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We address an optimal stopping problem over the set of Bermudan-type strategies Θ (which we understand in a more general sense than the stopping strategies for Bermudan options in finance) and with non-linear operators (non-linear evaluations) assessing the rewards, under general assumptions on the non-linear operators ρ. We provide a characterization of the value family V in terms of what we call the pΘ, ρq-Snell envelope of the pay-off family. We establish a Dynamic Programming Principle. We provide an optimality criterion in terms of a pΘ, ρq-martingale property of V on a stochastic interval. We investigate the pΘ, ρq-martingale structure and we show that the "first time" when the value family coincides with the pay-off family is optimal. The reasoning simplifies in the case where there is a finite number n of pre-described stopping times, where n does not depend on the scenario ω. We provide examples of non-linear operators entering our framework.

Introduction

In the recent years, optimal stopping problems with non-linear evaluations have gained an increasing interest in the financial mathematics literature and in the stochastic control literature.

In the linear case, a classical reference are the notes by El [START_REF] Karoui | Les aspects probabilistes du contrôle stochastique[END_REF]. A presentation based on families of random variables indexed by stopping times can be found in [START_REF] Quenez | Optimal stopping time problem in a general framework[END_REF]. In discrete time, a non-linear optimal stopping with dynamic monetary utilities was studied in [START_REF] Krätschmer | Representations for optimal stopping under dynamic monetary utility functionals[END_REF], and with g-evaluations (induced by Backward SDEs with Lipschitz driver g) -in [START_REF] Grigorova | Optimal stopping and a non-zero-sum Dynkin game in discrete time with risk measures induced by BSDEs[END_REF]. In continuous time, a non-linear optimal stopping with dynamic convex risk measures was studied in [START_REF] Bayraktar | Optimal stopping for dynamic convex risk measures[END_REF]; with the so-called F -expectations -in Bayraktar and Yao-Part I (2011) and Bayraktar and Yao-Part II (2011); with g-evaluations-in e.g., Quenez and Sulem (2014), Grigorova et al. (2015), Grigorova et al. (2020), [START_REF] Klimsiak | Reflected BSDEs with two optional barriers and monotone coefficient on general filtered space Electronic[END_REF]; with a focus on applications to American options in complete or incomplete non-linear financial markets -in [START_REF] Kim | American options in nonlinear markets[END_REF], [START_REF] Grigorova | American options in a non-linear incomplete market model with default[END_REF]; with suprema of linear/affine operators over sets of measures-in, e.g. [START_REF] Ekren | Optimal stopping under nonlinear expectation[END_REF], [START_REF] Nutz | Optimal Stopping under adverse non-linear expectations and related games[END_REF].

In the present paper, we address an optimal stopping problem with Bermudantype strategies and with general non-linear operators (non-linear evaluations) assessing the rewards.

Our purpose is two-fold:

1. We consider a modelling framework which is in-between the discrete-time and the continuous-time framework, by focusing on what we call in this paper the Bermudan-type stopping strategies1 .

-In the discrete-time framework with finite terminal horizon T ą 0, the agent is allowed to stop at a finite number only of pre-described determinstic times, and gain/loss processes are indexed by these pre-described determinsitic times. If we denote by t0 " t 0 ď t 1 ď ... ď t n " T u the predefined finite deterministic grid of n `1 time points, the stopping strategies of the agent are of the form τ " ř n k"0 t k 1 A k , where pA k q kPt0,1,...nu is a partition, such that A k is F t k -measurable, for each k P t0, 1, . . . , nu. Thus, for almost each scenario ω, the agent is allowed to stop only at a finite number of times (provided they do that in a non-anticipative way), where both the number of time instants (here, n `1) and the time instants themselves (here, the t k 's), are the same, whatever the scenario ω.

-In the continuous-time framework (with finite horizon T ą 0), the agent is allowed to stop continuously at any time instant t P r0, T s, and the gain/loss processes are indexed by t P r0, T s. The set of the agent's stopping strategies is the set of all stopping times valued in r0, T s. Thus, for almost each scenario ω, the agent can stop at any time instant (provided they do that in a nonanticipative way).

-In the intermediate modelling framework of the current paper (with finite terminal horizon T ą 0), in (almost) every scenario ω, the agent is allowed to stop at a finite number of times or infinite countable number of times (provided they do that in a non-anticipative way), where both the number of time instants and the time instants themselves are allowed to depend on the scenario ω. More specifically, we are given a non-decreasing sequence of stopping times pθ k q kPN such that lim kÑ8 θ k " T. This countable stopping grid being given, the agent's stopping strategies τ are thus of the form τ " ř `8 k"0 θ k 1 A k `T 1 Ā, where tpA k q kPN , Āu is a partition, such that A k is F θ k -measurable, for each k P N, and Ā is F T -measurable. We call τ of this form a Bermudan stopping strategy, and we denote by Θ the set of Bermudan stopping strategies. The gain/losses are then "naturally" defined via families of random variables indexed by the stopping times τ of this form. This modelling framework is thus closer to the real-life situations where the number of possible decision points depends on the scenario/state of nature, and so do the decision times themselves, but where the agents do not necessarily act continuously in time.

2. The second purpose of the paper is to allow for gains/losses being assessed by general non-linear evaluations ρ " pρ S,τ r¨sq, while imposing minimal assumptions on the non-linear operators, under which the results hold.

We note also that, in the above framework, working with families of random variables φ " pφpτ qq indexed by Bermudan stopping times τ , allows for an exposition in which it is not necessary to invoke any results from the theory of stochastic processes.

After formulating the non-linear optimal stopping with Bermudan-style strategies, we provide a characterization of the value family in terms of a suitably defined non-linear Snell envelope. A dynamic programming principle is established under suitable assumptions on the non-linear evaluations. An optimality criterion is proven and existence of optimal stopping times is investigated; it is shown in particular that the first "hitting time" is optimal. Examples of non-linear operators, well-known in financial mathematics and in stochastic control, entering our framework, are given, such as the non-linear evaluations induced by Backward SDEs, the non-linear F -expectations introduced by Bayraktar and Yao, as well as the dynamic concave utilities (from the risk measurement literature). In the appendix, we consider the particular case of finite number of pre-described stopping times 0 " θ 0 , θ 1 , ..., θ n " T , where n does not depend on the scenario ω, and provide an explicit construction of the non-linear Snell envelope by backward induction, as well as a simpler proof of the optimality of the first hitting time.

The remainder of the paper is organized as follows: In Subsection 2.1, we set the framework and the notation. In Subsection 2.2, we formulate the optimisation problem. In Subsection 2.3, we characterize the value family of the problem in terms of the pΘ, ρq-Snell envelope family of the pay-off family. In Subsection 2.4, we show a Dynamic Programming Principle. In Subsection 2.5, we investigate the question of optimal stopping times: we provide some technical lemmas regarding the pΘ, ρq-martingale property, we provide an optimality criterion, as well as some useful consequences of the DPP, and we show that, under suitable assumptions, "the first time" ν k when the value family hits the pay-off family is optimal. Section 3 is dedicated to three examples of non-linear operators from the literature, entering our framework. The Appendix is dedicated to the particular case where in almost each scenario ω P Ω, there are n `1 pre-described opportunities for stopping, where n does not depend on ω P Ω. In this case, we have an explicit construction of the pΘ, ρq-Snell envelope by backward induction and a simplified proof of the optimality of ν k (requiring "less continuity" on ρ).

2 Optimal stopping with non-linear evaluations and Bermudan strategies

The framework

Let T ą 0 be a fixed finite terminal horizon. Let pΩ, F , P q be a (complete) probability space equipped with a right-continuous complete filtration F " tF t : t P r0, T su.

In the sequel, equalities and inequalities between random variables are to be understood in the P -almost sure sense. Equalities between measurable sets are to be understood in the P -almost sure sense.

Let N be the set of natural numbers, including 0. Let N ˚be the set of natural numbers, excluding 0. Let (θ k q kPN be a sequence of stopping times satisfying the following properties:

(a) The sequence pθ k q kPN is non-decreasing, i.e. for all k P N, θ k ď θ k`1 , a.s.

(b) lim kÑ8 Ò θ k " T a.s.

Moreover, we set θ 0 " 0. We note that the family of σ-algebras pF θ k q kPN is non-decreasing (as the sequence pθ k q is non-decreasing). We denote by Θ the set of stopping times τ of the form

τ " `8 ÿ k"0 θ k 1 A k `T 1 Ā, (1) 
where tpA k q `8 k"0 , Āu form a partition of Ω such that, for each k P N, A k P F θ k , and Ā P F T .

The set Θ can also be described as the set of stopping times τ such that for almost all ω P Ω, either τ pωq " T or τ pωq " θ k pωq, for some k " kpωq P AE.

Note that the set Θ is closed under concatenation, that is, for each τ P Θ and each A P F τ , the stopping time τ 1 A `T 1 A c P Θ. More generally, for each τ P Θ, τ 1 P Θ and each A P F τ ^τ 1 , the stopping time τ 1 A `τ 1 1 A c is in Θ. The set Θ is also closed under pairwise minimization (that is, for each τ P Θ and τ 1 P Θ, we have τ ^τ 1 P Θ) and under pairwise maximization (that is, for each τ P Θ and τ 1 P Θ, we have τ _ τ 1 P Θ). Moreover, for each non-decreasing (resp. non-increasing) sequence of stopping times pτ n q nPN P Θ AE , we have lim nÑ`8 τ n P Θ.

We note also that all stopping times in Θ are bounded from above by T .

Remark 2.1. We have the following canonical writing of the sets in (1):

A 0 " tτ " θ 0 u; A n`1 " tτ " θ n`1 , θ n`1 ă T uzpA n Y ... Y A 0 q; for all n P N Å " pY `8 k"0 A k q c
From this writing, we have:

if ω P A k`1 X tθ k ă T u, then ω R tτ " θ k u.
For each τ P Θ, we denote by Θ τ the set of stopping times ν P Θ such that ν ě τ a.s. The set Θ τ satisfies the same properties as the set Θ. We will refer to the set Θ as the set of Bermudan stopping strategies, and to the set Θ τ as the set of Bermudan stopping strategies, greater than or equal to τ (or the set of Bermudan stopping strategies from time τ perspective).

Definition 2.1. We say that a family φ " pφpτ q, τ P Θq is admissible if it satisfies the following conditions 1. for all τ P Θ, φpτ q is a real valued random variable, which is F τmeasurable.

2. for all τ, τ 1 P Θ, φpτ q " φpτ 1 q a.s. on tτ " τ 1 u. Moreover, for p P r1, `8s fixed, we say that an admissible family φ is pintegrable, if for all τ P Θ, φpτ q is in L p .

Let φ " pφpτ q, τ P Θq be an admissible family. For a stopping time τ of the form (1), we have

φpτ q " `8 ÿ k"0 φpθ k q1 A k `φpT q1 Ā a.s. ( 2 
)
Given two admissible families φ " pφpτ q, τ P Θq and φ 1 " pφ 1 pτ q, τ P Θq, we say that φ is equal to φ 1 and write φ " φ 1 if, for all τ P Θ, φpτ q " φ 1 pτ q a.s. We say that φ dominates φ 1 and write φ ě φ 1 if, for all τ P Θ, φpτ q ě φ 1 pτ q a.s.

The following remark is worth noting, as a consequence of the admissibility.

Remark 2.2. Let φ " pφpτ q, τ P Θq be an admissible family. Let τ P Θ and let pτ n q P Θ N be such that for (almost) each ω P Ω, there exists n 0 " n 0 pωq (depending on ω) satisfying, for all n ě n 0 pωq, τ n pωq " τ pωq. Then, for all n ě n 0 pωq, φpτ n qpωq " φpτ qpωq.

We show this by the following reasoning: for each fixed n P N, let C n :" tτ n " τ u.

For each fixed m P N, let A m :" X něm C n " X něm tτ n " τ u. Note that the set A m might be empty. We have Y mPN A m " Ω. Moreover, by the admissibility of φ, we have, for each fixed n P N, φpτ n q " φpτ q, on C n " tτ n " τ u. Hence, for each fixed m P N, for all n ě m, φpτ n q " φpτ q on A m " X něm C n .

(3)

Let ω P Ω. By assumption, there exists n 0 " n 0 pωq such that ω P A n 0 . By property (3) (applied with m " n 0 ), for all n ě n 0 , φpτ n qpωq " φpτ qpωq, which is the desired conclusion.

The optimisation problem

Let p P r1, `8s be fixed. Let ξ " pξpτ q, τ P Θq be p-integrable admissible family modelling an agent's dynamic financial position.

Remark 2.3. For example, the family ξ can be defined via a given progressive process pξ t q tPr0,T s , corresponding to a given dynamic financial position process. For each τ P Θ, we set ξpτ q :" ξ τ . The family of random variables ξ " pξpτ q, τ P Θq can be shown to be admissible. If for each k P AE, ξ θ k P L p , and ξ T P L p , then the admissible family ξ is p-integrable. The financial interpretation of this example is as follows: the agent can choose his/her strategy only among the stopping times in Θ, that is, among the stopping times which, for almost each ω, have values in the finite grid t0, θ 1 pωq, . . . , θ npωq pωq " T u, where npωq depends on ω, or in the infinite countable grid t0, θ 1 pωq, . . . , θ n pωq, θ n`1 pωq, . . . , T u. In this example, the financial position which is actually taken into account in the problem corresponds to the values of the process pξ t q only at times 0, θ 1 , ..., θ n , θ n`1 , ..., T .

The minimal risk at time 0 over all Bermudan stopping strategies is defined by: Ṽ p0q :" inf τ PΘ ρ0,τ pξpτ qq " ´V p0q,

where

V p0q :" sup τ PΘ ρ 0,τ rξpτ qs, (5) 
and where ρ 0,τ r¨s " ´ρ 0,τ r¨s.

Let p P r1, `8s. We introduce the following properties on the non-linear operators ρ S,τ r¨s, which will appear in the sequel.

For S P Θ, S 1 P Θ, τ P Θ, for η, η 1 and η 2 in L p pF τ q, for ξ " pξpτ qq an admissible p-integrable family: (i) ρ S,τ : L p pF τ q ÝÑ L p pF S q (ii) (admissibility) ρ S,τ rηs " ρ S 1 ,τ rηs a.s. on tS " S 1 u.

(iii) (knowledge preservation) ρ τ,S rηs " η, for all η P L p pF S q, all τ P Θ S .

(iv) (monotonicity) ρ S,τ rη 1 s ď ρ S,τ rη 2 s a.s., if η 1 ď η 2 a.s. (v) (consistency) ρ S,θ rρ θ,τ rηss " ρ S,τ rηs, for all S, θ, τ in Θ such that S ď θ ď τ a.s. (vi) ("generalized zero-one law") I A ρ S,τ rξpτ qs " I A ρ S,τ 1 rξpτ 1 qs, for all A P F S , τ P Θ S , τ 1 P Θ S such that τ " τ 1 on A. (vii) (monotone Fatou property with respect to terminal condition) ρ S,τ rηs ď lim inf nÑ`8 ρ S,τ rη n s, for pη n q, η such that pη n q is non-decreasing, η n P L p pF τ q, sup n η n P L p , and lim nÑ`8 Ò η n " η a.s.

Fatou property is often assumed in the literature on risk measures (particularly in the case where p " `8).

Note also that if ρ satisfies monotonocity (iv) and monotone Fatou property with respect to terminal condition (vii), then ρ S,τ rηs " lim nÑ`8 ρ S,τ rη n s, for pη n q, η such that pη n q is non-decreasing, η n P L p pF τ q, sup n η n P L p , and lim nÑ`8 Ò η n " η a.s. Indeed, by monotonicity of ρ S,τ r¨s, we have ρ S,τ rη n s ď ρ S,τ rηs; hence, lim sup nÑ`8 ρ S,τ rη n s ď ρ S,τ rηs. On the other hand, by (vii), ρ S,τ rηs ď lim inf nÑ`8 ρ S,τ rη n s. Hence, ρ S,τ rηs " lim nÑ`8 ρ S,τ rη n s. Such type of property is also known in the literature (e.g. risk measures) as continuity from below.

Let us emphasize that no assumptions of convexity (or concavity) or translation invariance of the non-linear operators ρ are made.

pΘ, ρq-Snell envelope family and optimal stopping

As is usual in optimal control, we embed the above optimization problem (5) in a larger class of problems by considering for each ν P Θ, the random variable V pνq, where V pνq :" ess sup τ PΘν ρ ν,τ rξpτ qs.

We note that, if ρ satisfies the property of knowledge preservation (property (iii)), then V pT q " ρ T,T rξpT qs " ξpT q.

Lemma 2.1. (Admissibility of V ) Under the assumption of admissibility (ii) and "generalized zero-one law" (vi) on the non-linear operators, the family of random variables V :" pV pνq, ν P Θq defined in (6) is admissible in the sense of Definition 2.1.

The proof uses arguments similar to those of Lemma 8.1 in Grigorova et al. (2020), combined with some properties of the non-linear operators ρ.

Proof. Property 1. of the definition of admissibility follows from the definition of the essential supremum, the random variables of the family pρ ν,τ rξpτ qs, τ P Θ ν q being F ν -measurable. Let us prove Property 2. Let ν and ν 1 be two stopping times in Θ. We set A :" tν " ν 1 u and we show that V pνq " V pν 1 q, P -a.s. on A. We have

I A V pνq " I A ess sup τ PΘν ρ ν,τ rξpτ qs " ess sup τ PΘν I A ρ ν,τ rξpτ qs " ess sup τ PΘν I A ρ ν 1 ,τ rξpτ qs, (7) 
where we have used the admissibility property on ρ for the last equality. Let τ P Θ ν . We set τ A :" τ I A `T I A c . We note that τ A P Θ ν 1 and τ A " τ p.s. on A. Using this, the admissibility of the family ξ, and the generalized zero-one law property of ρ, we get I A ρ ν 1 ,τ rξpτ qs " I A ρ ν 1 ,τ A rξpτ A qs ď I A V pν 1 q. As τ P Θ ν is arbitrary, we conclude that ess sup τ PΘν I A ρ ν 1 ,τ rξpτ qs ď I A V pν 1 q. Combining this inequality with (7) gives I A V pνq ď I A V pν 1 q. We obtain the converse inequality by interchanging the roles of ν and ν 1 .

Under the assumptions of the above lemma, the following remark holds true.

Remark 2.4. As a consequence of the admissibility of the value family V , we have: for each k P N, it holds V pνq " V pθ k q a.s. on tν " θ k u and V pνq " V pT q a.s. on tν " T u. Hence, under the assumptions of Lemma 2.1, for ν P Θ of the form ν "

ř `8 k"0 θ k 1 A k `T 1 Ā, we have V pνq " ř `8 k"0 V pθ k q1 A k `V pT q1 Ā.
Remark 2.5. 1. Under the assumption of knowledge preservation (iii) on ρ, we have V pθ k q ě ξpθ k q, for each k P N. Indeed, V pθ k q " ess sup τ PΘ θ k ρ θ k ,τ rξpτ qs ě ρ θ k ,θ k rξpθ k qs, and by the property (iii) of the non-linear operators, we have ρ θ k ,θ k rξpθ k qs " ξpθ k q. Hence, V pθ k q ě ξpθ k q.

2. If, moreover, ρ satisfies the properties of admissibility (ii) and "generalized" zero-one law (vi), then, for each τ P Θ, V pτ q ě ξpτ q. This follows from the first statement of the remark, and from the admissibility of ξ and that of V (cf. Lemma 2.1 and Remark 2.4). Now, let us introduce the notion of pΘ, ρq-(super)martingale family.

Definition 2.2. Let φ " pφpτ q, τ P Θq be a p-integrable admissible family. We say that φ is a pΘ, ρq-supermartingale (resp. pΘ, ρq-martingale) family if for all σ, τ in Θ such that σ ď τ a.s., we have ρ σ,τ rφpτ qs ď φpσq (resp. " φpσqq a.s.

We introduce the following integrability assumption on V , which is assumed in the sequel.

Assumption 2.1. For each ν P Θ, the random variable V pνq is in L p .

Remark 2.6. Let ρ satisfy the assumptions of admissibility (ii), knowledge preservation (iii), "generalized" zero-one law (vi), and monotonicity (iv). If the pay off family ξ " pξpτ qq τ PΘ is p-integrable and dominated from above by a p-integrable pΘ, ρq-martingale M, then the value family V satisfies the integrability Assumption 2.1. Indeed, let S P Θ be given. By Remark 2.5, Statement 2, V pSq ě ξpSq. On the other hand, by assumption on ξ, for each τ P Θ S , ξpτ q ď Mpτ q. Hence, by monotonicity of ρ, we have ρ S,τ rξpτ qs ď ρ S,τ rMpτ qs " MpSq, where we have used the pΘ, ρq-martingale property of M for the last equality. So, V pSq " ess sup τ PΘ S ρ S,τ rξpτ qs ď MpSq. Hence, we get ξpSq ď V pSq ď MpSq, which proves that V pSq P L p . Therefore, Assumption 2.1 is satisfied.

We will see in Section 3, concrete examples for which this integrability assumption on V is satisfied.

Theorem 2.1. 1. (pΘ, ρq-supermartingale) Under the assumptions of admissibility (ii), consistency (v), "generalized zero-one law" (vi) and monotone Fatou property with respect to the terminal condition (vii) on the non-linear operators, the value family V is a pΘ, ρq-supermartingale family.

2. (pΘ, ρq-Snell envelope) If moreover the non-linear operators also satisfy the properties of knowledge preservation (iii) and monotonicity (iv), the value family V is equal to the pΘ, ρq-Snell envelope of the family ξ, that is, the smallest pΘ, ρqsupermartingale family dominating the family ξ " pξpτ q, τ P Θq.

To prove this theorem, we first state a useful lemma.

Lemma 2.2. (Maxmizing sequence lemma) Under the assumption of "generalized zero-one law" (vi) on the non-linear operators, there exists a maximizing sequence for the value V pSq of problem (6).

The proof of this lemma is similar to that of Lemma 2.3 in Grigorova et al. (2020) and is given for the convenience of the reader.

Proof. It is sufficient to show that the family pρ S,τ rξpτ qsq τ PΘ S is stable under pairwise maximization. The result then follows by a well-known property of the essential supremum. Let τ P Θ S and τ 1 P Θ S . Set A :" tρ S,τ 1 rξpτ 1 qs ď ρ S,τ rξpτ qsu and ν :" τ I A `τ 1 I A c . Trivially, A P F S . Moreover, ν P Θ S (cf. properties of the set Θ S ). Also, ν " τ on A, ν " τ 1 on A c . By the "generalized zero-one law" of the non-linear operators ρ, we get

ρ S,ν rξpνqs " ρ S,ν rξpνqsI A `ρS,ν rξpνqsI A c " ρ S,τ rξpτ qsI A `ρS,τ 1 rξpτ 1 qsI A c " max `ρS,τ rξpτ qs, ρ S,τ 1 rξpτ 1 qs ˘. (8) 
This shows the stability under pairwise maximization of the value family (indexed by Θ S ).

Let us now show the theorem. The idea of the proof is similar to that of Theorem 8.2 in Grigorova et al. (2020). The properties on ρ being weakened here, we give the proof for clarity and completeness.

Proof of Theorem 2.1. By Lemma 2.1, the value family V is admissible. By Assumption 2.1, the value family V is p-integrable.

Let now S P Θ and τ P Θ S . To show the pΘ, ρq-supermartingale property of the value family, it remains to show ρ S,τ rV pτ qs ď V pSq a.s. By the maximizing sequence lemma (Lemma 2.2), there exists a sequence pτ p q P pΘ τ q AE , such that ρ S,τp rξpτ p qs ď V pSq, the last inequality being due to Θ τ Ă Θ S . We conclude that ρ S,τ rV pτ qs ď V pSq.

V pτ q " lim pÑ`8 Ò ρ τ,
Hence, the value family V is a pΘ, ρq-supermartingale family. This proves Statement 1 of the theorem.

Let us now show Statement 2. By Remark 2.5, Statement 2, we have V ě ξ. By Statement 1, we have that V is a pΘ, ρq-supermartingale. It remains to show that V is the smallest. Let pV 1 pτ qq be another pΘ, ρq-supermartingale family, such that, for each τ P Θ, V 1 pτ q ě ξpτ q (a.s.). Let S P Θ, τ P Θ S . By the monotonicity of the non-linear operators ρ, we have ρ S,τ rV 1 pτ qs ě ρ S,τ rξpτ qs.

On the other hand, as pV 1 pτ qq is a pΘ, ρq-supermartingale family, we have V 1 pSq ě ρ S,τ rV 1 pτ qs. Hence, V 1 pSq ě ρ S,τ rV 1 pτ qs ě ρ S,τ rξpτ qs. By taking the essential supremum over τ P Θ S in this inequality, we get

V 1 pSq ě ess sup τ PΘ S ρ S,τ rξpτ qs " V pSq (a.s.).

The proof is complete.

2.4

The strict value family and the Dynamic Programming Principle (DPP)

Definition 2.3 (Dynamic Programming Principle). We say that an admissible p-integrable family satisfies the Dynamic Programming Principle (abridged DPP), if the following property holds true: For all k P N,

φpθ k q " max `ξpθ k q, ρ θ k ,θ k`1 rφpθ k`1 qs ˘, (9) 
and φpT q " ξpT q.

The purpose of this sub-section is to investigate under which assumptions on ρ, the DPP holds. To do this, we are first interested in "what happens on the right of V pθ k q", for each k P AE.

Let k P AE be fixed. We define

Θ θ k :" tτ P Θ θ k : τ ą θ k on tθ k ă T u and τ " T on tθ k " T uu,
and we define the strict value V `pθ k q at θ k by:

V `pθ k q :" ess sup τ PΘ θk ρ θ k ,τ rξpτ qs.

Remark 2.7. We have Θ θ k " Θ θ k`1 . Indeed, let τ P Θ θ k . Then τ can be written as:

τ " `8 ÿ i"k`1 θ i ½ A i Xtθ k ăT u `T ˆ½ ĀXtθ k ăT u `T ˆ½tθ k "T u ,
where tpA i q iěk`1 , Āu is a partition of Ω such that for each i ě k `1, A i P F θ i , and

Ā P F T . We set B i :" A i X tθ k ă T u, for i ě k `1, B :" Ā X tθ k ă T uand B k :" tθ k " T u.
We have tpB i q iěk , Bu form a partition of Ω;

for each i ě k, B i is F θ i -measurable, and B is F T -measurable. Moreover, τ ě θ k`1 (indeed, τ ě θ k`1 on tθ k ă T u and τ " T " θ k " θ k`1 on tθ k " T u). Hence, τ P Θ θ k`1 .
Conversely, let τ P Θ θ k`1 ; then, τ can be written as:

τ " `8 ÿ i"k`1 θ i ½ A i Xtθ k ăT u `T ½ ĀXtθ k ăT u ``8 ÿ i"k`1 θ i ½ A i Xtθ k "T u `T ½ ĀXtθ k "T u " `8 ÿ i"k`1 θ i ½ A i Xtθ k ăT u `T ½ ĀXtθ k ăT u ``8 ÿ i"k`1 T ½ A i Xtθ k "T u `T ½ ĀXtθ k "T u . Hence, τ P Θ θ k `.
Due to this remark, we get

V `pθ k q " ess sup τ PΘ θk ρ θ k ,τ rξpτ qs " ess sup τ PΘ θ k`1 ρ θ k ,τ rξpτ qs. (10) 
Lemma 2.3. Under the assumption of "generalized zero-one law" (vi) on the nonlinear operators, there exists a maximizing sequence for V `pθ k q.

Proof. The proof of this lemma is similar to the proof of the existence of a maximizing sequence for V pθ k q, and is left to the readers. (We also refer to the proof of Lemma 2.3 in Grigorova et al. (2020) for similar arguments).

The following proposition establishes that the strict value V `pθ k q at θ k is equal to the non-linear evaluation from θ k perspective of the value V pθ k`1 q.

Proposition 2.1. Under the assumptions of monotonicity (iv), consistency (v), "generalized zero-one law" (vi) and monotone Fatou property with respect to the terminal condition (vii) on the non-linear operators, we have

V `pθ k q " ρ θ k ,θ k`1 rV pθ k`1 qs. Proof. First we show that V `pθ k q ď ρ θ k ,θ k`1 rV pθ k`1 qs.
By Lemma 2.3, there exists a maximizing sequence pτ m q P pΘ θ k`1 q AE such that

V `pθ k q " lim mÑ`8 Ò ρ θ k ,τm rξpτ m qs.
Now, by using the consistency property of the non-linear evaluations, we get

V `pθ k q " lim mÑ`8 Ò ρ θ k ,τm rξpτ m qs " lim mÑ`8 Ò ρ θ k ,θ k`1 rρ θ k`1 ,τm rξpτ m qss. (11) 
For each m P AE, we have

ρ θ k`1 ,τm rξpτ m qs ď ess sup τ PΘ θ k`1 ρ θ k`1 ,τ rξpτ qs " V pθ k`1 q.
Then, by the monotonicity property of ρ θ k ,θ k`1 r¨s, we get

ρ θ k ,θ k`1 rρ θ k`1 ,τm rξpτ m qss ď ρ θ k ,θ k`1 rV pθ k`1 qs.
Hence, we have

lim mÑ`8 Ò ρ θ k ,θ k`1 rρ θ k`1 ,τm rξpτ m qss ď lim mÑ`8 Ò ρ θ k ,θ k`1 rV pθ k`1 qs " ρ θ k ,θ k`1 rV pθ k`1 qs.
We conclude, combining this with (11), that

V `pθ k q ď ρ θ k ,θ k`1 rV pθ k`1 qs.
Now, let us show the converse inequality. By Lemma 2.2, there also exists a maximizing sequence pτ 1 m q P pΘ θ k`1 q AE such that

V pθ k`1 q " lim mÑ`8 Ò ρ θ k`1 ,τ 1 m rξpτ 1 m qs.
Hence,

ρ θ k ,θ k`1 rV pθ k`1 qs " ρ θ k ,θ k`1 r lim mÑ`8 Ò ρ θ k`1 ,τ 1 m rξpτ 1 m qss.
We first use the monotone Fatou property with respect to the terminal condition of the non-linear operator ρ θ k ,θ k`1 r¨s; then, we apply the consistency property of the non-linear operators to get:

ρ θ k ,θ k`1 rV pθ k`1 qs ď lim inf mÑ`8 ρ θ k ,θ k`1 rρ θ k`1 ,τ 1 m rξpτ 1 m qss " lim inf mÑ`8 ρ θ k ,τ 1 m rξpτ 1 m qs ď ess sup τ PΘ θ k`1 ρ θ k ,τ rξpτ qs " V `pθ k q,
where we have used Eq. ( 10) to obtain the last equality. Hence,

ρ θ k ,θ k`1 rV pθ k`1 qs " V `pθ k q.
The proof is complete.

Proposition 2.2. Under the assumptions (iii) and "generalized zero-one law" (vi) on the non-linear operators, we have

V pθ k q " ξpθ k q _ V `pθ k q.
Proof. By Remark 2.5, first statement, which can be applied as ρ satisfies property (iii), we have V pθ k q ě ξpθ k q. On the other hand, since Θ θ k`1 Ă Θ θ k , we have V pθ k q ě V `pθ k q. By combining these two inequalities, we get V pθ k q ě ξpθ k q _ V `pθ k q. It remains to show the converse inequality. Let τ P Θ θ k . We define τ " τ ½ tτ ąθ k u `T ½ tτ ďθ k u . As τ P Θ θk , we have V `pθ k q " ess sup τ PΘ θk ρ θ k ,τ rξpτ qs ě ρ θ k ,τ rξpτ qs.

Hence, we have

½ tτ ąθ k u ρ θ k ,τ rξpτqs ď ½ tτ ąθ k u V `pθ k q. ( 12 
)
Moreover, on the set tτ ą θ k u, we have τ " τ , so the "generalized zero-one law" gives

½ tτ ąθ k u ρ θ k ,τ rξpτqs " ½ tτ ąθ k u ρ θ k ,τ rξpτ qs. ( 13 
)
By combining ( 12) and ( 13), we get

½ tτ ąθ k u ρ θ k ,τ rξpτ qs ď ½ tτ ąθ k u V `pθ k q. ( 14 
)
On the other hand, as τ P Θ θ k , we have

ρ θ k ,τ rξpτ qs " ½ tτ "θ k u ρ θ k ,τ rξpτ qs `½tτąθ k u ρ θ k ,τ rξpτ qs.
By using the "generalized zero-one law" and property (iii) of the non-linear operator ρ θ k ,τ r¨s, we get

½ tτ "θ k u ρ θ k ,τ rξpτ qs " ½ tτ "θ k u ρ θ k ,θ k rξpθ k qs " ½ tτ "θ k u ξpθ k q. ( 15 
)
From Eqs. ( 14) and ( 15), we get

ρ θ k ,τ rξpτ qs " ½ tτ "θ k u ξpθ k q `½tτąθ k u ρ θ k ,τ rξpτ qs ď ½ tτ "θ k u ξpθ k q `½tτąθ k u V `pθ k q " ξpθ k q _ V `pθ k q.
Now, by taking the essential supremum over τ P Θ θ k , we get V pθ k q ď ξpθ k q _ V `pθ k q. Hence, the proof is complete.

We refer to [START_REF] Quenez | Optimal stopping time problem in a general framework[END_REF] for a similar approach the one in the above proposition in the linear case.

By combining Proposition 2.1 and Proposition 2.2, we get:

Theorem 2.2 (DPP). Under the assumptions of knowledge preservation (iii), monotonicity (iv), consistency (v), "generalized zero-one law" (vi) and monotone Fatou property with respect to the terminal condition (vii) on the non-linear operators, the value family V satisfies the DPP:

for each k P AE, V pθ k q " ξpθ k q _ ρ θ k ,θ k`1 rV pθ k`1 qs, and V pT q " ξpT q.

Optimal stopping times

For each k, let us define the random variable ν k ν k :" ess inf A k where A k :" t τ P Θ θ k : V pτ q " ξpτ q a.s. u.

As T ă 8, under property (iii) on ρ, the set A k is clearly non-empty (as V pT q " ξpT q in this case). Moreover, it is clearly stable by pairwise minimization. Hence, by classical properties of the essential infimum, there exists a non increasing sequence pτ n q in A k such that lim nÑ`8 τ n " ν k a.s. In particular, ν k is a stopping time and T ě ν k ě θ k a.s., and ν k P Θ θ k (by stability of Θ θ k when passing to a monotone limit).

In the following theorem, we show that, under suitable assumptions, the stopping time ν k defined in ( 16) is optimal for the optimization problem (6) at time ν " θ k .

We introduce the following assumption on the value family V .

Assumption 2.2. We assume that the value family V is left-upper-semicontinuous (LUSC) along the sequence pθ n ^νk q nPN , that is,

lim sup nÑ`8 V pθ n ^νk q ď V pν k q. ( 17 
)
Remark 2.8. Assumption 2.2 is trivially satisfied in the following particular case on Θ: Besides the assumptions paq and pbq on Θ, the additional assumption (c) is imposed, namely: (c)For almost all ω, there exits n 0 " n 0 pωq (depending on ω) such that θ n pωq " T , for all n ě n 0 . In other words, for almost all ω, there exists at most a finite number of time points θ n pωq such that θ n pωq ă T . In this case, for all n after a certain rank n " npωq, we have pθ n ^νk qpωq " ν k pωq. Hence, as V is admissible, we have, by Remark 2.2, for all n ě npωq, V pθ n ^νk qpωq " V pν k qpωq. Hence, Assumption 2.2 holds true.

We will see later on a further discussion on Assumption 2.2 in the case of the general Θ, and conditions (on ρ and on the pay-off family ξ) under which this assumption is satisfied.

Theorem 2.3 (Optimality of ν k ). Let k P AE and let ν k be the stopping time defined by (16). Let Assumption 2.2 on V be satisfied. Let ρ satisfy the properties of admissibility (ii), knowledge preservation (iii), monotonicity (iv), consistency (v), "generalized zero-one law" (vi), and monotone Fatou property with respect to the terminal condition (vii). We assume additionally that ρ satisfies the following property:

• (left-upper-semicontinuity (LUSC) along Bermudan stopping times with respect to the terminal condition and the terminal time at ν k ), that is,

lim sup nÑ`8 ρ S,τn rφpτ n qs ď ρ S,ν k rlim sup nÑ`8 φpτ n qs, (18) 
for each non-decreasing sequence pτ n q P Θ N S such that lim nÑ`8 Ò τ n " ν k a.s., and for each p-integrable admissible family φ such that sup nPN |φpτ n q| P L p .

Then:

V pθ k q " ρ θ k ,ν k rξpν k qs " ess sup νPΘ θ k ρ θ k ,ν rξpνqs a.s.

Note that in the case where ρ " pρ S r¨sq SPΘ does not depend on the second time index, the above additional property reduces to the LUSC of ρ S r¨s (with respect to the terminal condition) along Bermudan stopping sequences.

The pΘ, ρq-martingale property on a stochastic interval

Before proving the theorem, we give several useful technical lemmas.

The first two clarify the pΘ, ρq-martingale structure on a stochastic interval in a more "handy" way. The third one deals with an "if -condition" (optimality criterion) and an "only if -condition" for optimality.

Lemma 2.4. Let ρ satisfy the consistency property (v). Let φ " pφpνqq be a given square-integrable admissible family. Let S P Θ and τ P Θ be such that S ď τ a.s. We assume that for any σ P Θ such that S ď σ ď τ a.s., it holds ρ σ,τ rφpτ qs " φpσq a.s.

Then, φ is a pΘ, ρq-martingale on the stochastic interval rS, τ s, that is, for any ν 1 P Θ, ν 2 P Θ, such that S ď ν 1 ď ν 2 ď τ a.s., ρ ν 1 ,ν 2 rφpν 2 qs " φpν 1 q a.s.

Proof. Let ν 1 P Θ, and ν 2 P Θ be such that S ď ν 1 ď ν 2 ď τ a.s.

Hence, by applying the equation ( 20) with σ " ν 1 and by the consistency of the non-linear operators ρ , we have φpν 1 q " ρ ν 1 ,τ rφpτ qs " ρ ν 1 ,ν 2 rρ ν 2 ,τ rφpτ qss a.s.

Then, by applying again the equation ( 20) with σ " ν 2 , we have ρ ν 2 ,τ rφpτ qs " φpν 2 q.

Hence, φpν 1 q " ρ ν 1 ,ν 2 rρ ν 2 ,τ rφpτ qss " ρ ν 1 ,ν 2 rφpν 2 qs a.s.

Definition 2.4. (Strictly monotone operator) Let S P Θ, τ P Θ S . We say that ρ S,τ is strictly monotone if the following two conditions hold:

1. ρ S,τ is monotone.

2. If η 1 ď η 2 and ρ S,τ pη 1 q " ρ S,τ pη 2 q, then η 1 " η 2 .

Lemma 2.5. We assume that the non-linear operators satisfy the properties of monotonicity (iv) and consistency (v). Assume moreover that the non-linear operators ρ are strictly monotone. Let φ " pφpνqq be a given p-integrable admissible family). Let S P Θ and τ P Θ be such that S ď τ a.s. We assume that the two conditions hold:

1. φ is a pΘ, ρq-supermartingale family on rS, τ s;

2. φpSq " ρ S,τ rφpτ qs a.s.

Then, for any σ P Θ such that S ď σ ď τ a.s., ρ σ,τ rφpτ qs " φpσq a.s.

Proof. Let σ P Θ, such that S ď σ ď τ a.s. By applying condition 2 of the lemma and the consistency of the non-linear operators ρ, we have φpSq " ρ S,τ rφpτ qs " ρ S,σ rρ σ,τ rφpτ qss a.s.

On the other hand, since φ is a pΘ, ρq-supermartingale family on rS, τ s (by condition 1), and since the non-linear operator ρ S,σ is monotone, we have ρ S,σ rρ σ,τ rφpτ qss ď ρ S,σ rφpσqs ď φpSq a.s.

By combining the previous two equations, we get φpSq " ρ S,σ rρ σ,τ rφpτ qss " ρ S,σ rφpσqs a.s.

In particular, ρ S,σ rρ σ,τ rφpτ qss " ρ S,σ rφpσqs a.s.

Due to the additional assumption, the non-linear operators ρ are strictly monotone. From this, together with equality ( 22) and the inequality ρ σ,τ rφpτ qs ď φpσq a.s.

(which is due to condition 1 of the lemma), we get φpσq " ρ σ,τ rφpτ qs.

Lemma 2.6. Let ν k P Θ θ k . We introduce the following two conditions:

i) ρ θ k ,ν k rV pν k qs " ρ θ k ,ν k rξpν k qs a.s.
ii) The family pV pν ^νk qq νPΘ θ k is a pΘ, ρq-martingale family.

1. (Optimality criterion) If i) and ii) are satisfied, then ν k is optimal for problem (6).

2. If, moreover, the non-linear operator ρ θ k ,ν k is assumed to be strictly monotone and satisfies the assumptions of admissibility (ii), knowledge preservation (iii), consistency (v), "generalized zero-one law" (vi) and monotone Fatou property (vii), then the converse statement is also true.

Remark 2.9. We note that the property V pν k q " ξpν k q a.s. implies that ρ θ k ,ν k rV pν k qs " ρ θ k ,ν k rξpν k qs a.s. The converse implication is true under the additional assumption: ρ θ k ,ν k is strictly monotone.

Two useful consequences of the DPP

The following two results hold, if a given admissible p-integrable family φ satisfies the (DPP) from Eq.( 9), and if νk is defined by νk :" ess inf Ãk where Ãk :" t τ P Θ θ k : φpτ q " ξpτ q a.s. u.

(

) 23 
The following lemma is a consequence of the definition of νk and of the DPP.

Lemma 2.7. Assume that φ satisfies the DPP holds, and let νk be defined by (23).

Then, for each l P tk, k `1, ...u, φpθ l q " ρ θ l ,θ l`1 rφpθ l`1 qs on the set tν k ą θ l u.

Proof. Let l P tk, k `1, ...u. By the definition of νk , on the set tν k ą θ l u, we have φpθ l q ą ξpθ l q. From this and from the DPP, we conclude that on the set tν k ą θ l u, φpθ l q " ρ θ l ,θ l`1 rφpθ l`1 qs.

Lemma 2.8. Assume that the (DPP) from Eq.( 9) holds. Under the assumptions of (iii) and "generalized zero-one law" (vi) on ρ, it holds:

1. For each l P AE, φpθ l ^ν k q " ρ θ l ,θ l`1 ^ν k rφpθ l`1 ^ν k qs.

2. For each l P AE, φpθ l ^ν k q " ρ θ l ^ν k ,θ l`1 ^ν k rφpθ l`1 ^ν k qs.

Proof. First, we show Statement 1 of the Lemma.

ρ θ l ,θ l`1 ^ν k rφpθ l`1 ^ν k qs " ½ tν k ďθ l u ρ θ l ,θ l`1 ^ν k rφpθ l`1 ^ν k qs `½tν k ąθ l u ρ θ l ,θ l`1 ^ν k rφpθ l`1 ^ν k qs. ( 24 
)
For the first summand in Eq.( 24), we note that on the set tν k ď θ l u, θ l`1 ^ν k " θ l ^ν k " νk . Hence, by the "generalized zero-one law", we have

½ tν k ďθ l u ρ θ l ,θ l`1 ^ν k rφpθ l`1 ^ν k qs " ½ tν k ďθ l u ρ θ l ,θ l ^ν k rφpθ l ^ν k qs " ½ tν k ďθ l u φpθ l ^ν k q, ( 
25) where we have used property (iii) to obtain the last equality (as θ l ^ν k ď θ l ). For the second summand in Eq.( 24), we use the "generalized zero-one law" to write:

½ tν k ąθ l u ρ θ l ,θ l`1 ^ν k rφpθ l`1 ^ν k qs " ½ tν k ąθ l u ρ θ l ,θ l`1 rφpθ l`1 qs " ½ tν k ąθ l u φpθ l q, ( 26 
)
where we have applied Lemma 2.7 to obtain the last equality. Hence, by replacing Eqs ( 25) and ( 26) in Eq. ( 24), we get ρ θ l ,θ l`1 ^ν k rφpθ l`1 ^ν k qs " ½ tν k ďθ l u φpθ l ^ν k q `½tν k ąθ l u φpθ l ^ν k q " φpθ l ^ν k q.

We now prove Statement 2 of the Lemma.

ρ θ l ^ν k ,θ l`1 ^ν k rφpθ l`1 ^ν k qs " ½ tν k ďθ l u ρ θ l ^ν k ,θ l`1 ^ν k rφpθ l`1 ^ν k qs `½tν k ąθ l u ρ θ l ^ν k ,θ l`1 ^ν k rφpθ l`1 ^ν k qs. ( 27 
)
For the second summand of Eq.( 27), by Statement 1 of the Lemma, we get

½ tν k ąθ l u ρ θ l ^ν k ,θ l`1 ^ν k rφpθ l`1 ^ν k qs " ½ tν k ąθ l u ρ θ l ,θ l`1 ^ν k rφpθ l`1 ^ν k qs " ½ tν k ąθ l u φpθ l ^ν k q.
For the first summand of Equation ( 27), we apply the "generalized zero-one law" (as the set tν k ď θ l u is F θ l ^ν k -measurable and on the set tν k ď θ l u, we have θ l`1 ^ν k " θ l ^ν k ), we have

½ tν k ďθ l u ρ θ l ^ν k ,θ l`1 ^ν k rφpθ l`1 ^ν k qs " ½ tν k ďθ l u ρ θ l ^ν k ,θ l ^ν k rφpθ l ^ν k qs " ½ tν k ďθ l u φpθ l ^ν k q,
where we have used property (iii) on ρ to obtain the last equality. Finally, we get ρ θ l ^ν k ,θ l`1 ^ν k rφpθ l`1 ^ν k qs " ½ tν k ďθ l u φpθ l ^ν k q `½tν k ěθ l`1 u φpθ l ^ν k q " φpθ l ^ν k q.

The proof of the optimality of ν k

We are now ready to prove Theorem 2.3 on the optimality of the Bermudan stopping time ν k , defined by ( 16). We will need also the following remark:

Remark 2.10. Any admissible family pφpτ q, τ P Θq in our framework is rightcontinuous along Bermudan stopping times, that is, for all τ P Θ, and for all non-increasing sequences of Bermudan stopping times pτ n q P Θ AE such that τ n Ó τ , it holds lim nÑ`8 φpτ n q " φpτ q.

Indeed, let τ P Θ, and let pτ n q P Θ AE be such that τ n Ó τ . For each n, we have

τ n " ř `8 l"0 θ l ½ A pnq l `T ½ Āpnq and τ " ř `8 l"0 ½ A l θ l `T ½ Ā (cf.
the canonical writing from Remark 2.1).

Let ω P Ω. Recall that tpA l q lPN , Āu is a partition of Ω. If ω P Ā, then τ pωq " T " τ n pωq (as τ n Ó τ ). Otherwise, there exists a unique l 0 " l 0 pωq, such that ω P A l 0 , and τ pωq " θ l 0 pωq ă T . Then, as τ n pωq Ó τ pωq and as θ k pωq Ò T , after a certain rank n 0 " n 0 pωq, τ n pωq " τ pωq " θ l 0 pωq. Hence, in both cases, there exists n 0 " n 0 pωq such that for all n ě n 0 , τ n pωq " τ pωq, and, hence, by Remark 2.2, for all n ě n 0 , φpτ n qpωq " φpτ qpωq. We conclude that lim nÑ`8 φpτ n qpωq " φpτ qpωq.

Proof of Theorem 2.3. By Lemma 2.6, in order to show that ν k , defined in ( 16), is optimal for problem (6), it is enough to show the following two conditions:

(i) ρ θ k ,ν k rV pν k qs " ρ θ k ,ν k rξpν k qs a.s.;
(ii) The family pV pνqq is a pΘ, ρq-martingale on rθ k , ν k s.

We start our proof by showing the second condition first.

By Lemma 2.1, V is an admissible family, and it is also p-integrable by Assumption 2.1. By Lemma 2.4 (on the pΘ, ρq-martingale property), in order to show the second condition, it is enough to show that: for each σ P Θ, such that θ k ď σ ď ν k ,

ρ σ,ν k rV pν k qs " V pσq. ( 28 
)
Let σ P Θ θ k . Then σ is of the form σ " ř měk θ m ½ Am `T ½ Ā , where tpA m q mPN , Āu form a partition of Ω; A m is F θm -measurable for each m, and Ā P F T . Hence, to prove Equation ( 28), it is enough to show that, for each m ě k,

½ Am ρ θm,ν k rV pν k qs " ½ Am V pθ m q, (29) 
and

½ Ā ρ T,ν k rV pν k qs " ½ Ā V pT q. ( 30 
)
As σ " ν k " T on Ā, Eq.( 30) holds true, by the "generalized" zero-one law (vi) and the knowledge preserving property (iii).

Let m ě k be fixed. The proof of Eq. ( 29) passes through the following steps:

1 st
Step: As V satisfies the DPP (cf. Theorem 2.2), we use Lemma 2.8, Statement 2 and the consistency property on ρ, to show that, for each fixed n P AE,

ρ θm^ν k ,θ m`n ^νk rV pθ m`n ^νk qs " V pθ m ^νk q. (31) 
Indeed, by applying successively pn ´m ´1q times the consistency property on ρ (if n ´m ě 2), we get ρ θm^ν k ,θ m`n ^νk rV pθ m`n ^νk qs " ρ θm^ν k ,θ m`1 ^νk rρ θ m`1 ^νk ,θ m`2 ^νk r... rρ θ n`m´1 ^νk ,θ m`n ^νk rV pθ m`n ^νk qssss.

By applying Lemma 2.8, Statement 2, again successively pn ´mq times, we get ρ θm^ν k ,θ m`n ^νk rV pθ m`n ^νk qs " V pθ m ^νk q, which proves Equation (31).

Hence, the sequence of random variables pρ θm^ν k ,θ m`n ^νk rV pθ m`n ^νk qsq nPAE does not depend on n and is constantly equal to the random variable V pθ m ^νk q.

nd

Step: As V is left-upper-semicontinuous (LUSC) along the sequence pθ m`n νk q nPN by Assumption 2.2, and as ρ is LUSC along Bermudan stopping strategies with respect to terminal condition and terminal time at pν k q, we have lim sup

nÑ`8 ρ θm^ν k ,θ m`n ^νk rV pθ m`n ^νk qs ď ρ θm^ν k ,ν k rlim sup nÑ`8 V pθ m`n ^νk qs ď ρ θm^ν k ,ν k rV pν k qs,
where we have used the monotonicity of ρ and Assumption 2.2 on V to obtain the last inequality. Hence, V pθ m ^νk q ď ρ θm^ν k ,ν k rV pν k qs.

The opposite inequality holds true due to the pΘ, ρq-supermartingale property of V (cf. Theorem 2.1, Statement 1). Hence, we have the equality, that is, V pθ m ^νk q " ρ θm^ν k ,ν k rV pν k qs, and Eq.( 29) is established. 3 rd Step: From the above Eqs ( 30) and ( 29), it follows:

ρ σ^ν k ,ν k rV pν k qs " V pσ ^νk q, (as σ " ř měk θ m ½ Am `T ½ Ā )
, which proves Eq.( 28). We conclude, by Lemma 2.4, that V is a pΘ, ρq-martingale on the stochastic interval rθ k , ν k s. This shows condition (ii) in the optimality criterion of Lemma 2.6.

It remains for us to show condition (i) in the optimality criterion. Let us recall that ν k " ess inf A k , where A k " tτ P Θ θ k : V pτ q " ξpτ q a.s.u. Let pτ n q be a non-increasing sequence in A k , such that lim nÑ`8 Ó τ n " ν k . As τ n is in A k , we have V pτ n q " ξpτ n q. By passing to the limit in this equality and by using that both families V and ξ are right-continuous along the sequence of Bermudan stopping strategies pτ n q (cf. Remark 2.10), we obtain

V pν k q " ξpν k q, (32) 
which proves condition (i). This concludes the proof of the optimality of ν k .

Assumption 2.2 on V : Discussion

Let us now check under which conditions Assumption 2.2 on V holds true.

Under the assumptions paq, pbq on Θ, the set tω P Ω : ν k pωq " T, θ l pωq ă T, for all l P Nu might be non-empty. We will show the following lemma.

Lemma 2.9. Let ρ satisfy the properties of knowledge preservation (iii), monotonicity (iv), and consistency (v), and the following property

lim sup nÑ`8
ρ θn,T rηs ď ρ T,T rηs, for all η P L p pF T q.

(33)

Then, lim sup nÑ`8

V pθ n q ď lim sup nÑ`8

ξpθ n q _ ξpT q.

(34)

Proof. For each m P N, for each τ P Θ θm , ξpτ q ď sup pěm ξpθ p q _ ξpT q.

Indeed, for each τ P Θ θm , we have

ξpτ q " ÿ lěm ξpθ l q½ A l `ξpT q½ Ā ď η½ Āc `ξpT q½ Ā ď η _ ξpT q,

Examples

In this section we provide some examples of non-linear operators ρ, known from the stochastic control and mathematical finance literature, which enter into our framework.

Non-linear operators induced by BSDEs

In this example, p " 2.

3.1.1 The g-evaluations Peng (2004) and El Karoui and Quenez (1997) introduced a type of non-linear evaluation, now known as g-evaluation, via a non-linear backward stochastic differential equation (BSDE) with a driver g.

Let T ą 0 be a fixed time horizon. We place ourselves in the Brownian framework (for simplicity). Let pΩ, F , Èq be a complete probability space, endowed with a d-dimensional Brownian motion pW t q tPr0,T s , and let pF t q tPr0,T s be the (augmented) natural filtration of the Brownian motion.

Let g " gpω, t, y, zq : Ω ˆr0, T s ˆÊ ˆÊd Ñ Ê be Lipschitz driver, that is, a function satisfying the following conditions:

➀ For each y P Ê, z P Ê d , gp¨, ¨, y, zq P L 2 pΩ ˆr0, T sq and g is progressively measurable;

➁ There exists C ą 0 such that for each y 1 , y 2 P Ê, and for each z 1 , z 2 P Ê d , |gpω, t, y 1 , z 1 q ´gpω, t, y 2 , z 2 q| ď Cp|y 1 ´y2 | `}z 1 ´z2 }q, uniformly for a.e. pω.tq, where } ¨} denotes the Euclidean norm on Ê d ;

Let us consider the following 1-dimensional BSDE with terminal time t and terminal condition η, defined on the interval r0, ts, given that 0 ď t ď T and η P L 2 pF t q: y s " η `ż t s gpr, y r , z r qdr ´ż t s z r dB r , s P r0, ts.

Definition 3.1. (g-evaluation) For each 0 ď s ď t ď T and η P L 2 pF t q, we define E g s,t rηs :" y s .

The family of operators E g s,t r¨s : L 2 pF t q Ñ L 2 pF s q, 0 ď s ď t ď T are called g-evaluation.

We recall (cf. El Karoui et al. (1997)) that if the terminal time is given by a stopping time τ valued in r0, T s and if η is F τ -measurable, the solution of the BSDE with terminal time τ , terminal condition η and Lipschitz driver g is defined as the solution of the BSDE with (deterministic) terminal time T , terminal condition η and Lipschitz driver g τ defined by g τ pt, y, zq :" gpt, y, zq½ ttďτ u . The first component of this solution at time t is equal to E g τ t,T pηq, also denoted by E g t,τ pηq. We have E g t,τ pηq " η a.s. on the set tt ě τ u.

The following result summarizes some of the well-known properties of the gevaluations.

Proposition 3.1. Let g satisfy ➀ and ➁. Let S, τ, θ be stopping times. Then the g-evaluation satisfies the following properties:

(A1) (Monotonicity) E g S,τ rηs ď E g S,τ rη 1 s, if η ď η 1 ; (A2) (Knowledge preserving) E g τ,S rηs " η, for all S, τ , such that S ď τ , for all η P L 2 pF S q.

(A3) (Time consistency) E g S,θ rE g θ,τ rηss " E g S,τ rηs, for all S ď θ ď τ , for all η P L 2 pF τ q;

(A4) ("Generalized" zero-one law) I A ρ S,τ rξpτ qs " I A ρ S,τ 1 rξpτ 1 qs, for all A P F S , τ P Θ S , τ 1 P Θ S such that τ " τ 1 on A.

(A5) (Continuity with respect to terminal time and terminal condition) Let pτ n q nPAE be a sequence of stopping times in T S,τ , such that lim nÑ8 τ n " τ a.s. Let pη n q nPAE be a sequence of random variables, such that η n P L 2 pF τn q, sup n η n P L 2 and lim nÑ8 η n " η a.s. Then, we have lim nÑ8 E g S,τn rη n s " E g S,τ rηs a.s.

Remark 3.1. For Property (A4) we refer, e.g., to [START_REF] Grigorova | Optimal stopping and a non-zero-sum Dynkin game in discrete time with risk measures induced by BSDEs[END_REF]. Property (A5) was proven in Quenez and Sulem (2013) (in the case of jumps). In Peng (2004), the additional assumption gp¨, 0, 0q " 0 is made ensuring that the g-evaluation satisfies the usual "zero-one law": for each S ď τ , for each A P F S , E g S,τ r½ A ηs " ½ A E g S,τ rηs. Moreover, the g-evaluation E g satisfies the property (18) in Theorem 2.3. Indeed, we have lim sup nÑ`8 E g S,τn rφpτ n qs ď E g S,τ ‹ rlim sup nÑ`8 φpτ n qs, for each nondecreasing sequence τ n such that lim nÑ`8 τ n " τ ‹ , and for each square-integrable admissible family φ, such that sup n |φpτ n q| P L 2 . For a proof of this property, based on property (A5) of the g-evaluations, we refer to Lemma A.5 in [START_REF] Dumitrescu | Mixed generalized Dynkin game and stochastic control in a Markovian framework[END_REF].

Moreover, in the Brownian framework, the first component py t q of the solution of the BSDE with Lipschitz driver g, terminal time T , and terminal condition η P L 2 pF T q, has continuous trajectories (in t). Hence, for any non-decreasing sequence pτ n q, such that lim nÑ`8 τ n " T , lim nÑ`8 E g τn,T pηq " lim nÑ`8 y τn " y T " E g T,T pηq " η.

Thus, property (33) from Lemma 2.9 and Proposition 2.3 is satisfied. Hence, the g-evaluation satisfies all the properties of the non-linear operators ρ used in our results.

It remains for us to argue that the integrability Assumption 2.1 (with p " 2) on the value family V is satisfied, under some suitable assumptions on ξ. The following remark is an application of Remark 2.6 to the framework of a complete financial market model with imperfections encoded in the driver g of the dynamics of self-financing portfolios.

Remark 3.2. Let us place ourselves in a complete financial market model with possible imperfections (such as e.g. trading constraints, different interest rates for borrowing and lending, different repo rates, etc.). Let g be the driver from the dynamics of self-financing portfolios in this market. If the family ξ " pξpτ qq τ PΘ is assumed to be square-integrable and super-replicable by a self-financing portfolio with wealth Xpτ q at time τ , then, the family pXpτ qq τ PΘ is a pΘ, E g q-martingale. By Remark 2.6 the value V " pV pτ qq τ PΘ is square-integrable (that is, satisfies Assumption 2.1 with p " 2).

Peng's g-expectation

Peng's g-expectation is a particular case of the previous example, introduced in [START_REF] Peng | Backward Stochastic Differential Equations[END_REF]. In this case, the driver g is assumed to satisfy the conditions ➀, ➁, and condition ➂' (gp¨, y, 0q " 0, for all y P Ê). In this particular case, the non-linear operators do not depend on the second index, but on the first index only. Moreover, they satisfy the usual zero-one law. More precisely, let g satisfy conditions ➀, ➁ and ➂'. The operators E g r¨s and E g r¨|F S s are defined by E g r¨s :" E g 0,τ r¨s, E g r¨|F S s :" E g S,τ r¨s. The family of non-linear operators pE g r¨|F S sq, indexed by the stopping times S, is called g-expectation.

The g-expectation pE g r¨|F S sq satisfies all the properties of the g-evaluation and additionally the following property: (usual zero-one law) For stopping times S, τ such that S ď τ , for A P F S , E g r½ A η|F S s " ½ A E g rη|F S s.

Bayraktar -Yao's non-linear expectations

Let T ą 0 and let pΩ, F , Èq be a complete probability space endowed with a filtration pF t q tPr0,T s , satisfying the usual conditions. A non-linear expectation, called F -expectation, depending on one time index only, was introduced in the work by Bayraktar and Yao-Part I (2011), and optimal stopping problems in continuous time with F -expectations were studied in Bayraktar and Yao-Part II (2011). For simplicity of the exposition, we will consider the case where the domain of the F -expectation is the whole space L 8 . The non-linear operators (F -expectation) in Bayraktar and Yao-Part I (2011) are defined first for deterministic times, then extended to stopping times valued in a finite deterministic grid, then, extended to general stopping times valued in r0, T s. We will not repeat the construction here, but will recall the basic properties only (cf. Bayraktar and Yao-Part I (2011) for explanations and details; in particular, cf. Propositions 2.7, 2.8, and 2.9 therein2 ).

We recall that, an F -expectation, is a family of operators E :" pEr¨|F S sq, such that Er¨|F S s : L 8 pΩ, F T , Èq Ñ L 8 pΩ, F S , Èq, satisfying the following properties, for all S,τ stopping times valued in r0, T s:

(C1) (Monotonicity and Positively strict monotonicity) Erη|F S s ď Erη 1 |F S s, if η ď η 1 . Moreover, if 0 ď η ď η 1 and Erη|F 0 s " Erη 1 |F 0 s, then η " η 1 ;

(C2) (Consistency) ErErη|F τ s|F S s " Erη|F S s, for any stopping times S, τ such that 0 ď S ď τ ď T.

(C3) (Usual zero-one law) Er½ A η|F S s " ½ A Erη|F S s, for any A P F S . (C4) (Translation invariance) Erη `X|F S s " Erη|F S s `X, if X P L 8 pF S q. (C5) (Knowledge preservation) Erη|F S s " η, if η P L 8 pF S q. (C6) (Local property) Erη½ A `η1 ½ A c |F S s " Erη½ A |F S s `Erη 1 ½ A c |F S s
, for any A P F S and for any η, ξ P L 8 pF T q.

(C7) (Fatou property) Let pη n q be a sequence in L 8 , satisfying inf n η n ě c, a.s. for some constant c P R, and such that lim nÑ8 η n " η, where η P L 8 . Then, Erη|F S s ď lim inf nÑ`8 Erη n |F S s.

(C8) (Dominated convergence) Let pη n q be a sequence, such that inf n η n ě c, a.s. for some constant c P R, and such that lim nÑ8 η n " η. If there exists η P L 8 such that η n ď η for all n P AE, then the limit η P L 8 , and lim nÑ8 Erη n |F S s " Erη|F S s.

Note that the knowledge preserving property is called constant preserving in Bayraktar and Yao-Part I (2011).

Remark 3.3. The F -expectation satisfies property (18) of Theorem 2.3. Indeed, let pτ n q be a non-decreasing sequence of stopping times, such that lim nÑ`8 Ò τ n " τ . Let φ be an admissible L 8 -integrable family such that sup nPN |φpτ n q| P L 8 . As the F -expectation does not depend on the second index, to show property (18), we need to show lim sup nÑ`8

Erφpτ n q|F S s ď Erlim sup nÑ`8

φpτ n q|F S s.

For each n P AE, φpτ n q ď sup pěn φpτ p q. Hence, by monotonicity of Er¨|F S s, we have

Erφpτ n q|F S s ď Ersup pěn φpτ p q|F S s.

The sequence η n defined by η n " sup pěn φpτ p q is non-increasing and tends to η :" lim sup nÑ`8 φpτ n q. φpτ n q|F S s, Remark 3.4. Note that the assumptions in (D6) imply that, for each n P AE, η 0 ď η n ď η, where η 0 P L 8 and η P L 8 . Hence, sup n η n P L 8 in (D6).

By the results of [START_REF] Delbaen | Representation of the penalty term of dynamic concave utilities[END_REF], any functional ρ satisfying properties (D1) -(D8), has the following representation: u S,τ pηq " ess inf

Q:Q"P,Q"P on F S ! E Q rη|F S s `cS,τ pQq ) " ess inf QPQ S E Q rη `ż τ S f pu, ψ Q u qdu|F S s, (36) 
where the function f is such that f p¨, ¨, xq is predictable for any x; f is a proper, convex function in the space variable x, and valued in r0, `8s, and the process pψ Q t q is the process from the Doleans-Dade exponential representation for the density process pZ Q t q, where Z Q t " dQ dP | Ft , and

Q S " tQ : Q " P, ψ Q t pωq " 0, dt b dP a.e. on rr0, Srr, E Q r ż T S f ps, ψ Q s qdss ă `8u.
Remark 3.5. A close inspection of the proof of the duality result in (Bion-Nadal (2009) and [START_REF] Delbaen | Representation of the penalty term of dynamic concave utilities[END_REF]) reveals that the dynamic concave utilities depend on the second index only via their penalty term.

It has been noted in [START_REF] Delbaen | Representation of the penalty term of dynamic concave utilities[END_REF] that property (D8) is equivalent to c t,T pP q " 0, for all t P r0, T s.

The dynamic concave utilities u S,τ do not enter directly into the framework of the present paper, as they are defined only for S, τ such that S ď τ a.s. (cf. [START_REF] Delbaen | Representation of the penalty term of dynamic concave utilities[END_REF] and [START_REF] Bayraktar | Optimal stopping for dynamic convex risk measures[END_REF]). There is, however, a "natural" extension of u S,τ in view of the representation property (36). This extension is as follows:

For S and τ stopping times, and η P L 8 pF τ q, we define

½ tSąτ u u S,τ pηq " ½ tSąτ u ˆη. (38) 
Remark 3.6. By properties (D4) and (D7) of the dynamic concave utilities, we get that the "generalized zero-one law" is satisfied. Indeed, let A P F S , and let τ, τ 1 P Θ S be such that τ " τ 1 on A. Let η P L 8 pF τ q. By applying property (D7) with ξ " 0, we get u S,τ p½ A ηq " ½ A u S,τ pηq `½A c u S,τ p0q. As u S,τ p0q " 0 due to the normalisation property (D4), we obtain u S,τ p½ A ηq " ½ A u S,τ pηq. Hence, the "generalized zero-one law" is satisfied.

Remark 3.7. Property translation invariance (D2) and property normalisation (D4) imply that u S,τ p¨q satisfies the knowledge preserving property (iii) of ρ. Indeed, for any F S -measurable η, we have, by (D2) and (D4), u S,τ pηq " u S,τ p0q `η " 0 `η " η, which shows property (iii).

Remark 3.8. The dynamic concave utilities satisfy property (18) in Theorem 2.3. Indeed, let pτ n q be a non-decreasing sequence of stopping times such that τ n Ò τ , and let φ be an L 8 -integrable admissible family such that sup n |φpτ n q| P L 8 . Then, for each n P N,

φpτ n q `ż τn S f pu, ψ Q u qdu ď sup pěn φpτ p q `ż τ S f pu, ψ Q u qdu ": η n , (39) 
where, for the inequality, we have used that f is valued in r0, `8s, and τ n ď τ. . This is the desired property (18).

Remark 3.9. The dynamic concave utilities satisfy property (33) from Lemma 2.9 and Proposition 2.3. Indeed, for τ n Ò T , u τn,T pηq " ess inf Q:Q"P,Q"P on Fτ n ! E Q rη|F τn s `cτn,T pQq

) ď E P rη|F τn s `cτn,T pP q " E P rη|F τn s,

where we have used that for each n P N, c τn,T pP q " 0 by Eq.( 37). Hence, u τn,T pηq ď E P rη|F τn s. The sequence pE P rη|F τn sq being a uniformly integrable P -martingale, with terminal value E P rη|F T s " η, we get lim sup nÑ8 u τn,T pηq ď lim nÑ8 E P rη|F τn s " η, which is the desired property.

To finish, the pay-off process pξ t q in Bayraktar et al. ( 2010) is assumed to be bounded. Hence, by the monotonicity and the knowledge preservation of u, if we consider the Bermudan-style version of the problem studied in [START_REF] Bayraktar | Optimal stopping for dynamic convex risk measures[END_REF], then the value V satisfies the integrability Assumption 2.1 (that is, for each S P Θ, V pSq P L 8 ).

4 Appendix: The case of a finite number of predescribed stopping times

In this appendix, we treat the particular case where pθ k q kPN 0 is constant from a certain term, independent of ω, onwards. More precisely, we place ourselves in the situation where there exists n P N˚(independent of ω) such that for each m ě n, θ m " T Theorem 4.1. Let φ " pφpτ q, τ P Θq be a p-integrable admissible family. Under the assumptions of knowledge preservation (iii) and "generalized zero-one law" (vi) on the non-linear operators, if φ satisfies ρ θ k ,θ k`1 rφpθ k`1 qs ď φpθ k qpresp. " φpθ k qq, for all k, (43)

then, for all τ P Θ, we have ρ θ k ,θ k`1 ^τ rφpθ k`1 ^τ qs ď φpθ k ^τ qpresp. " φpθ k ^τ qq.

(44)

Proof. Let k P N 0 . We have ρ θ k ,θ k`1 ^τ rφpθ k`1 ^τ qs " I tτ ďθ k u ρ θ k ,θ k`1 ^τ rφpθ k`1 ^τ qs`I tτ ąθ k u ρ θ k ,θ k`1 ^τ rφpθ k`1 ^τ qs.

(45) We note that on the set tτ ď θ k u, θ k`1 ^τ " θ k ^τ . Hence, by the "generalized zero-one law", we have I tτ ďθ k u ρ θ k ,θ k`1 ^τ rφpθ k`1 ^τ qs " I tτ ďθ k u ρ θ k ,θ k ^τ rφpθ k ^τ qs.

As θ k ^τ ď θ k , by property (iii) of the non-linear evaluation ρ, we get ρ θ k ,θ k ^τ rφpθ k ^τ qs " φpθ k ^τ q.

Hence, we have I tτ ďθ k u ρ θ k ,θ k`1 ^τ rφpθ k`1 ^τ qs " I tτ ďθ k u φpθ k ^τ q.

(46)

For the second term on the right-hand side of Equation ( 45), we note that τ ^θk`1 " θ k`1 on tτ ą θ k u. Hence, by the "generalized zero-one law" of the non-linear evaluation ρ, we have I tτ ąθ k u ρ θ k ,θ k`1 ^τ rφpθ k`1 ^τ qs " I tτ ąθ k u ρ θ k ,θ k`1 rφpθ k`1 qs.

This, together with Equation ( 43) on φ and the admissibility of φ, gives I tτ ąθ k u ρ θ k ,θ k`1 rφpθ k`1 qs ď I tτ ąθ k u φpθ k q " I tτ ąθ k u φpθ k ^τ q.

(47)

By plugging in ( 46) and (47) in Equation ( 45), we get ρ θ k ,θ k`1 ^τ rφpθ k`1 ^τ qs ď I tτ ďθ k u φpθ k ^τ q `Itτąθ k u φpθ k ^τ q " φpθ k ^τ q.

This ends the proof. 
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  Moreover, sup pPAE |φpτ p q| P L 8 . Hence, by property (C8), we have lim nÑ`8 Erη n |F S s " Erlim nÑ`8 η n |F S s " Erη|F S s. Hence, Erη n |F S s " Erη|F S s " Erlim sup

	lim sup nÑ`8	Erφpτ n q|F S s ď lim nÑ`8	nÑ`8

  As ess inf QPQ S E Q r¨|F S s is non-decreasing, we get: for each n P N,We have η n Ó η, where η :" lim sup nÑ`8 φpτ n q `şτ S f pu, ψ Q u qdu. As ess inf QPQ S E Q r¨|F S s is continuous from above, we deduceE Q rη n |F S s " ess inf

		ess inf QPQ S	E Q rφpτ n q	`ż τn S	f pu, ψ Q u qdu|F S s ď ess inf QPQ S	E Q rη n |F S s.	(40)
			lim nÑ`8	ess inf QPQ S	QPQ S	E Q rη|F S s.	(41)
	Hence, from Eqs. (40) and (41), we get
	lim sup nÑ`8	ess inf QPQ nÑ`8	ess inf QPQ

S E Q rφpτ n q`ż τn S f pu, ψ Q u qdu|F S s ď lim S E Q rη n |F S s " ess inf QPQ S E Q rη|F S s

, which, by the representation result (36), gives lim sup nÑ`8 u S,τn pφpτ n qq ď u S,τn plim sup nÑ`8 φpτ n qq

Note that this notion is more general than the typical notion of Bermudan strategy appearing in the context of Bermudan options in mathematical finance, where the agent/buyer of the option is allowed to stop only at a pre-described finite number of deterministic times t0 " t 0 ď t 1 ď ¨¨¨ď t n " T u, where n is a fixed finite number (independent of the scenario ω).

Note that in the case of the present exposition, Dom # pEq of Bayraktar and Yao-Part I (2011) is equal to L 8 .

[START_REF] Bayraktar | Optimal stopping for dynamic convex risk measures[END_REF] the authors choose a different sign convention on ρ, and hence, study a minimization optimal stopping problem with dynamic convex risk measures.

Proof. First, let us show statement 1.

Let ν k P Θ θ k be such that the two conditions i) and ii) introduced above are satisfied. By condition ii) the family pV pν ^νk qq νPΘ θ k is a pΘ, ρq-martingale family.

Hence, for any ν P Θ θ k , we have V pθ k ^νk q " ρ θ k ,ν^ν k rV pν ^νk qs a.s., which implies V pθ k q " ρ θ k ,ν^ν k rV pν ^νk qs a.s.

In particular, for ν " ν k , we get

V pθ k q " ρ θ k ,ν k ^νk rV pν k ^νk qs " ρ θ k ,ν k rV pν k qs a.s.

From this, together with condition i), we have

V pθ k q " ρ θ k ,ν k rV pν k qs " ρ θ k ,ν k rξpν k qs a.s., which implies that the stopping time ν k is an optimal stopping time for problem (6). Now, let us show statement 2. Let ν k P Θ θ k be an optimal stopping time for problem (6). Hence, we have V pθ k q " ρ θ k ,ν k rξpν k qs a.s.

By the first part of Theorem 2.1 (which is applicable as ρ satisfies the assumptions), the value family V is a pΘ, ρq-supermartingale family. Thus, by the pΘ, ρqsupermartingale property of V , and as ν k P Θ θ k , we have

V pθ k q ě ρ θ k ,ν k rV pν k qs a.s.

On the other hand, due to the fact that ξ ď V (cf. Remark 2.5, Statement 2) and to the monotonicity of the non-linear operator ρ θ k ,ν k , it holds ρ θ k ,ν k rξpν k qs ď ρ θ k ,ν k rV pν k qs a.s., Thus, we get V pθ k q " ρ θ k ,ν k rV pν k qs " ρ θ k ,ν k rξpν k qs a.s.

Moreover, since V pθ k q " ρ θ k ,ν k rV pν k qs, by applying Lemmas 2.4 and 2.5 (the latter is applicable as ρ is assumed to be strictly monotone) with S " θ k , τ " ν k , we conclude that V is a pΘ, ρq-martingale on rθ k , ν k s.

The proof is complete.

where we have set η :" sup pěm ξpθ p q. Let us define η :" η _ ξpT q " sup pěm ξpθ p q _ ξpT q.

By the monotonicity of ρ and the knowledge preserving property on ρ, we have, for all τ P Θ θm , ξpτ q " ρ τ,T rξpτ qs ď ρ τ,T rη _ ξpT qs " ρ τ,T rηs.

Hence, for each n ě m (as Θ n Ă Θ m ),

V pθ n q " ess sup τ PΘ θn ρ θn,τ rξpτ qs ď ess sup τ PΘ θn ρ θn,τ rρ τ,T rηss where we have used the monotonicity of ρ and (35) for the inequality. By the consistency property on ρ, we get ρ θn,τ rρ τ,T rηss " ρ θn,T rηs. Finally, V pθ n q ď ess sup τ PΘ θn ρ θn,T rηs " ρ θn,T rηs.

Hence, lim sup nÑ`8 V pθ n q ď lim sup nÑ`8 ρ θn,T rηs.

As, by assumption on ρ, lim sup nÑ`8 ρ θn,T rηs ď ρ T,T rηs, we obtain lim sup nÑ`8

V pθ n q ď ρ T,T rηs " η " sup pěm ξpθ p q _ ξpT q.

Hence, by passing to the limit when m Ñ `8, we get lim sup nÑ`8

V pθ n q ď lim sup mÑ`8 ξpθ m q _ ξpT q, which finishes the proof of the lemma.

Assumption 2.3. We assume that the pay-off family ξ is LUSC along the sequence pθ n q at T , that is, ξ is such that lim sup nÑ`8

ξpθ n q ď ξpT q.

Proposition 2.3. If the pay-off family ξ satisfies Assumption 2.3 (LUSC along the sequence pθ n q at T ), and if ρ satisfies the properties of admissibility (ii), knowledge preservation (iii), monotonicity (iv), consistency (v), "generalized" zero-one law (vi), and LUSC along the sequence pθ n q at T (property (33)), then the value family V satisfies Assumption 2.2.

Proof. On the set tν k ă T u, we have, for all n after a certain rank npωq (depending on ω), pθ n ^νk qpωq " ν k pωq ((due to lim Ò θ n " T ). Hence, by Remark 2.2), for all n ě n 0 pωq, V pθ n ^νk qpωq " V pν k qpωq Hence,

On the other hand, under the Assumption 2.3 on ξ, we have, by Lemma 2.9, lim sup nÑ`8

V pθ n q ď lim sup nÑ`8

ξpθ n q _ ξpT q ď ξpT q " V pT q.

Hence, using the admissibility of V ,

So, the desired LUSC property at ν k on V (Assumption 2.2) holds true.

which is the desired property.

The assumptions imposed on the pay-off in Bayraktar -Yao (Bayraktar and Yao-Part I (2011) and Bayraktar and Yao-Part II (2011)) ensure that the value in their case belongs to the domain of the operator. Hence, if we consider the Bermudan style version of their problem, Assumption 2.1 on V will also be satisfied.

Dynamic Concave Utilities

The dynamic concave utilities are among the examples of non-linear operators depending on two time indices.

In this example the space is L 8 (that is p " `8).

We place ourselves again in the Brownian framework. A representation result, with an explicit form for the penalty term, for dynamic concave utilities was established in [START_REF] Delbaen | Representation of the penalty term of dynamic concave utilities[END_REF]. The optimal stopping problem with dynamic concave utilities was studied by Bayraktar, Karatzas and Yao in [START_REF] Bayraktar | Optimal stopping for dynamic convex risk measures[END_REF], where the authors rely on the representation result from [START_REF] Delbaen | Representation of the penalty term of dynamic concave utilities[END_REF]. 3 We recall the following definition from [START_REF] Delbaen | Representation of the penalty term of dynamic concave utilities[END_REF].

Definition 3.2. (Dynamic concave utility) For S, τ P T 0,T , such that S ď τ , let tu S,τ p¨q : L 8 pF τ q Ñ L 8 pF S qu be a family of operators. This family is called a dynamic concave utility, if it satisfies the following properties:

(D1) (Monotonicity) u S,τ pηq ď u S,τ pη 1 q, if η ď η 1 ;

(D2) (Translation invariance) u S,τ pη `Xq " u S,τ pηq `X, if η P L 8 pF τ q and X P L 8 pF S q;

(D3) (Concavity) u S,τ pλη `p1´λqη 1 q ě λu S,τ pηq`p1´λqu S,τ pη 1 q, for any λ P r0, 1s and η, η 1 P L 8 pF τ q;

(D4) (Normalisation) u S,τ p0q " 0.

Moreover, in [START_REF] Delbaen | Representation of the penalty term of dynamic concave utilities[END_REF] and [START_REF] Bayraktar | Optimal stopping for dynamic convex risk measures[END_REF] the following properties on the dynamic concave utilities are assumed:

(D5) (Time consistency) for any stopping time σ P T S,τ , we have u S,σ pu σ,τ pηqq " u S,τ pηq;

(D6) (Continuity from above) for any non-increasing sequence pη n q Ă L 8 pF τ q with η " lim nÑ8 Ó η n P L 8 pF τ q, we have lim nÑ8 Ó u S,τ pη n q " u S,τ pηq (D7) (Local property) u S,τ pη½ A `ξ½ A c q " u S,τ pηq½ A `uS,τ pξq½ A c , for any A P F S and for any η, ξ P L 8 pF τ q;

(D8) E P rη|F t s ě 0 for any η P L 8 pF T q, such that u t,T pηq ě 0.

We establish a characterization of pΘ, ρq-supermartingale (resp. pΘ, ρq-martingale) families in the particular case where the sequence pθ k q kPN 0 is constant from a certain term, independent of ω, onwards.

Proposition 4.1. Assume that there exists n P N 0 such that θ k " θ n " T a.s., for all k ě n. Let φ " pφpτ q, τ P Θq be a p-integrable admissible family. Under the assumptions of admissibility (ii), knowledge preservation (iii), monotonicity (iv), consistency (v) and "generalized" zero-one law (vi) on the non-linear operators, if ρ θ k ,θ k`1 rφpθ k`1 qs ď φpθ k qpresp. " φpθ k qq, for all k, then, φ is a pΘ, gqsupermartingale (resp. pΘ, gq-martingale) family.

Proof. We prove the result for the case of a pΘ, ρq-supermartingale family; the case of a pΘ, ρq-martingale family can be treated similarly. Let σ, τ in Θ be such that σ ď τ a.s. As σ P Θ, we have σ "

ř n k"0 θ k 1 A k , where pA k q kPt0,...,nu is a partition of Ω such that A k P F θ k . We notice that in order to prove ρ σ,τ rφ τ s ď φ σ , it is sufficient to prove the following property: ρ θ k ^τ,τ rφpτ qs ď φpθ k ^τ q, for all k P t0, 1, . . . , nu.

(48)

Indeed, this property proven, we will have

where we have used the admissibility of ρ to show the second equality. This will conclude the proof. Let us now prove property (48). We proceed by backward induction. For k " n, we have (recall that θ n " T ) ρ θn^τ,τ rφpτ qs " ρ T ^τ,τ rφpτ qs " ρ τ,τ rφpτ qs " φpτ q " φpT ^τ q,

where we have used property (iii) to obtain the last but one equality.

We suppose that the property (48) holds true for k `1. Then, by using this induction hypothesis, the time-consistency and the monotonicity of the non-linear operators, we get

In order to conclude, it remains to prove

By Theorem 4.1, we have
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On the other hand, by the "generalized zero-one law", (applied with A " tτ ă θ k u on which set, we have θ k`1 ^τ " τ ) we have

where we have used property (iii) on ρ for the last equality.

Combining Equations ( 50) and ( 51), we deduce (49). The proposition is thus proved.

4.1 Dynamic programming principle in the case of finite number of pre-described stopping times

We first introduce an explicit construction, by backward induction, of what will turn out to be the pΘ, ρq-Snell envelope of the pay-off family ξ, in this particular case of finite number of pre-described stopping times. Let ξ be, as before, a pintegrable admissible family.

Let us define the sequence of random variables pUpθ k qq kPt0,1,...,nu by backward induction as follows:

" Upθ n q :" ξpθ n q, k " n; Upθ k q :" maxpξpθ k q; ρ θ k ,θ k`1 rUpθ k`1 qsq, for k P t0, 1, ..., n ´1u.

(52)

From ( 52) we see, by backward induction, that for each k P t0, 1, ..., nu, Upθ k q is a well-defined real-valued random variable, which is F θ k -measurable and pintegrable. From (52), we also have Upθ k q ě ξpθ k q, for all k P t0, 1, ..., nu.

Moreover, it can be shown that, for each k P t0, 1, ..., n ´1u, Upθ k q " Upθ k`1 q a.s. on tθ k " θ k`1 u. Indeed, due to the second property (admissibility) and to the third property (knowledge preservation) of the non-linear operators ρ, we have

where, for the last equality, we have used that Upθ k`1 q ě ξpθ k`1 q.

Hence, Upθ k q " Upθ k`1 q a.s. on tθ k " θ k`1 u. We can thus "extend" U to the whole set Θ as follows. Let τ P Θ. There exists a partition pA k q kPt0,1,...,nu such that, for each k, A k P F θ k , and such that τ "

We show the following result:

Theorem 4.2. Under the assumptions of admissibility (ii), knowledge preservation (iii), monotonicity (iv), consistency (v) and "generalized zero-one law" (vi) on the non-linear operators, the family U :" pUpτ q, τ P Θq defined by ( 52) and (53) coincides with the pΘ, ρq-Snell envelope family of ξ.

For this, we first show an easy lemma, based on Proposition 4.1 and on the definition of the family U.

Lemma 4.1. Under the assumptions of admissibility (ii), knowledge preservation (iii), monotonicity (iv), consistency (v) and "generalized zero-one law" (vi) on the non-linear operators, the family U defined by ( 52) and ( 53) is a pΘ, ρqsupermartingale family, dominating the family ξ.

Proof. We already noticed, following the definition of Upθ k q, that, for each k, Upθ k q ě ξpθ k q. Hence, for each τ P Θ, Upτ q ě ξpτ q a.s. (by definition of Upτ q, cf. ( 53)). The pΘ, ρq-supermartingale property of U follows from the definition of pUpθ k qq kPt0,...,nu and from Proposition 4.1.

The following proof of Theorem 4.2 is a combination of Lemma 4.1 and of a proof of the minimality property of U.

Proof of Theorem 4.2. By Lemma 4.1, U is a pΘ, ρq-supermartingale family, dominating the family ξ. It remains to show that it is the minimal one. Let Û be (another) pΘ, ρq-supermartingale family, such that Ûpθ k q ě ξpθ k q, for each k P t0, 1, ..., nu. At the terminal time θ n , we have Û pθ n q ě ξpθ n q " Upθ n q. Let k P t1, ..., nu. Suppose, by backward induction, that Û pθ k q ě Upθ k q. We need to show that Û pθ k´1 q ě Upθ k´1 q. By the backward induction hypothesis and by the monotonicity of the non-linear operators ρ θ k´1 ,θ k , we have ρ θ k´1 ,θ k r Ûpθ k qs ě ρ θ k´1 ,θ k rUpθ k qs. This, together with the definition of Upθ k´1 q, gives Upθ k´1 q " maxpξpθ k´1 q; ρ θ k´1 ,θ k rUpθ k qsq ď maxpξpθ k´1 q; ρ θ k´1 ,θ k r Ûpθ k qsq.

Since Û is a pΘ, ρq-supermartingale family, we have Ûpθ k´1 q ě ρ θ k´1 ,θ k r Ûpθ k qs. Hence, Upθ k´1 q ď maxpξpθ k´1 q; ρ θ k´1 ,θ k r Ûpθ k qsq ď maxpξpθ k´1 q; Ûpθ k´1 qq " Û pθ k´1 q.

The reasoning by backward induction is thus finished and the minimality property of U shown. We conclude that the family U is equal to the smallest pΘ, ρqsupermartingale family dominating the family ξ, that is, to the pΘ, ρq-Snell envelope of the family ξ.

Optimal stopping times in the case of finite number of pre-described stopping times

We define νk by: νk :" ess inf Āk , where Āk :" tτ P Θ θ k : Upτ q " ξpτ q a.s.u.

In the case of finite number of pre-described stopping times, we have:

νk " inftθ l P tθ k , ..., θ n u : Upθ l q " ξpθ l qu " mintθ l P tθ k , ..., θ n u : Upθ l q " ξpθ l qu.

(54) Indeed, as the set tθ l P tθ k , ..., θ n u : Upθ l q " ξpθ l qu is a subset of Āk , we have:

νk " ess inftτ P Θ θ k : Upτ q " ξpτ q a.s.u ď ess inftθ l P tθ k , ..., θ n u : Upθ l q " ξpθ l qu " inftθ l P tθ k , ..., θ n u : Upθ l q " ξpθ l qu.

Let us now show the converse inequality: νk ě inftθ l P tθ k , ..., θ n u : Upθ l q " ξpθ l q a.s.u. As the set Āk is stable by pairwise minimization, there exists a sequence pτ pmq q mPAE , such that: pτ pmq q is non-decreasing; for each m, τ pmq P Āk ; and lim mÑ`8 τ pmq " νk .

Let ω P Ω be given. For each m P AE, τ pmq pωq P tθ k pωq, θ k`1 pωq, ..., θ n pωqu, and moreover, Upτ pmq qpωq " ξpτ pmq qpωq.

As all the elements of the sequence pτ pmq pωqq mPAE are valued in tθ k pωq, θ k`1 pωq, ..., θ n pωqu, we have, lim mÑ`8 τ pmq pωq P tθ k pωq, θ k`1 pωq, ..., θ n pωqu, which implies that from a certain rank onwards, the sequence is constant. Moreover, we have Uplim mÑ`8 τ pmq qpωq " ξplim mÑ`8 τ pmq qpωq. Thus, we have νk pωq " lim mÑ`8 τ pmq pωq P tθ k pωq, θ k`1 pωq, ..., θ n pωqu, and Upν k qpωq " ξpν k qpωq.

Hence, νk ě ess inftθ l P tθ k , ..., θ n u : Upθ l q " ξpθ l q a.s.u. As both inequalities hold true, we conclude νk " inftθ l P tθ k , ..., θ n u : Upθ l q " ξpθ l q a.s.u. (55)

Lemma 4.2. Under the assumptions of knowledge preservation (iii), consistency (v) and "generalized zero-one law" (vi) on ρ, the family U " pUpτ qq is a pΘ, ρqmartingale on rθ k , νk s.

Proof. As U satisfies the DPP (which it does by definition of U), we have, by Lemma 2.8, for each l P AE,

By Lemma 2.4, to show that U is a pΘ, ρq-martingale on rθ k , νk s, it is sufficient to show that for any σ, such that θ k ď σ ď νk , it holds Upσq " ρ σ,ν k rUpν k qs. Let σ P Θ θ k , such that σ ď νk . Then, σ " ř n i"k θ i ½ A i and σ ď νk . Thus, it is sufficient to show that for i P tk, ..., nu, such that θ i ď νk , it holds ½ A i ρ θ i ,ν k rUpν k qs " ½ A i Upθ i q, which is the same as, for each i P tk, ..., nu, such that θ i ď νk ,

We proceed by backward induction. At rank n, we have

where we have used that νk ď θ n " T , and the knowledge preserving property of ρ. We suppose, by backward induction, that the property holds true at rank i `1. We show it at rank i. By the consistency property and the backward induction hypothesis, we have

By Eq. ( 56), ρ θ i ^ν k ,θ i`1 ^ν k rUpθ i`1 ^ν k qs " Upθ i ^ν k q. Hence, ρ θ i ^ν k ,ν k rUpν k qs " Upθ i ^ν k q, which completes the reasoning by backward induction. We conclude that the family U is a pΘ, ρq-martingale on rθ k , νk s.

We will now show that U coincides with V , that νk is optimal for the optimal stopping problem from time θ k -perspective, and that νk " ν k , where ν k :" ess inf A k , where A k :" tτ P Θ θ k : V pτ q " ξpτ q a.s.u.

For this, we do not need any type of (Fatou)continuity assumption on ρ.

Theorem 4.3. Under the assumptions of admissibility (ii), knowledge preservation (iii), monotonicity (iv), consistency (v), and "generalized zero-one law" (vi) on the non-linear operators, we have 1. Upθ k q " ρ θ k ,ν k rξpν k qs " V pθ k q.

2. U " V and νk " ν k .

Proof. As U ě ξ, and as U is a pΘ, ρq-supermartingale (cf. Lemma 4.1), we have for any τ P Θ θ k , Upθ k q ě ρ θ k ,τ rUpτ qs ě ρ θ k ,τ rξpτ qs, where we have used the monotonicity of ρ θ k ,τ for the second inequality. Hence, Upθ k q ě ess sup τ PΘ θ k ρ θ k ,τ rξpτ qs " V pθ k q.

(57)

On the other hand, by Lemma 4.2, U is a pΘ, ρq-martingale on rθ k , νk s. Moreover, by Eq. ( 55), we have Upν k q " ξpν k q. Hence, Upθ k q " ρ θ k ,ν k rUpν k qs " ρ θ k ,ν k rξpν k qs ď ess sup τ PΘ θ k ρ θ k ,τ rξpτ qs " V pθ k q.

We have thus showed: Upθ k q " V pθ k q " ρ θ k ,ν k rξpν k qs, which proves statement 1 of the lemma. Now, let us show statement 2. By admissibility of U and V , it follows from statement 1, that, for any τ P Θ, Upτ q " V pτ q. Hence, νk " ν k (from the definitions of νk and ν k ), which proves statement 2 of the lemma.