
HAL Id: hal-03938609
https://hal.science/hal-03938609

Submitted on 13 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Online greedy identification of linear dynamical systems
Matthieu Blanke, Marc Lelarge

To cite this version:
Matthieu Blanke, Marc Lelarge. Online greedy identification of linear dynamical systems. CDC
2022 - 61st Conference on Decision and Control, IEEE, Dec 2022, Cancun, Mexico. pp.5363-5368,
�10.1109/CDC51059.2022.9993030�. �hal-03938609�

https://hal.science/hal-03938609
https://hal.archives-ouvertes.fr


Online greedy identification of linear dynamical systems

Matthieu Blanke and Marc Lelarge

Abstract— This work addresses the problem of exploration in
an unknown environment. For multi-input multi-output, linear
time-invariant dynamical systems, we use an experimental
design framework and introduce an online greedy policy where
the control maximizes the information of the next step. We
evaluate our approach experimentally and compare it with
more elaborate gradient-based methods. In a setting with
a limited number of observations, our algorithm has low
complexity and shows competitive performances. 1

I. INTRODUCTION

System identification is a problem of great relevance in
many fields such as econometrics, robotics, aeronautics,
mechanical engineering or reinforcement learning [1]–[5].
The task consists in estimating the parameters of an unknown
system by sampling data from it. One is often interested in
identifying the system with as few samples as possible, hence
motivating the active identification paradigm: the controller
wants to choose the inputs that yield maximally informative
data. We focus on multi-input multi-output (MIMO) linear
time-invariant (LTI) dynamical systems, which can model for
example the motion of an aircraft system over time near an
equilibrium position. Let A ∈ Rd×d and B ∈ Rd×m be two
matrices; we consider the following discrete-time dynamics:

x0 = 0,

xt+1 = Axt +But + wt, 0 ≤ t ≤ T − 1,
(1)

where xt ∈ Rd is the state vector, wt ∼ N (0, σ2Id) is a
normally distributed isotropic noise with known variance σ2

and the control variables ut ∈ Rm are chosen by the
controller with the following power constraint:

1

T

T−1∑
t=0

‖ut‖2 ≤ γ2. (2)

The parameters of the system are (AB) := θ ∈ Rd×q
(q = d + m). We note (A?B?) := θ? the parameters of
the real system which are unknown initially and are to be
identified. It may happen that the controller knows B? in
advance, in which case θ = A and q = m. At time T , the
controller returns an estimate of θ? from the observed trajec-
tory (xt)0≤t≤T . The goal of active system identification is to
choose inputs (ut) that make the trajectory as informative as
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possible for the estimation of θ?, with input ut being chosen
at time t using the past observations. We provide a formal
mathematical formulation of this objective in Section I-D.

In practice, one must face two main limitations in the
identification of a LTI dynamical system. First, the number
of observations T is small. Indeed systems have complex
dynamics in general and can only be approximated by LTI
systems on short time scales. Moreover, running an experi-
ment on the real system can be costly (think of an aircraft
test flight for instance), so the controller wants to estimate
the parameters with as few samples as possible. Second,
our identification algorithm needs to take decisions as fast
as possible in order to run realistically online. Hence, we
attach great importance to the computational time C of
the control design, which should be reasonably small for
practical applications. We have in this work a critical eye on
these two limitations and we seek an exploration algorithm
that runs fast and is sample efficient in a regime with a
limited number of observations.

A. Contributions

To the best of our knowledge, system identification guar-
antees are only available in the large T limit, making the
hypothesis of linear time-invariant dynamics quite unlikely.
Instead, we explore in this work a practical setting for linear
system identification with strong limitations on the number
of interactions with the real system and on the computational
resources used for input design and estimation. Using a
framework based on experimental design, we propose an
online greedy algorithm requiring minimal resources. The
resulting policy gives a control that maximizes the amount of
information collected the next step. We show empirically that
for short interactions with the system, this simple approach
can actually outperform more sophisticated gradient-based
methods. We study the computational complexity of our
algorithm and compare its performance with gradient-based
approaches and with an oracle that we have designed, both
on average and on real-life dynamical systems.

B. Related work

System identification is a primary area of control the-
ory [1], [6]. It has been widely studied in the field of
experimental design. The question of choosing the most
informative input can be tackled in the framework of classical
experimental design [7], [8]. For the particular case of LTI
dynamical systems, optimal design approaches have provided
results for single-input single-output (SISO) systems [3],
[9] or MIMO systems in the frequency domain or with
randomized inputs [10].



More recently, system identification has received consid-
erable attention in the machine learning community, with the
aim of obtaining finite-time bounds on the estimation error
[11]–[14]. The issue of designing optimal inputs is tackled
in [15], [16]. The authors derive an asymptotically optimal
algorithm (as the number of observations tends to infinity)
by maximizing an optimal design objective in the frequency
domain. The inputs are played and updated in epochs with
exponentially growing length.

C. Notations and assumptions

In the rest of this work, we note θ? = (A?B?) the
unknown parameters underlying the dynamics. We define
a policy π : (x1:t, u0:t−1) → ut as a mapping between
the past trajectory and the future input. The set of poli-
cies satisfying the power constraint (2) is noted Πγ . We
denote τ = (x1:T , u0:T−1) a trajectory, and we extend this
notation to τ(π, T ) when the trajectory is obtained using a
policy π until time T . We denote Eθ the average for a dy-
namical system given by (1) with fixed (AB) = θ knowing
the past trajectory, where the expectation is taken over the
randomness of the noise wt and possibly from the policy
inducing the control ut. We assume that the pair (A?, B?)
is controllable: the matrix R? = (B?A?B? . . . A

d−1
? B?) has

rank d.

D. Adaptive identification

Let us fix an estimator θ̂ : τ 7→ θ̂(τ) ∈ Rd×q , yielding
an estimate of the parameters from a given trajectory. Our
objective is to find a policy π ∈ Πγ whose resulting
trajectory τ(π, T ) gives a good estimate θ̂(τ) for θ?. We
measure this performance by the mean squared error of the
parameters:

MSE(π) =
1

2
Eθ?

[∥∥∥θ̂(τ(π, T )
)
− θ?

∥∥∥2

F

]
. (3)

An optimal policy π? would be one minimizing the MSE (3).
Of course, this quantity depends on θ? the true unknown pa-
rameter of the system through the dynamics (1), so finding π?
by computing and minimizing (3) is not possible. However,
we can adaptively compute an approximation of the MSE by
estimating θ? sequentially, as follows.

Definition 1 (Adaptive system identification): Given an
estimate θ̂i of θ?, the next sequence of inputs can be chosen
to minimize a cost function F approximating the MSE (3),
using θ̂i as an approximation of θ?. Then, these inputs are
played and θ? is re-estimated with the resulting trajectory
yielding an estimate θ̂i+1, and so on. We call planning
the computational process of choosing the next inputs by
optimizing the cost F . As observations are collected, the
estimation of θ? gets more and more accurate, hence the
planning functional becomes closer and closer to the MSE,
yielding an increasingly accurate policy with each iteration.

Adaptive identification is summarized in Algorithm 1,
which takes as inputs a first guess for the parameters to
estimate θ0, the parameters σ and γ of the problem, a
planning schedule {t0,= 0, t1, . . . , tn−1, tn = T} (n is the

number of planning iterations, i.e. the number of times the
policy is updated between times 0 and T ), a cost functional F
and an estimator θ̂. An adaptive identification algorithm is

Algorithm 1 Sequential system identification

inputs initial guess θ0, noise variance σ2, power γ2, cost
functional F , estimator θ̂, planning schedule {ti}0≤i≤n
ininitialize π0 returns random inputs
output final estimate θT
for 0 ≤ i ≤ n− 1 do

run the true system ti+1 − ti steps
with inputs ut = πi(x1:t, u1:t−1)
θi = θ̂(x1:ti , u1:ti−1) . estimation
πi solves min

π∈Πγ
F (π; θi, ti+1) . planning

end for

hence determined by a triplet (θ̂, F, {ti}). A natural estimator
is the least squares estimator θ̂ = θ̂LS which we define in
Section II-A. In the rest of this work, we set θ̂ = θ̂LS.

Example 1 (Random policy): A naive strategy for system
identification consists in playing random inputs with max-
imal power at each time step. This corresponds to the
choice ti = i and πi returning ut ∼ N

(
0, γ

2

m Im
)
.

Example 2 (Task-optimal pure exploration): In [16], the
authors propose for F an A-optimal design functional
(see Section II-B for details) and show that it approx-
imates the MSE (3) in the long time limit at an opti-
mal rate when T → +∞. Their identification algorithm
works with planning intervals of exponentially growing
length ti = 2i × T0 for some initial duration T0.

Example 3 (Oracle): An oracle is a controller who is
assumed to choose its policy with the knowledge of the
true parameter θ?. Hence, it can perform one single, offline
optimization of F (π; θ?, T ) = MSE(π) over {ti} = {0, T}.
By definition, the inputs chosen by the oracle are the optimal
inputs for our mean squared error system identification
problem.

II. BACKGROUND

It is convenient to describe the structure of the state
as a function of the inputs and noise. By integrating the
dynamics (1), we obtain the following result.

Proposition 1: The state can be expressed as xt = x̄t+ x̃t
with

x̄t =

t−1∑
s=0

At−1−sBus, x̃t =

t−1∑
s=0

At−1−sws. (4)

Note that that x̄t = Eθ[xt] solves the deterministic dy-
namics x̄t+1 = Ax̄t + But and x̃t has zero mean and is
independent of the control. The two terms x̄t and x̃t depend
linearly on the Bus and the ws respectively.

The data-generating distribution knowing the parameter θ
can be computed using the probability chain rule with
dynamics (1):



p(τ |θ) = (
1√

2πσ2
)T exp

[
− 1

2σ2

T−1∑
t=0

‖xt+1 −Axt −But‖22

]
.

(5)
We define the log-likelihood (up to a constant):

`(τ, θ) = − 1

2σ2

T−1∑
t=0

‖xt+1 −Axt −But‖22

= − 1

2σ2
‖Y − Zθ>‖2F,

(6)

where we have noted Y = (y0 . . . yT−1)
> ∈ RT×d and

Z = (z0 . . . zT−1)
> ∈ RT×q the observations and the co-

variates associated with the parameter θ. If θ = (AB), then

yt = xt+1, zt =

(
xt
ut

)
. If θ = A, then yt = xt+1 − But

and zt = xt. We also note U = (u0 . . . uT−1
>

) ∈ RT×m,
X = (x0 . . . xT−1

>
) ∈ RT×d and W = (w0 . . . wT−1

>
) ∈

RT×d the matrix representations of the input, the state and

the noise. We define the moment matrix Mt =
t−1∑
s=0

zszs
> and

the Gramians of the system at time t: Γt(τ ; θ) = 1
tEθ [Mt].

Note that Z>Z = MT

A. Ordinary least squares

Given the linear structure of the dynamics, a natural
estimator for the matrix θ? is the least squares estimator. The
method of least squares provides us with a formula for the
mean squared error with respect to the ground truth, which
can be used as a measure of the quality of a control.

Proposition 2 (Ordinary least squares estimator): Given
inputs U and noise W , the ordinary least squares (OLS)
estimator associated with the resulting trajectory τ is

θ̂(τ) =
(
(Z>Z)−1Z>Y

)>. (7)

and its difference from θ? is given by(
θ̂(τ)− θ?

)>
= (Z>Z)−1Z>W

= Z+W,
(8)

where Z+ denotes the pseudo-inverse of Z. Noting θt the
least squares estimator obtained from the trajectory τt =
(x0,t, u0:t−1), we recall the recursive update formula

θt+1
> = M−1

t+1

(
Mtθt + ztyt

>). (9)
Definition 2 (OLS mean squared error): For a given tra-

jectory τ generated with parameters θ? and noise W , the
Euclidean mean squared error (MSE) is

‖θ̂LS − θ?‖2F =
∥∥((Z>Z)−1Z>W

)>∥∥2

2

= tr
[
Z(Z>Z)−2Z>WW>

]
.

(10)

If the noise W and the covariates Z were independent,
the expected error would reduce to the A-optimal design
objective E[tr(Z>Z)−1]. It is not the case in our framework
since Z is generated with W .

B. Classical optimal design

The correlation between Z and W makes the derivation of
a simple expression for the expectation of (10) challenging.
In this section, we show how a more tractable objective
can be computed by applying the theory of optimal design
of experiments [7], [17]. In the classical theory of optimal
design, the informativeness of an experiment is measured by
the size of the expected Fisher information.

Definition 3 (Fisher information matrix): Let `(τ, θ) =
log p(τ |θ) be the log-likelihood of the data distribution
knowing the parameter θ. The Fisher information matrix is
defined as

I(θ) = −Eθ
[
∂2`(τ, θ)

∂θ2

]
∈ Rqd×qd. (11)

Proposition 3: For the LTI system (1),

I(θ) =
T

σ2
diag(ΓT , . . . ,ΓT ), (12)

the number of blocks being d.
Proof: The log-likelihood (6) can be separated into a

sum over the θj (d symmetric terms in θj). The quadratic
term in θj is ‖Zθj‖22 = θj

>Z>Zθj and the other terms
are constant or linear. Differentiating twice and taking the
expectation gives Eθ[Z>Z], which yields the desired result
after division by −σ2.

Definition 4: In classical optimal design, the size of
the information matrix is measured by some crite-
rion Φ : S+

n (R)→ R+, which is a functional of its eigen-
values λ1, . . . , λd ≥ 0. The quantity Φ(I) represents the
amount of information brought by the experiment and should
be maximized.

Example 4: Some of the usual optimal design cri-
teria include A-optimality ΦA(I) = −tr(I−1) and D-
optimality ΦD(I) = log det I .
The criteria have mathematical properties such as homogene-
ity, monotonicity and concavity in the sense of Loewner
ordering, which can be interpreted in terms of information
theory: monotonicity means that a larger information matrix
brings a greater amount of information, concavity means that
information cannot be increased by interpolation between
experiments. We refer to [8] for more details.

The classical optimal design theory leads to the following
definition of the optimal design planning functional.

Definition 5 (Optimal design functional): Let Φ denote
an optimal design criterion. Then the associated cost is
defined as

FΦ(π; θ, t) = −Φ
[
Γt
(
τ(π); θ

)]
. (13)

Remark 1: We note from equation (4) that Z is affine
in U . Hence, MT = Z>Z is quadratic in U , and maxi-
mizing (13) efficiently is challenging even with concavity
assumptions on Φ.
In [16], the policy is chosen to optimize (13) with the A-
optimal criterion. The inputs are restricted to periodic signals
and are optimized in the frequency domain.



III. ONLINE GREEDY IDENTIFICATION

A simple and natural approach for system identification
consists in updating the policy at each time step t in a greedy
manner: the input ut is chosen with energy γ2 so as to maxi-
mize a one-step-ahead objective. Then, a new observation xt
is collected and the process repeats. In the formalism of
Section I-D, this corresponds to the schedule ti = i.

A. One-step-ahead objective
Following Section II-B, we adopt the optimal design

functional F = FΦ. Upon choosing ut, the policy πt
should maximize the design criterion Φ applied on the
one-step-ahead, ut-dependent information matrix, the past
trajectory x0:t being fixed. The one-step-ahead information
matrix is Mt + Eθs [ztzt>], because the next ut-dependent
covariate is zt. Therefore, one-step-ahead planning yields the
following optimization problem:

max
u∈Rm

Φ
(
Mt + z(u)z(u)

>
)

such that ‖u‖2 ≤ γ2, z(u) =

(
xt
u

)
.

(14)

Remark 2: With this greedy policy, the energy constraint
imposed for the choice of one input ensures that the global
power constraint (2) is met.
The corresponding identification process is detailed in Algo-
rithm 2. We will see in Section III-B that the D-optimality
version of problem (14) can be solved accurately and at
a low cost. Moreover, Algorithm 2 has the advantage of
improving the knowledge of θ? at each time step, so that the
planning objective is constantly corrected. In this way, the
bias introduced by the uncertainty about θ? is minimized,
whereas a large bias could impair the identification when
planning over larger time sequences.

Algorithm 2 Greedy system identification

inputs initial guess θ0, noise variance σ2, power γ2, time
horizon T , design criterion Φ
output final estimate θT
for 0 ≤ t ≤ T − 1 do

ut ∈ argmax
‖u‖2≤γ2

Φ
(
M̄t + z(u)z(u)

>)
play ut, observe xt+1

Mt+1 = Mt + ztzt
>

θt+1
> = M−1

t+1

(
Mtθt + ztyt

>)
end for

B. Solving the one-step D-optimal design problem
We show that one-step-ahead D-optimal planning for

online system identification is equivalent to a quadratic
optimization problem that can be solved efficiently.

Proposition 4: For D-optimality, there exists a symmetric
matrix Q ∈ Rm×m and b ∈ Rm such that the problem (14)
is equivalent to

min
u∈Rd

u>Qu− 2b>u

such that ‖u‖2 ≤ γ2.
(15)

Proof: By the matrix determinant lemma, we find that

log det
(
Mt + z(u)z(u)

>)
= log detMt

+ log
(
1 + z(u)

>
Mt
−1z(u)

)
.

(16)
Maximizing this quantity with respect to u is equivalent
to maximizing z(u)

>
Mt
−1z(u). The matrix Mt

−1 is sym-
metric because Mt is symmetric, and so are its diagonal
submatrices. Given the affine dependence of z in u and the
(possible) block structure of z and Mt, z(u)

>
Mt
−1z(u) is

of the form u>Qu− 2b>u, up to a constant. We provide an
explicit formula for Q and b in the case where θ = A in
Section III-C
We now characterize the minimizers of Problem (15). We
focus on maximal energy greedy policies (‖ut‖22 = γ2) and
thus consider the equality constrained problem

min
u∈Rd

u>Qu− 2b>u

such that ‖u‖2 = γ2.
(17)

Proposition 5: Let us denote u∗ a minimzer of (17), {αi}
the eigenvalues of Q, and ui and bi the coordinates of u∗
and b in a corresponding orthonormal basis. Then there exists
a nonzero scalar µ such that

ui = bi/(αi + µ) and
∑
i

bi
2

(αi + µ)2
= γ2. (18)

Proof: By the Lagrange multiplier theorem, there exists
a nonzero scalar µ such that Qu∗ − b = −µu∗, where µ
can be scaled such that Q + µId is nonsingular. Inverting
the optimal condition and expanding the equality constraint
yields the two conditions.
It follows from Proposition 5 that our greedy planning
problem (15) can be solved at the cost of a scalar root-finding
search and an eigenvalue decomposition. In [18], bounds
are provided so as to efficiently initialize the root-finding
method.

C. Known B?
In the case where θ = A, the next ut-dependent covariate

upon choosing ut is xt+1 so one-step-ahead planning takes
the form

max
u∈Rm

Φ
(
Mt+1 + σ2Id + x(u)x(u)

>
)

such that ‖u‖2 ≤ γ2, x(u) = Atxt +B?u.
(19)

For D-optimality, we obtain a quadratic problem of the
same form as (15), with the following matrices:

Q = −B>Mt
−1B?, b = B>Mt

−1Atxt. (20)



IV. GRADIENT-BASED PLANNING

In this section, we propose a gradient-based approach to
planning.

A. Gradient-based optimal design

In the adaptive identification scheme of Algorithm 1, the
cost functions (3) and (13) can be optimized by projected
gradient descent. Gradients with respect to U can be derived
analytically (see [3], section 6 for the derivation of an adjoint
equation) or automatically in an automatic differentiation
framework. We propose a gradient-based planning method
that consists in performing gradient descent directly on U
in functional (13). Note that we optimize the inputs directly
in the time domain, whereas other approaches such as [16]
perform optimization in the frequency domain by restricting
the control to periodic inputs. We rescale U at each step to
ensure that the power constraint (2) is met. The ti are chosen
arbitrarily. The computational complexity of the algorithm is
linear in T : each gradient step backpropagates through the
planning time interval.

B. Gradient through the MSE oracle

Given the true parameters θ? = (A?B?), the optimal
control for the MSE minimizes the MSE cost (3), as ex-
plained in Example 3. However, the dependance between Z
and W makes this functional complicated to evaluate and
to minimize with respect to the inputs, even when the true
parameters θ? are known. We propose a numerical method to
minimize (3) using Monte-Carlo sampling. One can sample
a batch of b noise matrices W1, . . . ,Wb ∼ N (0, σ2I), then
approximate the gradient of (3) by

∇MSE(U) ' 1

b

b∑
i=1

∇U tr
[
Z(Z>Z)−2Z>WiWi

>
]
, (21)

and perform projected gradient descent. Although we have
no convergence guarantees due to the complicated structure
of the objective function, gradient descent does converge in
practice, to a control that outperforms the adaptive controls.

V. PERFORMANCE STUDY

We compare our greedy algorithm to the gradient algo-
rithms of Section IV and to the TOPLE algorithm of [16].

A. Complexity analysis

Definition 6 (Performance): The performance of the pol-
icy π is measured by the average error over the experiments
on the true system: ε = MSE(π). We study the performance
of our algorithms as a function of the number of observa-
tions T and the computational cost C. We also introduce the
computational rate c = C/T .
Algorithm 2 and the gradient identification algorithm have
linear time complexity. Hence, we define cgreedy and cgradient

for a given number of gradient iterations. In practice, we find
that cgreedy � cgradient, where cgradient is the computational
rate needed for the gradient descent to converge. Further-
more, we expect the squared error to scale approximately
as 1/T with the number of observations [19] (see [16]
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Fig. 1: Experimental (T,C) diagram. Left Performance of
the gradient algorithm, with variable T and C (varying
number of gradient steps). Right Relative performance of
the gradient algorithm compared with the greedy algorithm:
negative means that the gradient performs better.

Theorem 2.1). Given the above observations, we postulate
that the performance of our algorithms takes the form

ε(C, T ) = ε(c)/T, (22)

which is experimentally verified. We build an experimen-
tal diagram where we plot the average estimation error
for θ? = A? as a function of the two resources T and C
for the gradient algorithm. Increasing C allows for more
gradient steps. We run experiments with random matrices
A? of size d = 4, with B? = Id. We set γ = 1, σ = 10−2,
T ∈ [60, 220]. The gradient algorithm optimizes the D-
optimality functional (13) with {ti} = {0, 10, T/2, T}. The
results obtained are to be compared with those of the greedy
algorithm, which has a fixed, small computational rate c.

Our diagrams are plotted on Fig. 1. They show that the
greedy algorithm is preferable in a phase of low computation
rate: C < c×T , as suggested by (22). The phase separation
corresponds to a relatively high number of gradient steps.
Indeed, the iso-performances along this line are almost verti-
cal, meaning that the gradient descent has almost converged.
Furthermore, the maximum performance gain of the gradient
algorithm over the greedy algorithm is 10%.

B. Average estimation error

We now test the performances of our algorithms on
random matrices, with the same settings as in the previ-
ous experiment. For each matrix A?, we also compute an
oracle optimal control using the Monte-Carlo approach of
Section IV-B with a batch size of b = 100, and run a random
input baseline (see Example 1), as well as the TOPLE
algorithm of [16].

The performances over time are shown in Figure 2. Both
the gradient algorithm and the greedy algorithm closely
approach the oracle. The former performs slightly better than
the latter in average. However, the computational cost of
the gradient algorithm is much larger, as shown in Table I.
The values of c for the gradient-based algorithms are those
found to achieve convergence in this setting (∼ 100 for the
gradient-based optimal design, ∼ 1000 for TOPLE).



0 25 50 75 100
t

10−2

10−1

‖A? − At‖F

TOPLE

random

greedy

gradient

oracle

Fig. 2: Identification error for random A?, averaged over
1000 samples.

TABLE I: Average computational rate for the different algo-
rithms.

Random TOPLE [15] MSE Gradient Greedy
c 1 100 50 2.36

TABLE II: Frobenius error for A? in the lateral system of
the aircraft, T = 150. Our oracle algorithm reaches an error
of 8.0 × 10−2. The computational time is expressed in an
arbitrary unit.

Random TOPLE [15] MSE gradient Greedy
Error 1.1× 10−1 8.6× 10−2 8.3× 10−2 8.2× 10−2

Time 1 55.7 25 1.13

C. Identification of an aircraft system

We now study a more realistic setting from aeronautics:
we apply system identification to an aircraft system. We use
the numerical values issued in a NASA report [4]. The lateral
motion of a Lockheed Jet star is described by the slideslip
and roll angles and the roll and yaw rates (β, φ, p, r)> := x.
The control variables are the aileron and rudder angles
(δa, δr)

> := u. The linear dynamics for an aircraft flying at
573.7 meters/sec at 6.096 meters are given by the following
matrices obtained after discretization and normalization of
the continuous-time system described in [4]:

A? =


.955 −.0113 0 −.0284

0 1 .0568 0
−.25 0 −.963 .00496
.168 0 −.00476 −.993

 , (23)

B? = 0.1×


0 0.0116
0 0

1.62 .789
0 −.87

 , (24)

with σ = 1 and γ ' 4 deg. We apply our algorithms on this
LTI system. Our results are summarized in Table II.

The greedy algorithm estimates the system parameters as
well as the gradient-based algorithms, but with substantially
lighter computational cost. With small T , the estimate of A?
is too inaccurate for long-term planning to be effective.

It is more efficient to update the estimate and the policy
frequently. We obtain similar results for the longitudinal
system of a C-8 Buffalo aircraft [4].

VI. CONCLUSION

In this work, we explore a setting for linear system identi-
fication with strong constraints on the number of interactions
with the real system and on the computing resources used
for planning and estimation. We introduce an online greedy
algorithm requiring minimal computing resources and show
empirically that in a regime where the number of interactions
with the system is small, it can actually outperform more so-
phisticated gradient-based methods. Extending this approach
to optimal control for the LQR is an interesting direction for
future research.
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