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Abstract

In this paper we study dynamical systems of intervals moving on incommensurable metric graphs. They
can be generally viewed as congruent intervals moving around some graph with unit velocity and propa-
gating on all respective incident edges whenever sliding through any vertex. In particular, we analyse the
phenomenon of saturation: a state of the system when the entire graph is covered by these moving intervals.
Our main contributions are the following: (1) we prove the existence of the finite moment of permanent
saturation for any incommensurable metric graph and any positive length of these intervals; (2) we present
an upper bound for the moment of permanent saturation. To show the validity of our results, we reduce the
system of moving intervals to the system of dispersing moving points for the analysis of which we primarily
use methods of discrepancy theory and number theory, specifically Kronecker sequences and the celebrated
Three Gap Theorem.
Keywords: metric graph, wave packet, dynamical system of points, random walk, epsilon-net, saturation.
MSC2010: 37E25, 37A45. MSC2020: 37E25, 37A44.

1 INTRODUCTION

Recent studies of wave packets distribution in hybrid topological spaces and on metric graphs have brought
up the problem of identifying the time moment when networks of waveguides get completely covered by waves
leaving no idle points in the system [2, 3, 4]. In this setting we typically consider a wave packet of relatively
small width initially located in the vicinity of some node of the network that then starts freely travelling around
it. We also state that waves travel with no dispersion and propagate on all incident edges when hitting any
node of the graph thus creating new waves of the same width.

Particular shapes of waves do not play significant role in this context, thereby, for the analysis of the given
problem we replace wave packets with moving intervals of some fixed length that gradually propagate on all
respective incident edges as they slide through any vertex of the network creating this way new moving intervals
of the same length. This idea allows us to mimic the behaviour of waves yet get rid of all their properties that
are unnecessary for tracking the coverage of a metric graph by them.

If we assume the length of these intervals to be 2ε (the width of the wave packets to be 2ε) for some positive
ε, we can simplify our model even further by presenting each moving interval as the ε-neighbourhood of its
central point thus leading to the dynamical system of dispersing moving points on metric graphs that can be
briefly described as follows.

Moving points move back and forth along the edges of the graph in continuous time with unit velocity.
Since we talk about metric graphs, we view lengths of edges as actual distances that these points have to bridge
between respective vertices. Whenever any moving point hits any vertex of the graph, it propagates on all
incident edges thus spawning new moving points on them.

At the initial time moment one moving point is artificially placed at one of the vertices: it immediately
spreads over all incident edges and the points begin their movement. Before the initial time moment, the
system is empty (there are no moving points on the graph).
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Even though the study of this process is mainly motivated by its physical applications, it is worth mentioning
that Izmaylov and Dworzanski mentioned in [10] that it can also be used as an ‘overapproximation’ of message
exchange in computer networks.

Previously, the problem of representing the number of moving points in this dynamical system (the number
of wave packets in the network) as a function of time was thoroughly investigated [5, 6, 7, 8, 9, 10, 15]. To avoid
confusion, we point out that among authors there is no standardised notation: in some works the aforementioned
process is interpreted as ‘endpoints of a random walk on metric graph’ (e.g. [7, 15]), in others it is called either
a ‘DP-system’ (e.g. [9, 10]) or simply ‘moving points’ (e.g. [5, 6]).

The problem we approach in this paper seemingly belongs to a completely different category yet is, in fact,
associated with the problem of counting points. In [4] it was shown that if the edges of the metric graph have
commensurable lengths (have rank 1 over Q), then after a while a phenomenon of stabilisation occurs by which
we understand a situation when the number of points in the system remains constant forever. Hence, given a
sufficiently small value of ε (sufficiently small width of wave packets), under these circumstances it is possible
for the system to never get saturated. On the other hand, if the edges of the graph have incommensurable
lengths (have rank greater than 1 over Q), the stabilisation never arrives and the number of moving points
grows into infinity as time goes to infinity. As Dworzanski says in [9], ‘... it is possible to extend the notion of
stabilization time to systems with incommensurable edges using the notion of ε-net...’ In the very same paper
he proposes the concept of ε-saturation that we develop in this text.

Thus, we can view saturation as an alternative stabilisation characteristic for graphs with incommensurable
edges as the original concept does not apply to them.

Indeed, in this paper we demonstrate that ε-saturation exists for all finite incommensurable unoriented
connected simple metric graphs and all positive ε. Besides, we show a general upper bound for the permanent
ε-saturation time moment of dispersing moving points systems or, equivalently, a general upper bound for the
permanent saturation time moment of moving intervals of length 2ε (wave packets of width 2ε).

The rest of the paper is structured as follows. Section 2 contains all necessary definitions and presents
our main result. Section 3 features proofs of the main result and all auxiliary statements. Section 4 discusses
possible directions of further research.

2 DEFINITIONS AND MAIN RESULT

2.1 Metric graphs and dispersing points

Let us commence with rigorously defining the dynamical system in focus of this work and all related concepts.

Definition 1 (metric graph). A metric graph is a tuple (V,E) where V = {v1, . . . , vn} is a set of vertices and
E is a set of edges with every eij ∈ E being an interval (0, |eij |) ⊂ R connecting vertices vi ∈ V and vj ∈ V
associated with endpoints 0 and |eij |, respectively. In this context, a positive number |eij | is called the length of
eij. We also denote eij ∪ {vi, vj} = [0, |eij |] as eij.

In this work we only consider unoriented graphs meaning that we do not distinguish between eij and eji.
Furthermore, we are not strict about which vertex incident to eij is associated with endpoint 0 and which vertex
is associated with |eij |. In fact, in the further text we will conveniently switch these associations when needed
to simplify our calculations.

Besides, all graphs in this paper are simple. This means that there is at most one edge between any two
vertices and any vertex cannot be adjacent to itself.

Definition 2 (adjoined path). Let G = (V,E) be a metric graph, eij ∈ E, v ∈ {vi, vj}, k ∈ Z≥2, p1, . . . , pk ∈
Z≥1 ∩ Z≤|V |, {vp1

, . . . , vpk
} ⊆ V such that all vpi

and vpi+1
for i ∈ Z≥1 ∩ Z<k are adjacent. A simple path

(vp1 , . . . , vpk
) in G is (eij , v)-adjoined if:

1. it has v as one of its endpoints, i.e. v ∈ {vp1 , vpk
},

2. it does not go through eij, i.e. eij ̸∈ {ep1p2
, . . . , epk−1pk

},

3. (|ep1p2
|+ · · ·+ |epk−1pk

|)/|eij | is irrational.

Adjoined paths, in general, may not exist, however, later we will show that in our case we will always be
able to find them.
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Definition 3 (dispersing moving points system). Let G = (V,E) be a metric graph, v∗ ∈ V . Dynamical system
W(G, v∗) is defined by the following rules:

1. Time and space are continuous with R≥0 and V ∪ (
⊔

e∈E e) being their respective domains.

2. Each moving point lies on some edge e ∈ E and moves back and forth with unit velocity along e.

3. Say, there are two distinct edges e ∈ E and e′ ∈ E incident to vertex v ∈ V . If at time moment t ∈ R≥0

some moving point lying on e is located at v and, at the same time, no moving point from e′ is located
at v, then a new moving point gets spawned at vertex v on edge e′. Time moment t will be called the
birth-time of the latter moving point.

4. At time moment 0 a moving point gets spawned at vertex v∗ on any of the edges incident to v∗.

In this definition symbol ‘⊔’ stands for disjoint union.
Note also, that the choice of a particular edge in rule 4 does not play any role because thanks to rule 3 new

moving points will be spawned on all incident edges anyway.
Location of a moving point spawned at time moment τ ∈ R≥0 on edge e ∈ E at vertex associated with point

0 of e = [0, |e|] can be expressed as the following function of time:

ae,τ (t) = 2|e|
∥∥∥∥ t− τ

2|e|

∥∥∥∥ (1)

for t ∈ R≥τ where ∥ · ∥ is the distance to the nearest integer.
Several plots of ae,τ for some abstract edge e with |e| = 2 can be found in Figure 1.

0 2 4 6 8 10 12 14 16 18 20 22 24
0
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Figure 1: Plots of ae,τ (t) with |e| = 2 and τ = 0 (blue, solid), τ = 1 (orange, dashed), τ = π (green, dotted).

Definition 4 (ε-net). Let (M,ρ) be a metric space, ε ∈ R>0. Subset N ⊆ M is called an ε-net on M if
M ⊆

⋃
x∈N Bε(x) where Bε(x) = {m ∈ M |ρ(m,x) < ε} is the ε-neighbourhood of x.

Every metric graph G = (V,E) makes up a generalised metric space together with generalised metric ρG
defined for points from V ∪ (

⊔
e∈E e). Precisely, ρG(x, y) for any x, y ∈ V ∪ (

⊔
e∈E e) is the length of the shortest

curve connecting x and y or +∞, if such curve does not exist. Evidently, when x, y ∈ V this is equivalent to the
length of the shortest path between x and y. Besides, ρG is a proper metric if and only if G is connected thus
making (G, ρG) a metric space in this case. A detailed exploration of metric graphs can be found, for example,
in [14].

Note, that from now on connectivity of metric graphs will also be implied throughout the text alongside
with unorientedness and simplicity.

Definition 5 (ε-saturation). Let G = (V,E) be a metric graph, v∗ ∈ V , ε ∈ R>0, t ∈ R≥0. System W(G, v∗) is
said to be ε-saturated at time moment t if its moving points make up an ε-net on V ∪ (

⊔
e∈E e) at time moment

t.

Definition 6 (ε-saturation interval). Let G = (V,E) be a metric graph, v∗ ∈ V , ε ∈ R>0. Connected non-empty
set T ⊆ R≥0 is called an ε-saturation interval of W(G, v∗) if W(G, v∗) is ε-saturated at any t ∈ T and if for
any T ′ ⊆ R≥0 with T ⊂ T ′ there exists t′ ∈ T ′ such that W(G, v∗) is not ε-saturated at time moment t′. We
call inf T and supT an ε-saturation moment and an ε-desaturation moment of W(G, v∗), respectively.

Definition 7 (permanent ε-saturation). Let G = (V,E) be a metric graph, v∗ ∈ V , ε ∈ R>0, T be an ε-
saturation interval of W(G, v∗). We call T the interval of permanent ε-saturation, if supT = +∞. Likewise,
we call inf T the moment of permanent ε-saturation.
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2.2 Commensurability and continued fractions

Let us now briefly enumerate several basic notions of number theory that are going to be used in the following
text.

Definition 8 (commensurability). Set W ⊆ R is called commensurable if there exists x ∈ W so that for every
y ∈ W there is some k ∈ Q with y = kx. If such x does not exist, W is called incommensurable. Furthermore,
if W = {x1, x2} only contains two elements, we may also say that x1 is commensurable/incommensurable with
x2.

To shorten our explanations, we say ‘commensurable/incommensurable graph’ instead of ‘graph with com-
mensurable/incommensurable lengths of edges’.

Definition 9 (simple continued fraction). Let m ∈ Z≥0 ∪ {+∞}, a0 ∈ Z≥0, ai ∈ Z>0 for i ∈ Z≥1 ∩ Z≤m. A
simple continued fraction is an expression of a form

[a0; a1, . . . , am] = a0 +
1

a1 +
1

···+ 1
am

.

Every positive real number x ∈ R>0 has a unique simple continued fraction representation x = [a0; a1, . . . , am]
and, moreover, m = +∞ if and only if x is irrational.

Definition 10 (total convergent). Let [a0; a1, . . . , am] (m can be +∞) be a simple continued fraction, n ∈
Z≥0 ∩ Z≤m. The nth total convergent of [a0; a1, . . . , am] is [a0; a1, . . . , an].

The nth total convergent of any simple continued fraction [a0; a1, . . . , am] can be expressed as pn/qn where
pn and qn are members of respective sequences (p)k and (q)k defined as follows:

p−2 = 0, p−1 = 1, pk = akpk−1 + pk−2 ∀k ∈ Z≥0 ∩ Z≤m, (2)

q−2 = 1, q−1 = 0, qk = akqk−1 + qk−2 ∀k ∈ Z≥0 ∩ Z≤m. (3)

These and other facts about continued fractions and their properties together with all the necessary proofs
can be found in [11]. Specifically, the following results presented in this book will be of interest to us.

Theorem 1 ([11]). Let x = [a0; a1, . . . , am] (m can be +∞), n ∈ Z≥−1 ∩ Z≤m, sequences (p)k and (q)k be
defined for x as in (2) and (3), respectively. Then, pn−1qn − pnqn−1 = (−1)n.

Theorem 2 ([11]). Let x = [a0; a1, . . . , am] (m can be +∞), n ∈ Z≥0 ∩ Z≤m. If n is even, then the nth total
convergent of x is strictly less than x and if n is odd, then the nth total convergent of x is strictly greater than
x.

Theorem 3 ([11]). Let x = [a0; a1, . . . , am] (m can be +∞), n ∈ Z≥0∩Z≤m, sequences (p)k and (q)k be defined
for x as in (2) and (3), respectively. Then,

1

qn(qn + qn+1)
<

∣∣∣∣x− pn
qn

∣∣∣∣ < 1

qnqn+1
.

2.3 Special sequences and discrepancy

We will require some basic elements of discrepancy theory to prove our main result. We restrict all the definitions
and results to one-dimensional case as we do not need anything more general than this. A thorough exploration
of discrepancy theory can be found in [12].

Definition 11 (discrepancy). Let W ⊂ [a, b] ⊂ R be a finite set. The discrepancy of W on [a, b] is

D(a, b,W ) = sup
a≤u≤v≤b

∣∣∣∣ |W ∩ (u, v)|
|W |

− v − u

b− a

∣∣∣∣ .
Discrepancy shows ‘how far’ the set of points is from the perfect uniform distribution. We also define

Kronecker and bouncing Kronecker sequences.
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Definition 12 (Kronecker sequences). Let α, β ∈ R. Kronecker sequence (dα,β)k is defined for k ∈ Z≥0 as

dα,βk = ⟨αk + β⟩

where ⟨·⟩ is the fractional part of a number.

Definition 13 (bouncing Kronecker sequences). Let α, β ∈ R. Bouncing Kronecker sequence (bα,β)k is defined
for k ∈ Z≥0 as

bα,βk = ∥αk + β∥ = min{⟨αk + β⟩, ⟨−αk − β⟩}.

From these definitions it is evident that Kronecker sequences are fully contained in range [0, 1] and all
bouncing Kronecker sequences lie in the range [0, 1/2].

The following two theorems are celebrated results from discrepancy theory.

Theorem 4 ([12]). Let α ∈ R be irrational, N ∈ Z≥0. Then, D(0, 1, {dα,0k }Nk=0) → 0 as N → +∞.

Theorem 5 (Three Gap Theorem, [13, 16]). Let α = [a0; a1, a2, . . . ] be irrational, N ∈ Z≥0, sequence (q)k
be defined for α as in (3). Let z ∈ Z≥0 be defined so that qz−1 + qz ≤ N < qz + qz+1 while r ∈ Z≥0 and
s ∈ Z≥0 ∩ Z<qz be defined so that N − qz−1 = rqz + s is the Euclidean division of N − qz−1 by qz.

Then, {dα,0k }Nk=0 contains N +1 points that subdivide [0, 1] into gaps with at most three distinct lengths, namely:

• N + 1− qz gaps of length ℓ1 = ⟨qzα⟩ if z is even or ℓ1 = 1− ⟨qzα⟩ if z is odd,

• s+ 1 gaps of length ℓ2 = 1− ⟨(N − s)α⟩ if z is even or ℓ2 = ⟨(N − s)α⟩ if z is odd,

• qz − s− 1 gaps of length ℓ3 = ℓ1 + ℓ2.

By a gap we understand an interval between two neighbouring points of a set contained within some [a, b] ⊂ R
or between a point of a set and a border point of [a, b] if such an interval does not contain other points of this
set.

2.4 Main result

With all the definitions being given, we are finally ready to present the statement of the main result of this
work.

Theorem 6 (Upper bound for ε-saturation moments). Let G = (V,E) be an incommensurable metric graph,
v∗ ∈ V , ε ∈ R>0. Then, the following two statements are true for W(G, v∗):

1. There exists the finite moment of permanent ε-saturation tperm(ε,G, v∗) ∈ R≥0.

2. tperm(ε,G, v∗) (and, hence, all other ε-saturation moments of W(G, v∗)) admits the upper bound:

tperm(ε,G, v∗) ≤ max
eij∈E

min{tedge(ε, eij , vi), tedge(ε, eij , vj)}.

Here tedge(ε, eij , v) for v ∈ {vi, vj} is defined as

tedge(ε, eij , v) = ρG(v
∗, v) + 2(qz + qz−1)σ

where σ is the length of the shortest (eij , v)-adjoined path and qz is chosen from (q)k defined for σ/|eij |
as in (3) with z ≥ 2 such that

qz >
2|eij |
ε

.

If (eij , v)-adjoined path does not exist, tedge(ε, eij , v) = +∞.
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3 PROOF OF MAIN RESULT

The proof of the main result will involve three consecutive steps. First, we establish a direct connection
between W(G, v∗) and bouncing Kronecker sequences. Second, we prove the existence of the finite moment of
permanent ε-saturation by inducing some properties about the distance between neighbouring moving points
from the discrepancy of Kronecker sequences. Third, we prove several lemmata that will enable us to deduce
the presented upper bound from the Three Gap Theorem. Note, that if in this section we use symbols without
explicitly defining them, then definitions from the statement of Theorem 6 apply.

3.1 Connection with bouncing Kronecker sequences

In the beginning, let us look closely at adjoined paths in G.

Lemma 1. Let eij ∈ E. Then, there is an incident vertex v ∈ {vi, vj} for which an (eij , v)-adjoined path exists.

Proof. We present a constructive proof for this statement.
We know that G is incommensurable, hence, for eij there exists another edge e ∈ E such that |e|/|eij | is
irrational. Since G is connected, there is a simple path p connecting vi with e and going through e itself
meaning that vertices incident to e are two final vertices of p. This path can only have length commensurable
with |eij | if it includes another edge of length incommensurable with |eij |. In this case, redefine e with the latter
edge and start the process over. As we only have a finite number of edges, sooner or later we will be able to
find e such that there is a path connecting vi with e that has a cumulative length incommensurable with |eij |.
This path satisfies requirements 1 and 3 from Definition 2. If it does not contain eij , this is an (eij , vi)-adjoined
path and the statement of the lemma is true.
If it goes through eij , though, we can proceed as follows. Since we consider a simple path, vertices in it cannot
be repeated, thereby, the only way for p to go through eij is to have vj as its second vertex. By cutting off
vi from the beginning of the path we get an (eij , vj)-adjoined path and confirm the statement of the lemma in
this case as well.

Lemma 2. Let eij ∈ E, v ∈ {vi, vj} such that there exists an (eij , v)-adjoined path. Then, the shortest
(eij , v)-adjoined path only contains one edge of length incommensurable with |eij |.

Proof. This can be easily proven by contradiction.
Assume the shortest (eij , v)-adjoined path (vp1

, . . . , vpk
) with p1, . . . , pk meeting all the requirements from

Definition 2 to contain multiple edges of length incommensurable with |eij |. If we cut off the part of this path
following the first edge epk′−1pk′ for some k′ ∈ Z≥1∩Z<k with length incommensurable with |eij |, then the ratio
of its cumulative length to |eij | will be:

|ep1p2
|+ · · ·+ |epk′−2pk′−1

|+ |epk′−1pk′ |
|eij |

=
|ep1p2

|
|eij |

+ · · ·+
|epk′−2pk′−1

|
|eij |︸ ︷︷ ︸

∈Q

+
|epk′−1pk′ |

|eij |︸ ︷︷ ︸
̸∈Q

̸∈ Q.

Hence, this path is also an (eij , v)-adjoined path and, furthermore, it is shorter than (vp1
, . . . , vpk

) which
contradicts the initial assumption. Thus, the shortest (eij , v)-adjoined path can only contain one edge of length
incommensurable with |eij |.

Lemma 1 confirms that the value min{tedge(ε, eij , vi), tedge(ε, eij , vj)} from the statement of Theorem 6 is
always finite for all edges of the graph while Lemma 2 provides an insight into the structure of the shortest
adjoined paths.

Fix now till the end of the entire section some edge eij ∈ E and vertex v ∈ {vi, vj} such that there is an
(eij , v)-adjoined path. Let σ be the length of the shortest (eij , v)-adjoined path p. Evidently, the first hit of
vertex v by a moving point will happen at time moment ρG(v

∗, v). After this, points will start moving along all
edges incident to v including the one belonging to p. By applying the analogous reasoning to further vertices
of p, we deduce that there will be a moving point hitting the last vertex of p at time moment ρG(v

∗, v) + σ
and, if we track the process back, we see that there will be another hit with v at time moment ρG(v

∗, v) + 2σ.
By continuing in the same fashion, we conclude that hits with v will occur, in particular, at time moments
ρG(v

∗, v) + 2nσ for n ∈ Z≥0.
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Consider now a moving point lying on edge eij that is located at v at some time moment of a form ρG(v
∗, v)+

2nσ. Such a point, due to the previous paragraph, will always exist. Note, that starting from time moment
ρG(v

∗, v) + 2nσ this point will behave exactly as if it was spawned at vertex v at time moment ρG(v
∗, v) + 2nσ

even if it was not. Thus, if we restrict ourselves from considering the position of this point at time before
ρG(v

∗, v) + 2nσ, then the birth-time of this moving point can be assumed to be τ = ρG(v
∗, v) + 2nσ and we

can think that it was spawned at v. If we associate v with endpoint 0 of eij , using (1) we will be able to deduce
the following information about the position of this moving point at time moment t = ρG(v

∗, v) + 2Nσ+∆ for
N ∈ Z≥n and ∆ ∈ R≥0 ∩ R<2σ:

aeij ,τ (t) = 2|eij |
∥∥∥∥ t− τ

2|eij |

∥∥∥∥ = 2|eij |
∥∥∥∥ρG(v∗, v) + 2Nσ +∆− ρG(v

∗, v)− 2nσ

2|eij |

∥∥∥∥
= 2|eij |

∥∥∥∥(N − n)
σ

|eij |
+

∆

2|eij |

∥∥∥∥ = 2|eij |b
σ/|eij |,∆/(2|eij |)
N−n . (4)

Thus, if we fix time moment t = ρG(v
∗, v) + 2Nσ + ∆ and vary n from 0 to N , we get (up to a constant

factor 2|eij |) exactly {bσ/|eij |,∆/(2|eij |)
k }Nk=0. Here, sequence parameter α = σ/|eij | ̸∈ Q.

We can think of this set as of positions of a certain subset of moving points on the given edge at the given
moment in time. Pay attention on the fact that we do not necessarily capture positions of all points that might
be on eij at this moment in time, we only capture positions of some of them.

3.2 Proof of existence

Let us now show that there exists a finite moment of permanent ε-saturation. To simplify formulations ahead,
we will denote the length of the longest gap induced by some finite set W ⊂ [a, b] ⊂ R on [a, b] as ℓmax(a, b,W ).
We also mention for further reference that if [u, v] ⊆ [a, b], then ℓmax(u, v,W ∩ [u, v]) ≤ ℓmax(a, b,W ) and if
there is another finite set W ′ ⊂ [a, b], then ℓmax(a, b,W ∪W ′) ≤ ℓmax(a, b,W ).

Lemma 3. Let W ⊂ [a, b] ⊂ R be a finite set. Then, ℓmax(a, b,W ) ≤ (b− a)D(a, b,W ).

Proof. Let (u′, v′) be a gap induced by W on [a, b]. Then, we can show for the length of (u′, v′):

v′ − u′ = (b− a)

∣∣∣∣0− v′ − u′

b− a

∣∣∣∣ = (b− a)

∣∣∣∣ |W ∩ (u′, v′)|
|W |

− v′ − u′

b− a

∣∣∣∣
≤ (b− a) · sup

a≤u≤v≤b

∣∣∣∣ |W ∩ (u, v)|
|W |

− v − u

b− a

∣∣∣∣ = (b− a)D(a, b,W ).

The statement is proven.

Lemma 4. Let α, β ∈ R, N ∈ Z≥0. Then, ℓmax(0, 1, {dα,βk }Nk=0) ≤ ℓmax(0, 1, {dα,0k }Nk=0).

Proof. Even though {dα,βk }Nk=0 ⊂ [0, 1], value 1 is actually unreachable for (dα,β)k, hence, we can also say that

{dα,βk }Nk=0 ⊂ [0, 1).

We start by mapping {dα,βk }Nk=0 from [0, 1) onto a unit circle using invertible transformation x 7→ 2πx. Note,
that under this transformation the leftmost and the rightmost gaps on [0, 1] get merged breaking the mutual

correspondence between gaps induced by {dα,βk }Nk=0 on these two domains. However, in case β = 0 we can see

that dα,00 = 0 making the leftmost gap on [0, 1] degenerate and, thus, preserving the mutual correspondence in
this particular situation as none of the gaps gets ‘cut’ by point 0 on the circle.
Next, we notice that {dα,βk }Nk=0 can be obtained from {dα,0k }Nk=0 by rotating each point from {dα,0k }Nk=0 by 2πβ.
Rotation preserves distances, however, after this rotation point 0 can actually ‘cut’ one of the gaps on the circle
into two gaps on [0, 1] of smaller lengths but lengths of all other gaps will remain the same. Thus, the length
of the longest gap on [0, 1] cannot get bigger than in case β = 0.

Lemma 5. Let α, β ∈ R, N ∈ Z≥0. Then, ℓmax(0, 1/2, {bα,βk }Nk=0) ≤ ℓmax(0, 1, {dα,βk }Nk=0).

Proof. Due to the definition of bouncing Kronecker sequences (see Definition 13) we can represent {bα,βk }Nk=0 as

{bα,βk }Nk=0 = ({dα,βk }Nk=0 ∩ [0, 1/2]) ∪R where R = {bα,βk }Nk=0 \ {d
α,β
k }Nk=0. Hence,

ℓmax

(
0,

1

2
, {bα,βk }Nk=0

)
≤ ℓmax

(
0,

1

2
, {dα,βk }Nk=0 ∩

[
0,

1

2

])
≤ ℓmax(0, 1, {dα,βk }Nk=0).

This finishes the proof.
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Putting together Lemmata 3, 4, and 5, for all irrational α ∈ R, all β ∈ R, and N ∈ Z≥0 we can show:

0 < ℓmax

(
0,

1

2
, {bα,βk }Nk=0

)
≤ ℓmax(0, 1, {dα,βk }Nk=0) ≤ ℓmax(0, 1, {dα,0k }Nk=0)

≤ D(0, 1, {dα,βk }Nk=0)
N→+∞−−−−−→ 0.

Thus, ℓmax(0, 1/2, {bα,βk }Nk=0) → 0 as N → +∞ uniformly over β. Knowing that {bσ/|eij |,∆/(2|eij |)
k }Nk=0 represents

positions of certain moving points on eij (up to a constant factor) at time moment t = ρG(v
∗, v) + 2Nσ +∆,

we conclude that lengths of gaps induced by all moving points on eij also tend to 0 as t goes to infinity.
This means that after a certain moment in time eij becomes indefinitely covered by an ε-net made of moving

points lying on it. As we have a finite number of edges, by taking the maximum of these time moments the
existence of the finite moment of permanent ε-saturation is proven.

3.3 Proof of upper bound

Finally, we show the validity of the claimed upper bound. The general idea is to find an upper bound for the
time moment when each edge gets permanently covered by an ε-net made of moving points lying on it and then
take a maximum of these upper bounds over all edges of G.

To accomplish this, we restrict the set of time moments we choose our upper bounds from. Recall that we
can represent all time moments in the form t = ρG(v

∗, v) + 2Nσ +∆. Recall also that if ∆ = 0, then there is
a moving point at vertex v and parameter β = ∆/(2|eij |) of bouncing Kronecker sequence (bσ/|eij |,∆/(2|eij |))k
representing positions of certain moving points on eij at this time moment equals 0. This means that we can

use the Three Gap Theorem to precisely calculate the lengths of gaps induced by {dσ/|eij |,0k }Nk=0 on [0, 1] the

maximum of which will be an upper bound for the length of the longest gap induced by {bσ/|eij |,∆/(2|eij |)
k }Nk=0

on [0, 1/2] for any ∆ ∈ R≥0 ∩ R<2σ (due to Lemma 5).
Define now (q)k for α = σ/|eij | as in (3). From the Three Gap Theorem we know that gaps of length ℓ3

only exist if s < qz − 1. Given this, we easily see that ℓmax(0, 1, {d
σ/|eij |,∆/(2|eij |)
k }Nk=0) ≤ ℓ3, once again, for all

∆ ∈ R≥0 ∩ R<2σ.
In the end, we would like to find time moment tedge(ε, eij , v) = ρG(v

∗, v) + 2N ′σ such that for all time
moments t > t′ edge eij is definitely covered by an ε-net made of moving points lying on it. To make up a
condition for edge eij we multiply everything by 2|eij |:

{
2|eij |ℓ3 < ε

s < qz − 1
⇔


1 + ⟨qzα⟩ − ⟨(N ′ − s)α⟩ < ε

2|eij |
, if z is even

1− ⟨qzα⟩+ ⟨(N ′ − s)α⟩ < ε

2|eij |
, if z is odd

s < qz − 1.

(5)

We start with the following lemmata.

Lemma 6. Let x = [a0; a1, . . . , am] (m can be +∞), sequences (p)k and (q)k be defined for x as in (2) and (3),
respectively, n ∈ Z≥0 ∩ Z≤m. Then,

qn−1
pn
qn

= pn−1 +
(−1)n+1

qn
.

Proof. This statement can be proven with the following sequence of equalities:

qn−1
pn
qn

(∗)
=

pn−1qn + (−1)n+1

qn
= pn−1 +

(−1)n+1

qn
.

Here, equality (∗) follows from Theorem 1.

Lemma 7. Let x = [a0; a1, . . . , am] (m can be +∞), sequences (p)k and (q)k be defined for x as in (2) and (3),
respectively, n ∈ Z≥2 ∩ Z≤m. Then,〈

qn−1
pn
qn

〉{
≤ ⟨qn−1x⟩ , if n is even

≥ ⟨qn−1x⟩ , if n is odd.
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Proof. From Theorem 2 we know that

qn−1
pn
qn

{
≤ qn−1x , if n is even

≥ qn−1x , if n is odd.

Notice also from (3) and Definition 9 that q0 = 1 and that q0 ≤ q1 and qi < qi+1 for all i ∈ Z≥1. Hence, if
n ≥ 2, then qn > 1. With the help of Lemma 6 and knowing that n ≥ 2 we can show:

⌊
qn−1

pn
qn

⌋
=


⌊
pn−1 −

1

qn

⌋
= pn−1 − 1 , if n is even⌊

pn−1 +
1

qn

⌋
= pn−1 , if n is odd.

Consider the first case when n is even. Since the floor function is monotonous,

⌊qn−1x⌋ ≥
⌊
qn−1

pn
qn

⌋
= pn−1 − 1.

At the same time,

⌊qn−1x⌋ − pn−1 = ⌊qn−1x− pn−1⌋ =
⌊
qn−1

(
x− pn−1

qn−1

)⌋
= −

⌈
qn−1

(
pn−1

qn−1
− x

)⌉
(∗)
≤ −

⌈
qn−1

qn−1(qn−1 + qn)

⌉
= −

⌈
1

qn−1 + qn

⌉
= −1.

Inequality (∗) here is true due to Theorem 2 and Theorem 3. From this chain it follows that ⌊qn−1x⌋ ≤ pn−1−1.
Thus, we have shown that ⌊qn−1x⌋ ≤ pn−1 − 1 and ⌊qn−1x⌋ ≥ pn−1 − 1, hence, ⌊qn−1x⌋ = pn−1 − 1. Since

qn−1
pn
qn

≤ qn−1x

yet ⌊
qn−1

pn
qn

⌋
= ⌊qn−1x⌋,

we conclude that 〈
qn−1

pn
qn

〉
≤ ⟨qn−1x⟩.

For the second case with odd n the proof is alike.

Set now, in accordance with the statement of Theorem 6, N ′ = qz + qz−1 with qz > 2|eij |/ε. We will show
that such N ′ satisfies (5).

Recall from the Three Gap Theorem that r and s will be defined in this case as the Euclidean division of
N ′ − qz−1 by qz: N

′ − qz−1 = rqz + s. Hence, r = 1 and s = 0.
Recall also from the proof of Lemma 7 that q0 = 1 and that q0 ≤ q1 and qi < qi+1 for all i ∈ Z≥1. This

means that if z ≥ 2, then condition s < qz − 1 is guaranteed to be satisfied. According to the statement of
Theorem 6, z ≥ 2.

Let us now consider the case of even z and take a closer look at the constraint set for qz:

qz >
2|eij |
ε

⇔ 1

qz
<

ε

2|eij |
⇔ 1− 1

qz
> 1− ε

2|eij |
(∗)⇔

〈
qz−1

pz
qz

〉
> 1− ε

2|eij |
.

Here, equivalence (∗) holds due to Lemma 6. With the help of Lemma 7 we continue:

⟨qz−1α⟩ ≥
〈
qz−1

pz
qz

〉
> 1− ε

2|eij |
.
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From this:

1− ⟨qz−1α⟩ <
ε

2|eij |
⇔ 1− ⟨(qz + qz−1 − qz)α⟩ <

ε

2|eij |

⇔ 1− ⟨N ′α− qzα⟩ <
ε

2|eij |

⇔ 1− ⟨⟨(N ′ − s)α⟩ − ⟨qzα⟩⟩ <
ε

2|eij |
(∗∗)⇔ 1 + ⟨qzα⟩ − ⟨(N ′ − s)α⟩ < ε

2|eij |

which is exactly the condition for even z from (5). Equivalence (∗∗) is true because 1+ ⟨qzα⟩−⟨(N ′−s)α⟩ = ℓ3,
hence, it must not be greater than 1, thereby, ⟨qzα⟩ − ⟨(N ′ − s)α⟩ ∈ (−1, 0) and ⟨⟨(N ′ − s)α⟩ − ⟨qzα⟩⟩ =
⟨(N ′ − s)α⟩ − ⟨qzα⟩.

We have shown that for even z ≥ 2 conditions from Theorem 6 imply the part of (5) relevant to even z, i.e.qz >
2|eij |
ε

z is even
⇒

1 + ⟨qzα⟩ − ⟨(N ′ − s)α⟩ < ε

2|eij |
s < qz − 1.

The proof for odd z repeats the same actions.
All in all, both tedge(ε, eij , vi) and tedge(ε, eij , vj), given the existence of the respective adjoined paths,

calculated in this fashion indeed provide upper bounds for the moment in time when eij gets permanently
covered by an ε-net made of moving points lying on it. Thus, by choosing the greatest upper bound for this
event among all edges of the graph we get the upper bound for the moment of permanent ε-saturation of G.

The theorem is proven.

4 DISCUSSION

The upper bound presented in this paper, as to our knowledge, is the first of a kind. It can be used to estimate
the time of permanent ε-saturation for any particular dispersing moving points system (time of permanent
saturation for any particular system of moving intervals of length 2ε) by mechanically computing several values
one after another, however, our results do not provide any insight on the general change of ε-saturation time
depending on the value of ε. In particular, it would be interesting to derive the asymptotic behaviour of the
moment of permanent ε-saturation for any fixed W(G, v∗) as ε → 0.

Besides, we see a possibility of improvement for the presented bound. This improvement can be achieved by
thoroughly studying lengths of gaps of bouncing Kronecker sequences (instead of classical Kronecker sequences
as we did in this text) and deriving more precise upper bounds or even exact formulae for them. Another
direction of enhancement corresponds to the development of discrepancy theory for more general measurable
spaces like metric graphs. This path can potentially allow us to estimate the moment of permanent ε-saturation
with one inequality instead of, de-facto, a system of separate inequalities for all edges.
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