20) IAM(Vur, Vu) | o ey + 1V (w1 = u2)llyyzo gy < Cllellys-1me gy

Assertion (3.6) now follows from (3.20) and (3.5). The proof is complete. O

We now state and prove a more general version of Lemma [3.1} which is the main ingredient of
the proof of Theorem [3.1]

Lemma 3.2. Let A € R™? be a constant symmetric matriz and let $1, Xo be two positive constants
such that

ATHEP < (AL €) < AEP for all € € RY,
and
ATV <Y 8 <A, and B -S| > AT
for some A > 1. Let v € (0,1), 1 < p < 400, and let f1, f» € LP(RY), G1,Ga € [LP(RL))4 with
Gy — Gy € [WHP(RD)), o € W2-1pP(RY), ¢ € WI-1/PP(RY), and let v r{?) e LP(RD) with
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’I“%ij) - ng) € W2P(RL) for 1 <i,j < d. Given A € C with |\| > 1 and |I(\)| > v|A|, there exists
a unique solution (u1,u2) € [LP(RL)]% with uy — up € W2P(RL) of the following Cauchy problem
div(AVuy) — A31u; = fi +div(Gyp) + Z” 1 Z] ) in R,
(3.21) div(AVug) — A\3qug = fo + div(Ga) + Zw 1 ” ) in R,
up —uz =@, AV(ug —ug)-eq=1 on Rg.

Moreover,

(3:22) € (IMl(us, u2) | porey + s = w2y 2o )

d
SN0 D lawgegy + 21 o)l + 30 I 73
1,]=

+ HSDH 2 1/p.p (Rd) + HwH 1 1/p,p (Rd) + ||G1 GQHWIP ]Rd + Z Hrlw ZJ)HWAQ,p(Ri)-
i,j=1

Assume in addition that fi — fo € WYP(RL), G1 — G2 € WHP(RL), ¢ € W3—V/PP(RY), o €
W2-1re(RY), and r{? = {7 =0 for all 1 <i,j < d. Then (u1,uz) € WWP(RL) with uy — uy €
W3P(R), and it holds

(3:23) € (1Nl (urs w2y poguay + s = usllyor )
< |)‘|1/2H(f17f2)HLP(Ri) + |)“H(G17G2)”LP(R‘1) + HSOHWf—l/p,p(Rg)

0y asimn gy + 11 = Follto) + 161 — Gally2oge
Here C denotes a positive constant depending only on A, -, d, and p.

Remark 3.3. Concerning - the assumption r(j) = réij) =0forall 1 <4,j <dis just to

avoid the redundancy; the same estimate holds for the appropriate assumptions on réij ) but this
can be put into the conditions of f; and G/ instead.

Proof. Since the problem is linear, (3.22)) and (3.23) follow from the corresponding estimates in
the following two cases:

eCase l: fi=fo=0,G1=Gy=0,and r'") = {9 =0 forall 1 <i,j <d.
e Case 2: o =0 and ¢ =0.

We now proceed the proof for these cases.
Case 1: fi = fo=0,G1 =G2 =0, and 7“(”) (”)—Ofor all 1 <4,7 < d. We have
div(AVuy) — AXju; =0 in Ri,
div(AVug) — A3qug =0 in Ri,
up —uz =@, AV(u; —u2)-eg=1% on Rg.
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Let v € Wl’p(Ri) be the unique solution of
div(AVv) = AZjv =0 in R,
{ AVv-eq =1 onRg.
As a consequence of [I7, Theorem 2.3.2.7| and a scaling argument, we have
(324)  lollyzogs) < Clolyrmnggy  ad  lolhyara) < Clellya v

By the trace theory, it follows that

(325) ||/UHWA2*1/P-,P(REJ]) S CH¢‘|W;*1/EP(R3) and ||U‘|W§*1/PvP(Rg) S CHd}wafl/P,P(Rg)'

11

Considering the system of (u1 — v, u2) and using (3.24), and (3.25)), the conclusion of this case

follows from Lemma

Case 2: p =0, ¢ = 0. In this case, we have

div(AVuy) — ASjuy = fi + div(Gy) + 3¢ 020 in RY

i,0=1"1%j
div(AVuz) — ASquz = fo +div(Ga) + X 0%r8)  mRY,
up —ugy =0, AV(ug —uz)-eq=0 on R‘O’l.

For ¢ = 1,2, consider the following systems
div(AVL”) = ASew” =f, inRY,
AVUéO) ceq =0 onRY

div(AVoY)) = A8 = (Gy);  in R,
y4 14 J +

. (1<j<d),
AVvé]) eqg =0 on R
where (Gy); denotes the j-th component of Gy, and
div(AVe D) — AD(@ =)y R?,
( ) o ¢ - (1<i,j<d)

AVvéij ). eq =0 on Rg

We have, see, e.g., [2, Theorem 14.1], for 1 <14, j < d,

0
ot lw 2o ey < Cllfell oqga .
(3.26) [0 20 ey < CNGel Logee
lof 2o gy < Clre ™ aaa)-

Since, we have

div(AV (" — o)) = A5 (0 — o) = ;= o+ A - S0l in RY,

AV(’U§O) — Ugo)) eq =0 on R,
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and the equations for vﬁj) — véj) and v;

E20)

) _ vgj ) are similar, we also get, for 1 <4,j < d, by using

0
Clloy” = vy 2o ay < N0 Sl oget ),

(3.27) Cllo” = o 5o ey < 161 = Gallyro gy + IN21Gel org),

Cllo? = o5y anay < It =i 2o ey + A | oqga
and

C 0 _ (0 < \[1/2
(3.28) Hvl ) HW?’P(Rd 1= f2HW1P RY) + Al Hf2||LP(Rd

Cllo” = vy gy < 161 = Gally2oaa) + NGl (g -

For ¢ =1,2, set

d
wy = ve Z@ ve]) Z afjvé”).

ij=1
We have

div(AVwy) — AXw, = fr + div(Gy) + Z (” in R‘i.

3,j=1

Moreover,
(3.29) C\/\\H(wlaW)HLP(Ri)

OB e 1wy + A2G1 G gy + 1A 3 1649,

< N £l e e 1, G2l po(ra Lr(RY)-

1,j=1

Using (3.27) and the trace theory, we derive that

(330) llws = wallyangua + 01 = wallya-s/m g + AV (01 = 02) - all 1ot/

d
< C(Hfﬂ\m(ugi) +AY2)(G, Go)llLomey + 'Zl Mg Nl 2o ey
1,)=

d
= follzoes) + G = Gellyyrgea) + .Zl 77 =5 e )
i,j=

Considering the system of (u; — wi,us — ws), and using and , assertion ([3.22) now
follows from case 1.

To deal with assertion (3.23)), instead of (3.29) and (3.30]), we use, since rgij ) = rgij ) = 0,

(3:31) Al w2)llyrogay = CNY2IC f2)llneey + NG Go)ll o )
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and
(3.32)  [lwr = wallyysoge) + llwr = wellys-1/mp gy + 1AV (w1 = w2) - eally2-1/00 )

(-28)
< (I = P)lyreay + 161 = Gallyzoga) ).

By considering the system of (u; — wy,us — wq), assertion (3.23) now follows from case 1.

The proof is complete. O

3.2. Proof of Theorem The proof is divided into two steps:

e Step 1: Assuming the solution exists, we establish (3.3]) and (3.4).
e Step 2: We establish the existence of the solutions.

We now proceed these two steps.

Step 1: For (f1, f2) € [LP(Q)]?, let (u1,uz) € [LP(2)]? with u; — uz € W2P(Q) be a solution of
(3.1). We prove that (3.3)) and (3.4) hold.

Applying Lemma [3.2] and the freezing coefficient technique, we deduce that there exists 7, €
(0,7/2) depending only on Q, A, 7, and p, such that

(3:33) C (Il w2)ll o,y + = wlly2oq, )

< U ) ey + A2, u2) oo, + lun = wallypiogq

and

(3:30) € (1Nl w)lyreq, ) + o = w2llyao, ) )
< M2 f) ) + 1 — Fallyy o)
+ ([ urs w2)ll o ny + A (urs )l oo r) + llur = w2lly 2 g ),

for every A € C with [$(N\)| > ¢|A| and |\| > 1. Here and in what follows, C' denotes a positive
constant depending only on Q, A, 7, and p.

Let us emphasize here that the terms (rl,ij, 7“272-]-) in Lemma , play a crucial role in the proof
of since the solutions (u1, us) considered are only in [LP(£2)]%, but not in [WP(Q)]2. Indeed,
let consider a small neighborhood of x¢ € I'. Using a change of variables, without loss of generality,
one might assume that the boundary in this neighbourhood is flat already and A; = Ay = A there.
In the freezing process, one has, in such a neighborhood,

div(A(zo)Vug) — AXp(xo)ug = div ((A(xo) — A(x))VUg) + div (A(.I‘)VUg) — AXp(xo)ug

d d
= > 03 ((Aij (o) — Ay(@)ue) = D 0 (ed (A (o) = Aig(@))) + fe+ A(Selw) = e(wo))ue.

i,j=1 i,j=1
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Let x € C®(R?) with the support in a sufficiently small neighborhood of xg, then with v, = yu,
for £ =1,2, we have

(3.35)  div(A(xo)Vue) — AXg(zo)ve

—XZ 2 (Aij(wo) = Ayj(@))ue) - Zxa (eds(Aij (o) — Aij(a)) )

3,j=1 1,5=1

+ xfe + A(Ze(2) — Ze(z0))ve — ug div(A(zo) V) + 2div(ugA(zo) V).
The terms 7¢,; are then (A;j(xo) — Aij(x))xur = (Aij(x0) — Aij(x))ve. Since Ay = Ay = Ain Q,
up —ug =01in T, and AV(u; —ug)-v =0 on T, it follows that
vi—ve=0o0onT and A(zxg)V(vi —v2) v = x(A(zo) — A(z))V(u1 —uz)-vonTI.
We are thus in the situation to apply Lemma and the freezing coefficient technique to derive
(13.33)).

Concerning (3.34), in (3.35)), one writes 8%- ((Aij (@) — Ayj (m))w(m)) under the form

3i<(Aij(3?o) - Az‘j(ﬂﬂ))ajw) +0; (9 (Aij(zo) — Az‘j(ﬂﬁ))W)-

We are thus in the situation to apply Lemma and the freezing coefficient technique to derive

(3-34). The details of the rest of the proof of (3.33) and (3.34) are omitted.
On the other hand, since

div(AVug) — ASpug = fr  in
we have, for |A| > 1,

(3.36) lelhwroeng,. o < € (A2 el + luellngan) )

and

(3.37) ||w||W§,p(Q\QT*/2) < C(HfZHLP(Q) + ||u€||Wi’p(QT*\QT*/4))'
Combining (3.36]) and (3.37) yields

(3.38) luelly2r@q,, ) =€ (I fell o) + lluellze(as,)) -

From (3.33)) and (3.38), we obtain
Al Curs w2) [ ooy + [lur = w2lly 20 gy < ClICfL F2)llLre)
for [A\| > A¢ and for Ao large enough. This completes the proof of ([3.3)).

From ({3.34), (3.36)), after using (3.3)), we obtain
M 1,2 g gy + s = w2l < CIA2ICF f2)lmy + 12 = Fellyionay
for |[A| > A¢ and for Ao large enough. This completes the proof of ([3.4]).
Step 2: Set

X = {(ul, us) € [LP(Q]? : div(A1 V), div(AsVug) € LP(Q),

U — Ug € WQ’p(Q),ul —uy=0o0nT, and (A;Vu; — AsVuy) - v =0 on I‘}.
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The space X is a Banach space endowed with the norm
(3.39) (w1, u2)llx = [[(u1, u2)l ey + | div(A1Vus), div(A2Vug)| Lro) + lur — vallw2p(q)-

Define

By : X — [LP(Q))?
by
B)\(ul,uQ) = (div(A1Vu1) - /\Elul, diV(AQVUg) — )\ZQ'UQ).

Clearly, B, is bilinear and continuous on X.

We claim that

(3.40) B, has a closed and dense range.
Assuming this, we derive that

(3.41) BA(X) = [L7(Q),

which yields the existence of the solutions.

It remains to prove (3.40]).

We first prove that B) has a closed range. Let ((u1,n,u2,n))n C X be such that (fin, fon) :=
By (u1n,u2n) — (f1, fo) in [LP(Q)]2. 1t follows from by Step 1 that ((w1,n, u2,n))n is a Cauchy
sequence in X. Let (ui,uz) denote its limit. One can then show that (fi,, fon) = (f1, f2) :=
By (u1,ug) since By is continuous. Thus B) has a closed range.

We next establish that the range of B) is dense. To this end, it suffices to show that if (f1, f2) €
[L(2))? with % + % =1 is such that
(3.42) /(Bx(ul,ug), (f1, f2))dx =0 for all (u1,uz2) € X,
Q
then (f1, f2) = (0,0).
Since (3.42)) holds for all (u1,us) € [C°(Q)]? C X, it follows that, for £ = 1,2,
(3.43) div(A/V f) — ngfg =01in Q.

Since Ay € CY(Q) and f; € LI(Q), using the standard regularity theory in Li-scale, see also [I8,
Lemma 17.1.5], one has

fee W2I(9Q).
Set, in €,
(3.44) g1=/ 1 and go=—fo
Then, by ,
(3.45) div(A,Vge) — AXege = 0 in Q,
and, by (3.42), for (u1,us) € X,
(3.46) /Qdiv(thul)gl — AXu1g1 — /Qdiv(AQVUQ)gg — AXqusge = 0.

From ([3.46), we have, taking (u1,u2) € X N [W?P(Q)]?,
(3.47) / div (A1V(U1 — UQ))gl + diV(A1V'LL2)(§1 — §2) + div ((Al — AQ)V'LLQ)@Q
Q

— AXu1g1 + AXauzgs = 0.
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Using that g9 € Wlig(Q) and A; = As in €, an integration by parts leads to

(3.48) /QdiV ((Al — AQ)VUQ)gg 5 /Qdiv ((A1 — AQ)VgQ)UQ.

Since u; —uy € WP(Q), ug —up = 0 on I' and AV (u1 — ug) - v = 0 on I, there exists a sequence
(vn)n C C2() such that v, — uy — ug in W2P(Q). An integration by parts yields

(3.49) / div (A1V(U1 - UQ))gl = lim div (A1an)g1
Q

n——4o00 Q

= lim div (A1V§1)vn = / div (A1V§1)(u1 — Ug).
Q Q

n—-+o0o

Combining (3.47), (3.48)), and ([3.49) yields

(3.50) /Qdiv(/hVuQ)(gl — gg) = — /g; div ((Al — AQ)VQQ)UQ — /Qdiv (A1V§1)(u1 — 'LLQ)

_ _ B5) . L
—I—/ AXu1gh —/ AXou2g2 /le(Alv(gl — g2))uz.
Q Q Q

Since ug can be chosen arbitraryﬁ in W2P(Q), and for every £ € [C1(Q)]? there exists up €
W2P(Q) with us|r = 0 such that div(A;Vug) = div¢ with uzllw2r@) < CliéllLr(q), it follows
that, see, e.g., [5, Proposition 9.18],

91— g2 € Wp(9).

This in turn implies, by (3.50), that g1 — go € W*%(Q2) and AV(g1 — g2) - v = 0 on I. It follows
that g1 = g2 = 0 in Q after applying Step 1 to (g1, g2) and A (instead of A\). Thus f; = fo =0 by
(3.44)) and the proof of Step 2 is complete. O

4. THE WEYL LAW FOR THE TRANSMISSION EIGENVALUES

Throughout this section, we assume ([1.6]).

4.1. The operator T) and its adjoint 7. We first reformulate the Cauchy problem (3.1]) in
a form for which we can apply the theory of Hilbert-Schmidt operators. Given (f,g) € [LP(Q)]?
(1 < p < 400), assume that (u1,ug) € [LP(Q)]? with u; —us € WP(Q) is a solution of (3.1)) with
A € C* where, in

fi=S1f+ A1 and fo = A"130g.
Define, in 2,

U= UL — Uy and v = Aug.

Then the pair (u,v) € W2P(Q) x LP(Q) is a solution of

le(AV’LL) — )\Elu — (El — EQ)’U = Elf in Q,
(4.1) div(AVv) — A¥gv = 39g in €,

u=0, AVu-v =0 on I

As a direct consequence of Theorem (see also (3.4))), we have

4Taking then w1 := u2 so that (u1,u2) € X.
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Proposition 4.1. Assume (1.1)-(1.2]), and (1.6)-(1.8). Let ¢ € (0,1) and 1 < p < 4+o00. There
exists g > 0 depending on p, ¢, A, and 2 such that the following holds: for (f,g) € [LP(2)]? and

for X € C with |S(\)| > ¢|A| and |A| > o, there exists a unique solution (u,v) € W2P(Q) x LP(Q)
of the Cauchy problem (4.1]); moreover, we have

(4.2) vl r ) + ||UHW§J)(Q) < C[A7Y2 (|)‘|1/2||f||LP(Q) + |)‘|_1/2”9HLP(Q)>
and
(13) oll 1oy + Il oy < € (1Flya @y + A2l

for some positive constant C independent of \, f, and g.

As a consequence, we have

Corollary 4.1. Assume (1.1)-(1.2) and (1.6)-(1.8)). Let c € (0,1), and 1 < p < +00. There exists
o > 0 depending on p, ¢, A, and Q such that the following holds: for (f,g) € WHP(Q)x LP(2), and

for X € C with |S(\)| > c|A| and |\| > o, there exists a unique solution (u,v) € W3P(Q)x WHP(Q)
of (A.1); moreover, for

(1) ez'ther1<p<dandp§q§dd7_p;},

(2) either d =p < q¢ < +o0,

(8) or p>d and g = +o0,

we have
1

4(2-1)-1 ~1/2

(8 ol + Bl < OS2 (1 lping + Nl
for some positive constant C independent of \, f, and g.

Remark 4.1. In case (3) of Corollary we derive that (u,v) € C?(Q) x C(Q).

Proof. Choose Ag such that the conclusion of Proposition holds. By Gagliardo-Nirenberg’s
interpolation inequalities (see [14], 36]), we have

1— 1—
o0ty < Cpaaallll 3oy 01y < Coaloll iy 101y gy

a:d<1—1>.
b q

1(1_q _
A0 (il + ATl @) ) -
The other assertions can be proved similarly. O

Definition 4.1. Assume (1.1)-(1.2)) and (1.6)-(1.8). Let 1 < p < 400 and A € C. System (4.1 is
said to be well-posed in LP(Q) x LP(R2) if the existence, the uniqueness, and (4.2)) and (4.3) hold for

(f,9) € LP(Q) x LP(2). For p =2 and X € C being such that ([A.1)) is well-posed in L*(Q) x L?(2),
we define

where

This implies

||U||Lq(Q) < Cpg0

Ty: L2Q) x L2(Q) — L%(Q) x L*(Q)
(f,9) = (u,v)
where (u,v) is the unique solution of ({.1)).

Remark 4.2. Let A € C satisfy the conclusion of Proposition with p = 2. Then system (4.1)
is well-posed in L2(Q) x L2(2) and T} is defined.

(4.5)
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Remark 4.3. Let A\* € C be such that T is defined. If u is a characteristic value of the operator
T\~ associated with an eigenfunction (u,v) and if A* + p # 0 we have

(4.6) A* 4+ p is a transmission eigenvalue of ([1.3)
with an eigenfunction pair (u1,ug) given by

1 1
4.7 U =U~+ and Ug = .
(4.7) 1 N+ p ST 7

Moreover, the converse holds (see Remark [£.5).

Remark 4.4. Let \* € C be such that T} is defined. By and the range of T%. is a
subset of H'(Q) x H'(Q). Tt follows that the operator T%, is compact from L?(2) x L?(f2) into
itself. By the spectral theory of compact operators, see, e.g., [5], the spectrum of Tf* consists in a
discrete set of eigenvalues and the generalized eigenspace associated to each eigenvalue is of finite
dimension. As a consequence, the set of eigenvalues of Ty« is discrete. This in turn implies that
the set of the transmission eigenvalues of is discrete. This fact is previously established in
[33] but the arguments presented here are different.

Remark 4.5. Let \* € C be such that Ty is defined. If A; is an eigenvalue of the transmission
eigenvalue problem, then \; # A* and A\; — A" is a characteristic value of Ty«. One can show that

the multiplicity of the characteristic values of \; — A* and \; — )\ associated with Ty« and Ty are
the same. Hence the multiplicity of the eigenvalues associated with T« is independent of A\*. With
this observation we define the multiplicity of A; as the one of the characteristic value A; — A\* of
Ty

The rest of this section is devoted to characterize the adjoint T} of T). This will be used in

the proof of Proposition To this end, for (f,§) € [LP(Q)]? with 1 < p < +00, we consider the
system, for (@,0) € WHP(Q) x LP(Q) ]

div(AVE) — ASgl — (31 — $9)0 = Sof  in €,
(4.8) div(AVD) — AX10 = ¥19g in ©,
u=0, AVu-vr=0 on I

Assume (1.1)-(1.2), and (1.6)-(L.8). Let ¢ € (0,1) and 1 < p < 4+o00. By Proposition there
exists A\p > 0 depending on p, ¢, A, and 2 such that (4.8)) is well-posed in LP(2) x LP(Q) for A € C

with [S(A)] > ¢|A| and |A] > Ao, i.e., for (f,g) € LP(Q) x LP(2), there exists a unique solution
(,v) € WhP(Q) x LP(Q) of (4.8)); moreover,
[y 20y + 520y < CIATY2 (A2 Fl oy + 21l o)
and N
sy + 1y < € (1o + AT 2dl0qe))

Definition 4.2. Assume (1.1)-(1.2) and (1.6)-(1.8). For p = 2 and for A € C being such that
(4.8) is well-posed in L2(Q2) x L*(Y), we define

Ty: L2(Q) x L2(Q) — L2(Q) x L2(Q)
(f9 = @
where (u,v) is the unique solution of ({.8).

SWe emphasize here that in the first equation of (&.8), we have $o@ not X%, compare with (@.1)).

(4.9)
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Lemma 4.1. Assume (LI)-(T.2) and (L.6)-(T.8). Let p =2 and let X be such that Ty and Ty are
defined. Set, for x € €,

(4.10) P(x) = (EQ(:U) 0 ) .
We have
(4.11) T; = PT5PL.

Proof. Fix (f,g) € [L*(Q)]? and (f*,g*) € [L?(Q)]%. Set (u,v) = Tx(f,g) and (u*,v*) =
TxP~'(f*,g%). Then

(112) [ (5.0 PEPs g0 = [ 2155 + Sagi

Since (u,v) = Th(f, g), we have

(4.13) / ¥ fo* + Yogu* = / (div(AVu) — AXju — (X1 — Xg)v)v* + / (div(AVv) — AXgv)u*.
Q Q Q

As in Step 2 of the proof of Theorem [3.1] an integration by parts yields

(4.14) /Q(div(AVu) —AXiu — (31 — Bg)v)v* + /Q(div(AVv) — AXgv)u*

= / u(div(AVo*) — XX v*) —I—/ v(div(AVu*) — AXqu* — (31 — Xo)v*).
Q Q

Since (u*,v*) = fXP_l(f*,g*), we have

(4.15) /Q W(dV(AVT) — ADy07) + /Q o(div(AVE") — ASgu — (31 — 3a)0)

Combining (4.12)-(4.15)) yields
(4.16) [ (). PP 6 = [ 33500579,
Q Q
and the conclusion follows. O

4.2. Hilbert-Schmidt operators. In this section, we recall the definition and several properties
of Hilbert-Schmidt operators. We begin with
Definition 4.3. Let H be a separable Hilbert space and let ((bj);-";l be an orthonormal basis of H.

(1) Let T be a linear and bounded operator on H. We say that T is Hilbert-Schmidt if its
double norm s finite, 1.e.

1/2

170 == { Do NTosll7 | < +oe.
j=1
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(2) Let Ty and T be two Hilbert-Schmidt operators on H. The trace of the composition T1T2
is defined by

o

trace(7172) := Z(ﬂ%%’a ¢j)m-

=1

Remark 4.6. One can check that Definition (4.3{does not depend on the choice of the basis (¢;)52,

and the trace of 717z is well defined as an absolutely convergent series (see [I, Theorems 12.9 and
12.12]).

Let m € Nand T : [L3(Q)]™ — [L?(2)]™ be a Hilbert-Schmidt operator. There exists a unique
kernel K € [L2(Q x Q)]™*™, see e.g. [I, Theorems 12.18 and 12.19], such that

(4.17) (Tu)(x) = / K(z,y)u(y)dy for ae. x €, for all u € [L*(Q)]™.
Q
Moreover,
(118) I = [ 1K )P dedy
QxQ

Note that [I, Theorems 2.18 and 12.19] state for m = 1, nevertheless, the same arguments hold
for m € N as noted in [34].

We have, see [1] (see also [34, Lemma 4]):

Lemma 4.1. Let m € N and let T1, Ty be two Hilbert-Schmidt operators in [L*(2)]™ with the
corresponding kernels Ky and Ko. Then T := T1 Ty is o Hilbert-Schmidt operator with the kernel
K given by

(4.19) K(a:,y):/QKl(x,z)Kg(z,y) dz.
Moreover,
(4.20) trace(Tng):/Qtrace(K(x,x))dx.

We have, see, e.g., [34, Lemma 3|.

Lemma 4.2. Let d > 2, m € N, and T : [L?(2)]™ — [L?(2)]™ be such that T(¢) € [C(Q)]™ for
¢ € [LH(Q)]™, and

(4.21) IT(D)I o) < MI¢llz2(),
for some M > 0. Then T is a Hilbert-Schmidt operator,
(4.22) Tl < ComlQM? M,
and the kernel K of T satisfies

1/2
(4.23) sup </ \K(x,y)\2dy> < Cpa| QY2 M.
€ Q

Assume in addition that

(4.24) TSy < Mllol|Lr () for & € [LA(Q)]™,
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for some M > 0, then the kernel K of T satisfies
(4.25) K(z,y)| <M for a.e. z,yc

Here Cy, denotes a positive constant depending only on m.
As a consequence of Lemma [.2] we derive the following result.

Corollary 4.2. Let Ty and Ty two Hilbert-Schmidt operators on [L?(Q)]™ be such that the ranges
of T1 and T3 are in [C(Q)]™ and (4.21)) holds for Ty and T5. Assume that (4.24) holds for T =
T1Ty. Then the kernel K of T is continuous on 2 x Q and (4.25) holds for every (z,y) € Q x Q.

Proof. Let K (resp. K2) be the kernel of T (resp. T2) and let K% be the kernel of T%. We claim
that for £ > 0, there exists § > 0 such that for every (z,2’) € Q x Q with |z — 2’| < § we have

1/2

1/2
(4.26) (/ |Ki(z,2) — Kl(fc',z)|2dz) <e and (/ |K5(x, z) — K;(x',z)\2d2> <e.
Q Q
Admitting (4.26]), we continue the proof. We have, see, e.g., [1, Theorem 12.20],

(4.27) Ks(z,y) = K3(y, 2).
Since

&19),[E27) —
K (2, y) ERE2D / K, (z, 2) K3 (2 y)dz,
Q

it follows from (4.26)) that K is continuous in  x Q. This in turn implies (4.25) by Lemma
applied to T.
It remains to prove (4.26]). We have

1/2
([ K opa:) < s
Q

el )]l 2 <1

Given € > 0, let ¢ € [L*(Q)]™ with [|¢c||12(0) < 1 be such that

</Q Ki(x,z) — Kl(x’,z)|2dz> v <

/Q(Kl(x’ 2) — K (2, 2))p(2)dz| .

/Q(Kl(x,z) —Ki(2',2)) e (2)dz| +

2
This yields
1/2 .
(1.28) ([ 1162~ Katw' )Ptz ) < [(Tapo)o) = (D) @)+ 5
Q
The first inequality of ([#.26)) now follows from (4.28)) and the fact that Tip. € [C(Q2)]™.
Similarly, we obtain the second inequality of (4.26]). O
4.3. The operators Ty; and their properties. Denote
d
(4.29) k= [2] +1,
the smallest integer greater than d/2. Fix
(4.30) 2=p1 <p2 < <pp <+
such that
dp;_
(4.31) pj—1 <pj < Pt g P > d.

d—pj1
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Denote
(4.32) A= t*e's,
for some large t* > 0 such that, for ¢t > t*, (4.1) with A = te' is well-posed in LP(Q) x LP(Q) and

@8) with A = te™'2 is well-posed in LP(Q) x LP(Q) with p = py, --- , Dg.
Let

(4.33) wj € Cwith 1 < j < k+1 be the (distinct) (k + 1)-th roots of 1 (thus wi " =1)
and let

s
0 SNV
Definition 4.4. For0 € 0,1 <j<k+1, andt >0, we define
(4.35) Njgs = N+ wjte’?
and
tg > t*

such that the following properties hold, for t > tg,
(4.36)  (4.1)) with A= X0 is well-posed in LP(€) x LP(Q2)

and ([A.8) with A = X, g is well-posed in LP(2) x LP(Q) with p=p1, -+ , Pk,
and

(4.37) < N\joul <2t

DO | =+

Such a ty > t* exists by Proposition after noting that, for 6 € ©,
S (wjei"> £0,
and, for 1 <j <k—+1,
I (N + tw;e’? )
lim } ( I )‘:’%<wjew>’>0.
t——+o00 ’)\* + twjew]

Viewing (4.2) and (4.3)), it is convenient to modify T}, ,, to capture the scaling with respect to

t ~ Ajg. there, as in [39]. Denote

2 0
(4.38) M, = < . t‘l/Q) .
Let 6 € © and t > ty. Define, for 1 < j < k+1,
(4.39) Tior = MTy. , ,M;! and Tyt =Thi10t0Tkgto---0T19y.
759,

Here is the main result of this section.
Proposition 4.2. Let 0 € © and let ty be given in Definition[{.4 Then, for t > tg,
(4.40) [ To.]
the range of Ty is in [C’(Q)P,
(4.41) 1T, 12(2) s Loy < CEF71F1,
and

Che1ad
(4.42) 1Tl ()20 < CtF1T4

r2@)-r2(e) < CtF
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for some positive constant C' independent of t. Similar facts hold for Ty ,.
As a direct consequence of Lemma [4.2] and Proposition .2 we obtain

Corollary 4.3. Let 0 € © and let tg be given in Definition [{.4). Then, for t > tg, the operator
Ty is Hilbert-Schmidt, and

(4.43) ITo,l| < Ct7H155,
for some positive constant C independent of t.

We now give

Proof of Proposition[4.9 We first deal with (4.41]). By using (4.37)), we derive that
Proposition (]

1Tj0.tll L2120 < ot
and hence
k+1
HrI‘(’thLQ(Q)—w?(Q) < H H'—Tjﬂ,t”LQ(Q)ﬁH(Q) < otk 1
j=1

This establishes (4.40)).
Next we deal with (£.41). For j =1,--- k+ 1 and (f,g) € [L*(Q)]?, we write

(4.44) (u), vy = Tjor0Tj—1910---0Tig+(f,9)
By (4.37), we have
_ Proposition _
(4.45) ¢ 1/2Hu(1)||wt172(9) + 0D L2 < Ct U Dl 2 <29

and, for 2 < j <k,

(4.46) fl/zl!u(j)\lwtlmj @ o] g

Corollary [£1] 71+4( 1 7i) _1/2 i1 1
< Ot 2\ pj—1 Pj (t /”u(] )Hth’pjfl(Q)_'—H,U(] )Hij_l(Q))’

and

(447) Y2 e g + D ey

Corollary pdos
< o T (B e g + 0P ) )

We derive from ({.45)), (4.46)) and (4.47)),

(4.48)  Ju* V| Loy + [VFT| oo )

d 1

k 1
_1,—1+4 45| = L a.d
<ctlt 11t 2<p’_1 pj)”(fag)HLQ(Q)xL?(Q) = Ct "5 (f, )l 2 (@) x r2()-
=2

Thus (4.41)) is proved.
We next establish (4.42)). We have, by Lemma

Ty, = M, 'PTx

-1
f /\MMP My,
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where P is given by (4.10). This implies
Ty, = M, 'PT5,, o---oT5
Similarly to (48], we have
(4.49) 15 ol 20y poe(y < CEFHH,
By a standard dual argument, we derive from that
T,

k144
L1(Q)—L2(Q) S Ct k 1+4.
The properties for Ty, are established.
The properties for T}, can be derived similarly. ([l

4.4. The approximation of the trace of a kernel. Denote

T 5%

a:m and B:m

(4.50)
Then
(4.51) a,B€O and et 4 Bl —
Recall that O is defined in (4.34)).

Lemma 4.2. For t > max{ta,tg}, where t, and tg are given in Deﬁnition we have

(1) the operator Ty Tgy is Hilbert-Schmidt, and

d

(4.52) ITa s Tplll < Ct=267243;

(2) the range of To+Ts,y is in [C(Q)]?, and

_9k—9+ d

(4.53) 1Tt Taellr1 ) poe () < CE 207272,

(3) the kernel K; of T Ty is continuous in £ x §, and

(4.54) K (z,9)| < Ot 2242 for all (z,y) € Q x O
for some positive constant C' independent of t.
Proof. Assertion follows from Corollary and
ITatTaell < [ Tatll T,
Applying Proposition and using the fact
ITa,t T

we obtain (4.53]). -
Since both the range of Tq; and T}, are contained in [C(Q)]?, the continuity of K; and (4.54)

follow from Corollary 4.2/ and (4.53)). O
For { =1,2,60 €O, and t > 1, consider, with A = te?,
Serm: L2(RY) — L2(RY)

fe > 1,

1@ —r©@) < [Tatllzz@)—re@llTaillLr@)—r20);

(4.55)

where v, € H'(R?) is the unique solution of
(4.56) div(A(z0)Vug) — ASe(x0)ve = Sy(o) fe in RY.
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One then has

(4.57) Senso(@) = [ Fiala. = )i )i,
where
(458) Foa@o,?) =~ o | et "
. T Z) = — .
LA 2m)2 Jpa Se(zo) T A(@0)E - € + N
Set, for £ = 1,2,

Sz,m;o = S£7>\k+1,a,tvx0 ©---0 Sf)\l,a,tﬂm o Sf,/\k+1,5,t7€t0 0---0 SZ,M,;},MUO'

Define, for £ =1, 2,

(459) f€t<x0a Z) = L d / +1 eizg d§ .
’ (2m)? Jra TT5ET (Se(0) P A(20)€ - €+ Njat) (Se(o) " A(0)€ - € + N e)
Then
(4.60) St t,z0 fo(x) = / Fei(zo,z —y) fe(y)dy.
Rd

Since 2k + 2 > d, the integrand appearing in (£.59) belongs to L'(R?) N L?(R?), and thus
(4.61) 2+ Fri(20, 2) is continuous and belongs to L*(R?).

To introduce the freezing coefficient version of (4.1) in the whole space, we use the following
result in which (4.62)) is the system of (u,v) := (v1 — va, Av1), where v, (¢ = 1,2) is defined by
(14.56]).

Lemma 4.3. Let g € Q, ¢ € (0,1), A € C with |\ > 1 and [S(A)| > ¢|A|. Let p > 1 and let
(f,q) € [LP(RY)]2. Then there exists a unique solution (u,v) € [WHP(RY)]? of

(4 62) diV(A(%o)VU) — )\El(azo)u — (21(1‘0) — 22(930))1) = El(xo)f m Rd,
. div(A(zg) Vo) — Aa(x0)v = Ba(x0)g  in RY

Moreover,

(4.63) el gy + X 0l 2 ma) < C (I Loy + 1M gl ogas )

for some C > 0 depending only on A,c and p. As a consequence,
(1) either1<p<dandp§q§dd—f;),
(2) either d =p < q < +o0,
(3) orp>d and q = +oo,

we have
d(1_1)_1
Hu”Wi’q(Rd) + ‘)"_1||”||W§’Q(Rd) < CWQ(” “> : <||f||LP(Rd) + |)\|_1”9”LP(R<1)> .

Proof. We emphasgize here that is a system with constant coefficients imposed in R?. The
proof is quite standard. The idea is first to obtain the existence, uniqueness, and the estimate for
v using the second equation of , and then using these to derive the ones for u using the first
equation of . The details are omitted. ]
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ForzgeQ,j=1,--- Jk+1,0 €0, and t > 1, define, for 1 < p < +o0,
Ryjpmot LPROP = [LP(RY)?
(f,9) = (uv)

where (u,v) € [WHP(R?)]? is the unique solution (£.62) with A = A; ;. Recall that \; g, is defined
in (4.35). We also introduce

—1
(4.64) Rjotmy = MRy, ,, 0o My and Ro,t.oo = Bk+1,0,t.20 © 0 B0,

As in the proof of Proposition [.2] however, using Lemma instead of Proposition and
Corollary we obtain

Lemma 4.4. Let 0 € © and t > 1. Then, the range of Ry, and Ry, . —are in [C(RD)? for all
t > 1. Moreover,

Cp14d
(4.65) IR .12 | 2 (Rt) s Lo () + R0 | 1 (R s L2 ey < CEF7 13
and

* * —k—1+4
(4.66) IR 4 2o | L2y Lo () + IR 420 | 11 () s L2 ey < CETF1FE,

for some positive constant C independent of t.
Define
(4.67) Rz, = Ra,t,woRﬁ,t,IO‘

One can then write R; ,, under the form

Rt — ((Rt,l‘o)ll (Rt7$0)12>
o (Rizo)21 (Rigg)22)

Note that, by the definition of Sp ) 4,

R ~(Sinenme Z1(x0) T (Z1(20) = 22(20)) 10, gm0 520,070
Aj,0,6,T0 0 Soy .

It follows that R), ,, x, 18 an upper triangular maftrix operator, and so is Ry z,. We deduce that

(Rizp)21 =0

3,0,£,%0

and, for £ =1, 2,
(Rewo)ee = Stz
These simple observations are useful in computing the approximation of the trace of the kernel of
Rt,w0~
As an immediate consequence of , R; , is an integral operator whose kernel verifies, for
L=1,2,

(468) (Kt,zo)fﬁ(x7y) = ]:g(l'o,l' - y) for T,y € Rd-
Further properties of K ;, are given in the following lemma.

Lemma 4.5. Lett > 1 and xo € Q). Then Ky 4, is continuous on RYxR?, and, for (z,y) € RExR?,
it holds, for £ =1,2,

(4.69) ((Keay)ee(@,y)| < Ct=267275
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Moreover,

(4.70)  trace(Ky z, (20, z0))

t—2k:—2+% 2 df ooy d
= e @zl/md o) T AGwo)€ et — T st oo

Remark 4.1. Assertion (4.70) holds uniformly with respect to zg € Q.

Proof. From ({.68)), it follows that (K¢, )e(z,y) is continuous on R? x R, By the choice of «a, 3,
and wj in , (4.51), and (4.33]), one has

k1
[T (Selwo) " Awo)é - € + A + wjte™) (zg(a;o)*lA(xo)g N+ wjteiﬁ)
j=1
= (So(xo) T A(w0)€ - € + A*)2RFD _g2(k+D)
It follows from (£.59) that, for every zo €  and every z € R?,
1 / e'#& d¢
(2m)¢ Jra (Se(zo) "1 A(wo)€ - & + X*)2(H1) — g2(k+ 1)

Foi(zo, 2) =

A change of variables yields

s—2k—2+4 eit'?=€ g¢
4.71 Fi  2) = .
( ) E,t(xo Z) (27r)d /]Rd (Zg(xo)_lA(xo)ﬁ 4 t—l)\*)Q(k-H) —q

Assertion (4.69)) follows from (4.71)) since |eit1/2z'5 | = 1 and A\*t~! is uniformly bounded with
respect to t > 1.
By taking z = 0 in (4.71), we obtain (4.70)) after using the dominated convergence theorem.

The proof is complete. L

We now prove the main result of this section concerning the trace of T, Tg; where o, 3 are
given in (4.50) and Ty, is defined in (4.39).

Proposition 4.3. We have
trace(ToTpy) = ct~2—2rs 4 0(t72k*2+g) as t— +oo,
where

1 g d¢ d
(4.72) ©= @n ;/Q/Rd (= @ A@e -6 =i

¢
The proof of Proposition .3 uses the following result.

Lemma 4.6. Let 69 € (0,1) and 0 € ©. For every ¢ > 0, there exists 0. € (0,60/2) depending
on € such that the following holds: There exists tc > 0 depending on € and d. such that for every
t >t and every xo € Q\ Qs,, we have

k_14d
(4.73) ITos — Rotao Lol 120y Lo (Beo.sy) < et "4
and

Che1gd
(4.74) ITo.l0 = Rotaoll L2mat)s 1o (Blao,5)) < €0 F T4,
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.o * *
and similar facts for Ty, and Ry, . .

Recall that Ry 5, is defined in (4.64). We admit Lemma and give the proof of Proposi-
tion [4.3] The proof of Lemma [4.6] is presented right after the one of Proposition [.3]

Proof of Proposition[{.3 For e > 0, let 6y > 0 be such that
(4.75) Qa5 < &,

where € is given in (2.1)).
We claim that there exists 7. > 0, depending on €2, and € but independent of zg, and a positive
constant C, independent of € and xg, such that, for ¢t > 7,

(4.76) [trace(K¢(xo, z0)) — trace(Ky 2, (20, 20))| < Cet™2*2F5  for zy € Q \ Q-
Indeed, let x € C°(R?) be such that xy = 1 in By and supp x C Bs. Denote, for § € (0,80/10),
X6,x0 = X(( - xo)/5),

and define
(4.77) Pl,t,é = Xé,z0 (Raﬂfﬂﬁaﬂﬂ - Toc7t)T5,tX5,moa
P2,t,6 = X(;::EOROC,t,J?() (Rﬁ,t,xo — ]lQTﬂ,t)X(S,mO-
Then
(4.78) X620 (Rastzo Rpteo — TatTai)X620 = Pres + Pars.

By applying Lemma below with 6 € {«a, 5}, there exist . > 0 and t. > 0 depending on &
such that for every t > t.,

Che14d
(4.79) 15, 20 (Tat — Ratao D)l p2(0) 100 () < €714
and
* * —k—144
(4.80) X652 20 (Th Lo = R oo ) L2ma) e () < 8714
Since

((L0T50 = Riton)Xoo0) = Xoora (Th il = R ).
we derive from (4.80)), using a dual argument, that

Cp1ad
(4.81) (10T 31 — R t20)Xo. 0 | 11 (0) s 12(may < et F 14

By Proposition {.2] and Lemma [.4] we have

Cpiad
(4.82) 1T 5.6X6. 20 | L1 ()5 £2(2) + 1X6. 20 Rtz | 12(R) s Lo () < CEF1F4

for some constant C' > 0 independent of ¢ and t.
Using the fact, for appropriate linear operators Ly and Lo,

”L1L2|’L1(Q)—>L°°(Q) < HLlHL2(Q)_>L<X>(Q)HLQHLI(Q)_}I;(Q),
and
we derive from (4.79)), (4.81), and (4.82)) that
_9k—92+ d
HPl’t’&E + P2’t75€||L1(Q)—>L"°(Q) < ||P1,t75s||L1(Q)—>LOC(Q) + HPQ,t,(SaHLl(Q)—)LOO(Q) < Cet 2k 243,

This yields, by (4.78)),

d
(4.83) HXés,Zo (RatzoRt,m0 — Ta,tTﬂJ)X&,woHLl(Q)—>L°°(Q) < Cet™2h2%3,
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Since, for x € Q, £ = 1,2 and f € L?*(),
Xs52,z0 ((Ra,t,xoR,B,t,xo)M - (Ta,tTB,t)E£> X620 ()

= X50(@) [ Xty () (K e ) = (K. 9)) )y,

it follows that xs. 20 (%) Xs. 20 (¥) (Kt,zo)ee(x,y) — (Ki(z,y))ee) is the kernel of the operator

X670 ((Ra,t,xoRﬁ,t,xo)ez — (Ta,tT/a,t)ez) X6 ,z0-

By Lemma and Lemma , this kernel is continuous on Q x Q. Using (#.83) and applying
Lemma we derive that, since xs_ 4, (z0) =1,

(4.84) [trace(K¢(xo, z0)) — trace(K¢ 2, (20, 20))| < Cet=2*=2F5  for all t > ¢,.

Since the LHS of (4.84) does not depend on e > 0, the claim (4.76]) is proved.
By Lemma we have, for ¢t > 0 large enough,

(4.85) / trace(Ky(z, 2))|de < C|Qus, [t-22+5 T2 Cep2h-2+4
Qas,
and, similarly by Lemma (.5
(4.86) / |trace(Ky o (7, 7)) |dw < Cet 2245
Qa5
Combining (L78), {53, and (50) yields
(4.87) / [trace(K¢(x, x)) — trace(K »(z, z))|dz < Cet2F=2+5  forall ¢ > te.
Q
The conclusion follows from Lemma [4.5[ and (4.87)). O

We now give

Proof of Lemmal[].6, Let ¢ > 0 and 6 € ©. First, we prove [£.73). Fix x € C°(R%) such that
supp x C By and x =1 in Bj. Set, for 0 < § < /100,

X5 = x((- = 20)/6) in R”.
Define, for (f,g) € [L*(Q)]?, and for j = 1,--- ,k+ 1 = [d/2] + 2,

(ujvvj):: I&$&to-~~c>]}1£¢(up,po) and (uo,vé):: SA$&h$OO."O‘SAL&t@O(ug’US%

where
(4.88) (W’ ®)=(f,9)  and  (ug,vp) = (Lof,lag) in Q.
Set, for 0 < j <k+1,

(W, 07%) = (xoud, xsv’)  and (uh®,0f°) = (xsup, xsv))-

We have
(4'89) (ujﬁv vjﬁ) = S)\j,e,t,mo (U’jilﬁv Uj;l’é) + S/\j,e,t,zo (fjﬁa gj,(;),
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where

(4.90) Zl(acg)fj’5 = (Z1(x) — El(xo))uj_1’5 — Xj0.t(E1(z0) — 21(:):))uj"S + A(x)Vys - V!

— (Z1(20) — T1(2) — Sa(x0) + Sa(2))0 + div ((A(xo) — A(2)) Va4 ujA(x)VX5>
and

(4.91) Eg(xo) (22( ) 22(1‘0))1)]'71’6 — /\j,O,t(EQ(xO) — 22(1.))1)]',6 + A(HZ)VX(; . V'Uj

+ div ((A(a;o) — Az))Void + vjA(x)VX(;).
Similarly, we have

(g 0§%) = S, gm0 (w108 0) + 800 (37 7).
where
Z‘,l(azﬁo)fg’(S = A(xo)Vxs - Vué + div (u%A(xO)VX(g)
and
Z]g(aco)gg"s = A(z9)Vys - va 4 div (v%A(wo)Vx(;).

For r > 0, define

o(r) :min{l, sup <|A |+Z\zg )|)}.

lz—y|<r
We claim that
(4.92) Hfj’é”ij*l(Q\Qéo/Q) + t_1||gj’6||ij*1(9\950/2)

1 1 i 1y i
< G (20)+ 5717 + 537 ) (107 vy + 1 amrmvn)

and

. s
(493) 15" wi1 (@05 ,2) T Hlgg Izri=1 (@105, 2)

1 1 i1 1y -1
< Cj, <6t1/2 + 52t> (Huf) | zri-1(q) +1 Hlwg HLPJA(Q)) :
We first admit (4.92)) and (4.93)) and continue the proof. Since, in €2,

0,5 0,
(UM 06) (ug”,v97),

using (4.89), (4.92) and (4.93) and Lemmau for j =1 and then for j = 2,...,k+ 1, we have

S s s s
(4.94) [lu”® = ug [l e (@05, 0) + 1 Hjw?® — v 27 (9\025, 2)

1 1 —%—j-ﬁ-% -1
< Cs, | @(6) + 52 T 5% i (11 2y + t gl L2 () -

Fix § = 0. > 0 such that C5,®(d.) < /2. Take t. > 0 sufﬁmently large such that Cs, (671712 4
62t~ 1) < g/2 for every t > t.. Taking j =k + 1 in gives
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The proof of (4.74) is similar to the one of (4.73)) by considering (u°,v°) and (u, v)) defined as
follows

(u’, %) =1a(f.g)  and  (ug,vg) =(f9) inRY
instead of (4.88]).

Similar facts for Ty, and Ry, . by analogous arguments.

It remains to establish (4.92)) and (4.93)). From the definition of (u?,v7) and the theory of elliptic
equations (see e.g. [I5, Theorem 9.11]), we have, for Q; € Qo C Q,

(4.95) s gy + £ 1 g2y < C (b9 oy + 17 1 lnan)

and, similarly,

; -1 1 i—1 —1 j—1
(4.96) ldllwray + ¢ Illw2r iy < C (Il Non@a + 71 s )
for some positive constant C' independent of f, g, and ¢. It follows that

1 1

(4.97) IV Loy + IV po(oy) < C ((St + t1/2> (M zes) + 110 HlLeey))

(4.98) IV || 1oy + £ IV20 | 1oy
< C 1 71 71 j_l t_l j—l
- - St1/2 + 52t (H“ ||LP(Qz) + v ||LP(QQ)) )

and

5 1y 4 1 1 i1 1. j—1
(499 1 hwaoiany + 18 hypoiany <€ (5 + 77 ) (1967 aota + 071 )

By (4.90) and (4.91)), we have

C O Ny + 19 i1 @ny) < @O (67 zior + oo )

1 1 A L
+ (Q(d) + 52t + m) (Hu]HWtzpjfl(Ql) + t ||’U‘7”Wt2"pj*1(ﬂl)>

+ VU || i1 ) + IVl i1 0y + R(6) (\\V2Uj’5HL%1(Ql) + leV2Uj’5HLPj71(Ql))-

Combining (4.95)-(4.99) yields (4.92). Estimate (4.93)) follows similarly.

The proof is complete. O

4.5. A connection of the counting function and the trace of T,;Ts; for large t. We
start this section by recalling the definition of the modified resolvent of an operator (see, e.g., [1l
Definition 12.3]).

Definition 4.5. Let H be a Hilbert space and T : H — H be a linear and bounded operator. The
modified resolvent set p,(T) of T is the set of all non-zero complex numbers s such that I —sT is
bijective and (I —sT)~! is bounded on H. For s € py,(T) the transformation (T)s = T (I —sT)~!
is the modified resolvent of T .
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Recall that, for s € p,,(T), we have
(4.100) (TM)s=TT—-sT) ' =U-sT)'T.

Let 7 : L?(Q2) x L*(Q) — L?(Q) x L?(Q) be a linear and bounded operator. We have for z € C
(see e.g. [38])

k+1
(4.101) 1= TR = T = w2T)
j=1
and
(4.102) I — TR g invertible <= I — w;2T is invertible for every j.

Recall that wf“ = 1. Using the decomposition (4.101f), and the equivalence in (4.102)), one can
prove the following lemma.

Lemma 4.7. Let 6 € R\ {nZ}. Set 6 := kiil € O©. There exists tg > 1 such that, for every t > ty,
it holds

(4.103) =t € p (TR
and
(4.104) (TEF)., = M Ty M.
Proof. We have, by the definition of ~,
k+1
(4.105) I —~TEH [1 - wjte®Ty-).
j=1

By Proposition (.1} there exists tg > 0 such that T . .0 is defined for ¢ > t5. Hence
(4.106) wjteie € pm(Th+) and (T)\*)wjteie = T)\*+wjtei9 = T/\j,e,t for t > ty.

(see, e.g. |13, Lemma 3.1] for the arguments in a similar setting). Combining (4.105)) and (4.106)
leads v € pm(Tfjl) for t > ty.
It follows from (4.100)) that, for ¢t > tg,

(4.107) TAj,G,t =T« (I — wjtewT)\*)_l — (I _ wjtewT)\*)_lTA*
and thus,
k+1 k+1
(4.108) M, Ty, M, H Ty, 0. TE T — wietTy )™
j=1 J=1
_ ph+icp _ pky-1defs rg
—,\*( 7)3«) _(A*)’Y'
The proof is complete. ]

The following proposition establishes a connection between the trace of the operator Ty ;Tg;
and the counting function for large t. The arguments of the proof are in the spirit of [34] (see also

[38]).
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Proposition 4.4. We have

S(c)
N(t) = —— 1
SD Jo s3I T (14 5) " Mds
where ¢ is given by (4.72)).

Proof. For t sufficiently large, by Lemma we have

k+1 —1
(T)\j )tk+lei(k+l)a — Mt Ta7tMt-

d d
t2 +o(t2) as t = +o0,

Note that
(4.109) (@) = @ e
: k+1
provided that v1,y1 + 72 € pr (T.7). It follows from Lemma that, for large ¢ and for s > 0,
ot 4 s)kHleilktDa ¢ (Mt_lTa,tMt)-

Let s1,89,... be the characteristic values of Mt_ngtht repeated a number of times equal to
their multiplicities. Applying [I, Theorem 12.17|, we have
(4.110)

— _ 1
trace(Mt lTa,tMt(Mt lTa,tMt)_2(t+s)k+1ei(k>+1)a) = Z + ¢.
J

— 5;(s; + 2eie(b+1) (¢ 4 g)k+1)

We claim that

(4.111) ¢ =0.
Assume this, we continue the proof. As a consequence of (4.110) with s = 0, we have
1
-1 -1 _
(4.112) trace (Mt Ta,tMt<Mt Ta’tMt)_th+lei(k+l)a> = Z Sj(Sj n 26ia(k+1)tk+1) .

Let (i), be the set of characteristic values of T)« repeated according to their multiplicity. It is
k+1 are the characteristic values of T;fjl and the multiplicity of /L?H is equal to

well-known that p;

j
the sum of the one of the characteristic values u of Ty+ such that ! = u?“. By Lemma , for
large t, e’*(F+Dh+1 is 110t a characteristic value of Tfjl. We obtain, by [I, Theorem 12.4], that
the set of the characteristic values of (Tfjl)tk+1ei(k+1)u is given by

{M§+l _ ki s 1}.
We now derive from (4.112)) that

trace (M;letMt(M;lTa,tMt),wleml)a)

1
- Z (M?H _ tk+1€i(k+1)a)(ué?+1 + tk+lei(k+1)a>’

which yields, since a = m’

_ _ 1
(4.113) trace(Mt T My (M 1Ta,tMt),2tk+1ei<k+1)a) = a T
: . —1
J J
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We have, by Proposition
Cx .

lim sup ’\W
ujl=too | M

= 0.

As a consequence and as in [34] Proof of Corollary 3|, we derive that

1 1 o244
(4.114) Z H2k+2 _i2kt2 Z | [2RF2 — it2k+2 =o(t 2) as t — +oo.
Jj I J

Combining (4.113)) and (4.114) yield

(4115) trace (Mt_lTa7tMt(Mt_lTa,tMt)_th+lei(k+1)a>

_ 1 —2k—244
= Z 520D — 20 1) + o(t 2) as t — +oo.
j

Applying [@.109) with v, = tFtleibtDa and 4y = —2tF 1kt and using Lemma , we
derive that

(4.116) (Mti1Ta,tMt)72tk+lei<k+1>a = MtilTﬂth'

Since
trace (M{lTa,tTgvtMt) = trace (T Tpsy),
it follows from (4.115) and (4.116) that

1

—2k—2+4
(4.117) trace (T, Tsy) = Z PRy +o(t t2) as t — +oo.
J
Applying Proposition , we derive from (4.117) that, as t — +o0
1 —2k—24¢ —2k—2+4
(4.118) > T e = 2 +oft 2).
J

Considering the imaginary part of ([#.118) we get, for 7 = t#+4,

d

1 _ d__
2 oy = SO Y o(rmE ) as T — oo,
— |5 T
J

Since A; = pj + A*, it follows that, as 7 — +o00,

o~ _d __q _d __q
= (c)T8FH8 T 4 o(TERE ).

1
(4.119) S —
> e

Using the fact
1 Ood/\[(34(k1-+1))
;\Ajy4k+4+r_/o s+1

we derive that
1

0 1(k+1) 4 _
(4.120) / N’ES_H_) = %(0)78&8 Lt 0(78’;18 Y as 7 — 4o0.
0
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Applying a Tauberian Theorem of Hardy and Littlewood (see, e.g., [I, Theorem 14.5]), we obtain
S(c)

d
sty Jo© ST T (14 5) s

d
2

N(t) = t2 + ot

) as t — 400,

which is the conclusion.

It remains to prove {.111). Applying {@.109) with v = tFtleiktha angd ~, = —2(t +
s)ktleilhbtDa and using Lemma we derive that

(Mt_lTaﬂfMt)—2(t+s)k+1ei(k+1>“ = Mr_lTaJ’MT'

where
d=a+-—— and 7= (2(t+s)"" - tkﬂ)k’%l.

Thus by [I, Theorem 12.14],

(4.121) {sj + 2(t + s)Ftteialkt) o 5> 1} is the set of characteristic values of M, 'Tg . M,.
Applying Corollary [£.3] and using (4.38)), we have

(4.122) 1M T M| < CtFFE and || M Tg, M| < Cr s

for some constant C' > 0 which does not depend on s (and t). By [I, Theorem 12.12] we have

(4123) ’trace (MtilTath(MtilTa,tMt)72ak+1(t+s)k‘+1) | S |||Mt71Ta,tth H‘Mr_lT&"erm

Since —k + 4 < 0 it follows from ({:122) and ({.123) that

(4.124) lim trace(Mt_letMt(Mt_lTa,tMt)_QaHl(t +8)k+1) —0.

s——+400

On the other hand, by [I, Theorem 12.14],

1 2 1 1
1.125 ‘ . ‘ < .
( ) ZJ: sj(s; + 2eteb+D) (¢ 4 g)k+1) | = EJ: ;]2 EJ: |s; 4 2eia(k+1) (¢ 4 g)k+1|2

) ) .
< 1M T M2 M T M 2

Combining (4.124) and (4.125)) yields ¢; = 0, which is (4.111)) .

[A.122)
0 as s — 4oo.

The proof is complete. H

4.6. Proof of Theorem As in [34] p.34], we derive from Proposition that

s L[S !
\S(C) - (27T)d /QZ/]Rd (Ef(xO)_lA($0)§ ] €)4k+4 N ldﬁdw

(=1

1 2 . d 00 ﬁ—l B
:W;/QHS.A(JJ)@&<24(JJ)}dx8(k+1)/o ST (1 4 5) " ds.

The conclusion now follows from Proposition .4 O
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5. COMPLETENESS OF THE GENERALIZED EIGENFUNCTIONS OF THE TRANSMISSION
EIGENVALUE PROBLEM - PROOF OF THEOREM

By Lemma , for all § € (0,27) \ {r}, there exists t7 > 0 such that, for t >

(5.1) (TN, 8 = My ' Toy, My,
where _
0 1
Hzm and tk:tk+1.
By Proposition and Corollary
_ —k+2 _ _
(5'2) H‘MtleQ,tkMtk”’ < Ctk; ‘ and HMtle&tkMtkHLQ(Q)—>L2(Q) < Ctkk-

In particular, T/{“f 1'is a Hilbert-Schmidt operator; moreover, for ¢t > tg,

1 d
3 (T, 6l < Ozt~ Rt A,
Since k = [d/2] + 1, it follows that —1 + k%rl + W% < 0. This implies that

(5.4) for all @ € (0,2m)\ {r} there exist tz > 0 and Cy > 0 such that tsutfz |”(T>]fj1)tezé|” < Cj.

0

Since Tff !is a Hilbert-Schmidt operator, it follows from [I, Theorem 16.4] that

i) the space spanned by the generalized eigenfunctions of Tfj L5 equal to range(Tf*+ 1), the
closure of the range of T)’ffl with respect to the L2-topology.
In fact, in order to be able to apply [I, Theorem 16.4], one requires the assumptions on the
directions of the minimal growth of the modified resolvent of Tff ! We have only proved
and instead of this requirement. Nevertheless, this is sufficient to derive 1) using almost the
same arguments in [I] (see also [39]).

The rest of the proof is as in [34] [13]. We have

ii) range Tr:M" is dense in [L?(2)]? since range T« is dense in [L?(Q)]? and Ty~ is continuous,
ii) the space spanned by the general eigenfunctions of T;\H' ! associated to the non-zero eigen-
values of Tf\“f ! is equal to the space spanned by the general eigenfunctions of Ty~ associated
to the non-zero eigenvalues of Th« . This can be done as in the last part of the proof of [11
Theorem 16.5]. Consequently, the space spanned by all generalized eigenfunctions of T;\€+ !

is equal to the space spanned by all generalized eigenfunctions of T)«.
The conclusion now follows from i), ii), and iii). O
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