Ikram Senoussaoui 
  
Mohammed Kamel Benhaoua 
  
Houssam-Eddine Zahaf 
  
  
  
  
  
Toward memory-centric scheduling for PREM task on multicore platforms, when processor assignments are specified

Keywords: Real-time, Scheduling, PREM, multicore

HAL is

I. INTRODUCTION

Contention on memory resources was the subject of many research works [START_REF] Alhammad | Time-predictable execution of multithreaded applications on multicore systems[END_REF], [START_REF] Maia | Schedulability analysis for global fixed-priority scheduling of the 3-phase task model[END_REF], [START_REF] Rosen | Bus access optimization for predictable implementation of real-time applications on multiprocessor systems-on-chip[END_REF], [START_REF] Yao | Memory-centric scheduling for multicore hard real-time systems[END_REF], [START_REF] Tabish | A real-time scratchpad-centric os with predictable inter/intra-core communication for multi-core embedded systems[END_REF]. Estimating precise bounds on timing delays due to contention is difficult. In general, it is hard to define what are the tasks that might interfere with each other, which likely leads to include scenario's that might never occur, therefore over-estimating the worst-case interference. A second approach tends to prevent interference by enforcing space and time isolation (e.g. time partitioning schemes).

The Acquisition-Execution-Restitution model (AER) [START_REF] Durrieu | Predictable flight management system implementation on a multicore processor[END_REF], and the PRedictable Execution Model (PREM) [START_REF] Pellizzoni | A predictable execution model for cots-based embedded systems[END_REF] represent a good alternative. In the PREM model, the task is modeled in two phases: (i) a memory phase where all data are transferred from main memory to the local memory and vice-versa, (ii) and a pure computation phase where the loaded data are processed. Memory-transactions are scheduled so that the memory bus is accessed without interference (time isolation), while pure computations are executed on the platform cores. In this paper, we focus on the PREM model.

Several difficult challenges are encountered when scheduling real-time application modeled by the PREM model on multicore architectures. Finding a proper way to schedule memory phases is the most important difficulty since the bus controllers available on commercial platforms are not dedicated to real-time scheduling, they support very simple policies for example: First-In-First-Out (FIFO) scheduling policy. A second issue is the complexity of the scheduling problem: we need to consider at the same time scheduling of bus memory access and scheduling on the different cores.

In this paper, we propose novel method for assigning artificial deadlines to memory phases of a set of periodic PREM tasks, so to avoid memory contention, in particular, contention between the communication bus and the main memory. We do not address task to core assignment in this paper, therefore we use classical bin-packing heuristics to compute the task to core allocation. Finally, we provide a large set of synthetic experiments to demonstrate the efficiency of the proposed heuristic in terms of schedulability, as well as the required analysis time.

This paper is organized as follows: in the following section we review the state of the art. We present the hardware and task models in Section III. Further, we detail in Section IV how the artificial deadlines are assigned to memory phases. Within Section V, we give a quick overview how tasks can be allocated to cores. Results and simulations are described in Section VI. We draw conclusions in Section VII.

II. RELATED WORK

Modern COTS-based embedded systems include multiple active components (CPU cores and I/O peripherals) that can independently initiate access to shared resources (like main memory and inter-connection buses) which cause contention leading to timing degradation [START_REF] Pellizzoni | Predictable execution model: concept and implementation[END_REF]. These architectures feature generally, a single port main memory shared among all CPU cores and peripherals, therefore, it is hard to guarantee the absence of memory conflicts during execution. In [START_REF] Pellizzoni | Worst case delay analysis for memory interference in multicore systems[END_REF], authors have shown that the worst case execution time (WCET) of a task can increase linearly with the number of suffered cache misses, due to contention for access to main memory. To solve this problem, new execution models making use of pre-fetching techniques have been proposed in the literature. These techniques have been investigated first by Rosen et al. [START_REF] Rosen | Bus access optimization for predictable implementation of real-time applications on multiprocessor systems-on-chip[END_REF] in the context of worst-case execution time computation and bus access optimization. The authors show in [START_REF] Adzer Hoogeveen | Preemptive scheduling in a two-stage multiprocessor flow shop is nphard[END_REF] that pre-fetching techniques improve the cache/scratchpad locality and reduce average execution times.

The PRedictable Execution Model (PREM) from Pellizzoni et al [START_REF] Pellizzoni | A predictable execution model for cots-based embedded systems[END_REF] was first proposed to co-schedule both memory requests from CPU and I/O with computations on uniprocessor platforms with multi-level caches. It splits tasks in memory/computation phases. This execution model drastically reduces the variability of memory-contention latency by explicitly controlling memory accesses during memory phases. PREM has been extended later in [START_REF] Yao | Memory-centric scheduling for multicore hard real-time systems[END_REF] to partitioned multicore/processor platforms where the core isolation is provided through a coarse-grained TDM memory schedule.

Different memory-aware scheduling policies for PREM tasks are evaluated in [START_REF] Bak | Memory-aware scheduling of multicore task sets for real-time systems[END_REF] by simulating synthetic task systems on a multicore platform. The authors of this work used different combinations of TDMA slots (different slot sizes) and different priority-based schedulers for the memory and computation phases on a partitioned multicore platform.

The Acquisition-Execution-Restitution model (AER) [START_REF] Durrieu | Predictable flight management system implementation on a multicore processor[END_REF] is a generalization of the PREM model where each task is divided into three distinct parts: two memory phases (reading and writing) and a computation phase.

We believe that the memory hierarchies of modern multicores can further boost the effectiveness of the PREM model, and, in general, improve WCET predictability. The reason is that, platform designers replace traditional data caches with explicitly managed memories such as scratchpads (SPMs). The key point is that the behavior of explicitlymanaged scratchpads is also much more predictable than that of caches, because access latency is independent of the access pattern [START_REF] Lickly | Predictable programming on a precision timed architecture[END_REF], [START_REF] Puaut | Scratchpad memories vs locked caches in hard real-time systems: a quantitative comparison[END_REF], [START_REF] Wasly | A dynamic scratchpad memory unit for predictable real-time embedded systems[END_REF].

The schedulability problem for globally scheduled PREM tasks using the memory phase prioritizing concept is addressed in [START_REF] Yao | Global real-time memory-centric scheduling for multicore systems[END_REF]. The work in [START_REF] Alhammad | Memory efficient global scheduling of real-time tasks[END_REF] proposes a global fixed-priority scheduling algorithm for a set of sporadic PREM tasks, it considers co-scheduling a separate DMA component to perform transfers from main memory to scratchpad and viceversa. Melani et al. [START_REF] Melani | Exact response time analysis for fixed priority memory-processor co-scheduling[END_REF] proposed exact response time analysis for fixed-priority scheduling on a single core with a fully preemptive DMA engine.

Much works have been done on the communication and task scheduling problem on single/multi-processor architectures. A good overview of the common real-time scheduling methods is given in [START_REF] Korst | Scheduling periodic tasks[END_REF]. The relevant scheduling approaches can be classified on: event-based scheduling, time-triggered scheduling and hybrid approaches.

One of the most effective techniques to schedule dependent tasks on multicore platforms is to assign artificial deadlines and offsets in order to enforce precedence constraints [START_REF] Houssam-Eddine | The hpc-dag task model for heterogeneous real-time systems[END_REF]. The most popular heuristic algorithms are fair distribution and proportional distribution. We propose in this paper a technique for assigning artificial delays to memory phases to avoid memory contention.

III. SYSTEM MODEL

A. Architecture model

We consider in this work multicore architectures composed of m cores. Each core has access to a private scratchpad memory. Cores are connected through a single shared bus to a global shared memory. Before starting the computation, the different tasks trigger memory copies between main and scratchpad memories, explicitly by the system designer.

We assume that all memory is directly accessible to all cores via different address spaces. An example of such architecture is the Infineon Aurix TC397 [START_REF] It | Aurix 32-bit microcontrollers for automotive and industrial applications[END_REF].

Core1 Core2 Core3 Core4 SPM1 SPM2 SPM3 SPM4
Main memory C-Bus Fig. 1: Multicore target platform.

In Figure 1, we report an architecture compound of 4 cores. Each core is connected to its own scratchpad memory. Different scratchpads are connected using a single bus (C-bus) to the main memory.

B. Task model

We consider a set T of n independent periodic tasks, i.e., T = {τ 1 , τ 2 , • • • , τ n }. According to the semantics defined in PREM, each task τ i is divided in two phases namely: memory phase and computation phase. The later, can not start before the completion of the memory phase. A task τ i is characterized by tuple τ i = (M i , C i , D i , T i ): M i is the task worst case dataprefetch time. It represents the required time that the task τ i needs to load data from memory and/or I/O devices; C i is the task worst case computation time. This phase can be preempted contrary to the memory phase; D i is the task's relative deadline. Each instance of task τ i must finish its execution no later than D i time units after its activation; T i is the task period, it represents the exact time interval between two consecutive activations of τ i .

The computation phase of tasks does not access the shared bus, thus contentions when accessing the shared bus do not exist between computation phases and memory phases.

We denote by H the taskset hyperperiod, i.e. the system's period. It is defined as the least common multiple between all periods of tasks

H = LCM (T 1 , T 2 , • • • , T n ).
The task utilization is given as:

U i = u m i + u c i
where, u m i = Mi Ti (resp. u c i = Ci Ti ) denotes the memory phase (resp. computation phase) utilization.

The total utilization of taskset T is computed as follow:

U T = n i U i IV. DEADLINE-BASED MEMORY-PROCESSOR CO-SCHEDULING
We address in this paper the bus contention problem by avoiding memory requests overlap entirely. In this section, we will show how to determine artificial deadlines to memory phases so that they do not overlap during runtime. We consider all the memory requests as non-preemptive tasks having a period and an artificial deadline δ i and scheduled on the communication bus using Earliest Deadline First (EDF) scheduler. The schedulablity on the different cores will be tested using EDF algorithm. The analysis is based on the processor demand function [START_REF] Sanjoy K Baruah | Algorithms and complexity concerning the preemptive scheduling of periodic, realtime tasks on one processor[END_REF], [START_REF] Pellizzoni | Feasibility analysis of real-time periodic tasks with offsets[END_REF], and considers only the computation phases. The computed artificial deadlines will be used as offsets of the computation phases.

A. Artificial deadline assignment heuristic (ADA)

One strategy to solve the artificial deadline assignment problem could be to search exhaustively among all possible artificial deadline combinations in a Pareto-Front fashion. In a such strategy, the objective would be both to ensure a nonpreemptive scheduling of memory phases to avoid the overlap on the communication bus and to minimize their artificial deadlines in order to improve the schedulability on cores. Although the Pareto-Front based approaches are exact and have the advantage to find all the realizable solutions for the considered problem, they suffer from large computational complexity, as the search space may potentially be very large. In fact, any realizable solution can be accepted from real-time perspective. We present in this section a weightbased artificial deadline assignment heuristic for computing deadlines of memory phases. The search is done for each task τ i in the interval

I i = D i -C i -M i as shown in figure 2. Ii M i C i a i Di Ti δ i
Fig. 2: The task artificial deadline search interval.

We will assume that each task τ i is characterized by a weight w i such that w i < 1 (the weight is the same for all the tasks). The idea is to search for the solution by deceasing the memory phase artificial deadline for each task using its weight and to stop the search after the first realizable solution.

Algorithm 1 implements our method for a set of PREM tasks. Lower bound lb i and upper bounds ub i are computed for every task. S is the current solution, it contains the task set with assigned artificial deadlines, it is initialized to empty Algorithm 1 artificial deadlines assignment(T , S,stop) 

curr d = curr d * w head Sol 16: until (curr d < lb head S ∧ stop = true )
before the algorithm starts, and S remained is its remainder, it contains the taskset before the assignment of the artificial deadlines and it is full at the beginning of the algorithm.

The algorithm computes the artificial deadlines for all the tasks in S remained . The artificial deadline of every task τ i is equal to ub i in the beginning. At each iteration, the algorithm selects the task in the head and moves it to S (line [START_REF] Jeffay | On non-preemptive scheduling of periodic and sporadic tasks[END_REF][START_REF] Korst | Scheduling periodic tasks[END_REF][START_REF] Lickly | Predictable programming on a precision timed architecture[END_REF]. Once, S remained for the current solution is empty, the algorithm performs the non-preemptive EDF schedulability test of [START_REF] Jeffay | On non-preemptive scheduling of periodic and sporadic tasks[END_REF] to assess the feasibility on the bus. If the solution is feasible on the bus, then the algorithm saves the solution into S realizable , sets the booleen variable stop to true and exit successfully (line 2-8). The schedulability is tested, further, on the different cores using EDF algorithm (IV-B).

If the schedulablility test fails on the bus for the current solution S, the algorithm ignores the solution, and continues to search in the solution space by decreasing the artificial deadline for the task in the head τ i using its weight while fixing the artifitial deadline of the other tasks, until reaching the lower bound lb i .

The main difference between algorithm 1 and a pure Pareto-Front based algorithm when solving our problem is at lines (5 and 15): (i) algorithm 1 uses the task weight w i , to decrements the task artificial deadline rather than reduce it by 1, and (ii) if a realizable solution is found, then, algorithm 1 stops the research immediately and returns the solution rather than compare it with the Pareto-set using the Pareto dominance concept and adding it to the Pareto-set if not dominated.

In our prototype, we chose np-EDF for scheduling the memory phases on the communication bus and EDF for computation phases on the cores. However, our strategy is general enough that other schedulers can be easily plugged in our framework. As long as offsets are assigned to act as precedence constraints between memory phases and computation phases, the choice of the scheduler is arbitrary.

B. Schedulability analysis on cores

We use in this paper, the Earliest Deadline First algorithm (EDF) to schedule computation phases on cores. Our analysis is based on the processor demand criterion [START_REF] Pellizzoni | Feasibility analysis of real-time periodic tasks with offsets[END_REF] and considers only computation phases with offsets. The processor demand function for computation phases with offsets is defined as follows:

df (t 1 , t 2 ) = n i=1 ∆ i (t 1 , t 2 ) • C i (1) 
Where:

∆ i (t 1 , t 2 ) = t 2 -φ(C i ) -D i T i - t 1 -φ(C i ) T i + 1 (2)
It is the amount of time demanded by the tasks (computation phases) in interval [t 1 , t 2 ) that the core must execute to ensure that no task misses its deadline. Considering a fully preemptive single core scheduler, a necessary and sufficient condition for a set of tasks (computation phases) to be schedulable by EDF consists in checking that the demand never exceeds the length of the interval. lemma 1: (Baruah et al. [START_REF] Sanjoy K Baruah | Algorithms and complexity concerning the preemptive scheduling of periodic, realtime tasks on one processor[END_REF]). The taskset T is feasible on a single core (U T ≤ 1) if and only if:

∀0 ≤ t 1 < t 2 ≤ H, df (t 1 , t 2 ) ≤ t 2 -t 1 (3) 
V. ALLOCATION HEURISTICS

The tasks are assumed to be already assigned to the different cores of the platform. In this paper, we use the bin-packing heuristics: Best-Fit (BF) and Worst-Fit (WF) to perform taskcore allocation (Algorithm 2) which is likely similar to the one used in [START_REF] Senoussaoui | Allocation of real-time tasks onto identical core platforms under deferred fixed preemptionpoint model[END_REF]. BF and WF sort the cores by capacity. For BF the cores are sorted in a decreasing order of their utilizations, whereas in the case of WF, they are sorted in increasing order of utilization.

First, the algorithm sorts PREM tasks according to their deadlines or their periods, then, for each task, it sorts cores according to parameter alloc (Best-Fit or Worst-Fit order) (line 4). Then, it tests the possibility of allocating the selected task on each core in turn. If the allocation is successful, the next PREM task is tested, otherwise the algorithm tries the next core (line [START_REF] Sanjoy K Baruah | Algorithms and complexity concerning the preemptive scheduling of periodic, realtime tasks on one processor[END_REF][START_REF] Durrieu | Predictable flight management system implementation on a multicore processor[END_REF][START_REF] Emberson | Techniques for the synthesis of multiprocessor tasksets[END_REF][START_REF] Adzer Hoogeveen | Preemptive scheduling in a two-stage multiprocessor flow shop is nphard[END_REF][START_REF] Houssam-Eddine | The hpc-dag task model for heterogeneous real-time systems[END_REF][START_REF] It | Aurix 32-bit microcontrollers for automotive and industrial applications[END_REF][START_REF] Jeffay | On non-preemptive scheduling of periodic and sporadic tasks[END_REF]. If the studied PREM task cannot be allocated on any core, then, the algorithm fails (line [START_REF] Korst | Scheduling periodic tasks[END_REF][START_REF] Lickly | Predictable programming on a precision timed architecture[END_REF][START_REF] Maia | Schedulability analysis for global fixed-priority scheduling of the 3-phase task model[END_REF]. If all PREM tasks have been allocated, the algorithm returns the tasks allocation.

VI. RESULTS AND DISCUSSIONS

In this section, we present the performances of the proposed approach. We conducted experiments with randomly generated workloads to evaluate the proposed approach using different task partitioning heuristic. Consistently with previous results in the literature, WF outperforms BF in all simulated scenario, therefore, we only report the results for WF for clarity of presentation. We study the impact of the workload size on schedulability and the require time to complete the analysis.

Algorithm 2 Heuristics(T , P, alloc[BF, W F ], order) 

A. Task set generation

The task set generation process takes as input n the number of tasks and the target total utilization U T . It starts by generating the utilizations of the n tasks by using the UUniFast-Discard [START_REF] Emberson | Techniques for the synthesis of multiprocessor tasksets[END_REF] algorithm. We varied the baseline utilization from 0.2 to P (number of available cores) with a step of 0.4. For every utilization u i , the algorithm generates the memory phase utilization u m i using a random value stall = ( Mi Ci+Mi ) that represents the utilization of the memory phase: for example, a task with a memory stall of 0.1 spends 10% of its WCET in the memory phase. The range of random stall in our experience is: lev = [0.10, 0.20]. We fixed the task weight to 0.5. We highlight that the total workload comprises also the memory phases, hence, the computation workload on the cores is smaller than the total utilization U T .

For each utilization, we use 50 tasksets per utilization. We generate 10 tasks per taskset. The task period is selected randomly from a predefined list of periods: {80,100,150,200,240,300, 400,500, 600,800}, so to establish an upper bound to the hyperperiod. The task deadline is set to 70% of the task's period.

B. Results of synthetic task set experiments

In this section, we evaluate the performance of our proposed approach against a Pareto-Front based approach which uses the task weight to search all the realizable solutions. Tasks are allocated on 4 cores by Worst-fit (WF) heuristic.

Figure 3 shows the schedulability rate and the required analysis time of schedulable tasksets as a function of the utilization. We simulated the memory stall [0.1 -0.2) since it is the closest to reality. The same performance behavior is noticed for our proposed approach (WF-ADA) and Pareto-Front based approach (WF-PF) since they search for solutions exactly the same way. WF-ADA as well as WF-PF (in this experience) are not exact because they check only a subset of the design space, however, their performances results in term of schedulablity are acceptable compared to an exact approach (example: a Pure Pareto-Front based approach or an ILP-based approach [START_REF] Senoussaoui | Contention-free scheduling of prem tasks on partitioned multicore platforms[END_REF]).

As expected, WF-PF based approach require more time than our proposed approach WF-ADA, even for small tasksets of 10 tasks and using a task weight equal to 0.5, Unfortunately, it increases exponentially with the number of tasks, and this is why we limited our analysis to 10 tasks per taskset. It is, therefore, unfeasible to run WF-PF (and also the exact approaches) on large tasksets during design time when the parameters of the tasksets may change frequently. The runtime of WF-ADA is still acceptable (a few seconds in average).

VII. CONCLUSION AND FUTURE WORK

Multicore systems using ScratchPad Memories (SPMs) are attractive architectures for executing time-critical embedded applications, because they provide both predictability and performance. However, they are likely subject to contention and require a particular attention when supporting hard realtime constraints. In this paper, we proposed technique based on artificial deadline assignment for contention avoidance. Our experiments show a significant improvement in the system performances compared to state-of-the-art (example: FIFO based buses). As future work, we plan to take into account allocation strategies in the analysis phase for AER task model.
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 1 Require: S realizable 2: if S remained ≡ ∅ then

	3:	if dbf analysis np(S) then
	4:	S realizable ← S
	5:	stop ← true
	6:	end if
	7:	return true;
	8: end if
	9: curr d ← (d head S = 0)?(ub head S ) : d head S
	10: repeat
	11:	Sol.copy(S)
	12:	d head Sol ← curr d
	13:	remove(d head Sol , Sol remained )
	14:	artificial deadlines assignment(T , Sol,stop)
	15:	

1 :

 1 sort tasks(T , order) 2: for (∀τ i ∈ T ) do

	3:	allocated← false
	4:	sort cores(P, alloc)
	5:	for (∀p ∈ P) do
	6:	if (schedulable(τ i , p)) then
	7:	allocate task into core p
	8:	allocated ← true
	9:	break;
	10:	end if
	11:	end for
	12:	if (allocated= false) then
	13:	No task allocation is found
	14:	end if
	15: end for
	16: return tasks allocation