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Online greedy identification of linear dynamical systems

This work addresses the problem of exploration in an unknown environment. For multi-input multi-output, linear time-invariant dynamical systems, we use an experimental design framework and introduce an online greedy policy where the control maximizes the information of the next step. We evaluate our approach experimentally and compare it with more elaborate gradient-based methods. In a setting with a limited number of observations, our algorithm has low complexity and shows competitive performances. 1

I. INTRODUCTION

System identification is a problem of great relevance in many fields such as econometrics, robotics, aeronautics, mechanical engineering or reinforcement learning [START_REF] Ljung | System identification[END_REF]- [START_REF] Thomas | Model-based reinforcement learning: A survey[END_REF]. The task consists in estimating the parameters of an unknown system by sampling data from it. One is often interested in identifying the system with as few samples as possible, hence motivating the active identification paradigm: the controller wants to choose the inputs that yield maximally informative data. We focus on multi-input multi-output (MIMO) linear time-invariant (LTI) dynamical systems, which can model for example the motion of an aircraft system over time near an equilibrium position. Let A ∈ R d×d and B ∈ R d×m be two matrices; we consider the following discrete-time dynamics:

x 0 = 0,

x t+1 = Ax t + Bu t + w t , 0 ≤ t ≤ T -1, (1) 
where x t ∈ R d is the state vector, w t ∼ N (0, σ 2 I d ) is a normally distributed isotropic noise with known variance σ 2 and the control variables u t ∈ R m are chosen by the controller with the following power constraint:

1 T T -1 t=0 u t 2 ≤ γ 2 . ( 2 
)
The parameters of the system are (A B) := θ ∈ R d×q (q = d + m). We note (A B ) := θ the parameters of the real system which are unknown initially and are to be identified. It may happen that the controller knows B in advance, in which case θ = A and q = m. At time T , the controller returns an estimate of θ from the observed trajectory (x t ) 0≤t≤T . The goal of active system identification is to choose inputs (u t ) that make the trajectory as informative as
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M. Blanke and M. Lelarge are with INRIA, DI/ENS, PSL Research University, Paris, France. matthieu.blanke@inria.fr, marc.lelarge@inria.fr possible for the estimation of θ , with input u t being chosen at time t using the past observations. We provide a formal mathematical formulation of this objective in Section I-D.

In practice, one must face two main limitations in the identification of a LTI dynamical system. First, the number of observations T is small. Indeed systems have complex dynamics in general and can only be approximated by LTI systems on short time scales. Moreover, running an experiment on the real system can be costly (think of an aircraft test flight for instance), so the controller wants to estimate the parameters with as few samples as possible. Second, our identification algorithm needs to take decisions as fast as possible in order to run realistically online. Hence, we attach great importance to the computational time C of the control design, which should be reasonably small for practical applications. We have in this work a critical eye on these two limitations and we seek an exploration algorithm that runs fast and is sample efficient in a regime with a limited number of observations.

A. Contributions

To the best of our knowledge, system identification guarantees are only available in the large T limit, making the hypothesis of linear time-invariant dynamics quite unlikely. Instead, we explore in this work a practical setting for linear system identification with strong limitations on the number of interactions with the real system and on the computational resources used for input design and estimation. Using a framework based on experimental design, we propose an online greedy algorithm requiring minimal resources. The resulting policy gives a control that maximizes the amount of information collected the next step. We show empirically that for short interactions with the system, this simple approach can actually outperform more sophisticated gradient-based methods. We study the computational complexity of our algorithm and compare its performance with gradient-based approaches and with an oracle that we have designed, both on average and on real-life dynamical systems.

B. Related work

System identification is a primary area of control theory [START_REF] Ljung | System identification[END_REF], [START_REF] Gevers | Optimal Experiment Design for Open and Closed-loop System Identification[END_REF]. It has been widely studied in the field of experimental design. The question of choosing the most informative input can be tackled in the framework of classical experimental design [START_REF] Fedorov | Theory of Optimal Experiments[END_REF], [START_REF] Pukelsheim | Optimal design of experiments[END_REF]. For the particular case of LTI dynamical systems, optimal design approaches have provided results for single-input single-output (SISO) systems [START_REF] Goodwin | Dynamic System Identification: Experiment Design and Data Analysis[END_REF], [START_REF] Keviczky | Design of Experiments" for the Identification of Linear Dynamic Systems[END_REF] or MIMO systems in the frequency domain or with randomized inputs [START_REF] Mehra | Optimal inputs for linear system identification[END_REF]. More recently, system identification has received considerable attention in the machine learning community, with the aim of obtaining finite-time bounds on the estimation error [START_REF] Jedra | Finite-time identification of stable linear systems optimality of the least-squares estimator[END_REF]- [START_REF] Tsiamis | Finite sample analysis of stochastic system identification[END_REF]. The issue of designing optimal inputs is tackled in [START_REF] Wagenmaker | Active learning for identification of linear dynamical systems[END_REF], [START_REF] Andrew J Wagenmaker | Taskoptimal exploration in linear dynamical systems[END_REF]. The authors derive an asymptotically optimal algorithm (as the number of observations tends to infinity) by maximizing an optimal design objective in the frequency domain. The inputs are played and updated in epochs with exponentially growing length.

C. Notations and assumptions

In the rest of this work, we note θ = (A B ) the unknown parameters underlying the dynamics. We define a policy π : (x 1:t , u 0:t-1 ) → u t as a mapping between the past trajectory and the future input. The set of policies satisfying the power constraint (2) is noted Π γ . We denote τ = (x 1:T , u 0:T -1 ) a trajectory, and we extend this notation to τ (π, T ) when the trajectory is obtained using a policy π until time T . We denote E θ the average for a dynamical system given by (1) with fixed (A B) = θ knowing the past trajectory, where the expectation is taken over the randomness of the noise w t and possibly from the policy inducing the control u t . We assume that the pair (A , B ) is controllable: the matrix R = (B A B . . . A d-1 B ) has rank d.

D. Adaptive identification

Let us fix an estimator θ : τ → θ(τ ) ∈ R d×q , yielding an estimate of the parameters from a given trajectory. Our objective is to find a policy π ∈ Π γ whose resulting trajectory τ (π, T ) gives a good estimate θ(τ ) for θ . We measure this performance by the mean squared error of the parameters:

MSE(π) = 1 2 E θ θ τ (π, T ) -θ 2 F . (3) 
An optimal policy π would be one minimizing the MSE (3). Of course, this quantity depends on θ the true unknown parameter of the system through the dynamics (1), so finding π by computing and minimizing (3) is not possible. However, we can adaptively compute an approximation of the MSE by estimating θ sequentially, as follows. Definition 1 (Adaptive system identification): Given an estimate θi of θ , the next sequence of inputs can be chosen to minimize a cost function F approximating the MSE (3), using θi as an approximation of θ . Then, these inputs are played and θ is re-estimated with the resulting trajectory yielding an estimate θi+1 , and so on. We call planning the computational process of choosing the next inputs by optimizing the cost F . As observations are collected, the estimation of θ gets more and more accurate, hence the planning functional becomes closer and closer to the MSE, yielding an increasingly accurate policy with each iteration.

Adaptive identification is summarized in Algorithm 1, which takes as inputs a first guess for the parameters to estimate θ 0 , the parameters σ and γ of the problem, a planning schedule {t 0 , = 0, t 1 , . . . , t n-1 , t n = T } (n is the number of planning iterations, i.e. the number of times the policy is updated between times 0 and T ), a cost functional F and an estimator θ. An adaptive identification algorithm is Algorithm 1 Sequential system identification inputs initial guess θ 0 , noise variance σ 2 , power γ 2 , cost functional F , estimator θ, planning schedule {t i } 0≤i≤n ininitialize π 0 returns random inputs output final estimate θ T for 0 ≤ i ≤ n -1 do run the true system t i+1t i steps with inputs u t = π i (x 1:t , u 1:t-1 )

θ i = θ(x 1:ti , u 1:ti-1 ) estimation π i solves min π∈Πγ F (π; θ i , t i+1 ) planning end for
hence determined by a triplet ( θ, F, {t i }). A natural estimator is the least squares estimator θ = θLS which we define in Section II-A. In the rest of this work, we set θ = θLS . Example 1 (Random policy): A naive strategy for system identification consists in playing random inputs with maximal power at each time step. This corresponds to the choice t i = i and π i returning u t ∼ N 0, γ 2 m I m . Example 2 (Task-optimal pure exploration): In [START_REF] Andrew J Wagenmaker | Taskoptimal exploration in linear dynamical systems[END_REF], the authors propose for F an A-optimal design functional (see Section II-B for details) and show that it approximates the MSE (3) in the long time limit at an optimal rate when T → +∞. Their identification algorithm works with planning intervals of exponentially growing length t i = 2 i × T 0 for some initial duration T 0 .

Example 3 (Oracle): An oracle is a controller who is assumed to choose its policy with the knowledge of the true parameter θ . Hence, it can perform one single, offline optimization of F (π; θ , T ) = MSE(π) over {t i } = {0, T }. By definition, the inputs chosen by the oracle are the optimal inputs for our mean squared error system identification problem.

II. BACKGROUND

It is convenient to describe the structure of the state as a function of the inputs and noise. By integrating the dynamics (1), we obtain the following result.

Proposition 1: The state can be expressed as

x t = xt + xt with xt = t-1 s=0 A t-1-s Bu s , xt = t-1 s=0 A t-1-s w s . (4) 
Note that that xt = E θ [x t ] solves the deterministic dynamics xt+1 = Ax t + Bu t and xt has zero mean and is independent of the control. The two terms xt and xt depend linearly on the Bu s and the w s respectively. The data-generating distribution knowing the parameter θ can be computed using the probability chain rule with dynamics (1):

p(τ |θ) = ( 1 √ 2πσ 2 ) T exp - 1 2σ 2 T -1 t=0 x t+1 -Ax t -Bu t 2 2 . (5)
We define the log-likelihood (up to a constant):

(τ, θ) = - 1 2σ 2 T -1 t=0 x t+1 -Ax t -Bu t 2 2 = - 1 2σ 2 Y -Zθ 2 F , (6) 
where we have noted Y = (y 0 . . . y T -1 ) ∈ R T ×d and Z = (z 0 . . . z T -1 ) ∈ R T ×q the observations and the covariates associated with the parameter θ. If θ = (A B), then

y t = x t+1 , z t = x t u t . If θ = A, then y t = x t+1 -Bu t and z t = x t . We also note U = (u 0 . . . u T -1 ) ∈ R T ×m , X = (x 0 . . . x T -1 ) ∈ R T ×d and W = (w 0 . . . w T -1
) ∈ R T ×d the matrix representations of the input, the state and the noise. We define the moment matrix M t = t-1 s=0 z s z s and the Gramians of the system at time t:

Γ t (τ ; θ) = 1 t E θ [M t ]. Note that Z Z = M T

A. Ordinary least squares

Given the linear structure of the dynamics, a natural estimator for the matrix θ is the least squares estimator. The method of least squares provides us with a formula for the mean squared error with respect to the ground truth, which can be used as a measure of the quality of a control.

Proposition 2 (Ordinary least squares estimator): Given inputs U and noise W , the ordinary least squares (OLS) estimator associated with the resulting trajectory τ is

θ(τ ) = (Z Z) -1 Z Y . (7) 
and its difference from θ is given by

θ(τ ) -θ = (Z Z) -1 Z W = Z + W, (8) 
where Z + denotes the pseudo-inverse of Z. Noting θ t the least squares estimator obtained from the trajectory τ t = (x 0,t , u 0:t-1 ), we recall the recursive update formula

θ t+1 = M -1 t+1 M t θ t + z t y t . (9 
) Definition 2 (OLS mean squared error): For a given trajectory τ generated with parameters θ and noise W , the Euclidean mean squared error (MSE) is

θLS -θ 2 F = (Z Z) -1 Z W 2 2 = tr Z(Z Z) -2 Z W W . ( 10 
)
If the noise W and the covariates Z were independent, the expected error would reduce to the A-optimal design objective E[tr(Z Z) -1 ]. It is not the case in our framework since Z is generated with W .

B. Classical optimal design

The correlation between Z and W makes the derivation of a simple expression for the expectation of (10) challenging. In this section, we show how a more tractable objective can be computed by applying the theory of optimal design of experiments [START_REF] Fedorov | Theory of Optimal Experiments[END_REF], [START_REF] David | Experimental design: review and comment[END_REF]. In the classical theory of optimal design, the informativeness of an experiment is measured by the size of the expected Fisher information.

Definition 3 (Fisher information matrix): Let (τ, θ) = log p(τ |θ) be the log-likelihood of the data distribution knowing the parameter θ. The Fisher information matrix is defined as

I(θ) = -E θ ∂ 2 (τ, θ) ∂θ 2 ∈ R qd×qd . ( 11 
)
Proposition 3: For the LTI system (1),

I(θ) = T σ 2 diag(Γ T , . . . , Γ T ), (12) 
the number of blocks being d.

Proof: The log-likelihood ( 6) can be separated into a sum over the θ j (d symmetric terms in θ j ). The quadratic term in θ j is Zθ j 2 2 = θ j Z Zθ j and the other terms are constant or linear. Differentiating twice and taking the expectation gives E θ [Z Z], which yields the desired result after division by -σ 2 .

Definition 4: In classical optimal design, the size of the information matrix is measured by some criterion Φ : S + n (R) → R + , which is a functional of its eigenvalues λ 1 , . . . , λ d ≥ 0. The quantity Φ(I) represents the amount of information brought by the experiment and should be maximized.

Example 4: Some of the usual optimal design criteria include A-optimality Φ A (I) = -tr(I -1 ) and Doptimality Φ D (I) = log det I. The criteria have mathematical properties such as homogeneity, monotonicity and concavity in the sense of Loewner ordering, which can be interpreted in terms of information theory: monotonicity means that a larger information matrix brings a greater amount of information, concavity means that information cannot be increased by interpolation between experiments. We refer to [START_REF] Pukelsheim | Optimal design of experiments[END_REF] for more details.

The classical optimal design theory leads to the following definition of the optimal design planning functional.

Definition 5 (Optimal design functional): Let Φ denote an optimal design criterion. Then the associated cost is defined as

F Φ (π; θ, t) = -Φ Γ t τ (π); θ .
(13) Remark 1: We note from equation (4) that Z is affine in U . Hence, M T = Z Z is quadratic in U , and maximizing [START_REF] Sarkar | Near optimal finite time identification of arbitrary linear dynamical systems[END_REF] efficiently is challenging even with concavity assumptions on Φ. In [START_REF] Andrew J Wagenmaker | Taskoptimal exploration in linear dynamical systems[END_REF], the policy is chosen to optimize [START_REF] Sarkar | Near optimal finite time identification of arbitrary linear dynamical systems[END_REF] with the Aoptimal criterion. The inputs are restricted to periodic signals and are optimized in the frequency domain.

III. ONLINE GREEDY IDENTIFICATION

A simple and natural approach for system identification consists in updating the policy at each time step t in a greedy manner: the input u t is chosen with energy γ 2 so as to maximize a one-step-ahead objective. Then, a new observation x t is collected and the process repeats. In the formalism of Section I-D, this corresponds to the schedule t i = i.

A. One-step-ahead objective

Following Section II-B, we adopt the optimal design functional F = F Φ . Upon choosing u t , the policy π t should maximize the design criterion Φ applied on the one-step-ahead, u t -dependent information matrix, the past trajectory x 0:t being fixed. The one-step-ahead information matrix is M t + E θs [z t z t ], because the next u t -dependent covariate is z t . Therefore, one-step-ahead planning yields the following optimization problem:

max u∈R m Φ M t + z(u)z(u) such that u 2 ≤ γ 2 , z(u) = x t u . (14) 
Remark 2: With this greedy policy, the energy constraint imposed for the choice of one input ensures that the global power constraint ( 2) is met. The corresponding identification process is detailed in Algorithm 2. We will see in Section III-B that the D-optimality version of problem ( 14) can be solved accurately and at a low cost. Moreover, Algorithm 2 has the advantage of improving the knowledge of θ at each time step, so that the planning objective constantly corrected. In this way, the bias introduced by the uncertainty about θ is minimized, whereas a large bias could impair the identification when planning over larger time sequences. Algorithm 2 Greedy system identification inputs initial guess θ 0 , noise variance σ 2 , power γ 2 , time horizon T , design criterion Φ output final estimate θ T for 0

≤ t ≤ T -1 do u t ∈ argmax u 2 ≤γ 2 Φ Mt + z(u)z(u) play u t , observe x t+1 M t+1 = M t + z t z t θ t+1 = M -1 t+1 M t θ t + z t y t end for

B. Solving the one-step D-optimal design problem

We show that one-step-ahead D-optimal planning for online system identification is equivalent to a quadratic optimization problem that can be solved efficiently.

Proposition 4: For D-optimality, there exists a symmetric matrix Q ∈ R m×m and b ∈ R m such that the problem ( 14) is equivalent to

min u∈R d u Qu -2b u such that u 2 ≤ γ 2 . ( 15 
)
Proof: By the matrix determinant lemma, we find that

log det M t + z(u)z(u) = log det M t + log 1 + z(u) M t -1 z(u) .
(16) Maximizing this quantity with respect to u is equivalent to maximizing z(u) M t -1 z(u). The matrix M t -1 is symmetric because M t is symmetric, and so are its diagonal submatrices. Given the affine dependence of z in u and the (possible) block structure of z and M t , z(u) M t -1 z(u) is of the form u Qu -2b u, up to a constant. We provide an explicit formula for Q and b in the case where θ = A in Section III-C We now characterize the minimizers of Problem [START_REF] Wagenmaker | Active learning for identification of linear dynamical systems[END_REF]. We focus on maximal energy greedy policies ( u t 2 2 = γ 2 ) and thus consider the equality constrained problem

min u∈R d u Qu -2b u such that u 2 = γ 2 . ( 17 
)
Proposition 5: Let us denote u * a minimzer of ( 17), {α i } the eigenvalues of Q, and u i and b i the coordinates of u * and b in a corresponding orthonormal basis. Then there exists a nonzero scalar µ such that

u i = b i /(α i + µ) and i b i 2 (α i + µ) 2 = γ 2 . (18) 
Proof: By the Lagrange multiplier theorem, there exists a nonzero scalar µ such that Qu *b = -µ u * , where µ can be scaled such that Q + µI d is nonsingular. Inverting the optimal condition and expanding the equality constraint yields the two conditions. It follows from Proposition 5 that our greedy planning problem [START_REF] Wagenmaker | Active learning for identification of linear dynamical systems[END_REF] can be solved at the cost of a scalar root-finding search and an eigenvalue decomposition. In [START_REF] Hager | Minimizing a quadratic over a sphere[END_REF], bounds are provided so as to efficiently initialize the root-finding method.

C. Known B

In the case where θ = A, the next u t -dependent covariate upon choosing u t is x t+1 so one-step-ahead planning takes the form

max u∈R m Φ M t+1 + σ 2 I d + x(u)x(u) such that u 2 ≤ γ 2 , x(u) = A t x t + B u. (19) 
For D-optimality, we obtain a quadratic problem of the same form as [START_REF] Wagenmaker | Active learning for identification of linear dynamical systems[END_REF], with the following matrices:

Q = -B M t -1 B , b = B M t -1 A t x t . (20) 
IV. GRADIENT-BASED PLANNING

In this section, we propose a gradient-based approach to planning.

A. Gradient-based optimal design

In the adaptive identification scheme of Algorithm 1, the cost functions (3) and ( 13) can be optimized by projected gradient descent. Gradients with respect to U can be derived analytically (see [START_REF] Goodwin | Dynamic System Identification: Experiment Design and Data Analysis[END_REF], section 6 for the derivation of an adjoint equation) or automatically in an automatic differentiation framework. We propose a gradient-based planning method that consists in performing gradient descent directly on U in functional [START_REF] Sarkar | Near optimal finite time identification of arbitrary linear dynamical systems[END_REF]. Note that we optimize the inputs directly in the time domain, whereas other approaches such as [START_REF] Andrew J Wagenmaker | Taskoptimal exploration in linear dynamical systems[END_REF] perform optimization in the frequency domain by restricting control to periodic inputs. We rescale U at each step to ensure that the power constraint ( 2) is met. The t i are chosen arbitrarily. The computational complexity of the algorithm is linear in T : each gradient step backpropagates through the planning time interval.

B. Gradient through the MSE oracle

Given the true parameters θ = (A B ), the optimal control for the MSE minimizes the MSE cost (3), as explained in Example 3. However, the dependance between Z and W makes this functional complicated to evaluate and to minimize with respect to the inputs, even when the true parameters θ are known. We propose a numerical method to minimize (3) using Monte-Carlo sampling. One can sample a batch of b noise matrices W 1 , . . . , W b ∼ N (0, σ 2 I), then approximate the gradient of (3) by

∇MSE(U ) 1 b b i=1 ∇ U tr Z(Z Z) -2 Z W i W i , (21) 
and perform projected gradient descent. Although we have no convergence guarantees due to the complicated structure of the objective function, gradient descent does converge in practice, to a control that outperforms the adaptive controls.

V. PERFORMANCE STUDY

We compare our greedy algorithm to the gradient algorithms of Section IV and to the TOPLE algorithm of [START_REF] Andrew J Wagenmaker | Taskoptimal exploration in linear dynamical systems[END_REF].

A. Complexity analysis Definition 6 (Performance): The performance of the policy π is measured by the average error over the experiments on the true system: ε = MSE(π). We study the performance of our algorithms as a function of the number of observations T and the computational cost C. We also introduce the computational rate c = C/T . Algorithm 2 and the gradient identification algorithm have linear time complexity. Hence, we define c greedy and c gradient for a given number of gradient iterations. In practice, we find that c greedy c gradient , where c gradient is the computational rate needed for the gradient descent to converge. Furthermore, we expect the squared error to scale approximately as 1/T with the number of observations [START_REF] Boyd | Introduction to applied linear algebra: vectors, matrices, and least squares[END_REF] (see [START_REF] Andrew J Wagenmaker | Taskoptimal exploration in linear dynamical systems[END_REF] 13) with {t i } = {0, 10, T /2, T }. The results obtained are to be compared with those of the greedy algorithm, which has a fixed, small computational rate c.

Our diagrams are plotted on Fig. 1. They show that the greedy algorithm is preferable in a phase of low computation rate: C < c × T , as suggested by (22). The phase separation corresponds to a relatively high number of gradient steps. Indeed, the iso-performances along this line are almost vertical, meaning that the gradient descent has almost converged. Furthermore, the maximum performance gain of the gradient algorithm over the greedy algorithm is 10%.

B. Average estimation error

We now test the performances of our algorithms on random matrices, with the same settings as in the previous experiment. For each matrix A , we also compute an oracle optimal control using the Monte-Carlo approach of Section IV-B with a batch size of b = 100, and run a random input baseline (see Example 1), as well as the TOPLE algorithm of [START_REF] Andrew J Wagenmaker | Taskoptimal exploration in linear dynamical systems[END_REF].

The performances over time are shown in Figure 2. Both the gradient algorithm and the greedy algorithm closely approach the oracle. The former performs slightly better than the latter in average. However, the computational cost of the gradient algorithm is much larger, as shown in Table I. The values of c for the gradient-based algorithms are those found to achieve convergence in this setting (∼ 100 for the gradient-based optimal design, ∼ 1000 for TOPLE). 

C. Identification of an aircraft system

We now study a more realistic setting from aeronautics: we apply system identification to an aircraft system. We use the numerical values issued in a NASA report [START_REF] Gupta | Application of optimal input synthesis to aircraft parameter identification[END_REF]. The lateral motion of a Lockheed Jet star is described by the slideslip and roll angles and the roll and yaw rates (β, φ, p, r) := x. The control variables are the aileron and rudder angles (δ a , δ r ) := u. The linear dynamics for an aircraft flying at 573.7 meters/sec at 6.096 meters are given by the following matrices obtained after discretization and normalization of the continuous-time system described in [START_REF] Gupta | Application of optimal input synthesis to aircraft parameter identification[END_REF]: 

with σ = 1 and γ 4 deg. We apply our algorithms on this LTI system. Our results are summarized in Table II. The greedy algorithm estimates the system parameters as well as the gradient-based algorithms, but with substantially lighter computational cost. With small T , the estimate of A is too inaccurate for long-term planning to be effective.

It is more efficient to update the estimate and the policy frequently. We obtain similar results for the longitudinal system of a C-8 Buffalo aircraft [START_REF] Gupta | Application of optimal input synthesis to aircraft parameter identification[END_REF].

VI. CONCLUSION

In this work, we explore a setting for linear system identification with strong constraints on the number of interactions with the real system and on the computing resources used for planning and estimation. We introduce an online greedy algorithm requiring minimal computing resources and show empirically that in a regime where the number of interactions with the system is small, it can actually outperform more sophisticated gradient-based methods. Extending this approach to optimal control for the LQR is an interesting direction for future research.
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 1 Fig. 1: Experimental (T, C) diagram. Left Performance of the gradient algorithm, with variable T and C (varying number of gradient steps). Right Relative performance of the gradient algorithm compared with the greedy algorithm: negative means that the gradient performs better.

Fig. 2 :

 2 Fig. 2: Identification error for random A , averaged over 1000 samples.

TABLE I :

 I Average computational rate for the different algorithms.

		Random TOPLE [15] MSE Gradient Greedy
	c	1	100	50	2.36

TABLE II :

 II Frobenius error for A in the lateral system of the aircraft, T = 150. Our oracle algorithm reaches an error of 8.0 × 10 -2 . The computational time is expressed in an arbitrary unit.

		Random	TOPLE [15] MSE gradient Greedy
	Error 1.1 × 10 -1	8.6 × 10 -2	8.3 × 10 -2	8.2 × 10 -2
	Time	1	55.7	25	1.13

Our code is available at https://github.com/MB-29/ greedy-identification