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Abstract—In this paper, we propose Multi-Scale Group Convo-
lution (MSGC) an optimization to the conventional convolutional
layer, to address the high computational complexity issue in
deploying convolutional neural networks (CNN) on the Internet of
Things (IoT) enabled edge sensors. The proposed method reduces
complexity by grouping input channels of a convolution layer into
smaller groups, thereby reducing the number of intermediate
connections and complexity of matrix computations in a CNN.
This approach results in a minor performance loss, which is
compensated by utilizing a characteristic of group convolution
to extract multi-scale features. The proposed technique is applied
for detecting cardiac arrhythmias from electrocardiogram (ECG)
data using CNNs to be deployed in edge sensors. For the binary
classification of ECG into Normal or Anomalous beats, the
proposed MSGC-based CNN achieved an average 30% reduction
in computations while achieving similar or better performance
compared to the conventional CNNs. We used the Physionet MIT-
BIH Arrhythmia database for performance evaluation, and in
the best scenario, our approach increases accuracy by 0.47%,
F1 score by 1.87% while only using 64.41% MACs and 83.62%
parameters. This optimization strategy can be extended to other
CNN models where computational complexity reduction is critical
for deployment in edge devices.

I. INTRODUCTION

Cardiovascular diseases (CVDs) are one of the leading
healthcare challenges in terms of risks, costs, and mortality
[1]. The symptoms of CVDs can be sporadic, sudden, and
can go unnoticed. Therefore continuous monitoring and a
fast diagnosis are needed for CVD patients even outside the
hospital premises. Deploying machine learning (ML) tech-
niques on wearable sensors is widely considered a promis-
ing approach for continuous cardiac arrhythmia monitoring
and detection. On-device edge intelligence using deep neural
networks (DNNs) can enable long-term continuous health
monitoring and early warnings so that proactive actions can
be taken without causing privacy concerns.

Convolutional neural networks (CNN) are commonly used
for CVD monitoring and detection [2] due to their high
accuracies. CNN’s inbuilt signal filtering and shift invari-
ance feature make it more robust than perceptron networks.
CNNs are also friendly to parallel computation and thus
hardware implementations. Many studies employed 1D-CNN
approaches with good detection performance [3, 4]. Several
2D-CNN based techniques that process images generated from
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Fig. 1: A Typical CNN layer vs an MSGC layer

transform domain features of ECG signals are also reported
[5, 6]. All these works claim overall detection accuracy of
above 90%. However, their models are usually too large and
require enormous computational resources, preventing them
from efficiently deploying in low-cost, low-power embedded
IoT sensors. It is possible to reduce the model complexity by
directly reducing the model size. Nevertheless, this may result
in a significant performance drop and defeat the purpose.

Model compression techniques are often used for the com-
plexity reduction of DNNs so that they can be deployed
on resource-limited devices. Common techniques include 1)
Model pruning, 2) Quantization and 3) Knowledge distillation
etc. Model pruning removes redundant and less significant
weights from a trained neural network, reducing computations
and model parameters. Quantization replaces trained weights
with fewer-bit representations to limit the complexity of
arithmetic operations. Knowledge distillation helps to train a
simplified (smaller) model using the original (larger) model
so that the smaller model can replace the larger one [7].
These methods sacrifice performance for efficiency and can be
applied universally to any model. Domain-specific knowledge
also could be used for model compression. For instance,
MobileNet [8] is an optimized CNN architecture designed
for imaging tasks on mobile devices. Neural architecture
search is a technique that automatically searches for the best
architecture [9]. These techniques use prior knowledge or
simulation results to optimize the model and do not necessarily
reduce performance.



In this paper, we propose an architecture optimization
technique for CNNs and apply it for binary classification of
ECG for CVD event detection. We present Multi-Scale Group
Convolution (MSGC), an optimization for the convolutional
layer in CNNs, for reducing the computational complexity for
deployment in resource-limited devices.

The difference between a typical Convolutional and MSGC
layer is illustrated in Fig.1. MSGC is a combination of
group convolution [10, 11], multi-scale feature extraction
[12], and channel shuffling [13]. Group convolution reduces
convolutional layer complexity by grouping input channels
into smaller groups, thereby reducing the number of inter-
mediate connections and complexity of matrix computations.
This results in a minor performance loss, which is then
compensated by the latter two techniques. While reducing
complexity and model size, the proposed technique maintains
a similar detection performance to that of a conventional CNN-
based model. This technique is inspired by CNN optimization
methods used in computer vision. The effect of this method is
evaluated using the Physionet MIT-BIH Arrhythmia database.
The details of MSGC are presented in Sec.II. Experimental
details, Complexity comparisons with conventional CNNs, and
Results are discussed in Sec.III.

II. MULTI-SCALE GROUP CONVOLUTION

The primary motivation of MSGC is to minimize computa-
tions while retaining the ability for feature extraction from the
input. As Fig.2 shows, MSGC combines 1) Group convolution,
2) Multi-scale feature extraction, and 3) Channel shuffling
into a single layer to achieve this. Group convolution reduces
computation by eliminating connections between different
groups. This also allows for different kernel (filter) sizes in
different groups, encouraging the model to view the input one
different scales. After the convolutions, channel shuffling (a
computation-free operation) is done to exchange information
among multiple groups and create combinations of different
kernel sizes with more layers stacking together.

Channels
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sized kernels

(a) Group Convolution.
Each group has two sep-
arate output channels
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(b) Multi-Scale Feature
Extraction. One channel
is convolved with three
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(c) Channel Shuffling.
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ping their channels.

Fig. 2: Components of Multi-Scale Group Convolution

A. Group Convolution

In group convolution, the input channels are divided into
smaller groups, and convolution operation is done within each
group. Fig.2a shows an example of separated input channels,
each of which has two independent output channels. This

method was initially proposed with AlexNet [10] to distribute
the model on two GPUs. While, the main advantage in our ap-
plication is that it can reduce the convolution layer complexity
and may not result in a performance drop [11]. This is because
group convolution works like an internal micro ensemble of
multiple independent submodels, and this can compensate
for losses compared to a single large model. However, this
advantage requires that every submodel has enough ability to
make an independent prediction. For very small models, the
submodels from group convolution are less effective in making
independent predictions, and therefore it may not improve
and instead possibly reduce the performance. The following
methods are used to compensate for any performance loss.

B. Multi-Scale Feature Extraction

The characteristics of useful features could vary slightly
in every input sample. For ECG, the signal morphology
can vary 1) temporally due to user activity, 2) measurement
methods, 3) anatomical variations etc. These variations in
signal characteristics make feature extraction less effective if
we only use fixed kernels. DNNs are able to address this
issue if the model size is big enough and with a sufficiently
large training dataset. However, it is difficult for a size-limited
model to achieve this by training only. Artificially introducing
more prior knowledge, also known as applying inductive bias,
is beneficial for feature extraction in this case. In our pro-
posed method, we assign different kernel sizes for convolution
groups, as this will enable the model to view the input signal
on different scales. There are other successful precedents
reported for this technique. In Rocket [12], a large number
of untrained convolution kernels were used to cover feature
extraction from all possible input variations. This could be
considered an extreme case of pre-defined multi-scale feature
extraction. In our model, we assigned different kernel sizes
to different groups of output channels to enable multi-scale
feature extraction. Note that these multi-scale groups are not
necessarily the same as the groups in the group convolution.
This means different kernel sizes can be used even when the
group convolution is not applied. Fig.2b illustrates a case of
one input channel being convolved in three different ways.

C. Channel Shuffling

The sparse channel connections due to group convolu-
tion operation make every group independent. However, after
stacking layers, each channel will never communicate with
other channels outside its group as they are not connected.
One complexity-friendly method to establish communication
between channels is shuffling them after group convolution,
which was first employed in ShuffleNet [13]. The shuffling
operation can be implemented by re-indexing the channels
and does not involve any computation. Furthermore, channel
shuffling will create a mixture of various kernel sizes. In
our implementation, channel shuffling is designed to make all
combinations among groups. Hence, the shuffling is fixed and
the number of channels must be the multiple of g2, where g is
the number of groups. Fig.2c shows a shuffling between four
channels of two groups.



III. EXPERIMENTS

The MSGC-based model is evaluated by comparing it with a
typical CNN model. We built several low-complexity networks
based on the architecture in Fig.3. We denote the size of
input signal as [lin, cin]. The network will change the channel
numbers to ch while decreasing the length gradually. At the
end of these models, a small fully-connected network with
nh neurons will make the binary prediction. The complex-
ity of these models are estimated in the number of multi-
ply–accumulate (MAC) operation and number of parameters
while their performances are evaluated in accuracy (ACC) and
F1 score [2].
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Fig. 3: Model Architecture used in our experiments

A. Dataset and Data Pre-processing

We used the MIT-BIH Arrhythmia database for performance
evaluation. It contains 48 half-hours, two lead ECG records,
sampled at 360 Hz. We used a single lead (MLII) signal as
the input and extracted 240 sample points centered at the R-
peak location as a beat sample. The signal was normalized to
follow the standard normal distribution to reduce any impact
of amplitude variations across multiple records. The beat
annotations are converted into two classes, i.e. normal and
abnormal, to support binary classification. We divided the
dataset into DS1 and DS2 as per the recommendation of the
Association for the Advancement of Medical Instrumentation
(AAMI) [14]. The records in DS1 are used for global training.
From DS2, the first 5 minutes of each record is used for
patient-specific training, and the rest are used for testing as per
[14]. After the pre-processing steps, our experiments involve
a total of 93,391 beats, about 11% of them are abnormal
beats. ∼47k (50%), ∼7.4k (8%) and ∼3.9k (42%) beats are
used for global training, patient-specific training and testing,
respectively.

B. Experiment Details

The models are implemented with PyTorch, and their com-
plexity is estimated using ptflops [15]. All models are firstly
trained with the global training set for 200 epochs. Then,
for every record in DS2, the global model will be further
trained using the first 5 minutes of data for 50 epochs and is
evaluated on the rest of the record. The patient-specific model
will be reset to the global trained state after evaluating each
DS2 record. We applied some common training boosters such

as an advanced optimizer, learning rate scheduler and data
augmentation method to improve performance and stability
during both training phases. AdamW [16] is used as the opti-
mizer with a learning rate of 0.0003, and a cosine annealing
scheduler is used to adjust the learning rate. Mixup [17] is
also applied to reduce the over-fitting issue.

Our experiments include six cases of different tiny models.
The experiment starts from a model with 3 Conv layers and
two fully-connected layers, as illustrated in Fig 3. It has 9
hidden channels (denoted by ch) for all Conv layers, and 64
hidden neurons (denoted by nh) for fully-connected layers,
i.e. ch = 9 and nh = 64. The purpose of the experiment is
to validate if MSGC can be a replacement for conventional
convolution in our application. We also tested some network
variations with more channels and layers to evaluate MSGC’s
generalisability. Specifically, the width of networks can be
extended to 18 hidden layers and 128 hidden neurons, i.e.
ch = 18 and nh = 128. The number of Conv layers (denoted
by M ) can also be increased to 5 or 7.

We also tested the components of MSGC separately to
verify our hypothesis that the three methods can work to-
gether. Specifically, we tested four types of convolution: 1)
group convolution alone, 2) MSGC without channel shuffling,
3) complete MSGC, and 4) conventional convolution. Deep
learning algorithms are not deterministic and may sometimes
be unstable when the model size and training dataset are small.
Therefore, we repeated all experiments with different seeds
three times to increase the results’ reliability. The metrics in
Tab.I are the average of those three repeats.

C. Results
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Fig. 4: Results comparison between regular CNN and MSGC

Fig. 4 visualizes four test cases comparing between MSGC
and conventional convolution. The blue bar shows the relative
MACs between displayed cases. A considerable saving of
MACs is observed in every case. The green and red bars
represent the accuracy and F1 score. The performance is nearly
unchanged between the two convolution types. Meanwhile,
we can see a trend of more complexity results in better
F1 score. Tab.I compares the simulation results of six test
cases. The proposed method achieved a significant reduction
in MAC operations for all test cases. Increasing the number
of convolution layers does not result in superior results but
increasing the number of hidden channels improves perfor-
mance. Regarding different convolution types, using group
convolution only has the lowest complexity. It reduces the



complexity significantly with a slight drop in performance. The
MSGC layer can achieve similar or even better performances
to the regular CNN layer with reduced complexities. In the
best case (M = 5, ch = 9, nh = 64), 26.11% of MACs
and 7.05% of parameters are removed while the accuracy
and F1 score are improved by 0.50% and 1.75%. Applying
MSGC with channel shuffling improves the ACC and F1
scores in almost all cases, with no increase in complexity.
However, we note one exception for the network with M = 7,
ch = 18 and nh = 128. In this case, MSGC without
channel shuffling outperforms the complete MSGC, achieving
an accuracy of 98.41% and an F1 score of 93.01%. We
think this is because this configuration coincidentally suits the
dataset. The performance improvement of MSGC is from the
multi-scale operation that captures features on different scales.
In practice, enabling or disabling channel shuffling, varying
the number of Conv layers and hidden channels will make the
model sensitive to different scales.

Channels Conv
Layers Conv Type MACs Parameters ACC F1

9

7

Regular Conv 111,757 6,411 97.51% 89.21%

MSGC 78,853
(70.56%)

5,781
(90.17%)

97.65%
(+0.14%)

89.94%
(+0.73%)

MSGC No CS* 78,853
(70.56%)

5,781
(90.17%)

97.03%
(-0.49%)

87.03%
(-2.19%)

Group Conv 57,361
(51.33%)

5,439
(84.84%)

97.33%
(-0.19%)

88.32%
(-0.90%)

5

Regular Conv 82,183 5,871 97.22% 88.31%

MSGC 60,727
(73.89%)

5,457
(92.95%)

97.72%
(+0.50%)

90.06%
(+1.75%)

MSGC No CS 60,727
(73.89%)

5,457
(92.95%)

97.63%
(+0.41%)

89.77%
(+1.46%)

Group Conv 44,959
(54.71%)

5,223
(88.96%)

97.28%
(+0.06%)

87.92%
(-0.39%)

3

Regular Conv 52,609 5,331 97.50% 89.20%

MSGC 45,481
(86.45%)

5,133
(96.29%)

97.45%
(-0.05%)

89.00%
(-0.20%)

MSGC No CS 45,481
(86.45%)

5,133
(96.29%)

97.45%
(-0.05%)

88.87%
(-0.32%)

Group Conv 35,437
(67.36%)

5,007
(93.92%)

97.15%
(-0.35%)

87.63%
(-1.56%)

18

7

Regular Conv 377,869 15,609 97.94% 91.14%

MSGC 243,373
(64.41%)

13,053
(83.62%)

98.06%
(+0.12%)

91.61%
(+0.47%)

MSGC No CS 243,373
(64.41%)

13,053
(83.62%)

98.41%
(+0.47%)

93.01%
(+1.87%)

Group Conv 166,045
(43.94%)

11,721
(75.09%)

97.85%
(-0.09%)

90.66%
(-0.48%)

5

Regular Conv 267,205 13,557 98.01% 91.45%

MSGC 178,501
(66.80%)

11,865
(87.52%)

98.01%
(-0.01%)

91.43%
(-0.02%)

MSGC No CS 178,501
(66.80%)

11,865
(87.52%)

97.95%
(-0.07%)

91.19%
(-0.25%)

Group Conv 124,069
(46.43%)

10,965
(80.88%)

97.93%
(-0.08%)

90.99%
(-0.46%)

3

Regular Conv 156,541 11,505 97.87% 90.99%

MSGC 113,629
(72.59%)

10,677
(92.80%)

97.95%
(+0.08%)

91.26%
(+0.26%)

MSGC No CS 113,629
(72.59%)

10,677
(92.80%)

97.80%
(-0.07%)

90.59%
(-0.41%)

Group Conv 82,093
(52.44%)

10,209
(88.74%)

98.01%
(+0.14%)

91.39%
(+0.40%)

* MSGC No CS refers to Multi-Scale Group Convolution without Channel Shuffling.

TABLE I: Simulation Results of model variants using different
convolutional layers.

IV. CONCLUSION

This paper proposes a novel optimization to the conventional
convolution layer which can be an efficient replacement for
convolutional layers in low complexity models. The experi-
mental results show that the MSGC version of the network
consistently outperformed the original version of the network.
Furthermore, this improvement in complexity is achieved
without sacrificing performance, and this model optimization
method can co-exist with other approaches for further model
compression. It provides a candidate component for building
an AI-based system for low-power, resource-limited edge
devices.
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