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Abstract—Real-time embedded systems are increasingly be-
ing built using commercial-off-the-shelf (COTS) components.
Although these components generally offer high performance,
they can occasionally incur significant timing delays. Computing
precise bounds on timing delays due to contention is difficult
without a proper support from the hardware.

Rather than estimating contention safe delays, this work aims
to avoid it. We consider hardware architectures where each core
has a scratchpad memory and the task execution is divided into a
memory phase and a computation phase (Predictable Execution
Model – PREM). Tasks are allocated to cores by a partitioned
scheduling scheme. Then we schedule memory phases using a
non-preemptive scheduling approach, while computation phases
are scheduled using preemptive single core schedulers.

This paper presents a new artificial deadline based approach to
avoid contention in memory phases, where tasks memory phases
are assigned appropriate deadlines and scheduled by a non-
preemptive scheduler (EDF). The effectiveness of the proposed
method is evaluated using a set of synthetic experiments in terms
of schedulability and analysis time.

Index Terms—Real-time, Scheduling, PREM, multicore

I. INTRODUCTION

Contention on memory resources was the subject of many
research works [1], [14], [21], [27], [24]. Estimating precise
bounds on timing delays due to contention is difficult. In gen-
eral, it is hard to define what are the tasks that might interfere
with each other, which likely leads to include scenario’s that
might never occur, therefore over-estimating the worst-case
interference. A second approach tends to prevent interference
by enforcing space and time isolation (e.g. time partitioning
schemes).

The Acquisition-Execution-Restitution model (AER) [6],
and the PRedictable Execution Model (PREM) [17] represent
a good alternative. In the PREM model, the task is modeled in
two phases: (i) a memory phase where all data are transferred
from main memory to the local memory and vice-versa, (ii)
and a pure computation phase where the loaded data are
processed. Memory-transactions are scheduled so that the
memory bus is accessed without interference (time isolation),
while pure computations are executed on the platform cores.
In this paper, we focus on the PREM model.

Several difficult challenges are encountered when schedul-
ing real-time application modeled by the PREM model on
multicore architectures. Finding a proper way to schedule
memory phases is the most important difficulty since the
bus controllers available on commercial platforms are not
dedicated to real-time scheduling, they support very simple
policies for example: First-In-First-Out (FIFO) scheduling
policy. A second issue is the complexity of the scheduling
problem: we need to consider at the same time scheduling of
bus memory access and scheduling on the different cores.

In this paper, we propose novel method for assigning arti-
ficial deadlines to memory phases of a set of periodic PREM
tasks, so to avoid memory contention, in particular, contention
between the communication bus and the main memory. We
do not address task to core assignment in this paper, therefore
we use classical bin-packing heuristics to compute the task to
core allocation. Finally, we provide a large set of synthetic
experiments to demonstrate the efficiency of the proposed
heuristic in terms of schedulability, as well as the required
analysis time.

This paper is organized as follows: in the following section
we review the state of the art. We present the hardware and
task models in Section III. Further, we detail in Section IV
how the artificial deadlines are assigned to memory phases.
Within Section V, we give a quick overview how tasks can
be allocated to cores. Results and simulations are described in
Section VI. We draw conclusions in Section VII.

II. RELATED WORK

Modern COTS-based embedded systems include multiple
active components (CPU cores and I/O peripherals) that can
independently initiate access to shared resources (like main
memory and inter-connection buses) which cause contention
leading to timing degradation [16]. These architectures feature
generally, a single port main memory shared among all CPU
cores and peripherals, therefore, it is hard to guarantee the
absence of memory conflicts during execution. In [19], authors
have shown that the worst case execution time (WCET) of a
task can increase linearly with the number of suffered cache
misses, due to contention for access to main memory.
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To solve this problem, new execution models making use of
pre-fetching techniques have been proposed in the literature.
These techniques have been investigated first by Rosen et
al. [21] in the context of worst-case execution time computa-
tion and bus access optimization. The authors show in [8] that
pre-fetching techniques improve the cache/scratchpad locality
and reduce average execution times.

The PRedictable Execution Model (PREM) from Pellizzoni
et al [17] was first proposed to co-schedule both memory
requests from CPU and I/O with computations on unipro-
cessor platforms with multi-level caches. It splits tasks in
memory/computation phases. This execution model drastically
reduces the variability of memory-contention latency by ex-
plicitly controlling memory accesses during memory phases.
PREM has been extended later in [27] to partitioned multi-
core/processor platforms where the core isolation is provided
through a coarse-grained TDM memory schedule.

Different memory-aware scheduling policies for PREM
tasks are evaluated in [3] by simulating synthetic task systems
on a multicore platform. The authors of this work used
different combinations of TDMA slots (different slot sizes)
and different priority-based schedulers for the memory and
computation phases on a partitioned multicore platform.

The Acquisition-Execution-Restitution model (AER) [6] is a
generalization of the PREM model where each task is divided
into three distinct parts: two memory phases (reading and
writing) and a computation phase.

We believe that the memory hierarchies of modern mul-
ticores can further boost the effectiveness of the PREM
model, and, in general, improve WCET predictability. The
reason is that, platform designers replace traditional data
caches with explicitly managed memories such as scratchpads
(SPMs). The key point is that the behavior of explicitly-
managed scratchpads is also much more predictable than that
of caches, because access latency is independent of the access
pattern [13], [20], [25].

The schedulability problem for globally scheduled PREM
tasks using the memory phase prioritizing concept is addressed
in [26]. The work in [2] proposes a global fixed-priority
scheduling algorithm for a set of sporadic PREM tasks,
it considers co-scheduling a separate DMA component to
perform transfers from main memory to scratchpad and vice-
versa. Melani et al. [15] proposed exact response time analysis
for fixed-priority scheduling on a single core with a fully
preemptive DMA engine.

Much works have been done on the communication and task
scheduling problem on single/multi-processor architectures. A
good overview of the common real-time scheduling methods
is given in [12]. The relevant scheduling approaches can be
classified on: event-based scheduling, time-triggered schedul-
ing and hybrid approaches.

One of the most effective techniques to schedule dependent
tasks on multicore platforms is to assign artificial deadlines
and offsets in order to enforce precedence constraints [9].
The most popular heuristic algorithms are fair distribution
and proportional distribution. We propose in this paper a

technique for assigning artificial delays to memory phases to
avoid memory contention.

III. SYSTEM MODEL

A. Architecture model

We consider in this work multicore architectures composed
of m cores. Each core has access to a private scratchpad
memory. Cores are connected through a single shared bus
to a global shared memory. Before starting the computation,
the different tasks trigger memory copies between main and
scratchpad memories, explicitly by the system designer.

We assume that all memory is directly accessible to all cores
via different address spaces. An example of such architecture
is the Infineon Aurix TC397 [10].
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Fig. 1: Multicore target platform.

In Figure 1, we report an architecture compound of 4 cores.
Each core is connected to its own scratchpad memory. Differ-
ent scratchpads are connected using a single bus (C-bus) to
the main memory.

B. Task model

We consider a set T of n independent periodic tasks, i.e.,
T = {τ1, τ2, · · · , τn}. According to the semantics defined in
PREM, each task τi is divided in two phases namely: memory
phase and computation phase. The later, can not start before
the completion of the memory phase. A task τi is characterized
by tuple τi = (Mi, Ci,Di,Ti): Mi is the task worst case data-
prefetch time. It represents the required time that the task
τi needs to load data from memory and/or I/O devices; Ci

is the task worst case computation time. This phase can be
preempted contrary to the memory phase; Di is the task’s
relative deadline. Each instance of task τi must finish its
execution no later than Di time units after its activation; Ti is
the task period, it represents the exact time interval between
two consecutive activations of τi.

The computation phase of tasks does not access the shared
bus, thus contentions when accessing the shared bus do not
exist between computation phases and memory phases.

We denote by H the taskset hyperperiod, i.e. the system’s
period. It is defined as the least common multiple between all
periods of tasks H = LCM(T1, T2, · · · , Tn).

The task utilization is given as:

Ui = umi + uci



where, umi = Mi

Ti
(resp. uci = Ci

Ti
) denotes the memory phase

(resp. computation phase) utilization.
The total utilization of taskset T is computed as follow:

UT =

n∑
i

Ui

IV. DEADLINE-BASED MEMORY-PROCESSOR
CO-SCHEDULING

We address in this paper the bus contention problem by
avoiding memory requests overlap entirely. In this section, we
will show how to determine artificial deadlines to memory
phases so that they do not overlap during runtime. We consider
all the memory requests as non-preemptive tasks having a
period and an artificial deadline δi and scheduled on the com-
munication bus using Earliest Deadline First (EDF) scheduler.
The schedulablity on the different cores will be tested using
EDF algorithm. The analysis is based on the processor demand
function [4], [18], and considers only the computation phases.
The computed artificial deadlines will be used as offsets of
the computation phases.

A. Artificial deadline assignment heuristic (ADA)

One strategy to solve the artificial deadline assignment
problem could be to search exhaustively among all possible
artificial deadline combinations in a Pareto-Front fashion. In
a such strategy, the objective would be both to ensure a non-
preemptive scheduling of memory phases to avoid the overlap
on the communication bus and to minimize their artificial
deadlines in order to improve the schedulability on cores.
Although the Pareto-Front based approaches are exact and
have the advantage to find all the realizable solutions for
the considered problem, they suffer from large computational
complexity, as the search space may potentially be very
large. In fact, any realizable solution can be accepted from
real-time perspective. We present in this section a weight-
based artificial deadline assignment heuristic for computing
deadlines of memory phases. The search is done for each task
τi in the interval Ii = Di − Ci −Mi as shown in figure 2.
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Fig. 2: The task artificial deadline search interval.

We will assume that each task τi is characterized by a
weight wi such that wi < 1 (the weight is the same for all the
tasks). The idea is to search for the solution by deceasing the
memory phase artificial deadline for each task using its weight
and to stop the search after the first realizable solution.

Algorithm 1 implements our method for a set of PREM
tasks. Lower bound lbi and upper bounds ubi are computed
for every task. S is the current solution, it contains the task
set with assigned artificial deadlines, it is initialized to empty

Algorithm 1 artificial deadlines assignment(T ,S,stop)

1: Require: Srealizable
2: if Sremained ≡ ∅ then
3: if dbf analysis np(S) then
4: Srealizable ← S
5: stop ← true
6: end if
7: return true;
8: end if
9: currd ← (dheadS = 0)?(ubheadS ) : dheadS

10: repeat
11: Sol.copy(S)
12: dheadSol

← currd
13: remove(dheadSol

,Solremained)
14: artificial deadlines assignment(T ,Sol,stop)
15: currd = currd ∗ wheadSol

16: until (currd < lbheadS∧ stop = true )

before the algorithm starts, and Sremained is its remainder,
it contains the taskset before the assignment of the artificial
deadlines and it is full at the beginning of the algorithm.

The algorithm computes the artificial deadlines for all the
tasks in Sremained. The artificial deadline of every task τi is
equal to ubi in the beginning. At each iteration, the algorithm
selects the task in the head and moves it to S (line 11-
13). Once, Sremained for the current solution is empty, the
algorithm performs the non-preemptive EDF schedulability
test of [11] to assess the feasibility on the bus. If the solution
is feasible on the bus, then the algorithm saves the solution
into Srealizable, sets the booleen variable stop to true and exit
successfully (line 2-8). The schedulability is tested, further, on
the different cores using EDF algorithm (IV-B).

If the schedulablility test fails on the bus for the current
solution S, the algorithm ignores the solution, and continues
to search in the solution space by decreasing the artificial
deadline for the task in the head τi using its weight while
fixing the artifitial deadline of the other tasks, until reaching
the lower bound lbi.

The main difference between algorithm 1 and a pure Pareto-
Front based algorithm when solving our problem is at lines (5
and 15): (i) algorithm 1 uses the task weight wi, to decrements
the task artificial deadline rather than reduce it by 1, and
(ii) if a realizable solution is found, then, algorithm 1 stops
the research immediately and returns the solution rather than
compare it with the Pareto-set using the Pareto dominance
concept and adding it to the Pareto-set if not dominated.

In our prototype, we chose np-EDF for scheduling the
memory phases on the communication bus and EDF for
computation phases on the cores. However, our strategy is
general enough that other schedulers can be easily plugged
in our framework. As long as offsets are assigned to act as
precedence constraints between memory phases and computa-
tion phases, the choice of the scheduler is arbitrary.



B. Schedulability analysis on cores

We use in this paper, the Earliest Deadline First algorithm
(EDF) to schedule computation phases on cores. Our analysis
is based on the processor demand criterion [18] and considers
only computation phases with offsets. The processor demand
function for computation phases with offsets is defined as
follows:

df(t1, t2) =

n∑
i=1

∆i(t1, t2) · Ci (1)

Where:

∆i(t1, t2) =

⌊
t2 − φ(Ci)− Di

Ti

⌋
−

⌈
t1 − φ(Ci)

Ti

⌉
+ 1 (2)

It is the amount of time demanded by the tasks (computation
phases) in interval [t1, t2) that the core must execute to ensure
that no task misses its deadline. Considering a fully preemptive
single core scheduler, a necessary and sufficient condition for
a set of tasks (computation phases) to be schedulable by EDF
consists in checking that the demand never exceeds the length
of the interval.

lemma 1: (Baruah et al. [5]). The taskset T is feasible on
a single core (UT ≤ 1) if and only if:

∀0 ≤ t1 < t2 ≤ H, df(t1, t2) ≤ t2 − t1 (3)

V. ALLOCATION HEURISTICS

The tasks are assumed to be already assigned to the different
cores of the platform. In this paper, we use the bin-packing
heuristics: Best-Fit (BF) and Worst-Fit (WF) to perform task-
core allocation (Algorithm 2) which is likely similar to the one
used in [22]. BF and WF sort the cores by capacity. For BF
the cores are sorted in a decreasing order of their utilizations,
whereas in the case of WF, they are sorted in increasing order
of utilization.

First, the algorithm sorts PREM tasks according to their
deadlines or their periods, then, for each task, it sorts cores
according to parameter alloc (Best-Fit or Worst-Fit order)
(line 4). Then, it tests the possibility of allocating the selected
task on each core in turn. If the allocation is successful, the
next PREM task is tested, otherwise the algorithm tries the
next core (line 5-11). If the studied PREM task cannot be
allocated on any core, then, the algorithm fails (line 12-14).
If all PREM tasks have been allocated, the algorithm returns
the tasks allocation.

VI. RESULTS AND DISCUSSIONS

In this section, we present the performances of the proposed
approach. We conducted experiments with randomly generated
workloads to evaluate the proposed approach using different
task partitioning heuristic. Consistently with previous results in
the literature, WF outperforms BF in all simulated scenario,
therefore, we only report the results for WF for clarity of
presentation. We study the impact of the workload size on
schedulability and the require time to complete the analysis.

Algorithm 2 Heuristics(T ,P, alloc[BF,WF ], order)

1: sort tasks(T , order)
2: for (∀τi ∈ T ) do
3: allocated← false
4: sort cores(P, alloc)
5: for (∀p ∈ P) do
6: if (schedulable(τi, p)) then
7: allocate task into core p
8: allocated ← true
9: break;

10: end if
11: end for
12: if (allocated= false) then
13: No task allocation is found
14: end if
15: end for
16: return tasks allocation

A. Task set generation

The task set generation process takes as input n the number
of tasks and the target total utilization UT . It starts by gener-
ating the utilizations of the n tasks by using the UUniFast-
Discard [7] algorithm. We varied the baseline utilization from
0.2 to P (number of available cores) with a step of 0.4. For
every utilization ui, the algorithm generates the memory phase
utilization umi using a random value stall = ( Mi

Ci+Mi
) that

represents the utilization of the memory phase: for example, a
task with a memory stall of 0.1 spends 10% of its WCET
in the memory phase. The range of random stall in our
experience is: lev = [0.10, 0.20]. We fixed the task weight
to 0.5. We highlight that the total workload comprises also
the memory phases, hence, the computation workload on the
cores is smaller than the total utilization UT .

For each utilization, we use 50 tasksets per utiliza-
tion. We generate 10 tasks per taskset. The task period
is selected randomly from a predefined list of periods:
{80,100,150,200,240,300, 400,500, 600,800}, so to establish
an upper bound to the hyperperiod. The task deadline is set
to 70% of the task’s period.

B. Results of synthetic task set experiments

In this section, we evaluate the performance of our proposed
approach against a Pareto-Front based approach which uses
the task weight to search all the realizable solutions. Tasks
are allocated on 4 cores by Worst-fit (WF) heuristic.

Figure 3 shows the schedulability rate and the required
analysis time of schedulable tasksets as a function of the
utilization. We simulated the memory stall [0.1 − 0.2) since
it is the closest to reality. The same performance behavior
is noticed for our proposed approach (WF-ADA) and Pareto-
Front based approach (WF-PF) since they search for solutions
exactly the same way. WF-ADA as well as WF-PF (in this
experience) are not exact because they check only a subset of
the design space, however, their performances results in term
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Fig. 3: Assignment artificial deadlines algorithms perfor-
mances

of schedulablity are acceptable compared to an exact approach
(example: a Pure Pareto-Front based approach or an ILP-based
approach [23]).

As expected, WF-PF based approach require more time than
our proposed approach WF-ADA, even for small tasksets of
10 tasks and using a task weight equal to 0.5, Unfortunately,
it increases exponentially with the number of tasks, and this
is why we limited our analysis to 10 tasks per taskset. It
is, therefore, unfeasible to run WF-PF (and also the exact
approaches) on large tasksets during design time when the
parameters of the tasksets may change frequently. The run-
time of WF-ADA is still acceptable (a few seconds in average).

VII. CONCLUSION AND FUTURE WORK

Multicore systems using ScratchPad Memories (SPMs) are
attractive architectures for executing time-critical embedded
applications, because they provide both predictability and
performance. However, they are likely subject to contention
and require a particular attention when supporting hard real-
time constraints. In this paper, we proposed technique based
on artificial deadline assignment for contention avoidance. Our
experiments show a significant improvement in the system
performances compared to state-of-the-art (example: FIFO
based buses). As future work, we plan to take into account
allocation strategies in the analysis phase for AER task model.

REFERENCES

[1] Ahmed Alhammad and Rodolfo Pellizzoni. Time-predictable execution
of multithreaded applications on multicore systems. In Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), pages 1–6.
IEEE, 2014.

[2] Ahmed Alhammad, Saud Wasly, and Rodolfo Pellizzoni. Memory
efficient global scheduling of real-time tasks. In 21st IEEE Real-Time
and Embedded Technology and Applications Symposium, pages 285–
296. IEEE, 2015.

[3] Stanley Bak, Gang Yao, Rodolfo Pellizzoni, and Marco Caccamo.
Memory-aware scheduling of multicore task sets for real-time systems.
In 2012 IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications, pages 300–309. IEEE, 2012.

[4] Sanjoy K Baruah, Louis E Rosier, and Rodney R Howell. Algorithms
and complexity concerning the preemptive scheduling of periodic, real-
time tasks on one processor. Real-Time Systems, 2:63–119, 1990.

[5] Sanjoy K Baruah, Louis E Rosier, and Rodney R Howell. Algorithms
and complexity concerning the preemptive scheduling of periodic, real-
time tasks on one processor. Real-time systems, 2(4):301–324, 1990.

[6] Guy Durrieu, Madeleine Faugère, et al. Predictable flight management
system implementation on a multicore processor. In Embedded Real
Time Software (ERTS’14), 2014.

[7] Paul Emberson, Roger Stafford, and Robert I Davis. Techniques for the
synthesis of multiprocessor tasksets. In WATERS, 2010.

[8] Johannes Adzer Hoogeveen, Jan Karel Lenstra, and Bart Veltman.
Preemptive scheduling in a two-stage multiprocessor flow shop is np-
hard. European Journal of Operational Research, 89(1):172–175, 1996.

[9] Zahaf Houssam-Eddine, Nicola Capodieci, et al. The hpc-dag task model
for heterogeneous real-time systems. IEEE Transactions on Computers,
70(10):1747–1761, 2021.

[10] AG IT. Aurix 32-bit microcontrollers for automotive and industrial
applications. Infineon Technologies AG, 1.

[11] Kevin Jeffay, Donald F Stanat, et al. On non-preemptive scheduling
of periodic and sporadic tasks. In IEEE real-time systems symposium,
pages 129–139. US: IEEE, 1991.

[12] Jan Korst, Emile Aarts, and Jan Karel Lenstra. Scheduling periodic
tasks. INFORMS journal on Computing, 8(4):428–435, 1996.

[13] Ben Lickly, Isaac Liu, et al. Predictable programming on a precision
timed architecture. In Proceedings of the 2008 international conference
on Compilers, architectures and synthesis for embedded systems, pages
137–146, 2008.
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