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Abstract

In this paper we study a dynamical system of intervals moving on a metric
graph with incommensurable edge lengths. This system can be generally
viewed as a collection of congruent intervals moving around the network at
unit speed, propagating along all respective incident edges whenever they
pass through a vertex. In particular, we analyse the phenomenon of satura-
tion: a state when the entire graph is covered by the moving intervals. Our
main contributions are as follows: (1) we prove the existence of the finite mo-
ment of permanent saturation for any metric graph with incommensurable
edge lengths and any positive length of the intervals; (2) we present an upper
bound on the moment of permanent saturation. To show the validity of our
results, we reduce the system of moving intervals to the system of dispersing
moving points, for the analysis of which we mainly use methods from dis-
crepancy theory and number theory, in particular Kronecker sequences and
the famous Three Gap Theorem.

Keywords: metric graph, wave packet, dynamical system of points, random
walk, epsilon-net, saturation

1. Introduction

Recent studies of wave packets distribution in hybrid topological spaces
and on metric graphs have raised the problem of identifying the time moment
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at which networks of waveguides get completely covered by waves, leaving no
idle points in the system [1, 2, 3]. In this setting, we typically consider a wave
packet of relatively small width, initially located in the vicinity of some node
of the network, which then begins to travel freely around it. We assume that
the waves travel without dispersion and propagate along all incident edges
when they hit any node of the graph, creating new waves of the same width.

The specific shape of the waves is not important in this context, thereby,
for the analysis of the given problem, we replace the wave packets by moving
intervals of a fixed length, which gradually propagate along all the respective
incident edges as they pass through any vertex of the network, thus creating
new moving intervals of the same length. This idea allows us to mimic the
behaviour of waves, yet get rid of all their properties that are unnecessary
for tracking the coverage of a metric graph by them.

If we assume the length of these intervals to be 2ε (the width of the wave
packets to be 2ε) for some positive ε, we can simplify our model even further
by representing each moving interval as the ε-neighbourhood of its central
point, leading to the dynamical system of points moving on a metric graph,
which can be briefly described as follows.

Moving points move back and forth along the edges of the graph in con-
tinuous time at unit speed. Since we talk about metric graphs, we consider
the lengths of the edges to be the actual distances that these points have to
bridge between respective vertices. Whenever a moving point hits a vertex
of the graph, it propagates along all the incident edges, creating new moving
points on them.

At the initial time moment one moving point is artificially placed at one
of the vertices: it immediately spreads over all the incident edges and the
points begin to move. Before the initial time moment, the system is empty
(there are no moving points on the graph).

Although the study of this process is mainly motivated by its physical
applications, it is worth noting that Izmaylov and Dworzanski mentioned in
[9] that it can also be used as an ‘overapproximation’ of message exchange
in computer networks.

Previously, the problem of representing the number of moving points in
this dynamical system (the number of wave packets in the network) as a
function of time was studied in detail, e.g. in [4, 5, 6, 7, 8, 9, 14]. In order
to avoid possible confusion when looking through the mentioned papers, we
explicitly warn the reader that there is no standard notation among the
authors: in some papers the above process is interpreted as the ‘endpoints of
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a random walk on a metric graph’ (e.g. [6, 14]), in others it is called either
a ‘DP-system’ (e.g. [8, 9]) or simply ‘moving points’ (e.g. [4, 5]).

The problem we approach in this paper seems to be in a completely
different category, but is in fact related to the problem of counting points. In
[3] it was shown that if the edges of the metric graph have commensurable
lengths (have rank 1 over Q), then after a while a phenomenon of stabilisation
occurs, by which we understand a situation where the number of points in
the system remains constant forever. Thus, given a sufficiently small value of
ε (sufficiently small width of the wave packets), under these circumstances it
is possible that the system will never become saturated. On the other hand,
if the edges of the graph have incommensurable lengths (have a rank greater
than 1 over Q), the stabilisation never occurs and the number of moving
points goes to infinity over time. As Dworzanski says in [8], ‘... it is possible
to extend the notion of stabilization time to systems with incommensurable
edges using the notion of ε-net...’. In the same paper he proposes the notion
of ε-saturation, which we develop in this text.

Thus, we can also consider saturation as an alternative stabilisation prop-
erty for graphs with incommensurable edge lengths, since the original concept
does not apply to them.

Indeed, in this paper we show that ε-saturation exists for all finite undi-
rected connected simple metric graphs with incommensurable edge lengths
and for all positive ε. Furthermore, we give a general upper bound on the per-
manent ε-saturation moment of dispersing moving points systems or, equiva-
lently, a general upper bound on the permanent saturation moment of moving
intervals of length 2ε (wave packets of width 2ε).

The rest of the paper is structured as follows. Section 2 contains all the
necessary definitions and presents our main result. Section 3 presents the
proofs of the main result and all auxiliary statements. Section 4 discusses
possible directions for further research.

2. Definitions and the main result

2.1. Metric graphs and dispersing points

Let us commence with a rigorous definition of the dynamical system that
is the focus of this work and all the concepts associated with it.

Definition 1 (metric graph). A metric graph is a tuple (V,E) where V =
{v1, . . . , vn} is the set of vertices and E is the set of edges with every eij ∈
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E being an interval (0, |eij|) ⊂ R connecting vertices vi ∈ V and vj ∈ V
associated with endpoints 0 and |eij| respectively. In this context, a positive
number |eij| is called the length of eij. We also denote eij ∪{vi, vj} = [0, |eij|]
as eij.

In this work we only consider undirected graphs, which means that we
do not distinguish between eij and eji. Furthermore, we are not strict about
which vertex incident on eij is associated with the endpoint 0 and which
vertex is associated with |eij|. In fact, later in the text we will conveniently
switch these associations as needed to simplify our calculations.

Besides, all graphs in this paper are simple. This means that there is at
most one edge between any two vertices and no vertex can be adjacent to
itself.

Definition 2 (adjoined path). Let G = (V,E) be a metric graph, eij ∈ E,
v ∈ {vi, vj}, k ∈ Z≥2, p1, . . . , pk ∈ {1, . . . , |V |}, {vp1 , . . . , vpk} ⊆ V such that
all vpi and vpi+1

for i ∈ {1, . . . , k−1} are adjacent. A simple path (vp1 , . . . , vpk)
in G is (eij, v)-adjoined if:

1. it has v as one of its endpoints, i.e. v ∈ {vp1 , vpk},
2. it does not go through eij, i.e. eij ̸∈ {ep1p2 , . . . , epk−1pk},
3. (|ep1p2|+ · · ·+ |epk−1pk |)/|eij| is irrational.

Adjoined paths may not exist in general, however, we will show later that
in our case we will always be able to find them.

Definition 3 (system of dispersing moving points). Let G = (V,E)
be a metric graph, v∗ ∈ V . Dynamical system of dispersing moving points
W(G, v∗) is defined by the following rules:

1. Time and space are continuous, with R≥0 and V ∪ (
⊔

e∈E e) being their
respective domains.

2. Each moving point lies on some edge e ∈ E and moves back and forth
at unit speed along e.

3. Suppose there are two distinct edges e ∈ E and e′ ∈ E both incident
on vertex v ∈ V . If at time moment t ∈ R≥0 some moving point lying
on e is located at v and at the same time no moving point lying on e′

is at v, then a new moving point gets spawned on edge e′ at vertex v.
The time moment t will be called the birth time of the spawned moving
point.
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4. At time moment 0 a moving point gets spawned at vertex v∗ on any of
the edges incident on v∗.

In this definition, symbol ‘⊔’ stands for disjoint union.
Note also that the choice of a particular edge in rule 4 does not matter,

because thanks to rule 3, new moving points will be created on all incident
edges anyway.

The position of a moving point spawned at time τ ∈ R≥0 on edge e ∈ E at
vertex associated with point 0 of e = [0, |e|] can be expressed as the following
function of time:

ae,τ (t) = 2|e|
∥∥∥∥t− τ

2|e|

∥∥∥∥ (1)

for t ∈ R≥τ where ∥ · ∥ is the distance to the nearest integer.
Several plots of ae,τ for some abstract edge e with |e| = 2 can be found

in Figure 1.
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Figure 1: Plots of ae,τ (t) with |e| = 2 and τ = 0 (blue, solid), τ = 1 (orange, dashed),
τ = π (green, dotted).

Definition 4 (ε-net). Let (M,ρ) be a metric space, ε ∈ R>0. A subset
N ⊆ M is called an ε-net on M if M ⊆

⋃
x∈N Bε(x) where Bε(x) = {m ∈

M |ρ(m,x) < ε} is the ε-neighbourhood of x.

Every metric graph G = (V,E) forms a generalised metric space together
with the generalised metric ρG defined for the points of V ∪ (

⊔
e∈E e). Specif-

ically, ρG(x, y) for any x, y ∈ V ∪ (
⊔

e∈E e) is the length of the shortest curve
connecting x and y, or +∞ if no such curve exists. Obviously, if x, y ∈ V ,
this is equivalent to the length of the shortest path between x and y. More-
over, ρG is a proper metric if and only if G is connected, making (G, ρG) a
metric space in this case. A detailed exploration of metric graphs can be
found, e.g. in [13].

Note that from now on the connectedness of metric graphs will also be
assumed throughout the text, along with undirectedness and simplicity.
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Definition 5 (ε-saturation). Let G = (V,E) be a metric graph, v∗ ∈ V ,
ε ∈ R>0, t ∈ R≥0. The system W(G, v∗) is said to be ε-saturated at time t if
its moving points form an ε-net on V ∪ (

⊔
e∈E e) at time t.

Definition 6 (ε-saturation interval). Let G = (V,E) be a metric graph,
v∗ ∈ V , ε ∈ R>0. A connected non-empty set T ⊆ R≥0 is called an ε-
saturation interval of W(G, v∗) if W(G, v∗) is ε-saturated at any t ∈ T and
if for any T ′ ⊆ R≥0 with T ⊂ T ′ there exists t′ ∈ T ′ such that W(G, v∗) is
not ε-saturated at time moment t′. We call inf T and supT an ε-saturation
moment and an ε-desaturation moment of W(G, v∗) respectively.

Definition 7 (permanent ε-saturation). Let G = (V,E) be a metric
graph, v∗ ∈ V , ε ∈ R>0, T be an ε-saturation interval of W(G, v∗). We
call T the interval of permanent ε-saturation, if supT = +∞. Likewise, we
call inf T the moment of permanent ε-saturation.

2.2. Commensurability and continued fractions

Let us now briefly enumerate some basic notions of number theory that
will be used in the following text.

Definition 8 (commensurability). Set W ⊆ R is called commensurable
if there exists x ∈ W such that for every y ∈ W the ratio y/x ∈ Q. If
there are no such x, W is said to be incommensurable. Furthermore, if
W = {x1, x2} contains only two elements, we can say that x1 is commensu-
rable/incommensurable with x2.

To shorten our explanations, we say ‘commensurable/incommensurable
graph’ instead of ‘graph with commensurable/incommensurable edge lengths’.

Definition 9 (simple continued fraction). Let m ∈ Z≥0 ∪ {+∞}, a0 ∈
Z≥0, ai ∈ Z>0 for i ∈ {1, . . . ,m}. A simple continued fraction is an expression
of the form

[a0; a1, . . . , am] = a0 +
1

a1 +
1

···+ 1
am

.

Every positive real number x ∈ R>0 has the unique simple continued
fraction representation x = [a0; a1, . . . , am] and, furthermore, m = +∞ if
and only if x is irrational.
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Definition 10 (total convergent). Let [a0; a1, . . . , am] (m can be +∞) be
a simple continued fraction, n ∈ {0, . . . ,m}. The nth total convergent of
[a0; a1, . . . , am] is [a0; a1, . . . , an].

The nth total convergent of any simple continued fraction [a0; a1, . . . , am]
can be expressed as pn/qn where pn and qn are members of the respective
sequences (p)k and (q)k defined as follows:

p−2 = 0, p−1 = 1, pk = akpk−1 + pk−2 ∀k ∈ {0, . . . ,m}, (2)

q−2 = 1, q−1 = 0, qk = akqk−1 + qk−2 ∀k ∈ {0, . . . ,m}. (3)

These and other facts about continued fractions and their properties,
together with all the necessary proofs, can be found in [10]. In particular,
the following results presented in this book will be of interest to us.

Theorem 11 ([10]). Let x = [a0; a1, . . . , am] (m can be +∞), sequences
(p)k and (q)k be defined for x as in (2) and (3) respectively, n ∈ {−1, . . . ,m}.
Then pn−1qn − pnqn−1 = (−1)n.

Theorem 12 ([10]). Let x = [a0; a1, . . . , am] (m can be +∞), n ∈ {0, . . . ,m}.
If n is even, then the nth total convergent of x is strictly less than x and if n
is odd, then the nth total convergent of x is strictly greater than x.

Theorem 13 ([10]). Let x = [a0; a1, . . . , am] (m can be +∞), sequences
(p)k and (q)k be defined for x as in (2) and (3) respectively, n ∈ {0, . . . ,m}.
Then,

1

qn(qn + qn+1)
<

∣∣∣∣x− pn
qn

∣∣∣∣ < 1

qnqn+1

.

2.3. Special sequences and discrepancy

We will require some basic elements of discrepancy theory to prove our
main result. We restrict all the definitions and results to one-dimensional case
as we do not need anything more general than this. A thorough exploration
of discrepancy theory can be found in [11].

Definition 14 (discrepancy). Let W ⊂ [a, b] ⊂ R be a finite set. The
discrepancy of W on [a, b] is

D(a, b,W ) = sup
a≤u≤v≤b

∣∣∣∣ |W ∩ (u, v)|
|W |

− v − u

b− a

∣∣∣∣ .
7



The discrepancy shows ‘how far’ the set of points is from the perfect
uniform distribution. We also define Kronecker and bouncing Kronecker
sequences.

Definition 15 (Kronecker sequence). Let α, β ∈ R. Kronecker sequence
(dα,β)k is defined for k ∈ Z≥0 as

dα,βk = ⟨αk + β⟩

where ⟨·⟩ is the fractional part of a number.

Definition 16 (bouncing Kronecker sequence). Let α, β ∈ R. Bounc-
ing Kronecker sequence (bα,β)k is defined for k ∈ Z≥0 as

bα,βk = ∥αk + β∥ = min{⟨αk + β⟩, ⟨−αk − β⟩}.

From these definitions it follows that Kronecker sequences are completely
contained in the range [0, 1] and that all bouncing Kronecker sequences lie
in the range [0, 1/2].

The following two theorems are well-known results from discrepancy the-
ory.

Theorem 17 ([11]). Let α ∈ R be irrational, N ∈ Z≥0. Then discrepancy
D(0, 1, {dα,0k }Nk=0) → 0 as N → +∞.

Theorem 18 (Three Gap Theorem, [12, 15]). Let α = [a0; a1, a2, . . . ]
be irrational, N ∈ Z≥0, sequence (q)k be defined for α as in (3). Let z ∈ Z≥0

be defined so that qz−1+qz ≤ N < qz+qz+1 while r ∈ Z≥0 and s ∈ {0, . . . , qz−
1} be defined so that N − qz−1 = rqz + s is the Euclidean division of N − qz−1

by qz.
Then {dα,0k }Nk=0 contains N + 1 points that subdivide [0, 1] into gaps with at
most three distinct lengths, namely:

• N + 1− qz gaps of length ℓ1 = ⟨qzα⟩ if z is even or ℓ1 = 1− ⟨qzα⟩ if z
is odd,

• s+1 gaps of length ℓ2 = 1−⟨(N − s)α⟩ if z is even or ℓ2 = ⟨(N − s)α⟩
if z is odd,

• qz − s− 1 gaps of length ℓ3 = ℓ1 + ℓ2.

By a gap induced by some finite set W ⊂ [a, b] ⊂ R we understand any
maximal (by inclusion) interval (u, v) such that (u, v) ∩W = ∅.
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2.4. Main result

With all the definitions in place, we are ready to present the statement
of the main result of this work.

Theorem 19. Let G = (V,E) be an incommensurable metric graph, v∗ ∈ V ,
ε ∈ R>0. Then the following two statements are true for W(G, v∗):

1. There exists the finite moment tperm(ε,G, v∗) ∈ R≥0 of permanent ε-
saturation.

2. tperm(ε,G, v∗) (and, hence, all other ε-saturation moments of W(G, v∗))
admits the upper bound:

tperm(ε,G, v∗) ≤ max
eij∈E

min{tedge(ε, eij, vi), tedge(ε, eij, vj)}.

Here tedge(ε, eij, v) for v ∈ {vi, vj} is defined as

tedge(ε, eij, v) = ρG(v
∗, v) + 2(qz + qz−1)σ

where σ is the length of the shortest (eij, v)-adjoined path and qz is
chosen from (q)k defined for σ/|eij| as in (3) with z ≥ 2 such that

qz >
2|eij|
ε

.

If (eij, v)-adjoined path does not exist, tedge(ε, eij, v) = +∞.

3. Proof of the main result

The proof of the main result will involve three successive steps. First,
we establish a direct connection between the points of W(G, v∗) and the
bouncing Kronecker sequences. Second, we prove the existence of the finite
moment of permanent ε-saturation by inducing some properties about the
distance between neighbouring moving points from the discrepancy of Kro-
necker sequences. Third, we prove some lemmata that allow us to deduce
the presented upper bound from the Three Gap Theorem. Note that when
we use symbols without explicitly defining them, then their definitions from
the statement of Theorem 19 apply.
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3.1. Connection with the bouncing Kronecker sequences

In the beginning, let us look closely at adjoined paths in G.

Lemma 20. Let eij ∈ E. Then there is a vertex v ∈ {vi, vj} for which an
(eij, v)-adjoined path exists.

Proof. We present a constructive proof for this statement.
We know that G is incommensurable, hence, for eij there exists another edge
e ∈ E such that |e|/|eij| is irrational. Since G is connected, there is a simple
path p connecting vi with e and going through e itself, which means that
vertices incident on e are the two final vertices of p. This path can only
be of length commensurable with |eij| if it contains another edge of length
incommensurable with |eij|. In this case, redefine e with the latter edge and
start the process again. Since we only have a finite number of edges, sooner
or later we will be able to find e such that there is a path connecting vi with
e that has a cumulative length incommensurable with |eij|.
This path satisfies conditions 1 and 3 from Definition 2. If it does not contain
eij, it is an (eij, vi)-adjoined path and the statement of the lemma is true. If
it goes through eij, we can satisfy condition 2 by simply removing vi from
the beginning of p, thus getting an (eij, vj)-adjoined path and confirming the
statement of the lemma in this case as well. □

Lemma 20 shows that the value min{tedge(ε, eij, vi), tedge(ε, eij, vj)} from
the statement of Theorem 19 is always finite for all edges of the graph.

Fix now until the end of the section some edge eij ∈ E and vertex v ∈
{vi, vj} so that there is an (eij, v)-adjoined path. Let σ be the length of
the shortest (eij, v)-adjoined path p. Obviously, the first hit of vertex v by
a moving point will happen at time ρG(v

∗, v). After that, the points will
begin to move along all edges incident on v, including the one belonging
to p. Applying the analogous reasoning to further vertices of p, we deduce
that there will be a moving point hitting the last vertex of p at time moment
ρG(v

∗, v)+σ and, following the process back, we see that there will be another
hit with v at time ρG(v

∗, v) + 2σ. Continuing in the same way, we conclude
that hits with v will occur in particular at time moments ρG(v

∗, v)+ 2nσ for
n ∈ Z≥0.

Consider now a moving point lying on the edge eij that is located at v at
time moment ρG(v

∗, v) + 2nσ for some n. Note that from the time moment
ρG(v

∗, v) + 2nσ on, this point will behave exactly as if it had been spawned
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at vertex v at the time ρG(v
∗, v)+2nσ, even if it was not. Thus, if we ignore

the position of this point at the time before ρG(v
∗, v) + 2nσ, then the birth

time of this moving point can be assumed to be τ = ρG(v
∗, v) + 2nσ and we

can think that it was spawned at v. If we associate v with the endpoint 0 of
eij, then using (1) we can derive the following information about the position
of this moving point at any time t = ρG(v

∗, v) + 2Nσ +∆ for N ∈ Z≥n and
∆ ∈ R≥0 ∩ R<2σ:

aeij ,τ (t) = 2|eij|
∥∥∥∥t− τ

2|eij|

∥∥∥∥ = 2|eij|
∥∥∥∥ρG(v∗, v) + 2Nσ +∆− ρG(v

∗, v)− 2nσ

2|eij|

∥∥∥∥
= 2|eij|

∥∥∥∥(N − n)
σ

|eij|
+

∆

2|eij|

∥∥∥∥ = 2|eij|b
σ/|eij |,∆/(2|eij |)
N−n . (4)

Thus, if we fix the time moment t = ρG(v
∗, v)+2Nσ+∆ and vary n from

0 to N , we get (up to a constant factor 2|eij|) exactly {bσ/|eij |,∆/(2|eij |)
k }Nk=0.

Here the sequence parameter α = σ/|eij| ̸∈ Q.
We can think of this set as the positions of a certain subset of moving

points on the given edge at the given time. Note that we do not necessarily
capture the positions of all the points that could be on eij at that moment,
we only capture the positions of some of them.

3.2. Proof of existence

Let us now show that there exists the finite moment of permanent ε-
saturation. To simplify the formulations ahead, we will denote the length
of the longest gap induced by some finite set W ⊂ [a, b] ⊂ R on [a, b] as
ℓmax(a, b,W ). We also mention for further reference that if [u, v] ⊆ [a, b],
then ℓmax(u, v,W ∩ [u, v]) ≤ ℓmax(a, b,W ) and if there is another finite set
W ′ ⊂ [a, b], then ℓmax(a, b,W ∪W ′) ≤ ℓmax(a, b,W ).

Lemma 21. Let W ⊂ [a, b] ⊂ R be a finite set. Then the length of the
longest gap induced by it is related to its discrepancy: ℓmax(a, b,W ) ≤ (b −
a) ·D(a, b,W ).

Proof. Let (u′, v′) be a gap induced by W on [a, b]. Then we can show for
the length of (u′, v′):

v′ − u′ = (b− a)

∣∣∣∣0− v′ − u′

b− a

∣∣∣∣ = (b− a)

∣∣∣∣ |W ∩ (u′, v′)|
|W |

− v′ − u′

b− a

∣∣∣∣
≤ (b− a) · sup

a≤u≤v≤b

∣∣∣∣ |W ∩ (u, v)|
|W |

− v − u

b− a

∣∣∣∣ = (b− a) ·D(a, b,W ).
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The statement is proven. □

Lemma 22. Let α, β ∈ R, N ∈ Z≥0. Then for the Kronecker sequence
(dα,β)k it holds that ℓmax(0, 1, {dα,βk }Nk=0) ≤ ℓmax(0, 1, {dα,0k }Nk=0).

Proof. Although {dα,βk }Nk=0 ⊂ [0, 1], the value 1 is actually unreachable for

(dα,β)k, hence, we can also say that {dα,βk }Nk=0 ⊂ [0, 1).

We begin then by mapping {dα,βk }Nk=0 from [0, 1) onto a unit circle using the
invertible transformation x 7→ 2πx. In general, this transformation merges
the leftmost and rightmost gaps on [0, 1], however, when β = 0, the gaps
induced by {dα,0k }Nk=0 on [0, 1] and on the unit circle remain mutually corre-
spondent since point dα,00 = 0 on the circle doesn’t ‘cut’ any gaps.
Observe that {dα,βk }Nk=0 can be derived from {dα,0k }Nk=0 by rotating each point
by 2πβ, preserving the gap lengths. However, this rotation may make point
0 ‘cut’ one gap on the circle into two smaller gaps on [0, 1]. This will not
increase the length of the longest gap on [0, 1] beyond what occurs when
β = 0. □

Lemma 23. Let α, β ∈ R, N ∈ Z≥0. Then for bouncing Kronecker sequence
(bα,β)k it is true that ℓmax(0, 1/2, {bα,βk }Nk=0) ≤ ℓmax(0, 1, {dα,βk }Nk=0).

Proof. Due to the definition of bouncing Kronecker sequences (see Defini-
tion 16) we can represent {bα,βk }Nk=0 as {bα,βk }Nk=0 = ({dα,βk }Nk=0 ∩ [0, 1/2]) ∪ R

where R = {bα,βk }Nk=0 \ {d
α,β
k }Nk=0. Hence,

ℓmax

(
0,

1

2
, {bα,βk }Nk=0

)
≤ ℓmax

(
0,

1

2
, {dα,βk }Nk=0 ∩

[
0,

1

2

])
≤ ℓmax(0, 1, {dα,βk }Nk=0).

This finishes the proof. □

Combining the Lemmata 21, 22 and 23, we can show for all irrational
α ∈ R, all β ∈ R and N ∈ Z≥0:

0 < ℓmax

(
0,

1

2
, {bα,βk }Nk=0

)
≤ ℓmax(0, 1, {dα,βk }Nk=0) ≤ ℓmax(0, 1, {dα,0k }Nk=0)

≤ D(0, 1, {dα,0k }Nk=0)
N→+∞−−−−→ 0.

12



Thus, ℓmax(0, 1/2, {bα,βk }Nk=0) → 0 as N → +∞ uniformly over β. Knowing

that {bσ/|eij |,∆/(2|eij |)
k }Nk=0 represents positions of certain moving points on eij

(up to a constant factor) at time moment t = ρG(v
∗, v) + 2Nσ + ∆, we

conclude that the lengths of gaps induced by all moving points on eij also
tend to 0 as t goes to infinity.

This means that after a certain moment in time eij is covered indefinitely
by an ε-net made of moving points lying on it. Since we have a finite number
of edges, taking the maximum of these time moments proves the existence
of the finite moment of permanent ε-saturation.

3.3. Proof of the upper bound

Finally, we show the validity of the claimed upper bound. The general
idea is to find an upper bound on the time when each edge gets permanently
covered by an ε-net made of moving points lying on it and then take a
maximum of these upper bounds over all edges of G.

To do this, we restrict the set of time moments from which we choose
our upper bounds. Recall that we can represent all time moments in the
form t = ρG(v

∗, v) + 2Nσ + ∆. Recall also that if ∆ = 0, then there is a
moving point at vertex v and the parameter β = ∆/(2|eij|) of the bouncing
Kronecker sequence (bσ/|eij |,∆/(2|eij |))k, which represents positions of certain
moving points on eij at that time moment, is equal to 0. This means that
we can use the Three Gap Theorem to precisely calculate the lengths of gaps

induced by {dσ/|eij |,0k }Nk=0 on [0, 1], the maximum of which will be an upper

bound on the length of the longest gap induced by {bσ/|eij |,∆/(2|eij |)
k }Nk=0 on

[0, 1/2] for any ∆ ∈ [0, 2σ) (due to Lemma 23).
Define now (q)k for α = σ/|eij| as in (3). From the Three Gap Theorem

we know that gaps of length ℓ3 exist only if s < qz − 1. Assuming this

inequality holds, we can easily see that ℓmax(0, 1, {d
σ/|eij |,0
k }Nk=0) = ℓ3 and

ℓmax(0, 1, {d
σ/|eij |,∆/(2|eij |)
k }Nk=0) ≤ ℓ3, again, for all ∆ ∈ [0, 2σ).

Finally, we want to find the time moment tedge(ε, eij, v) = ρG(v
∗, v)+2N ′σ

such that for all moments t > tedge(ε, eij, v) edge eij is guaranteed to be
covered by an ε-net made of moving points lying on it. To create a condition

13



for the edge eij, we multiply everything by 2|eij|:

{
2|eij|ℓ3 < ε

s < qz − 1
⇔


1 + ⟨qzα⟩ − ⟨(N ′ − s)α⟩ < ε

2|eij|
, if z is even

1− ⟨qzα⟩+ ⟨(N ′ − s)α⟩ < ε

2|eij|
, if z is odd

s < qz − 1.

(5)

We begin with the following lemmata.

Lemma 24. Let x = [a0; a1, . . . , am] (m can be +∞), sequences (p)k and
(q)k be defined for x as in (2) and (3) respectively, n ∈ {0, . . . ,m}. Then

qn−1
pn
qn

= pn−1 +
(−1)n+1

qn
.

Proof. This statement can be proven with the following sequence of equal-
ities:

qn−1
pn
qn

(∗)
=

pn−1qn + (−1)n+1

qn
= pn−1 +

(−1)n+1

qn
.

Here equality (∗) follows from Theorem 11. □

Lemma 25. Let x = [a0; a1, . . . , am] (m can be +∞), sequences (p)k and
(q)k be defined for x as in (2) and (3) respectively, n ∈ {2, . . . ,m}. Then〈

qn−1
pn
qn

〉{
≤ ⟨qn−1x⟩ , if n is even

≥ ⟨qn−1x⟩ , if n is odd.

Proof. From Theorem 12 we know that

qn−1
pn
qn

{
≤ qn−1x , if n is even

≥ qn−1x , if n is odd.

Note also from (3) and Definition 9 that q0 = 1, q0 ≤ q1 and that qi < qi+1

for all i ∈ Z≥1. Hence, if n ≥ 2, then qn > 1. Using Lemma 24 and knowing
that n ≥ 2, we can show:

⌊
qn−1

pn
qn

⌋
=


⌊
pn−1 −

1

qn

⌋
= pn−1 − 1 , if n is even⌊

pn−1 +
1

qn

⌋
= pn−1 , if n is odd.

14



Consider the first case of an even n. Because the floor function is monotonic,

⌊qn−1x⌋ ≥
⌊
qn−1

pn
qn

⌋
= pn−1 − 1.

At the same time,

⌊qn−1x⌋ − pn−1 = ⌊qn−1x− pn−1⌋ =
⌊
qn−1

(
x− pn−1

qn−1

)⌋
= −

⌈
qn−1

(
pn−1

qn−1

− x

)⌉
(∗)
≤ −

⌈
qn−1

qn−1(qn−1 + qn)

⌉
= −

⌈
1

qn−1 + qn

⌉
= −1.

The inequality (∗) here is true because of Theorem 12 and Theorem 13. From
this chain it follows that ⌊qn−1x⌋ ≤ pn−1 − 1.
Thus, we have shown that ⌊qn−1x⌋ ≤ pn−1−1 and ⌊qn−1x⌋ ≥ pn−1−1, hence,
⌊qn−1x⌋ = pn−1 − 1. Since

qn−1
pn
qn

≤ qn−1x

yet ⌊
qn−1

pn
qn

⌋
= ⌊qn−1x⌋,

we conclude that 〈
qn−1

pn
qn

〉
≤ ⟨qn−1x⟩.

For the second case with an odd n, the proof is similar. □

Now, according to the statement of Theorem 19, set N ′ = qz + qz−1 with
qz > 2|eij|/ε. We will show that such N ′ satisfies (5).

Recall from the Three Gap Theorem that in this case r and s are defined
as the Euclidean division of N ′ − qz−1 by qz: N ′ − qz−1 = rqz + s. Hence,
r = 1 and s = 0.

Note also from the proof of Lemma 25 that q0 = 1 and that q0 ≤ q1
and qi < qi+1 for all i ∈ Z≥1. This means that if z ≥ 2, then the condition
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s < qz − 1 is guaranteed to be satisfied. According to the statement of
Theorem 19, z ≥ 2.

Let us now consider the case of even z and take a closer look at the
constraint set for qz:

qz >
2|eij|
ε

⇔ 1

qz
<

ε

2|eij|
⇔ 1− 1

qz
> 1− ε

2|eij|
(∗)⇔

〈
qz−1

pz
qz

〉
> 1− ε

2|eij|
.

Here the equivalence (∗) holds due to Lemma 24. With the help of Lemma 25
we continue:

⟨qz−1α⟩ ≥
〈
qz−1

pz
qz

〉
> 1− ε

2|eij|
.

From this:

1− ⟨qz−1α⟩ <
ε

2|eij|
⇔ 1− ⟨(qz + qz−1 − qz)α⟩ <

ε

2|eij|

⇔ 1− ⟨N ′α− qzα⟩ <
ε

2|eij|

⇔ 1− ⟨⟨(N ′ − s)α⟩ − ⟨qzα⟩⟩ <
ε

2|eij|
(∗∗)⇔ 1 + ⟨qzα⟩ − ⟨(N ′ − s)α⟩ < ε

2|eij|
which is exactly the condition for even z from (5). The equivalence (∗∗) is
true because 1+⟨qzα⟩−⟨(N ′−s)α⟩ = ℓ3, hence, it must be in (0, 1), thereby,
⟨qzα⟩−⟨(N ′−s)α⟩ ∈ (−1, 0) and ⟨⟨(N ′ − s)α⟩ − ⟨qzα⟩⟩ = ⟨(N ′−s)α⟩−⟨qzα⟩.

We have shown that for even z ≥ 2 conditions from Theorem 19 imply
the part of (5) relevant to even z, i.e.qz >

2|eij|
ε

z is even
⇒

1 + ⟨qzα⟩ − ⟨(N ′ − s)α⟩ < ε

2|eij|
s < qz − 1.

The proof for an odd z repeats the same actions.
All in all, both tedge(ε, eij, vi) and tedge(ε, eij, vj), given the existence of

the respective adjoined paths computed in this way, do indeed provide upper
bounds on the time when eij becomes permanently covered by an ε-net made
of moving points lying on it. Thus, by choosing the largest upper bound for
this event among all the edges of the graph, we obtain the upper bound on
the moment of permanent ε-saturation of G.

The theorem is proven.
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4. Discussion

The upper bound presented in this paper is, as to our knowledge, the first
of its kind. It can be used to estimate the time of permanent ε-saturation for
any given system of dispersing moving points (time of permanent saturation
for any given system of moving intervals of length 2ε) by mechanically com-
puting several values one after the other, however, our results do not give
any insight into the general change of the ε-saturation time depending on
the value of ε. In particular, it would be interesting to derive the asymptotic
behaviour of the moment of permanent ε-saturation for any fixed W(G, v∗)
as ε → 0.

Moreover, we see a possibility of improvement for the presented bound.
This improvement can be achieved by thoroughly studying the gap lengths
of bouncing Kronecker sequences (instead of classical Kronecker sequences
as we have done in this text) and deriving more precise upper bounds or
even exact formulae for them. Another way of enhancement is to develop
discrepancy theory for more general measurable spaces such as metric graphs.
This route may potentially allow us to estimate the moment of permanent
ε-saturation with one inequality instead of, de-facto, a system of separate
inequalities for all edges.
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