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Laboratoire de Mathématiques et Informatique pour la Complexité et les Systèmes,
91192 Gif-sur-Yvette,
France

(Dated: September 18, 2023)

Using high-quality data, we report several statistical regularities of equity auctions in
the Paris stock exchange. First, the average order book density is linear around the
auction price at the time of auction clearing and has a large peak at the auction price.
While the peak is due to slow traders, the order density shape is the result of subtle
dynamics. The impact of a new market order or cancellation at the auction time can be
decomposed into three parts as a function of the size of the additional order: (1) zero
impact, caused by the discrete nature of prices, sometimes up to a surprisingly large
additional volume relative to the auction volume (2) linear impact for additional orders
up to a large fraction of the auction volume (3) for even larger orders price impact is
non-linear, frequently super-linear.
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I. INTRODUCTION

Most electronic markets rely on auctions to start and end trading days in an orderly way. Because the volume
involved during auctions is larger than the liquidity available at a given time in a typical open-market limit order
book, auctions reduce price impact and fluctuations. The share of the closing auction in the total exchanged
volume has significantly increased over the years (Blackrock, 2020), especially in European markets (Raillon,
2020). This increase highlights the importance of the auction mechanism in the price formation process.

In contrast to the abundant literature about open-market dynamics, work on auctions is scarce. On the the-
oretical side, Muni Toke (2015) derives the distribution of the exchanged volume and the auction price using a
stochastic order flow model during a standard call auction. In the same vein, Derksen et al. (2020) propose a
stochastic model for call auctions which produces a concave price impact function of market orders; in addition,
Derksen et al. (2022) build on the previous model to demonstrate the heavy-tailed nature of price and volume
in closing auctions. Besides, Donier and Bouchaud (2016) show that under sufficient regularity conditions (con-
tinuous price and time) and using a first-order Taylor expansion of supply and demand curves, price impact in
Walrasian auctions is linear in the vicinity of the auction price.

Empirically, Pagano and Schwartz (2003) find that introducing opening and closing call auctions improves
market quality and lowers execution costs in the Paris stock exchange. Boussetta et al. (2017) add that although
opening volumes are decreasing and the market is fragmenting, the opening auction still improves market quality
on Euronext Paris. They also report that slow brokers submit orders early, whereas high-frequency traders tend
to act moments before the clearing. Challet and Gourianov (2018) analyze US equities data and compute the
auction price response functions conditional on the addition, and cancellation of an order. In addition, Challet
(2019) demonstrates that a strategic behavior of agents is needed to explain the antagonistic effects of activity
acceleration and indicative price volatility decrease as the auction end approaches.

More recently, Jegadeesh and Wu (2022) assess the robustness of closing auctions by comparing the price impact
between NASDAQ and NYSE exchanges and find that the cost of trading during closing auctions is generally
smaller than during trading hours. They also find that closing auctions mainly attract uninformed and passive
investors, while informed traders prefer to act during continuous market hours. In the same spirit, Besson and
Fernandez (2021) analyze the closing auction in European markets and use a linear function to fit the impact of
market orders; they report a smaller instantaneous impact for later submissions, and an overall cost of trading
on close two to three times smaller than during trading hours.

Here, we characterize in detail the empirical properties of liquidity and price impact in equity auctions. At
auction time, price impact is fully determined by the state of the order book, and we focus on the instantaneous
impact caused by an order if sent just before the clearing. We do not find a straightforward linear impact: while
adding or canceling a market (or marketable) order at the auction time has a linear component, the discreteness of
the limit order book mechanically leads to zero price impact for small enough orders. These free-of-cost volumes
can represent a fairly large fraction of the total matched volume. Before auction time, the order book shape yields
a virtual/instantaneous price impact that can differ from that of actual submissions/cancellations. However, we
find that the average impact of actual orders is of the same nature, i.e., linear. We argue that the opacity of
limit order books during auctions causes the absence of selective liquidity taking, which results in turn in a linear
impact.

This paper is organized as follows: first, we introduce a discrete-price auction mathematical framework (Section
II) suitable to derive the conditions under which price impact is zero or linear. Next, we present the high-quality
data used in this work: a large dataset from the European high-frequency financial (BEDOFIH) database (Section
III). The main part consists in a detailed study of several statistical regularities of auctions, focusing on limit
order book shapes and price impact during the auctions (Sections IV and V). Our main results are as follows:

1. the average limit order book of buy (sell) orders has a skewed bell shape whose maximum is below (above)
the auction price. Both distributions roughly mirror each other and can be considered linear in the vicinity
of the auction price;

2. there is an often large peak of volume at the auction price that builds up towards the end of the auction;

3. breaking down the average limit order book densities by the agent latency (HFT, MIXED, NON) and their
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account type (own account, client account, market maker, parent company, retail market organization . . . )
makes it clear that each category has a different behavior; the peak is not due to HFTs but to slower traders,
and some traders post buy and sell orders asymmetrically;

4. at any time during the auction, instantaneous price impact is zero for small enough volumes for both buy
and sell orders simultaneously because of the discreteness of prices. The presence of a peak for both buy
and sell limit order densities increases the importance of zero impact in auctions;

5. for large enough volumes, instantaneous price impact is linear for most of the days and not only on average.
This holds when the sum of the buy and sell order densities is constant as a function of the price around
the indicative/auction price, which happens on most days. Using a change point detection algorithm, we
characterize the linear impact price region day by day and asset by asset at the auction time;

6. the average price impact of actual submissions/cancellations during the accumulation period is linear as
well. This contrasts with open markets where the dependence of the average impact on the order size is
much weaker. Since limit order books are not disseminated during auctions, selective liquidity taking is not
possible;

7. price impact at auction time is smaller during option expiry dates.

II. A MATHEMATICAL FRAMEWORK FOR AUCTIONS

In Euronext markets, equity auctions start with an accumulation period and end with a clearing process.
During the accumulation period, participants send their orders (quantity, price, side, order type, . . . ) to the
exchange. Types of orders include market orders, limit orders, activated stop orders, and valid for auction orders.
Modifications and cancellations are allowed, but transactions cannot occur. At any time during the accumulation
process and at the end of the auction, the price that maximizes the matched volume and minimizes the imbalance
is computed. At the auction time, buy (resp. sell) orders whose prices are larger (resp. smaller) than the auction
price are executed, while limit orders whose price equals the auction price may be matched or remain in the order
book after the auction.

Definition 1 (Supply and demand). For an auction A = (a, d), where a is the auction type (open, close, . . . )
at date d, we define the available supply S(p, t) and demand D(p, t) at a price p and time t as, dropping the (a, d)
for the sake of clarity,

S(p, t) =
∑
p′≤p

VS(p
′, t),

D(p, t) =
∑
p′≥p

VB(p
′, t),

(1)

where VS(p
′, t) (resp. VB(p

′, t)) is the available sell volume (resp. buy volume) at a price p′ and time t.

Limit orders can only be submitted on a discrete price grid. Therefore, at any time t, p 7→ S(p, t) is a non-
decreasing right-continuous step function, and p 7→ D(p, t) is a non-increasing left-continuous step function.

Definition 2 (Auction price and volume). For an auction A = (a, d), the auction volume Qd
a noted Qa is

the one maximizing the exchanged quantity between buyers and sellers at the time of the clearing T d
a noted Ta.

For a given price p at time t, buyers and sellers can exchange a volume equal to min{S(p, t), D(p, t)} at most.
Thus

Qa = max
p

min {S(p, Ta), D(p, Ta)} .

The auction price pda noted pa is the price that maximizes the exchanged quantity. As it may not be unique, we
have

pa ∈ {p | Qa = min {S(p, Ta), D(p, Ta)}} .
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In this work we will always assume that supply S(p, Ta) and demand D(p, Ta) intersect, so that Qa always
exists and is unique. Note however that pa is often not uniquely defined by the maximization of the exchanged
volume alone; this is why exchanges implement a complementary set of rules such that pa is always well defined.
In the case of the Euronext markets used in this work, when multiple prices maximize the exchanged volume, the
chosen pa is the one with the smallest imbalance. Then, if multiple prices with the highest executable volume
and the smallest imbalance coexist, the auction price is the one closest to the reference price (last traded price).

Definition 3 (Indicative price and volume). For an auction A , the indicative price pindt and the indicative
volume Qind

t at time t ≤ Ta are the hypothetical auction price and the total matched volume if the clearing took
place at time t.

Obviously, we have pa = pindTa
and Qa = Qind

Ta
. From now on, the time notation will be omitted when we work at

time t = Ta (e.g., S(p) stands for S(p, Ta)). Note however that subsequent definitions and results can be stated
for any time t ≤ Ta using time-dependent notations and substituting pa with pindt and Qa with Qind

t .

Definition 4 (Buy and sell densities). For an auction A = (a, d), we define the buy (resp. sell) density ρdB
(resp. ρdS) at a price p as

ρd•(p) =
V•(p)

δp
, • ∈ {B,S}, (2)

where δp is the difference between the price p and the next non-empty tick price when • = B, and δp is the
difference between p and the previous non-empty tick price when • = S.

To define a meaningful average density over a large number of days, volumes can be scaled by the auction volume
Qd

a at day d, and prices can be substituted with log-price differences from the auction price p← log(p/pa).

Definition 5 (Scaled buy and sell densities). For an auction A = (a, d), we define the scaled buy and sell
densities as

ρ̃d•(x) =
ρd•(pae

x)

Qd
a

, • ∈ {B,S}, (3)

where x = log
(

p
pa

)
. Furthermore, if we substitute δp by a constant δx, we can compute for a given stock the

average scaled density as

⟨ρ̃•(x)⟩ =
〈
V•(pae

x)

Qd
a × δx

〉
, • ∈ {B,S}, (4)

where ⟨·⟩d denotes the average across days of the computed quantity at time t = Ta.

Observe that this quantity is a discrete version of the continuous marginal supply and demand curves defined
in Donier and Bouchaud (2016), where ρB(p) = −∂pD and ρS(p) = ∂pS.

Definition 6 (Matched and remaining volumes). For an auction A , we define V M
• (p) as the matched

(executed) volume at a price p and side • ∈ {B,S}, and V R
• (p) as the remaining (non-executed) volume at a price

p and side •. Hence, any limit volume V•(p) at price p is the sum of the matched and remaining volumes

V•(p) = V M
• (p) + V R

• (p), • ∈ {B,S}. (5)

Obviously, for any price p > pa, all the buy volume is matched and all the sell volume remains. Thus V M
B (p) =

VB(p), V
M
S (p) = 0, V R

B (p) = 0, and V R
S (p) = VS(p). Symmetrically, for any, price p < pa, we have V M

B (p) = 0,
V R
B (p) = VB(p), V

M
S (p) = VS(p), and V R

S (p) = 0. Consequently, V M
• (p)× V R

• (p) can be non-zero only if p = pa.

Proposition 1. Let A be an auction with an auction price pa and an auction volume Qa. The following equalities
stand:
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(a) Qa = S(pa)− V R
S (pa) = D(pa)− V R

B (pa) ;

(b) V R
S (pa)× V R

B (pa) = 0.

Proof. (a): as the auction volume Qa is the sum of all matched volumes, we have

Qa =
∑
p

V M
B (p) =

∑
p

V M
S (p),

= V M
B (pa) +

∑
p>pa

V M
B (p) = V M

S (pa) +
∑
p<pa

V M
S (pa),

= VB(pa)− V R
B (pa) +

∑
p>pa

VB(p) = VS(pa)− V M
S (pa) +

∑
p<pa

VS(pa),

= D(pa)− V R
B (pa) = S(pa)− V R

S (pa).

(b) is proved by contradiction: if V R
S (pa) × V R

B (pa) ̸= 0 , then
(
V R
S (pa), V

R
B (pa)

)
̸= (0, 0). This implies that a

residual volume δV = min
(
V R
S (pa), V

R
B (pa)

)
> 0 can be matched between buyers and sellers at the auction price

and thus contradicts the fact that Qa is maximizing the exchanged volume during the auction.

Let us now introduce volumes scaled by the auction volume: given an integer volume of shares q ∈ N, we define
the scaled volume ω = q/Qa.

Definition 7 (Price impact). For an auction A , for any ω > 0, we define the price impact before the auction
clearing of a buy (resp. sell) market order IB(ω) (resp. IS(ω)) as the absolute change in the auction log-price
immediately after submitting a buy (resp. sell) market order of size q = ω ×Qa

I•(ω) =

∣∣∣∣log(pω
pa

)∣∣∣∣ , • ∈ {B,S}, (6)

where pω is the new auction price after injecting the market order.

Note that I• refers to the instantaneous impact of an order submission at auction time t = Ta, i.e., assuming
a market order is sent just before the clearing. In this case, the market can not react to this submission as the
clearing happens right away, and no relaxation can occur. However, if a submission/cancellation is sent to the
exchange way before the clearing, the corresponding price impact I• at t < Ta with pa ← pindt andQa ← Qind

t refers
to a virtual/instantaneous price impact that may differ from the price impact of an actual submission/cancellation
since the market can still react to it.

Proposition 2. Let A be an auction with an auction price pa and an auction volume Qa. We inject a market
order of size q = ωQa before the auction clearing. The new auction price is pω. We have:

(a) The function I• : ω 7→
∣∣∣log (pω

pa

)∣∣∣, for • ∈ {B,S} and ω > 0, is a non-decreasing and right-continuous step

function.

(b) Let (ω
(i)
B )i≥0 be the ordered points of discontinuity of IB . Then

ω
(0)
B =

V R
S (pa) + V M

B (pa)

Qa
,

ω
(i)
B = ω

(i−1)
B +

VS(p
(i)
B ) + VB(p

(i)
B )

Qa
, i ≥ 1,

(7)

where p
(i)
B > pa is the ith non-empty price tick strictly greater than the auction price.
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FIG. 1: Cumulative buy (red curves) and sell curves (blue curves) during hypothetical auctions. Left panel: the
buy volume is totally matched at the auction price; right panel: the sell volume at the auction price is totally
matched at the auction price. Dash-dotted lines: effect of an addition buy market order (left plot) and sell

market order (right plot): the auction price can change only when the market order is larger than the matched
volume plus the imbalance, which explains why zero impact is prevalent.

(c) Let (ω
(i)
S )i≥0 be the ordered points of discontinuity of IS . Then

ω
(0)
S =

V M
S (pa) + V R

B (pa)

Qa
,

ω
(i)
S = ω

(i−1)
S +

VS(p
(i)
S ) + VB(p

(i)
S )

Qa
, i ≥ 1,

(8)

where p
(i)
S < pa is the ith non-empty price tick strictly lower than the auction price.

Obviously I•(ω
(i)
• ) =

∣∣∣log(p(i+1)
• /pa)

∣∣∣. Also, remark that if all price ticks contain non null volume (VB+VS > 0),

then p
(i)
• = pa ± iθ, where θ is the tick size. The proof of Proposition 2 is given in Appendix A. Proposition

2 allows us to compute the impact function at any time of a given auction, including during the accumulation

period. In addition, the price impact of a new order is zero if its size is smaller than ω
(0)
• Qa. Figure 1 provides

a graphical explanation of ω
(0)
• formulas. On the left panel for example, the buy volume at the auction price is

totally matched (VB(pa) = V M
B (pa) and V R

B (pa) = 0). In this case, in order to shift the price, a buyer would need
to execute a market buy order of minimal volume V R

S (pa)+VB(pa). Alternatively, a seller would need to execute
a market sell order of minimal volume V M

S (pa). The right panel of Figure 1 illustrates the symmetric case in
which the sell volume at the auction price is totally matched (VS(pa) = V M

S (pa) and V R
S (pa) = 0). Moreover,

observe that if a trader sends a market order of exact size q = ω
(0)
• × Qa ∈ N, then both pa and p

(1)
• maximize

the auction volume. As explained above, the new auction price would be the one with the smallest imbalance,

i.e. equal remaining volumes. If pa and p
(1)
• have equal imbalances, then the new auction price is the closest to

the reference price. Here, we assumed that whenever q = ω
(0)
• ×Qa ∈ N, the price automatically shifts to p

(1)
• .

Also, by Proposition 2, VS(p
(i)
• ) + VB(p

(i)
• ) = Qa × (ω

(i)
• − ω

(i−1)
• ) for i ≥ 1 is the necessary volume to take the

price from p
(i)
• to p

(i+1)
• . We therefore define δω

(i)
• = ω

(i)
• − ω

(i−1)
• for i ≥ 1 to denote this scaled incremental
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volume, with the convention that δω
(0)
• = ω

(0)
• . Finally, notice that a cancellation of a buy market order of size q

affects the price in the same way as submitting a sell market order of the same size: in both cases the new price
pω is a solution of S(pω)+q = D(pω). Similarly, cancelling a sell market order has the same effect as submitting a
buy market order. Consequently, we only focus on the price impact of market order submissions in the following.

III. DATA

The dataset used in this work is part of the BEDOFIH database (Base Européenne de Données Financières à
Haute-fréquence) built by the European Financial Data Institute (EUROFIDAI). The dataset provides detailed
order data for all stocks traded on Euronext Paris between 2013 and 2017. For each stock and each trading day,
information is provided in four files:

• a history orders file that contains all the orders that remained in the central limit order book from the
previous trading day ;

• a current orders file that contains all submissions, modifications, and cancellations for the current trading
day ;

• a trades file that lists all the transactions that took place during the current trading day ;
• an events file that lists special market events, if any, such as a delayed opening, a halt in trading, etc.

In addition to standard information such as time with microsecond precision, price, side (buy/sell), quantity,
and price threshold for stop orders, we have access to additional order details in these files, some of which are
computed ex-post. These include the order type and its temporal validity (market, limit, valid-for-auction, valid-
for-closing, etc.), the high-frequency status of the market participant (HFT, NON-HFT, or MIXED), and the
account type (own account, client account, market maker, parent company, retail liquidity provider, retail market
organization).

In order to reconstruct the exact state of the limit order book (LOB) at any point during the auction, we
combine the information from the four different files for each stock and each trading day to create a snapshot. We
select the 34 most traded stocks on Euronext Paris between 2013 and 2017 and analyze 2 to 5 years worth of data
for each stock, totaling N = 34, 977 stock-days. A small number of these stock-days result in errors or mismatches
(e.g., dataset errors, non-crossing supply and demand for the opening auction, or half-day trading/halted trading
before 17:30 for the closing auction). After removing these invalid snapshots, we are left with No = 34, 971 valid
snapshots at the opening auction time and Nc = 34, 820 valid snapshots at the closing auction time.

Using these reconstructed snapshots just before the auction time, we compute reconstructed prices and volumes
as per Euronext rules, i.e., by maximizing the exchanged volume and minimizing the imbalance. This boils down
to finding the intersection of the reconstructed supply and demand curves. Table I reports the percentage of
snapshots for which the reconstructed price (resp. volume) matches the actual auction price (resp. volume)
among valid snapshots. The remaining discrepancies may be a result of using simplified rules to account for stop
orders and occasional contradictions between recorded data in the orders file and the trades file. For these few
unmatched snapshots, we note that the discrepancies between computed and actual quantities are small: less
than 1 basis point on the absolute average difference from the auction price and 0.2% on the absolute average
distance from the auction volume. These few unmatched auctions are discarded from the sample in the subsequent
analysis, though they would not alter the outcome of our experiments.

TABLE I: Percentages of auction snapshots with accurate reconstruction.

Opening auction Closing auction
Number of valid snapshots 34,971 34,820

% snapshots matching the auction price 99.6% 99.9%
% snapshots matching the auction volume 99.0% 99.7%

% snapshots matching both 98.9% 99.6%
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IV. AVERAGE SHAPE OF THE AUCTION LIMIT ORDER BOOK

This section investigates the typical shape of the limit order book at auction time Ta, what it implies for
post-clearing price impact, and how the average LOB shape can be broken down by latency and account type of
market participants.

A. Pre-clearing vs. post-clearing LOB shape

For each stock of the dataset, we compute the buy and sell average empirical densities ⟨ρ̃•⟩ (see Definition 5) as

a function of the log-price difference x = log
(

p
pa

)
. Figure 2 shows the average LOB density for the most traded

stock in our dataset (ISIN FR0000120271, TTE.PA, TotalEnergies). We distinguish the orders that are cleared
by the auction process (dotted lines) from the ones that remain in the LOB after the end of the auction (full
lines). Average LOB densities are very similar across all the studied stocks.

Figure 2 shows the average LOB densities at the closing auction: the buy and sell densities have a skewed
bell-shaped curve around the auction price. Opening and closing auctions have clearly different LOB densities.
As expected, the average LOB density is noisier at the opening auction than at the closing auction which reflects
the typical liquidity available at either auction (Challet, 2019). However, the following remarks hold for both
auctions:

• there is a peak at the auction price, i.e. ⟨ρ̃•⟩ (0) is larger than typical values taken near 0. This translates
an accumulation of orders on p = pa on average at the time of the clearing ;

• ⟨ρ̃•⟩ is linear around x = 0, i.e. p = pa.

As shown by Fig. 2, all buy orders with p > pa are cleared, and all buy orders with p < pa remain in the LOB
after the auction as long as their temporal validity extends beyond the clearing; similarly, all sell orders with
p < pa are cleared and all sell orders with p > pa remain in the LOB after the auction. For p = pa, some orders
are matched, some are not. This explains why the peaks of buy and sell volumes at pa are reduced after the
clearing. Finally, the auction-only orders are removed from the LOB after the clearing if they are not executed.

B. Post-clearing instantaneous price impact

Let us briefly discuss the instantaneous post-clearing price impact during a continuous trading phase just after
an auction. The following remarks are valid whenever there is a continuous trading phase right after the auction
clearing (that is, after the open auction here). Consider the case of a trader sending a buy market order during
the continuous trading phase just after auction clearing. This trader can expect to match up to all the remaining
sell orders at pa without impacting the price. Once the liquidity at pa is consumed, sending an additional buy
volume q > 0 will result in a sub-linear price impact. Indeed, since ⟨ρ̃S⟩ has been observed to be linear around 0
(peak excluded), we may write ⟨ρ̃S⟩ (x) = a1 + b1x on this neighborhood so that we have on average∫ x

0

⟨ρ̃S⟩ (u)du = q, (9)

which implies

b1
2
x2 + a1x− q = 0. (10)

Hence, the post-clearing instantaneous price impact x is sub-linear and ranges between a square root limit when

q ≫ a2
1

2b1
and a linear impact limit q ≪ a2

1

2b1
. This reproduces in a stylized way the crossover between linear

and square-root market impact observed in continuous double auctions (Bucci et al., 2019). The latter can be
explained for example by assuming the existence of a hidden, latent LOB Tóth et al. (2011), which is only
partially revealed but whose shape largely determines that of market impact. At auction times instead, market
participants are forced to reveal their intentions at least in the vicinity of pa, and one can relate the auction LOB
with the latent LOB.
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FIG. 2: Average density of the limit order book ⟨ρ̃•⟩ as a function of the log difference from the auction price pa
at the opening auction (top) and at the closing auction (bottom); left plots: pre-clearing, right plots:

post-clearing (right). TTE.PA (TotalEnergies) between 2013 and 2017. In all panels, the mean density is
computed on price intervals of size δx = 1bp over N = 1266 days.
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C. Breakdown by market participant latency

Figure 3 displays a breakdown of the average empirical densities ⟨ρ̃•⟩ at the closing auctions by the speed of
market participants. We used the latency flag in our data which specifies the HFT category of the order sender as

per the AMF definition1. Let us make three remarks regarding Figure 3. First, we notice that the MIX LOB has
the same order of magnitude and shape as the total LOB (Fig. 2, bottom). This indicates that the contribution
of traders flagged as fast (HFT) and slow (NON) to the liquidity provision of the closing auction (limit orders
in the neighbourhood of the auction price) is smaller than the contribution of investment banks (flagged MIX).
Second, the HFT LOB does not display an outstanding peak of volumes at the auction price. This suggests that
this peak is actually caused by slow traders and may result in auction price pinning. Third, Figure 3 deals with
the most liquid stock of the sample, but some stocks have a very small HFT-flagged LOB with the same order
of magnitude as the low frequency LOB: HFT-flagged traders do not place sizeable limit orders in the closing
auction of all stocks.

As stated in AMF (2017); Benzaquen and Bouchaud (2018), open markets are dominated by fast trading
algorithms, which suggests considering the HFT LOB only (up to a multiplicative constant) when relating the
auction LOB with the latent continuous-auction LOB. In this setting, the post-clearing price impact is much
closer to a square root because of the sharp linear shape of the HFT LOB that vanishes around the current price.

D. Breakdown by account type

Figure 4 shows a breakdown of the average empirical densities ⟨ρ̃•⟩ at the closing auction by the account type.
This particular flag tells on whose behalf an order was sent: client account, market marker, own account, parent
company account, retail market organization (RMO), and retail liquidity provider (RLP). We notice that traders
operating on behalf of their own account, which includes a significant fraction of investment bank activities, and
market markers provide most of the liquidity in the vicinity of the auction price. In addition, the density of orders
sent on behalf of clients and slow traders have the same shape (see Fig. 3). This decomposition will be valuable
in designing realistic agent-based models in addition to incorporating multi-time scale liquidity2.

1 A participant is considered a high-frequency trader (HFT) if he meets one of the two following conditions:
• The average lifetime of its canceled orders is less than the average lifetime of all orders in the book, and it has canceled at

least 100,000 orders during the year.
• The participant must have canceled at least 500,000 orders with a lifetime of fewer than 0.1 seconds, and the top percentile of

the lifetime of its canceled orders must be less than 500 microseconds.
An investment bank meeting one of these conditions is described as mixed-HFT (MIX). If a participant does not meet any of the
above conditions, it is a non-HFT (NON).

2 There are only 126 authorized participants on the cash market (that includes equities) of Euronext Paris. See:
https://live.euronext.com/en/resources/members-list.
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FIG. 3: Average density of the limit order book ⟨ρ̃•⟩ as a function of the log difference from the auction price
pa: breakdown by user latency of the average LOB during the closing auction just before the clearing (left),

right after the clearing (right and bottom), with Y-axis in a log-scale (bottom) for TTE.PA between 2013 and
2017. The HFT flag denotes pure high frequency traders, MIX denotes investment banks with high frequency

trading activities, and NON denotes traders without HFT activities.
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FIG. 4: Average density of the limit order book ⟨ρ̃•⟩ as a function of the log difference from the auction price
pa: breakdown of the average LOB during the closing auction by user account type just before the clearing

(left), right after the clearing (right and bottom), with Y-axis in a log-scale (bottom) for TTE.PA between 2013
and 2017. Colors represent orders executed on the behalf of: a client account, a market maker, an own account,

a parent company account, a retail market organization (RMO), and a retail liquidity provider (RLP).
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V. PRICE IMPACT

This section investigates a set of statistical regularities of price impact in equity auctions focusing on closing
auctions. In the first part, we study price impact at the auction time, which was fixed at 17:35:00 before the
28th of September 2015, and then randomly between 17:35:00 and 17:35:30: we assume that a trader wishes to
know by how much the auction price would have moved if she had sent a market order right before the clearing,
supposing that she could know the clearing time in advance. In the second part, we study the behavior of price
impact before the auction time. To this end, we examine the evolution of the virtual/instantaneous price impact
throughout the accumulation period. Then, we relate the price impact at auction time with that at 17:35:00.
Finally, we compute the average impact of actual submissions/cancellations during auctions and discuss why it
is markedly different from that of open markets.

A. At the auction time

In this first part, we investigate the impact of a market order submitted (or canceled) to the exchange just
before the clearing. We explicitly assume that the trader would have been able to insert or cancel her order just
before the clearing process. In this setting, we highlight the existence of a significant zero impact volume below
which the auction price would not have changed and explain why this zero impact is purely mechanical. We then
show that any additional volume has a linear price impact over a volume range that we determine, not only on
average but for most stocks and days. We also derive a simple formula for the impact slope that we validate
empirically using a simplified optimization routine. Finally, we examine the influence of derivative expiry days
on closing auctions.

1. Zero impact: ω < ω
(0)
•

When inspecting the price impact function over several days and auctions, we observe that the minimal volume

necessary to change the auction price (Qa × ω
(0)
• using the notations of Proposition 2), can be much larger than

the typical volumes needed to impact the price further (Qa × δω
(i)
• , i ≥ 1). A compelling example is given by

Figure 5, which shows the price impact function for TTE.PA at the closing auction of May 5, 2017, with the

following quantities: pa = 48.00e, Qa = 2, 246, 617, ω
(0)
B = 27.45%, and ω

(0)
S = 9.61%. Hence, if sent just before

Ta, a buy order of a cash volume lower than Qa×ω
(0)
B ×pa = 29.6 millione would not have resulted in an auction

price change. Similarly a sell order of a cash volume lower than Qa × ω
(0)
S × pa = 10.3 millione would have had

zero impact.

In our sample, zero price impact is present in more than 98% of the total processed days and sides. This means
that in more than 98% of the time, sending one share, either on the buy or the sell side, will not change the
auction price. In addition, and maybe more surprisingly, zero impact on both sides simultaneously is by far the
most common situation. This comes from the fact that the prices are discrete and thus the cumulative buy and
sell volumes D(p) and S(p) are step functions. At the auction price, these steps only overlap partially. To change
the auction price, one needs to shift vertically either D or S in such a way that the overlap at the auction price
disappears (see Figure 1 for an illustration). Thus, zero price impact only disappears when both VB(pa) and
VS(pa) only have one share at most at pa.

Price impact can be zero for relatively large orders because of the peak of volume at pa: recall that the (scaled)

zero-impact volume ω
(0)
• is the minimal volume needed to change the auction price; by the definition of ω

(0)
• in

Proposition 2, having large matched buy and sell volumes at the auction price leads to large zero impact volumes
on both sides (see Figure 1). This is confirmed empirically: we report in Table II the probability P1% to send a
market order of size q = 1%×Qa just before the clearing without moving the closing price. For the stocks in our
sample, this probability ranges from 46% to 74%. The randomization of the clearing time prevents fast agents
from using their low latency to size their trades so as to have zero impact.



14

−0.010

−0.006

−0.002

0.002

0.006

0.010

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8
ε × ω

ε×
I ⋅

Buying
Selling

Price impact, closing auction, 2017−05−05, FR0000120271

FIG. 5: Virtual price impact ε · I as a function of the (scaled) added signed volume ε · ω at the closing auction
of TTE.PA on 2017-05-05. ε = +1 for a buy market order and ε = −1 for sell market order.

We also report several statistical observations on ω
(0)
B and ω

(0)
S . First, their statistical distribution can not

be distinguished (as shown in Figure 6). This is confirmed by a Kolmogorov-Smirnov test reported in Table II,
which also reports the empirical Spearman correlation between these two quantities: quite surprisingly, given the

observation above, the correlation between ω
(0)
B and ω

(0)
S is rather weak, −0.15 on average, and is non-significant

for some very liquid stocks (e.g., TTE.PA the most traded stock in our dataset). This confirms that zero-impact
is mostly a mechanical effect, not a strategic one.

Let us finally compare δω
(0)
• = ω

(0)
• , the minimal scaled volume needed to move the auction price, to δω

(i)
• =

ω
(i)
• − ω

(i−1)
• , i ≥ 1, the minimal scaled volumes needed to take the price from p

(i)
• to p

(i+1)
• (see Proposition

2). Table III presents results for the stock TTE.PA of pairwise Kolmogorov-Smirnov tests on the empirical

distribution functions of δω
(i)
• and δω

(j)
• . For the sake of brevity, results are presented for i, j ≤ 10, but the

statistical testing has actually been conducted up to i, j = 40. We clearly observe that δω
(0)
• and δω

(1)
• have

specific statistical properties, while the distributions of the incremental volumes δω
(i)
• for 2 ≤ i ≤ 32 could hardly

be distinguished as the null hypothesis could not be rejected at the 1% significance level. Figure 7 shows smoothed

histograms and empirical reverse cumulative distribution function for δω
(i)
• , 0 ≤ i ≤ 5. This observation is not

easily generalized to all stocks since additional factors come into play: small tick vs. large tick stocks and the

randomization of the clearing time. These factors have a non-negligible influence on the distribution of δω
(i)
• s

across different stocks and over the years.
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TABLE II: Spearman correlation and Kolmogorov-Smirnov test statistics for ω
(0)
B and ω

(0)
S , as well as the

probability P1% to send a market order of size q = 1%×Qa without impacting the auction price just before the
clearing across the stocks in our sample.

ISIN cor(ω
(0)
B , ω

(0)
S ) KS statistic(ω

(0)
B , ω

(0)
S ) P1% Observations

CH0012214059 -0.559*** 0.088* 64% 510
FR0000031122 -0.267*** 0.056 67% 1009
FR0000045072 -0.321*** 0.035 65% 1014
FR0000073272 -0.102** 0.049 66% 1015
FR0000120073 -0.210*** 0.025 64% 1014
FR0000120172 -0.156*** 0.045 66% 1268
FR0000120271 -0.048 0.022 46% 1266
FR0000120354 -0.152*** 0.088*** 70% 1014
FR0000120404 -0.089** 0.052 69% 1015
FR0000120537 -0.004 0.044 70% 504
FR0000120578 -0.139*** 0.054* 48% 1268
FR0000120628 -0.263*** 0.043 64% 1261
FR0000120644 -0.166*** 0.027 60% 1012
FR0000120685 -0.209*** 0.044 68% 1014
FR0000121014 -0.272*** 0.021 68% 1014
FR0000121147 -0.015 0.027 73% 1013
FR0000121261 -0.225*** 0.027 65% 1013
FR0000121501 -0.311*** 0.053 68% 1014
FR0000121667 -0.338*** 0.021 69% 1012
FR0000121972 -0.095*** 0.035 58% 1264
FR0000124141 -0.288*** 0.026 73% 1012
FR0000125007 -0.14*** 0.036 57% 1265
FR0000125338 -0.172*** 0.042 68% 1012
FR0000125486 -0.132*** 0.038 59% 1013
FR0000127771 -0.248*** 0.04 68% 1015
FR0000130338 -0.098* 0.033 74% 613
FR0000130809 -0.061* 0.032 56% 1259
FR0000131104 -0.128*** 0.049 53% 1264
FR0000131708 -0.118** 0.042 68% 771
FR0000131906 -0.075** 0.032 62% 1269
FR0000133308 -0.242*** 0.043 67% 1012
FR0010208488 -0.271*** 0.025 68% 1010
FR0013176526 -0.349*** 0.065 57% 401
NL0000235190 -0.096*** 0.035 61% 1264

The symbols ***,**, and * indicate significance at the 0.1%, 1%, and 5% level, respectively.

2. Linear impact: ω
(0)
• < ω < ω

(max)
•

According to (Donier and Bouchaud, 2016), in a Walrasian auction with continuous prices, average volumes
around the auction price are non-null, which leads to a linear impact (in a first-order expansion), while in a
continuous double auction, average volumes vanish around the current price and lead to a square root impact.

It is useful to first assume that price is continuous in order to derive a simple condition for the price impact
to be strictly linear. If we send a buy market order of size ω ×Qa before the auction clearing, and assuming we
work in a log-price frame of reference x = log(p/pa) in a continuous price setting, we have{

S(0) = D(0),

S (IB(ω)) = D (IB(ω)) + ωQa,
(11)

hence,

S (IB(ω))− S(0) = D (IB(ω))−D(0) + ωQa. (12)
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• .

TABLE III: Kolmogorov-Smirnov statistics for pairs of rescaled incremental volumes δω
(i)
• and δω

(j)
• for the

stock TTE.PA.

δω(0) δω(1) δω(2) δω(3) δω(4) δω(5) δω(6) δω(7) δω(8) δω(9) δω(10)

δω(0)

δω(1) 0.091***

δω(2) 0.047** 0.08***

δω(3) 0.063*** 0.103*** 0.034

δω(4) 0.057*** 0.105*** 0.033 0.023

δω(5) 0.053** 0.089*** 0.02 0.026 0.028

δω(6) 0.055** 0.112*** 0.04* 0.021 0.028 0.032

δω(7) 0.068*** 0.117*** 0.044* 0.019 0.026 0.031 0.024

δω(8) 0.043* 0.086*** 0.02 0.03 0.03 0.018 0.037. 0.037

δω(9) 0.047** 0.091*** 0.019 0.025 0.021 0.02 0.032 0.036 0.016

δω(10) 0.042* 0.081*** 0.022 0.04* 0.037 0.022 0.043* 0.041* 0.016 0.023

The symbols ***, **, and * indicate significance at the 0.1%, 1%, and 5% level, respectively.

Donier and Bouchaud (2016) perform a first-order expansion to write

∂xS(0)× (IB(ω)− 0) = ∂xD(0)(IB(ω)− 0) + ωQa, (13)

and approximate

IB(ω) =
1

ρ̃S(0) + ρ̃B(0)
× ω. (14)

However, instead, we use equation (12) to find exactly∫ IB(ω)

0

(ρ̃S + ρ̃B)(x)dx = ω, (15)
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thus

IB(ω) = F−1(ω),

F (x) =

∫ x

0

(ρ̃S + ρ̃B)(u)du.
(16)

Having a linear impact requires that F−1 and F are linear functions, therefore that x 7→ (ρ̃S + ρ̃B)(x) is
constant.

Figure 8 shows the average empirical density ⟨ρ̃S + ρ̃B⟩d of the sum of buy and sell volumes for the most liquid
stock in the sample. It strongly suggests the existence of a price interval, on each side of the auction price, in
which the sum of buy and sell volumes can be well approximated by a constant.

We now include this observation in the discrete-price theoretical framework introduced Section II and we prove
in Proposition 3 that if buy and sell densities sum up to a constant around the auction price pa (removing the
zero-impact part), price impact is linear.

Proposition 3. If x 7→ (ρ̃S + ρ̃B)(x) is constant on some intervals ]−∆S , 0[ and ]0,∆B [, then the price impact

I• is linear. More precisely, if ρ̃S(x) + ρ̃B(x) = L̃B positive constant for all x ∈]0,∆B [ and ρ̃S(x) + ρ̃B(x) = L̃S

positive constant for all x ∈]−∆S , 0[, then for all i such that I(ω(i)) < ∆, we have

I(ω(i))− I(ω(0)) =
1

p(1)L̃

(
ω(i) − ω(0)

)
, (17)

where we omitted the • ∈ {B,S} notation from I, ω, p(1) and L̃ . Recall that p
(1)
• is the first non empty price

tick after (resp. before) the auction price when • = B (resp. when • = S), as in Proposition 2.

The proof of Proposition 3 is given in Appendix B. Notice that L̃ represents a constant scaled liquidity around

pa. Also, since L̃ and ω are both scaled by Qa, the price impact as written in the right-hand side of equation
(17) does not depend on the auction volume Qa. For large-tick stocks, if VB(p)+VS(p) = Vc constant around pa,
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FIG. 8: Average empirical density of total (buy + sell) volumes for TTE.PA at the closing auction.

then the scaled liquidity is given by L̃ = Vc/(Qaθ), where θ is the tick size. For small-tick stocks, one can obtain
an approximation by substituting θ with a fraction of the average spread.

Following Proposition 3, we want to characterize the intervals in which ρ̃S + ρ̃B can be considered constant.

Therefore we need to find L̃• and ∆• for • ∈ {B,S}, such that

ρ̃S(x) + ρ̃B(x) = L̃B for all x ∈]0,∆B [;

ρ̃S(x) + ρ̃B(x) = L̃S for all x ∈]−∆S , 0[.
(18)

For symmetry reasons, we focus on ∆B and L̃B : the problem is to find ∆B and L̃B for a given day d by
resorting to a simple change point detection algorithm. This method minimizes the residual sum of squared
errors between log (ρ̃S(x) + ρ̃B(x)) and its mean η(y) for x ∈]0, y] plus the residual sum of errors of a linear fit of
log (ρ̃S(x) + ρ̃B(x)) for x > y. We choose to work with logarithms, since errors are multiplicative. The resulting
cost function is

f(y) =
∑

0<x≤y

|log (ρ̃S(x) + ρ̃B(x))− η(y)|2 +
∑
x>y

∣∣∣log (ρ̃S(x) + ρ̃B(x))− β̂(y)x− α̂(y)
∣∣∣2 ;

η(y) =
1

Ny

∑
0<x≤y

log (ρ̃S(x) + ρ̃B(x)) ,

(19)

where (α̂(y), β̂(y)) is the linear regression estimate of log (ρ̃S(x) + ρ̃B(x)) over x for x > y, and Ny is the number
of non-null observations (x, log (ρ̃S(x) + ρ̃B(x))) for x ∈]0, y]. We then define

∆B = argmin
y

f(y). (20)

This definition means that for x ≤ ∆B , the sum of the logarithm of the sum of scaled empirical buy and sell
densities is better approximated by its mean than by a non-constant (linear) fit, whereas for x > ∆B , the opposite

holds. Then, we calculate L̃B as the mean of (ρ̃S + ρ̃B)(x) for 0 < x ≤ ∆B in order to avoid an underestimation
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due to the convexity of the exponential function. Finally, we define ω
(max)
• as the maximum scaled volume of a

market order that would result in a null or linear impact, i.e.,

ω
(max)
• = ω

(0)
• +

∑
0<|x|≤∆•

VB(x) + VS(x)

Qa
. (21)

Figure 9 shows examples for ∆ detection using the previous optimisation for two different days at the closing
auction, and plots in each case the theoretical impact given by Proposition 3 with respect to the actually observed

impact function. One sees that the estimated cut-off ∆, as well as the slope estimate (p(1)L̃ )−1 ≈ (paL̃ )−1, fit
very well the actual slope and domain of the linear price impact. This is actually the case of most days, as shown
by Figure 10, where we plot the observed slope against the theoretical slope.

We also plot the smoothed histograms of ∆ and ω(max) issued by our detection algorithm for the stock TTE.PA
between 2013 and 2017 (1266 stock-days and two sides (buy and sell)) (see Fig. 11) . Note that we truncated
the closing auction snapshots at a maximum log-price distance x ≤ 2%, which is twice the average impact of a
market order of a size equal to the auction volume Qa. In addition, only fits with a number of points ≥ 20 are
kept, which happens in about ≈ 90% of the days and sides: this shows that the price impact is linear for most
of the days with an average value of ∆ above 50 basis points. Finally, P

[
ω(max) > 0.5

]
= 0.73: this means that

a trader has 73% chance to execute 50% of the total auction volume just before the close clearing and still result
in zero or linear impact.

Appendix C reports empirical properties of the impact slope at auction time computed for every asset, which
may be of some use in transaction cost analysis.

3. Influence of derivatives expiry dates

When there is no derivatives expiry, the liquidity in currency units defined by L$ := pa × Qa × L̃ whether
on Friday or other days of the week (Fig. 12, right panel) seem to be drawn from the same distribution, as we
could not reject the null hypothesis associated with Kolmogorov-Smirnov tests for any pair of weekdays outside
the third week of the month. However, on expiry days (third Fridays of the month), liquidity in currency units
is typically larger than for other weekdays during the same week and seems to be drawn from a different shifted
distribution to the right (Fig. 12, left panel). This finding is confirmed by one tailed Kolmogorov-Smirnov tests
for Friday and any other weekday during third weeks of a month. Therefore, the impact slope is typically smaller
during expiry days and the final auction order book is more resistant to price changes.



20

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

∆S1e−03

1e−02

1e−01

1e+00

1e+01

0.000 0.005 0.010 0.015 0.020

− log



p
pa




ρ B~
+

ρ S~

Constant fit
Linear fit

Sum of buy and sell densities, p<pa, TTE. PA, closing, 20130321

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

∆B

1e−03

1e−02

1e−01

1e+00

1e+01

0.000 0.005 0.010 0.015 0.020

log



p
pa




ρ B~
+

ρ S~

Constant fit
Linear fit

Sum of buy and sell densities, p>pa, TTE. PA, closing, 20170228

Slope = 
paL

~

−1

∆S

0.000

0.005

0.010

0.015

0.020

0.0 0.3 0.6 0.9
ω

−
lo

g p p a
 

Price impact of a sell order, TTE.PA, closing, 20130321

Slope = 
paL

~

−1

∆B

0.000

0.005

0.010

0.015

0.020

0.0 0.2 0.4 0.6 0.8
ω

lo
g p p a

 
Price impact of a buy order, TTE.PA, closing, 20170228

FIG. 9: Simplified change point detection algorithm applied on the buy side of the closing auction of TTE.PA
at 2013-03-21 (left) and the sell side of the closing auction of TTE.PA at 2017-02-28 (right). The upper plots
show the sum of the buy and sell empirical densities and estimated cut-off ∆ with a green dashed line. Lower

plots show the fit of the estimated impact slope (p(1)L̃ )−1 ≈ (paL̃ )−1 on the corresponding impact functions.
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auction for TTE.PA. Left panel: normal scale. Right panel: log-log scale. A straight line with unit slope and

null intercept is plotted in green for visual guidance.
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FIG. 11: Smoothed histograms of the maximum log-distance ∆ over which the sum of the buy and sell densities
can be considered constant (left) and the maximum scaled volume ω(max) that results in a null or linear impact.
These are outputs of the optimization of equation (19) applied to closing auctions of TTE.PA between 2013 and

2017.
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third week of the month (left) and outside of the third week of the month (right).
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B. Before the auction time

In this second part, we study price impact before the auction time. First, we examine the evolution of virtual
price impact throughout the accumulation period by looking at the evolution of liquidity as well as the maximum
volume resulting in a linear impact. Second, we assume that traders have means to infer the impact slope at
17:35:00, which is the latest time that ensures not missing the clearing with certainty. We then relate zero impacts
and the impact slope at 17:35:00 with those at the auction time. Finally, we study the average impact on the
indicative price of actual submissions/cancellations between 17:30:30 and the auction time by means of response
functions.

1. Price impact evolution

We investigate how the virtual price impact behaves throughout the accumulation period. We construct
successive snapshots at 5-second intervals for TTE.PA at the closing auction. Then, we compute the (virtual/
instantaneous) price impact for t ≤ Ta with pa ← pindt and Qa ← Qind

t . We define the absolute liquidity Lt as
the (constant) sum of buy and sell empirical densities at time t: Lt = (VB + VS)(t)/δp (Recall that the buy

and sell densities sum up to a constant around the current indicative price). Similarly, we define Q
(max)
t as the

maximum (absolute) volume that results in a null or linear impact time t. Figure 13 shows that averages of
both the absolute liquidity (w.r.t. to Qa) Lt/Qa and the fraction of the final liquidity Lt/LTa

follow the same
pattern, i.e., a strong concave monotonicity at the start of the accumulation period followed by strong convex
evolution as the clearing nears. Likewise, the average of the maximum linear volume with respect to the final

volume Q
(max)
t /Qa has the same shape. Nonetheless, the average mean of Q

(max)
t /Q

(max)
Ta

has a more complex
pattern and suggests a strong effect of cancellations.

2. Impact at auction time vs. 17:35:00

Let us now relate the virtual market impact at 17:35:00 and at auction time after the introduction of the
randomized clearing time. Because the limit order book is not disseminated, traders have no direct way to
estimate its shape, hence their virtual impact, at either time. However, sending a large market order and
gradually cancelling it is a way around, and is observed at times.

The relationship between the two parts of price impact (zero, then linear) at both times is markedly different.
The relative change of zero impact volumes is distributed over several orders of magnitude (see Fig. 14); agents
do have an incentive to send zero-impact orders between 17:35:00 and the auction time. On the contrary, the
slopes of the linear impact part are closely related: in 90% of the days, the relative change in the impact slope
is smaller than 12% in absolute value (see Fig. 14). This means that the auction book stabilizes after 17:35:00
as one can expect since the clearing can occur at any time after 17:35:00. For TotalEnergies stock, the average
absolute price change between 17:34:55 and 17:35:00 is 7 basis points. It is only 1.6 basis points between 17:35:00
and the auction time.

3. The linear impact of market order submission/cancellation before the auction

Finally, we evaluate the average impact of actual submissions/cancellations during the accumulation period.
To this end, we compute the one lag response function R1 for marketable orders (market orders and limit orders
with an aggressive limit price) conditional on the order (scaled) size ω

R1(ω) = ⟨εt · (pt+1 − pt)|ω⟩ , (22)

where, pt is the indicative price just before the arrival of tth marketable order submission, ε = +1 for a buy, −1
for a sell, and the time is incremented at each marketable order submission. Additionally, we compute the one
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random clearing window between 17:35:00 and 17:35:30 at closing auctions. Negative changes in % of zero
impact are broadly distributed between 0% and -100%. Shown results are for TotalEnergies stock.

lag mechanical response function RM conditional on the order (scaled) size ω

RM (ω) =
〈
εt · (p+t − pt)|ω

〉
, (23)

where p+t is the indicative price just after the marketable order arrival.

In contrast to open markets where R1 is sub-linearly dependent on the volume (Bouchaud et al., 2018; Lillo
et al., 2003; Potters and Bouchaud, 2003), we observe in Fig. 15 that R1 scales linearly with ω for marketable
orders larger than a certain threshold ω∗ ≈ 3 · 10−3. For ω < ω∗, values of R1 can be negative indicating a strong
mean reversion of the price, with values smaller than a tenth of a basis point in absolute value. For ω > ω∗, we
have essentially R1 ≈ RM indicating that the price impact of individual orders is mostly mechanical and linear
in ω. As agents can not access the full order book during auctions, there is no selective liquidity taking: this is
confirmed as R1 and RM scale linearly with ω. Incorporating marketable order cancellations with ε = +1 for sell
cancellations and −1 for buy cancellations yields ω∗ −→ 0, as we account for almost all price-changing events
(right panel of Fig. 15). These results imply that the nature of price impact is the same during the accumulation
time and at the auction time, and contrasts with results for open markets, where selective liquidity taking causes
very different shapes between the average virtual impact (using the instantaneous shape of the book) and market
impact of actual trades (Bouchaud et al., 2009; Weber and Rosenow, 2005).
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FIG. 15: Left panel: the average one lag response function R1 and the mechanical impact RM for marketable
order submissions as a function of the scaled order size ω = V/Qind

t ; right panel: R1 and RM for submissions
and cancellations. We used tick-by-tick closing auction data from BEDOFIH for TotalEnergies stock between

2013 and 2017. We discarded the first 30 seconds of each auction as it contains abnormal submissions related to
the activation of VFA/VFC orders (Valid For Auction/Valid For Closing). The green line is the curve of

y = 0.02× x.

VI. CONCLUSION

The discrete nature of prices in limit order books mechanically causes the price impact at auction time to be
zero at first, sometimes for quite a substantial fraction of the total exchanged volume. Surprisingly, zero price
impact happens most of the time simultaneously on both sides of the auction book, for additional sell and buy
market orders or equivalently for cancellations of buy or sell market orders. For volumes larger than zero-impact
ones, price impact at auction time is linear in a limited price range around the auction price not only on average
but for more than 90% of days. The theoretical work of Donier and Bouchaud (2016) shows the linearity of
the auction impact locally around the auction price using a first-order expansion and under strong regularity
assumptions of supply and demand in a continuous price setting. Here, we showed that the linearity of auction
impact is due instead to the fact that the sum of buy and sell volumes around the auction price is constant.

While this work mainly describes the final result of the order accumulation process and characterizes the limit
order book at the auction time, a more microscopic description of the dynamics of order submission, cancellation,
and perhaps diffusion (price update) is needed. Even though market orders submitted during the accumulation
period do not play a significant role in shaping the price response of the final limit order book, the action-reaction
game between market orders and limit orders throughout the auction (Besson and Fernandez, 2021; Raillon,
2020) is probably a major driver of its dynamics. Similarly, the interplay between the various categories of agents
(HFTs, market markers, agents trading on their behalf, or agents trading on behalf of their clients, . . . ) is clearly
of great interest. For example, Boussetta et al. (2017) show that HFTs submit their orders in a markedly different
way than slow traders. A good starting point would be a substantial modification of the model of Donier and
Bouchaud (2016) in the spirit of the work done by Lemhadri (2019).



27

ACKNOWLEDGEMENTS

This publication stems from a partnership between CentraleSupélec and BNP Paribas.
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Appendix A: Proof of Proposition 2

Proof. We only prove the proposition for an additional buy market order resulting in a price impact denoted
by IB . The case of a sell market order resulting in an impact IS is symmetric. By definition, ω 7→ pω is a
non-decreasing right-continuous step function; the same holds for ω 7→ I(ω). Obviously I(0) = 0 and I(ω) = 0
if and only if pw = pa. Since ω(0) denotes the first point of discontinuity of I, by monotonicity, the condition
pw = pa is equivalent to ω < ω(0). In the original auction A with auction price pa and auction volume Qa, we
have {

S(pa)− V R
S (pa) = D(pa)− V R

B (pa) = Qa,

V R
S (pa)× V R

B (pa) = 0.
(A1)

All these quantities are fixed by the original auction setting. If we add a buy market order of size q = ω ×Qa in
this setting, the new auction price pω satisfies{

S(pω)− V R
S (ω) = D(pω)− V R

B (ω) + q,

V R
S (ω)× V R

B (ω) = 0,
(A2)

where S and D are the original supply and demand functions, and V R
S (ω) (resp. V R

B (ω)) is the remaining sell
quantity (resp. buy quantity) at price pω in the new setting. These volumes depend clearly on ω.

Let us now determine the first point of discontinuity ω
(0)
B . It is clear that the first price change due to the

addition of a market order of size q = ω
(0)
B Qa occurs when V R

S (ω) = VS(pω), V
R
B (ω) = 0, and the new auction

price pω = p
(1)
B is the first non empty price tick after pa in the sense of VS + VB , i.e., the first tick price strictly

greater than the auction price which contains buy or sell shares. (see Figure 1 to build an intuition). Equation
(A2) yields

S(p
(1)
B )− VS(p

(1)
B ) = D(p

(1)
B ) + q. (A3)

Using the fact that S(p
(1)
B ) = S(pa) + VS(p

(1)
B ) and D(p

(1)
B ) = D(pa)− VB(pa) we obtain

S(pa) = D(pa)− VB(pa) + q, (A4)
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hence, using equation (A1), one finds

V R
S (pa) = V R

B (pa)− VB(pa) + q. (A5)

Using VB(pa) = V R
B (pa) + V M

B (pa), we obtain

q = V R
S (pa) + V M

B (pa), (A6)

which yields

ω
(0)
B =

1

Qa

(
V R
S (pa) + V M

B (pa)
)

(A7)

Let us now determine ω
(i)
B , i ≥ 1: which is the (i + 1)th point of discontinuity of IB . We proceed similarly:

the (i+ 1)th price change due to the injection of a market order occurs when V R
S (ω) = VS(pω), V

R
B (ω) = 0, and

pω = p
(i+1)
B is the (i+ 1)th non empty price tick greater than pa (in the sense of VS + VB). Equation (A2) yields

S(p
(i+1)
B )− VS(p

(i+1)
B ) = D(p

(i+1)
B ) + q, (A8)

∑
p′<p

(i+1)
B

VS(p
′) =

∑
p′≥p

(i+1)
B

VB(p
′) + q, (A9)

S(pa) +
∑

pa<p′<p
(i+1)
B

VS(p
′) = D(pa)−

∑
pa≤p′<p

(i+1)
B

VB(p
′) + q. (A10)

Using equation (A1), we obtain

Qa + V R
S (pa) +

∑
pa<p′<p

(i+1)
B

VS(p
′) = Qa + V R

B (pa)− (VB(pa) +
∑

pa<p′<p
(i+1)
B

VB(p
′)) + q. (A11)

Finally, ∑
pa<p′<p

(i+1)
B

(VS + VB)(p
′) = q − (V R

S (pa) + V M
B (pa)). (A12)

Thus,

ω
(i)
B = ω

(0)
B +

1

Qa

∑
pa<p′<p

(i+1)
B

(VS + VB) (p
′) , i ≥ 1, (A13)

which leads to

ω
(i)
B = ω

(i−1)
B +

VS(p
(i)
B ) + VB(p

(i)
B )

Qa
, i ≥ 1. (A14)
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Appendix B: Proof of Proposition 3

Proof. Using Proposition 2 we have

ω
(i)
B − ω

(0)
B =

1

Qa

∑
pa<p′<p

(i+1)
B

VS(p
′) + VB(p

′)

=
1

Qa

i∑
k=1

(VS + VB)(p
(k)
B )

=

i∑
k=1

(p
(k+1)
B − p

(k)
B ) (ρ̃S + ρ̃B) (p

(k)
B )

= L̃B

i∑
k=1

(p
(k+1)
B − p

(k)
B )

= L̃B(p
(i+1)
B − p

(1)
B )

≈ L̃Bp
(1)
B

[
IB

(
ω
(i)
B

)
− IB

(
ω
(0)
B

)]
,

(B1)

where we used the approximation IB

(
ω
(i)
B

)
− IB

(
ω
(0)
B

)
= log(p

(i+1)
B /p

(1)
B ) ≈ p

(i+1)
B /p

(1)
B − 1.

Appendix C: Empirical properties of impact slopes at auction time

In this appendix, we report empirical observations on the impact slope at auction time on day d defined as

S̃d = (p(1)L̃ )−1. (C1)

Figure 16 plots S̃d for TotalEnergies as a function of time. It oscillates around a typical value and has a positive
autocorrelation over a few days. The distribution of S̃d for the 34 stocks is reported in Fig. 17: while its shape is
similar for all the assets, its parameters depend on each stock.

We also report the distribution of the absolute value log-changes of the slopes in Fig. 18, which clearly appear
to be exponentially distributed. Its one-step autocorrelation is negative.

0.001

0.010

0.100

2014 2016 2018
Date

S~
d buy

sell

Daily slope at auction time, TTE.PA, Closing

FIG. 16: Daily impact slope at the closing auction time for TotalEnergies stock.
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FIG. 17: Kernel density of the impact slope at the closing auction time for the 34 studied assets.
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FIG. 18: Reverse cumulative distribution function of the absolute change in the logarithm of the slope.
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