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Summary: 

Ageing is associated with changes in the cellular composition of the immune system. 

During ageing, hematopoietic stem and progenitor cells (HSPCs) that produce immune 

cells are thought to decline in their regenerative capacity.  However, HSPC function has 

been mostly assessed using transplantation assays, and it remains unclear how HSPCs age 

in the native bone marrow niche. To address this issue, we developed a novel in situ single 

cell lineage tracing technology to quantify the clonal composition and cell production of 

single cells in their native niche. Our results demonstrate that a pool of HSPCs with 

unequal output maintains myelopoiesis through overlapping waves of cell production 

throughout adult life. During ageing, the increased frequency of myeloid cells is explained 

by greater numbers of HSPCs contributing to myelopoiesis, rather than increased 

myeloid output of individual HSPCs. Strikingly, the myeloid output of HSPCs remained 

constant over time despite accumulating significant transcriptomic changes throughout 

adulthood. Together, these results show that, unlike emergency myelopoiesis post-

transplantation, aged HSPCs in their native microenvironment do not functionally 

decline in their regenerative capacity.  

 

Introduction 

 

Immune cells are constantly replenished throughout an organism’s lifetime by hematopoietic 

stem cells (HSCs). While this replenishment is particularly important for short lived immune 

cells such as granulocytes and monocytes, longer lived immune cells such as lymphocytes also 

require input from hematopoiesis in addition to homeostatic proliferation. It has previously been 

demonstrated that during ageing blood cell production shifts toward myeloid cells at the 

expense of lymphoid cells 1, a change that correlates with a higher risk of several myeloid-

associated pathologies, including myelodysplastic syndromes and leukemia.  

 

Within the murine bone marrow, age-related changes in myeloid cell numbers are accompanied 

by an increase in immunophenotypic stem cell (HSC) frequency or numbers 1–5. Downstream 

of HSCs, lymphoid biased MPPs descrease in frequency 6, followed by a decreased frequency 

in downstream common lymphoid progenitors 4 and an increased frequency of granulo-

monocyte progenitors 4. At the cellular level, the increase in myeloid production may happen 

through two non-exclusive mechanisms: an increase in the number of myeloid-biased 

hematopoietic stem and progenitor cells (HSPCs), or an increase in the number of myeloid cells 
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that are produced per individual HSPC. The first mechanism has been well documented post-

transplantation 6–10 whereas the second mechanism remains controversial 5,7,9,11. At the 

molecular level, aged HSPCs upregulate stress response and inflammation related gene 

signatures, as well as genes involved in myeloid differentiation 4,5,12,13. Aged HSCs show 

increased expression of a self-renewal related gene expression program 12,14, while  aged HSPCs 

increase expression of differentiation-related programs 12,14 relative to young HSPCs. These 

molecular changes, together with the decreased rate of cell production of old HSCs in 

competitive transplantation with young HSCs1,15, the increased number of myeloid-biased 

HSCs3,6,7,15,16 and the decreased self-renewal of HSC after secondary transplantation3,8,15 has 

led to a model in which aged HSPC exhaustion is a hallmark of an ageing immune system17.  

 

Importantly, consolidating data from native and post-transplantation hematopoiesis is non-

trivial, with recent reports highlighting important differences between them18. Using in situ 

barcoding, Camargo and colleagues demonstrated that in young adult mice a larger number of 

HSCs contributes to steady state hematopoiesis as compared to post-transplantation 

hematopoiesis 19. In addition, fate mapping studies have shown that the dynamics of HSC 

activation in native hematopoiesis 20 differ from those observed after transplantation 21. Given 

that most functional measurements of aged HSPCs come from transplantation assays, further 

work on the functional characterization of HSPCs within the native bone marrow 

microenvironment is required. One study using confetti mice showed a decrease in HSC clonal 

diversity with age 22 but the modest diversity of this system is insufficient to uniquely label 

each cell within the HSC pool, estimated to comprise 17,000 cells in a single mouse 23. 

Furthermore, HSPCs have been shown to display functional heterogeneity with respect to self-

renewal, differentiation and proliferation capacity 24–26 and the definition of HSPCs has evolved 

recently to include several new, functionally distinct, murine MPP subsets 27–29. In summary, 

existing models of HSPC ageing are based on transplantation studies or population-level assays. 

However, recent studies have identified important differences between native and 

transplantation hematopoiesis, highlighting the need for single-cell resolution assays to resolve 

HSPC heterogeneity. In situ barcoding approaches can address these two key limitations, and 

may thereby improve our understanding of the cellular dynamics that drive ageing of the 

immune system.  

 

To elucidate the effect of ageing on HSPCs in their natural niche at single-cell resolution, we 

developed the DRAG mouse, a novel in situ single cell lineage tracing technology that exploits 
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the process of VDJ recombination. DRAG barcoding revealed that steady state adult 

myelopoiesis is sustained by overlapping waves of cell production throughout adulthood. 

Furthermore, the increased rate of myeloid cell production during ageing is explained through 

an increase in the number of myeloid producing HSPCs, rather than an increase in the number 

of myeloid cells produced per individual HSPC. Single-cell RNA sequencing analysis of 

HSPCs across adulthood is consistent with this model, suggesting a reduced frequency of 

quiescent stem cells, and the emergence of age-associated active progenitor subsets. 

Collectively, our data reveal that, in the native bone marrow microenvironment, individual aged 

HSPCs produce myeloid cells at the same rate as young HSPCs, despite the accumulation of 

transcriptomic changes associated with stress and inflammation. These data provide evidence 

that HSPC in their native niche are not exhausted in their capacity to produce myeloid cells.   

 

Results : 

A novel quantitative in situ barcoding system 

Taking advantage of the capacity of the VDJ recombination system to produce a high degree 

of genetic diversity in the lymphoid lineages, we designed a DNA cassette, termed DRAG 

(Diversity through RAG), with the aim to allow endogenous barcoding in an organism in a 

temporally controlled manner (Fig. 1A). The DRAG system has been designed such that upon 

CRE induction, a segment between two loxP sites is inverted, leading to the expression of both 

the RAG1 and 2 enzymes and Terminal deoxynucleotidyl transferase (TdT). Such expression 

then leads to the semi-random RAG-mediated recombination of synthetic V-, D- and J-

segments, with additional diversity being generated both by nucleotide deletion and TdT-

mediated N-addition at the junction sites. Notably, as the RAG/TdT cassette and recombination 

signal sequences (RSSs) are spliced out during this recombination step, further recombination 

of the DRAG locus is prevented, and any generated VDJ sequence is thus stable over time. 

Finally, recombination of the DRAG locus results in the removal of a BGH polyA site that 

precludes GFP expression in the DRAG configuration before recombination, allowing one to 

identify barcode+ cells by flow cytometry or imaging (Fig. 1A).   

 

To quantify the sensitivity, specificity and fidelity of the DRAG barcoding system, we 

benchmarked the DRAG barcoding system in vitro and in vivo. First, to understand DRAG 

recombination patterns in vitro, we isolated embryonic fibroblasts (MEF cells) from CAGCre-

ER+/- DRAG+/-  mice, induced DRAG recombination with tamoxifen, and derived MEF clones 

(n=24) that carried a single DRAG barcode by limited dilution. Recombined DRAG loci were 
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characterized by insertions and deletions between the VDJ segments (Table S1), and only 2 of 

the 24 barcodes were shared between MEF clones. Longitudinal analysis of barcode sequences 

by Sanger and deep sequencing demonstrated that recombined sequences were stable over time 

in all clones tested (Table S2). To allow robust detection, identification and quantification of 

DRAG barcodes, we developed a processing platform that incorporates unique molecular 

identifiers (UMI) during PCR amplification (Fig. S1B Sup Method) and a strict filtering 

pipeline of sequencing data. Application of this strategy to defined mixtures of 7 MEF clones 

that each contain a different barcode demonstrated that this platform allows the robust detection 

and quantification of barcodes (Fig. 1D). With regards to barcode specificity, in these mixtures, 

the number of false positive DRAG barcode events was 0 over 14, except for one mixture in 

which we had 1 false positive over 14 . With regards to sensitivity of detection, clones equal or 

greater than 10 cells were efficiently identified in samples of as few as 97 cells (Fig. 1D); and 

clones equal or greater than 100 cells were identified in samples of 25,000 cells (Fig. 1D), 

corresponding to as little as 0.4% of the total cell population. Furthermore, across the entire 

detection range, experimentally observed frequencies were highly correlated to input 

frequencies (Fig. 1D), demonstrating that DRAG permits quantitative analyses of clonal output.  

 

To characterize the DRAG barcoding system in vivo, we induced barcode recombination by 

tamoxifen administration in CAGCre-ER+/- DRAG+/- mice and analysed hematopoietic cells 

from blood samples taken 6 months later. Induction of Cre resulted in a 5- to 6-fold increase in 

barcode-labeled (GFP+) myeloid cells (Fig. 1B-C), relative to mock-induced DRAG mice. In 

addition, no variation was observed in the percentage of myeloid and lymphoid cells produced 

from recombined (GFP+) or unrecombined (GFP-) cells (Fig. S1A), indicating that DRAG 

induction appears neutral with respect to hematopoietic cell differentiation. Deep sequencing 

analysis of barcode sequences processed 15 months post Cre-induction confirmed the high 

diversity of the DRAG barcoding system in vivo. Specifically, barcodes were characterized by 

up to 15 nucleotide insertions and 32 nucleotide deletions (Fig. S2A-B), and D-segment 

inversion was observed in 12% of cases. Lastly, to assess the likelihood that the same DRAG 

recombination pattern occurs independently in 2 or more cells in vivo we applied a 

mathematical model30 to infer the probability that a given barcode will be produced in the 

DRAG system (Pgen) using experimental data as input (Suppl. methods and Table S3-8). This 

experimentally validated approach (Fig. S2, Suppl. Methods) enabled us to identify sequences 

with a high generation probability (Fig. S2C), such that they can be filtered from the data prior 

to downstream analyses. On the basis of these results, we selected a Pgen estimate of <10-4 for 
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further data analysis (Fig. S2D-E). At this probability cut-off, 61% of barcode sequences were 

retained, and 92% of these retained barcodes were unique to an individual mouse, yielding 

hundreds of barcodes that could be used for analysis. 

 

Together, these data show that the DRAG mouse model allows the generation for high barcode 

diversity in vivo without a requirement for cell transplantation, and that the prevalence of these 

barcodes in downstream progeny can be detected in a quantitative manner. 

 

DRAG labeling of hematopoietic stem and progenitor cells 

Having established the feasibility of in vivo barcoding in DRAG mice, we applied the system 

to study native hematopoiesis. Given the ubiquitous expression of the CAGCre-ERTM driver, 

tamoxifen-based induction will result in the labeling of both HSPCs, but also committed 

progenitors and differentiated cells. Importantly, at late time points (month) after induction, 

turnover of short-lived committed progenitors and differentiated cells, and replacement by 

progeny of long-lived cells, has occurred (Fig. 2A). Thus, the barcodes observed several months 

after induction will be inherited from ancestor cells that qualify as long-term repopulating cells 

in vivo 31. Importantly, this unbiased functional definition of long-term output towards a short-

lived downstream cell population is independent of surface markers or HSC-selective gene 

promoters to drive Cre expression. To directly test whether the DRAG system homogeneously 

labels the HSPC compartment, we performed 10X single cell RNA-sequencing on both GFP+ 

and GFP- bone marrow HSPCs. After data QC and processing (Suppl. methods), unsupervised 

Louvain clustering resulted in 8 clusters (Fig. S3A-C) that were annotated by mapping to the 

previously described gene expression signatures of long-term HSCs and multipotent 

progenitors28,32 (Fig. 2B and C). GFP+ and GFP- HSPC cells were distributed equally among 

the clusters (Fig. 2D and E), with the exception of MPP3 that was enriched in GFP+ cells 

(Fishers exact test p < 0.001),  but this effect was not statistically significant when the frequency 

of GFP labelling was assessed by flow cytometry (Fig S3D).  Importantly, GFP+, and hence 

barcode-labeled, cells were also observed in the long-term HSC associated clusters, 

characterized by high expression of the long-term HSC gene signature 32 (Fig. 2C), high 

expression of Ly6a, and low expression of Cd48 (Fig. S3E). Thus, the DRAG system efficiently 

labels the HSPC compartment, including long-term hematopoietic stem cells.  

 

Steady state myelopoiesis is maintained by overlapping waves of cell production 
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To study the clonal dynamics of myelopoiesis at steady state, we analysed the distribution of 

barcodes across different developmental compartments of the bone marrow. Specifically, bone 

marrow HSPCs (LSK: sca1+ckit+), myeloid progenitors (MP: myeloid progenitors, sca1-ckit+) 

and myeloid cells (CD11b+) were isolated at 15-month post-induction in a cohort of DRAG 

mice that received tamoxifen induction between 6-14 weeks (Fig. 3A and S4A-B). Following 

initial filtering, quality checks and removal of frequently occurring barcodes, correlations 

between barcode abundance in duplicate samples (LSK: 0.5 +/-0.1, MP: 0.7 +/- 0.1, M: 0.6 +/- 

0.2) were calculated to assess the consistency between technical replicates. Following this 

quality control steps, barcode sharing analysis revealed a number of different fates with only 

13.7% (+/-5% SD between mice) of barcodes shared across HSPCs, myeloid progenitors and 

myeloid cells. These multi-outcome clones were among the most prolific, producing 41.4% (+/-

12.2% SD between mice) of myeloid cells, and representing 69.9% (+/-23.7% SD between 

mice) of HSPCs (Fig. 3C and D). Interestingly, a number of barcodes detected in HSPCs were 

not detected in downstream developmental compartments, suggesting that their contribution to 

myelopoiesis at this timepoint was limited. These HSPC-restricted barcodes produced 24.6% 

(+/- 19% SD between mice) of the total HSPCs (Fig. 3C and D). In addition, we detected 

barcodes that were abundant in myeloid progenitors and myeloid cells but below the threshold 

of detection in HSPCs. These MP-M restricted barcodes were producing 48% (+/-23% SD 

between mice) of myeloid progenitors and 43.2% (+/-8% SD between mice) of myeloid cells 

(Fig. 3C and D). Notably, while MP-M and HSPC-MP restricted barcodes were both observed, 

no barcodes were detected in both HSPC and myeloid cells without being detected in myeloid 

progenitors (HSPC-M class, Fig. 3C), arguing against stochastic detection of DRAG barcodes 

as a major confounder. Importantly, barcode outcomes were independent of barcode generation 

probability, suggesting that the barcode patterns we observed across developmental 

compartments were not due to limitations in detection sensitivity (Fig. S4F).  

 

If not all HSPCs would be active at the same time, it may be expected that the numbers of 

clones in HSPCs could be higher than that detected in mature myeloid cells. To test for this 

prediction, total clone numbers were inferred from the observed diversity (chao2) numbers 33, 

taking into account labelling efficiency (chao2 analysis in Fig. S4D, S4E for other diversity 

estimates and Methods). Bone marrow myeloid cells were composed of at least 1,827 +/- 430 

clones (mean and SD between mice), a value similar to published estimates 19,20, while myeloid 

progenitors and HSPCs were composed of more clones, (2,646 +/- 1081 clones, and 3,040 +/- 

953 clones respectively). This analysis suggests that not all clones present in the HSPC 
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compartment are actively contributing to myelopoiesis, an observation that is compatible with 

a model of overlapping waves of myelopoiesis. Note that these estimates should be interpreted 

as the lower bound of total diversity, because of cell loss during extraction, limitation in the 

detection of small clones and the presence of recurrent barcodes. Together, these results suggest 

that steady state myelopoiesis is sustained by overlapping waves of HSPCs.  

 

To explore whether individual long-term repopulating clones produce similar numbers of 

myeloid cells, we took advantage of our quantitative barcode detection system to determine the 

number of output cells per barcode clone. This analysis demonstrated that individual barcode-

labeled long-term repopulating cells differ up to ~100 fold in their myeloid cell output (Fig. 

3E), with clone sizes ranging from 100 to 10,000 cells. As a result of this, the majority of 

myeloid cells at an analyzed timepoint was produced by few barcoded long-term repopulating 

cells. This disparity in clone sizes may in part reflect temporal differences in clonal activity, 

but remains higher than the clonal diversity observed post-transplantation, in which ~ 100-fold 

fewer HSPCs are estimated to actively contribute to hematopoiesis 34–37. Overall, these data 

demonstrate that steady state myelopoiesis is the result of the unequal cellular output of a large 

number of clones, and are consistent with a model in which long-term repopulating cells 

maintains myelopoiesis through overlapping waves of cell production. 

 

Increase in the number of long-term repopulating cells contributing to myelopoiesis with ageing  

To study the effect of ageing on the clonal composition and cell production of long-term 

repopulating cells, we sampled the blood of DRAG mice from month 4 until month 12 post-

induction, as well as blood and bone marrow at month 15 post-induction (Fig. 3A). Due to 

limitations in the volume of blood that can be sampled at each timepoint, we observed a very 

low rate of barcode overlap between technical replicates in blood (9% +/- 8%, Fig. S6A) as 

compare to bone marrow samples (60% +/- 15%). Thus, within blood samples, only a small 

subset of all active clones are captured, precluding longitudinal analyses of individual clones, 

but still allowing one to follow changes in the number of contributing clones over time. 

Consistent with prior work 1, myeloid cell numbers in the blood of DRAG mice increased over 

time, and this increase was observed for both GFP- and GFP+ (barcode labeled) cells (Fig. 4A). 

Likewise, an increase in total myeloid cells numbers between 6.5 and 19 month-old mice was 

observed in bone marrow (Fig. S7). Most bone marrow myeloid cells were neutrophils in both 

young (6.5 months) and aged mice (19 months) (young = 51.95 ±	0.7% ; old = 64.6	±	2.4%), 

and the frequency of neutrophils increased in old mice at the expense of macrophages and 
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monocytes (p = 0.029) (Fig. S7). This result suggests an imbalance in the relative production 

rates of different innate immune cell subsets upon ageing.  

 

At the cellular level, the observed increase in myeloid cell production may occur by two non-

exclusive mechanisms: an increase in the number of myeloid-producing long-term repopulating 

cells, or an increase in the number of myeloid cells that are produced per individual long-term 

repopulating cell (Fig. 4B). To distinguish between these scenarios , we analyzed the number 

of DRAG barcodes in the blood myeloid cell compartment over time. To this end, we computed 

the clonal diversity in sequential blood samples using Renyi entropy indexes (Fig. 4C) and 

modeled the change in diversity as a function of time using generalized mixed models, 

accounting for sampling (Suppl. Materials and methods). We found that a generalized linear 

mixed model with a break point showed the best fit to the experimental data (Fig. S6B). 

Applying this model to several diversity indices (Fig 4C, Fig. S6C, Table S9) showed a highly 

consistent trend over time. Specifically, in the first 7 months following DRAG barcoding, the 

number of clones contributing to the myeloid compartment decreased over time, consistent with 

the turn-over of shorter-lived cells that were labeled using the ubiquitous CagCre driver 

(Fig.2A). Strikingly, after this time point, the number of barcodes contributing to myelopoiesis 

increased linearly (Fig. 4C), indicating that the number of long-term repopulating cells 

contributing to myelopoiesis was increasing over time. This increase could not be explained by 

the slight preferential labeling of MPP3, as MPP3 numbers did not increase with age (Fig. 5D). 

Furthermore, increased barcode diversity was also not explained by a delayed recombination 

of DRAG barcode V regions, as the majority of barcodes was associated with a single unique 

V region, and as the frequency of unique V regions remained constant over time (Fig. S6D). 

Strikingly, the number of myeloid cells produced per long-term repopulating clone did not 

change over time (Fig. 4D). Collectively, these results reveal that the increase in myeloid 

production upon aging is due to an increased number of myeloid producing long-term 

repopulating cells, rather than an increased clonal output of individual long-term repopulating 

cells.  

 

Age-related transcriptomic changes in HSPCs 

Our in situ lineage tracing analyses show that ageing leads to an increase in the frequency of  

long term repopulating clones that actively contribute to myelopoiesis. To understand the 

cellular and molecular processes that give rise to this phenomenon, we performed single cell 

transcriptomic (scRNA-seq) profiling of Sca1+ cKit+ GFP+ HSPCs purified from mice aged 6,5, 
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12, and 19 months old (n = 6 mice) (Fig. 5A). Flow cytometry analysis of GFP labelling in 

HSPCs from aged (19 months) mice showed no significant differences in GFP+/- proportions 

amongst the HSC and MPP1-5 subsets, confirming that the DRAG barcoding system does not 

preferentially label a specific HSPC subset,  even in aged mice (Figure S12B). Following 

scRNAseq data quality control and pre-processing, we recovered the transcriptome for 16,778 

cells with a median of 2,845 genes detected per cell. After data integration and non-linear 

dimensionality reduction (UMAP), we performed unsupervised clustering of the data, and 

annotated the 11 resultant clusters using published gene signatures and markers 27,28,32 (Figure 

5B-C, Figure S8A-B,S9A,Table S13). Consistent with reports indicating that HSPCs do not 

form discrete cell subsets 38–41, we observed that many clusters co-expressed signatures of the 

MPP1-5 subtypes (Figure 5C, S8B). In cases where clusters could not be assigned to a single 

HSPC subset, we named the cluster according to the different combinations of HSC and MPP 

signatures that they expressed 27. Using this reference embedding and supervised annotation of 

the data, we observed an accumulation of transcriptomic changes throughout adulthood (Fig. 

5D-F), with several clusters enriched in either young or in aged mice (Fig. 5D, 5F). Specifically, 

these analyses suggest that LT-HSCs are less frequent in aged mice (Fig. 5D), whereas 4 

clusters were only found in aged mice (Fig. 5D, 5F). A common feature of these ageing-

associated clusters was the co-expression of the MPP3, MPP4 and MPP5 gene signatures (Fig. 

5C-D) and expression of genes associated with mature myeloid cells (CD74, Ngp, Cll5, Fig. 

S9A). Pseudotemporal ordering of the data using a diffusion map approach 42 predicts that 

HSPCs from aged-associated clusters represent a more differentiated cell state as compared to 

HSPCs from young mice (Fig. 5E). In addition, using a supervised annotation approach in 

which we mapped our cell clusters onto an independent reference dataset 43 (44,802 c-kit+ and 

c-kit+ sca1+ cells), we observed an age-related overall reduction in the number of cells that 

mapped to LT-HSCs, while cells from age-associated clusters increasingly mapped to lineage 

restricted progenitors including, GMP, MEP and CLP (Fig. S9B-C). Together these data show 

that ageing leads to the reduced expression of genes associated with quiescent LT-HSCs, and 

the emergence of MPP-like cell states with features of enhanced differentiation. 

 

We then further characterized the transcriptomic changes accumulating with age in particular 

in the age-associated MPP-like cell states. To understand if ageing leads to a change in cell 

cycle rates, cells were classified into G1/G2+M/S phases of the cell cycle based on their gene 

expression patterns 44 (Fig. 6A, Fig. S9E). We observed age-associated increases in the 

proportion of cells in G2/M and S phases of the cell cycle across multiple clusters, including 
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the age associated MPP3/4/5, MPP1/3/4/5, HSC/MPP3/4/5 and the MPP2/3/Cycling clusters 

(Fig. 6A). Differential gene expression analysis between HSPCs of different ages showed an 

overall increased expression of myeloid associated genes S100a8, S100a9, Elane, Mpo and 

Fcer1g with age and decreased expression of genes associated with LT-HSCs including Procr, 

Ltb and Tcf15 45,46 (Fig. 6B, Table S14). Differential expression and gene-set enrichment 

analyses also showed that aged HSPCs have increased expression of genes related to 

inflammation, cytokine stimulation, cycling, and DNA damage, in line with prior data 4,5,12,13, 

as well as transcriptomic changes related to the regulation of protein ubiquitination and the 

electron transport chain (Fig. 6C, Fig. S10,Table S14-15). To assess which specific 

compartments were most affected by ageing we aggregated genes upregulated in aged HSPCs 

(from 19 month old mice) into an aged HSPC signature and assessed its expression across all 

clusters (Figure 6D). This analysis showed that much of the transcriptomic differences between 

young and aged HSPCs occurred within age-associated MPP compartments and MPP3, rather 

than HSCs or other MPPs (Figure 6D). Collectively, these scRNAseq analyses suggest that 

ageing leads to a decreased number of LT-HSCs and the emergence of age-associated 

MPP3/4/5-like cell states. Transcriptomically, these aged HSPCs display features of increased 

cycling, stress and metabolic gene expression. Together with our functional DRAG barcoding 

analyses, our data suggests that while HSPCs in the native bone marrow accumulate 

transcriptomic changes with ageing, their myeloid production rates remain consistent over time, 

suggesting that these changes are not impacting their ability to produce cells. 

 

Discussion: 

In this work, we present a new in situ DRAG barcoding system that allows for efficient, neutral, 

stable, and diverse labeling of individual hematopoietic cells. In addition, the quantitative 

detection of resulting barcodes in downstream cells makes it possible to enumerate clonal 

output. Relative to other barcoding strategies (Table S12), the DRAG system offers several 

advantages such as a straightforward PCR and sequencing strategy (through the use of UMI 

and Single Read 65bp illumina sequencing), and a quantitative framework to filter and analyze 

barcoding data with high resolution. We do note that the utility of the approach in the lymphoid 

system is restricted because of the expected cassette recombination during B and T cell 

development. The DRAG barcoding system should be of value to examine aspects of tissue 

generation in other cell systems, such as brain and mammary gland, in which efficient labeling 

with limited background is observed (Fig. S11).  
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Using the DRAG barcoding system, we observe that HSPCs are highly heterogeneous in the 

time and extent they contribute to myelopoiesis, with relatively few barcodes shared across the 

entire myeloid developmental trajectory, and clone sizes varying by several orders of 

magnitude. Clone size variability was not fully explained by differences in when clones were 

active as large clone size variations were observed in clones that were active at the same time 

(clones that were found across the entire myeloid developmental trajectory - HSPC, myeloid 

progenitors and mature myeloid) (Fig. S4G). Our results extend previous findings on the 

existence of  differentiation-inactive47 or childless48 HSPC from other barcoding studies in the 

native niche by showing quantitative heterogeneity in cell production by HSPC. Together, these 

data support a model in which myelopoiesis is sustained by overlapping waves of HSPC 

activation, with large variations in the cellular outputs of each differentiation-active HSPC 

clone.  

 

Ageing of the immune system is associated with dramatic changes in the distribution and 

functional properties of immune cells. Broadly, there is a skewing in favour of innate vs 

adaptive immunity, leaving older individuals increasingly susceptible to infection and chronic 

tissue inflammation. A lack of tools capable of measuring the output of individual HSPCs in 

the native bone marrow microenvironment has complicated the research literature around this 

topic 18, with many associations being drawn between phenotypic changes in native 

hematopoiesis as observed by scRNAseq14,49 and functional changes in cellular output as 

observed in post-transplantation hematopoiesis 6–10. In transplantation assays, aged HSPCs 

display a skewed output towards the myeloid and platelet lineages3,6,7,15,16, have a lower rate of 

self-renewal3,8,15 and have a decreased cell production capacity1,15 relative to young HSPCs. 

Coupling of these transplantation-based functional measurements with gene expression patterns 

associated with stress and inflammation in native hematopoiesis have led to a model in which 

aged HSPC exhaustion is a hallmark of an ageing immune system17. However, our results on 

native hematopoiesis upon ageing do not fully support this model and are consistent with 

studies in young mice showing that native hematopoiesis differs from post-transplantation 

hematopoiesis 18. Specifically, using longitudinal monitoring of the diversity of endogenous 

DRAG barcodes in blood we found that the increased myeloid production occurs through an 

increase in the number of long-term repopulating clones, rather than through an increased 

number of myeloid cells produced per clone. We therefore conclude that while aged HSPCs do 

exhibit transcriptomic signs of cell stress, inflammation and changes in global gene expression 

state, these cells are still able to functionally produce the same amount of myeloid cells, 
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contradicting the current view that HSPC in their native niche are dysfunctional in their cell-

production capacity.   

 

Not all HSCs are differentiation-active at the same time during adulthood, as shown by our 

findings in this study and from previous reports47,50, raising the question on whether the well-

documented increase in phenotypic HSC numbers with ageing corresponds to an increase in 

differentiation-active or inactive HSCs. Transplantation studies suggest that part of this increase 

corresponds to an increase in the number of differentiation-active HSCs. However 

transplantation assays do not inform us on whether the HSPCs that accumulate with age are 

actively contributing to regeneration because of the perturbation generated by transplantation. 

Here, we show that the number of HSPC clones actively contributing to myelopoiesis increases 

with age in the native bone marrow. Importantly, this increased number of differentiation-active 

HSPCs could favor the occurrence of genetic mutations associated with clonal hematopoiesis51–

53, increasing the risk of hematological malignancies associated with age.  

 

The finding that differentiation-active HSPCs increase in number with age is explained at the 

cellular level by a decreased number of LT-HSCs and the increase in frequency of cycling 

MPPs as observed by scRNAseq profiling, and suggest that LT-HSCs in aged individuals exit 

quiescence and contribute to hematopoietic flux at a faster rate than in younger individuals. The 

increased entry into cycling and differentiation of HSC could potentially be caused by repeated 

exposures to inflammation over the course of adulthood, and the occurrence of age-associated 

MPPs with signs of cell stress and inflammation forms indirect evidence for such a model. 

Furthermore, evidence that inflammation pushes LT-HSCs to differentiate 54–56 and that ageing 

induces proliferative JAK/STAT signaling in HSPCs 57 are in line with this proposed 

mechanism. Of note, the changes in HSPC composition from scRNAseq were not consistent 

with changes in population dynamics when defined using surface markers (Fig. S12), 

suggesting that further work is needed to develop a unified definition and nomenclature for 

HSPCs that is consistent throughout adult and aged hematopoiesis. As the bone marrow niche 

has also been shown to change upon ageing 58, extrinsic factors may also contribute to the 

increased number of active long-term repopulating clones in aged mice.  

 

In summary, our study highlights the utility of quantitative in situ barcoding methods, and 

suggests that greater caution should be exercised when extrapolating results from 
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transplantation assays to native hematopoiesis. Our data does not support a model in which 

aged HSPCs are dysfunctional in their cell production capacity.  

 

References:  

1. Morrison, S. J., Wandycz, A. M., Akashi, K., Globerson, A. & Weissman, I. L. The 

aging of hematopoietic stem cells. Nat. Med. 2, 1011–1016 (1996). 

2. De Haan, G. & Van Zant, G. Dynamic changes in mouse hematopoietic stem cell 

numbers during aging. Blood (1999). 

doi:10.1182/blood.v93.10.3294.410k07_3294_3301 

3. Sudo, K., Ema, H., Morita, Y. & Nakauchi, H. Age-associated characteristics of murine 

hematopoietic stem cells. J. Exp. Med. 192, 1273–80 (2000). 

4. Rossi, D. J. et al. Cell intrinsic alterations underlie hematopoietic stem cell aging. 

Proc. Natl. Acad. Sci. U. S. A. 102, 9194–9 (2005). 

5. Chambers, S. M. et al. Aging Hematopoietic Stem Cells Decline in Function and 

Exhibit Epigenetic Dysregulation. PLoS Biol. 5, e201 (2007). 

6. Young, K. et al. Progressive alterations in multipotent hematopoietic progenitors 

underlie lymphoid cell loss in aging. J. Exp. Med. 213, 2259–2267 (2016). 

7. Cho, R. H., Sieburg, H. B. & Muller-Sieburg, C. E. A New Mechanism for the Aging 

of Hematopoietic Stem Cells: Aging Changes the Clonal Composition of the Stem Cell 

Compartment but Not Individual Stem Cells. Blood 111, 5553–5561 (2008). 

8. Beerman, I. et al. Functionally distinct hematopoietic stem cells modulate 

hematopoietic lineage potential during aging by a mechanism of clonal expansion. 

Proc. Natl. Acad. Sci. 107, 5465–5470 (2010). 

9. Verovskaya, E. et al. Heterogeneity of young and aged murine hematopoietic stem 

cells revealed by quantitative clonal analysis using cellular barcoding. Blood 122, 523–

532 (2013). 

10. Yamamoto, R. et al. Large-Scale Clonal Analysis Resolves Aging of the Mouse 

Hematopoietic Stem Cell Compartment. Cell Stem Cell 22, 600 (2018). 

11. Dykstra, B., Olthof, S., Schreuder, J., Ritsema, M. & de Haan, G. Clonal analysis 

reveals multiple functional defects of aged murine hematopoietic stem cells. J Exp Med 

208, 2691–2703 (2011). 

12. Sun, D. et al. Epigenomic profiling of young and aged HSCs reveals concerted changes 

during aging that reinforce self-renewal. Cell Stem Cell 14, 673 (2014). 

13. Mann, M. et al. Heterogeneous Responses of Hematopoietic Stem Cells to 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 9, 2022. ; https://doi.org/10.1101/2022.12.06.519273doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.06.519273
http://creativecommons.org/licenses/by-nc/4.0/


 15 

Inflammatory Stimuli Are Altered with Age Article Heterogeneous Responses of 

Hematopoietic Stem Cells to Inflammatory Stimuli Are Altered with Age. CellReports 

25, 2992-3005.e5 (2018). 

14. Hérault, L. et al. Single-cell RNA-seq reveals a concomitant delay in differentiation 

and cell cycle of aged hematopoietic stem cells. BMC Biol. 19, 1–20 (2021). 

15. Dykstra, B., Olthof, S., Schreuder, J., Ritsema, M. & de Haan, G. Clonal analysis 

reveals multiple functional defects of aged murine hematopoietic stem cells. J. Exp. 

Med. 208, 2691–703 (2011). 

16. Grover, A. et al. Single-cell RNA sequencing reveals molecular and functional platelet 

bias of aged haematopoietic stem cells. Nat. Commun. 2016 71 7, 1–12 (2016). 

17. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The 

hallmarks of aging. Cell (2013). doi:10.1016/j.cell.2013.05.039 

18. Busch, K. & Rodewald, H. R. Unperturbed vs. post-transplantation hematopoiesis: 

Both in vivo but different. Current Opinion in Hematology 23, 295–303 (2016). 

19. Sun, J. et al. Clonal dynamics of native haematopoiesis. Nature 514, 322–327 (2014). 

20. Busch, K. et al. Fundamental properties of unperturbed haematopoiesis from stem cells 

in vivo. Nature 518, 542–546 (2015). 

21. Boyer, S. W. et al. Clonal and Quantitative In Vivo Assessment of Hematopoietic Stem 

Cell Differentiation Reveals Strong Erythroid Potential of Multipotent Cells. Stem Cell 

Reports 12, 801–815 (2019). 

22. Ganuza, M. et al. The global clonal complexity of the murine blood system declines 

throughout life and after serial transplantation. Blood (2019). doi:10.1182/blood/2018-

09-873059 

23. Cosgrove, J., Hustin, L. S. P., de Boer, R. J. & Perié, L. Hematopoiesis in numbers. 

Trends Immunol. 42, 1100–1112 (2021). 

24. De Haan, G. & Lazare, S. S. Aging of hematopoietic stem cells. Blood (2018). 

doi:10.1182/blood-2017-06-746412 

25. Copley, M. R., Beer, P. A. & Eaves, C. J. Hematopoietic stem cell heterogeneity takes 

center stage. Cell Stem Cell 10, 690–697 (2012). 

26. Eaves, C. J. Hematopoietic stem cells: concepts, definitions and the new reality. Blood 

125, 2605–2613 (2015). 

27. Sommerkamp, P. et al. Mouse multipotent progenitor 5 cells are located at the 

interphase between hematopoietic stem and progenitor cells. Blood 137, 3218–3224 

(2021). 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 9, 2022. ; https://doi.org/10.1101/2022.12.06.519273doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.06.519273
http://creativecommons.org/licenses/by-nc/4.0/


 16 

28. Pietras, E. M. et al. Functionally Distinct Subsets of Lineage-Biased Multipotent 

Progenitors Control Blood Production in Normal and Regenerative Conditions. Cell 

Stem Cell 17, 35–46 (2015). 

29. Challen, G. A., Pietras, E. M., Wallscheid, N. C. & Signer, R. A. J. Simplified murine 

multipotent progenitor isolation scheme: Establishing a consensus approach for 

multipotent progenitor identification. Exp. Hematol. 104, 55–63 (2021). 

30. Marcou, Q., Mora, T. & Walczak, A. M. High-throughput immune repertoire analysis 

with IGoR. Nat. Commun. (2018). doi:10.1038/s41467-018-02832-w 

31. Clevers, H. et al. STEM CELLS. What is an adult stem cell? Science 350, 1319–20 

(2015). 

32. Wilson, N. K. K. et al. Combined Single-Cell Functional and Gene Expression 

Analysis Resolves Heterogeneity within Stem Cell Populations. Cell Stem Cell 16, 

712–724 (2015). 

33. Chao, A. Estimating the Population Size for Capture-Recapture Data with Unequal 

Catchability. Biometrics (1987). doi:10.2307/2531532 

34. Lemischka, I. R., Raulet, D. H. & Mulligan, R. C. Developmental potential and 

dynamic behavior of hematopoietic stem cells. Cell 45, 917–927 (1986). 

35. Gerrits, A. et al. Cellular barcoding tool for clonal analysis in the hematopoietic 

system. Blood 115, 2610–2618 (2010). 

36. Naik, S. H. et al. Diverse and heritable lineage imprinting of early haematopoietic 

progenitors. Nature 496, (2013). 

37. Jordan, C. T. & Lemischka, I. R. Clonal and systemic analysis of long-term 

hematopoiesis in the mouse. Genes Dev. (1990). doi:10.1101/gad.4.2.220 

38. Macaulay, I. C. et al. Single-Cell RNA-Sequencing Reveals a Continuous Spectrum of 

Differentiation in Hematopoietic Cells. Cell Rep. 14, 966–977 (2016). 

39. Nestorowa, S. et al. A single-cell resolution map of mouse hematopoietic stem and 

progenitor cell differentiation. Blood (2016). doi:10.1182/blood-2016-05-716480 

40. Pellin, D. et al. A comprehensive single cell transcriptional landscape of human 

hematopoietic progenitors. Nat. Commun. 2019 101 10, 1–15 (2019). 

41. Velten, L. et al. Human haematopoietic stem cell lineage commitment is a continuous 

process. Nat. Cell Biol. (2017). doi:10.1038/ncb3493 

42. Angerer, P. et al. destiny: diffusion maps for large-scale single-cell data in R. 

Bioinformatics 32, 1241–1243 (2016). 

43. Dahlin, J. S. et al. A single-cell hematopoietic landscape resolves 8 lineage trajectories 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 9, 2022. ; https://doi.org/10.1101/2022.12.06.519273doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.06.519273
http://creativecommons.org/licenses/by-nc/4.0/


 17 

and defects in Kit mutant mice. Blood 131, e1–e11 (2018). 

44. Scialdone, A. et al. Computational assignment of cell-cycle stage from single-cell 

transcriptome data. Methods 85, 54–61 (2015). 

45. Wilson, A. et al. Hematopoietic Stem Cells Reversibly Switch from Dormancy to Self-

Renewal during Homeostasis and Repair. Cell 135, 1118–1129 (2008). 

46. Rodriguez-Fraticelli, A. E. et al. Single-cell lineage tracing unveils a role for TCF15 in 

haematopoiesis. Nature (2020). doi:10.1038/s41586-020-2503-6 

47. Pei, W. et al. Resolving Fates and Single-Cell Transcriptomes of Hematopoietic Stem 

Cell Clones by PolyloxExpress Barcoding. Cell Stem Cell 0, (2020). 

48. Bowling, S. et al. Resource An Engineered CRISPR-Cas9 Mouse Line for 

Simultaneous Readout of Lineage Histories and Gene Expression Profiles in Single 

Cells ll Resource An Engineered CRISPR-Cas9 Mouse Line for Simultaneous Readout 

of Lineage Histories and Gene Expression Pro. Cell 181, 1410-1422.e27 (2020). 

49. Kowalczyk, M. S. et al. Single-cell RNA-seq reveals changes in cell cycle and 

differentiation programs upon aging of hematopoietic stem cells. Genome Res. 25, 

1860–1872 (2015). 

50. Bowling, S. et al. An Engineered CRISPR-Cas9 Mouse Line for Simultaneous Readout 

of Lineage Histories and Gene Expression Profiles in Single Cells. Cell 181, 1410-

1422.e27 (2020). 

51. Jaiswal, S. et al. Age-Related Clonal Hematopoiesis Associated with Adverse 

Outcomes. N. Engl. J. Med. 371, 2488–2498 (2014). 

52. Genovese, G. et al. Clonal Hematopoiesis and Blood-Cancer Risk Inferred from Blood 

DNA Sequence. N. Engl. J. Med. 371, 2477–2487 (2014). 

53. Jaiswal, S. & Ebert, B. L. Clonal hematopoiesis in human aging and disease. Science 

(80-. ). 366, (2019). 

54. Essers, M. A. G. et al. LETTERS IFN a activates dormant haematopoietic stem cells in 

vivo. Nature 458, 904–908 (2009). 

55. Caiado, F., Pietras, E. M. & Manz, M. G. Inflammation as a regulator of hematopoietic 

stem cell function in disease, aging, and clonal selection. J. Exp. Med. 218, (2021). 

56. Bogeska, R. et al. Inflammatory exposure drives long-lived impairment of 

hematopoietic stem cell self-renewal activity and accelerated aging. Cell Stem Cell 29, 

1273-1284.e8 (2022). 

57. Kirschner, K. et al. Proliferation Drives Aging-Related Functional Decline in a 

Subpopulation of the Hematopoietic Stem Cell Compartment. Cell Rep. 19, 1503–1511 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 9, 2022. ; https://doi.org/10.1101/2022.12.06.519273doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.06.519273
http://creativecommons.org/licenses/by-nc/4.0/


 18 

(2017). 

58. Matteini, F., Mulaw, M. A. & Florian, M. C. Aging of the Hematopoietic Stem Cell 

Niche: New Tools to Answer an Old Question. Front. Immunol. 12, 4492 (2021). 

59. Wilson, N. K. et al. Combined Single-Cell Functional and Gene Expression Analysis 

Resolves Heterogeneity within Stem Cell Populations. Cell Stem Cell 16, 712–724 

(2015). 

60. Chen, E. Y. et al. Enrichr: Interactive and collaborative HTML5 gene list enrichment 

analysis tool. BMC Bioinformatics 14, 1–14 (2013). 

 

Acknowledgements : 

We would like to thank R. Bin Ali for blastocyst injections, Dr. R. Gerstein, Dr. K Vanura, and Dr. 

S. Gilfillan for sharing reagents, and M. Hoekstra for sharing drawings. We thank past and present 

members of the Schumacher lab, in particular Dr. S. Naik, Dr. C. Gerlach, and Dr. J. Rohr, for 

valuable discussions. We thank Dr. K. Duffy, Dr. R. de Boer, Dr. L. Riboli-Sasco, Dr. P. Krimpenfort, 

Dr. J Jonkers and the Perié team for helpful discussions. We thank the Curie flow cytometry, next-

generation sequencing, and animal facility from both NKI and Institut Curie.  

 

Funding: The study was supported by an ATIP-Avenir grant from CNRS and Bettencourt-Schueller 

Foundation (to L.P.), grants from the Labex CelTisPhyBio (ANR-10-LBX-0038) and Idex Paris-

Science-Lettres Program (ANR-10-IDEX-0001-02 PSL) (to L.P.). As well as funding from the 

European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation 

programme ERC StG 758170-Microbar (to L.P.) and ERC AdG Life-His-T (to T.S.). AMW and TM 

were supported by ERC CoG 724208. J.C. was supported by a Foundation ARC fellowship and by the 

Agence Nationale de Recherche (DROPTREP: ANR-16-CE18-0020-03).  Competing interests: the 

authors declare no competing interests. Data and materials availability: all data and scripts are 

available on the gitlab of the Perié team. 

 

Contribution: 

LP, JU and JC designed and performed experiments. LP supervised the study, analyzed data and 

created figures with help from JU, JC and JB. CC, AMW, ET contributed to experiments, TS conceived 

the technological approach, JVH, HJ, JU, and TS designed the DRAG recombination substrate and 

mouse. LK and JU isolated MEF clones. CM performed and analyzed the mammary gland experiment, 

LP, CC and JM performed the brain experiment. SF and JF supervised the mammary gland and brain 

experiment respectively.JB analyzed MEF data and developed the filtering pipeline with input from 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 9, 2022. ; https://doi.org/10.1101/2022.12.06.519273doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.06.519273
http://creativecommons.org/licenses/by-nc/4.0/


 19 

LP, JU, and TS. AV designed the preprocessing pipeline. JC designed and performed the scRNAseq 

analysis and brain data. YE, AMW, and TM designed the probability generation model. RAM designed 

the generalized linear mixed models. LP and TS wrote the main text of the manuscript with feedback 

from all authors.  

 

 

 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 9, 2022. ; https://doi.org/10.1101/2022.12.06.519273doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.06.519273
http://creativecommons.org/licenses/by-nc/4.0/


 20 

Figures 

 
Figure 1: A quantitative DRAG in situ barcoding system 

A. Description of the DRAG cassette, as inserted into the Rosa 26 locus before and after 

induction. DRAG recombination is induced by Cre activity and resulting barcode sequences 

are used for lineage tracing. B. Example of GFP expression in myeloid cells (CD11b+ CD19- 

CD3- CD11c-) in blood 6.5 months after tamoxifen (induced) or vehicle (control) 

administration. Within the GFP positive gate, a GFPmid and GFPhigh population is observed in 

myeloid cells. Both populations contain successfully recombined barcodes, and heterogeneity 

in GFP marker expression is likely due to the labelling of heterogeneous cell types with the pan 

myeloid marker cd11b (Figure S5A-B). In line with this, such heterogeneous GFP expression 

was not observed in non-myeloid cells. C. Percentage of GFP+ myeloid cells of total myeloid 

cells in tamoxifen-induced (green) and control (black) (n=5 and n=3 mice respectively, all 

sampled over 13 months). Median and interquartile range with whiskers extending to the 

minimum and maximum values. D. False positive rate and sensitivity of barcode detection. 7 

MEF clones with known DRAG barcodes, were mixed in different numbers, and the input cell 

numbers of all MEF clones were compared to experimentally determined numbers upon PCR, 

sequencing and analysis. Number in circles correspond to MEF clone numbers, Red and blue 

circles indicate technical replicates. Grey area indicates lower thresholds for barcode detection 

as used during data processing.  
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 Figure 2: Identity of DRAG barcode labelled HSPC cells.  

A. At the start of DRAG labeling, tamoxifen-induced Cre-ERTM activity will yield DRAG 

barcodes in stem cells, progenitor cells, and downstream differentiated cells. At later time 

points (month) after induction, turnover of short-lived committed progenitors and differentiated 

cells, and replacement by progeny of long-lived cells has occurred, and DRAG barcodes 

observed in short-lived differentiated cell pools are derived from long-term repopulating cells. 

B. Six months post tamoxifen induction, HSPC cells (LSK: sca1+ckit+ cells) GFP+ and GFP- 

were scRNA sequenced using the 10X 3’end protocol (data from 2 mice induced at 20 weeks). 

UMAP representation of the data, with key subpopulations obtained by Louvain clustering 

highlighted. C. Published gene expression signatures 27 were used to annotate and quantify the 

clusters in B. D. Distribution of GFP+ cells throughout the UMAP embedding of the data E. 

The proportion of cells in each cluster from B within either GFP+ or GFP- cells. 
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Figure 3: Barcode analysis reveals non-overlaping waves of myelopoiesis.  

(A) Recombination of the DRAG locus was induced in 8-14 week old mice. At sacrifice, 15 

months post induction, myeloid cells (M: CD11b+ CD19- CD3-CD11c-) were sorted from bone 

marrow, HSPC (LSK: sca1+ckit+) and myeloid progenitors (MP: myeloid progenitors, sca1-
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ckit+) were sorted from the bone marrow (gating strategy in Fig. S4A and B). All samples were 

processed for barcode detection. B. Heatmap representation of the barcode output in bone 

marrow HPSC, MP, and myeloid cells, at month 15 post-induction. 97 barcodes with barcode 

generation probability Pgen < 10-4 were observed (pooled data of 3 mice). Normalized and 

hyperbolic arcsine transformed data were clustered by complete linkage using Euclidean 

distance. C. Barcodes with barcode generation probability Pgen < 10-4 were classified based on 

their presence or absence in HSPC, MP, or myeloid cells (M). The percentage of barcodes in 

each of the 6 possible classes is depicted. Error bars show the standard deviation between mice 

(n=3).  D. Same as C but depicting the total contribution of all barcodes in a given class to the 

production of either HSPC, MP, or M. E. Number of myeloid cells produced per barcode for 

n=4 mice (251 barcodes), 15 months post-induction. Colors represent individual mice.  

 

 
 

 

Figure 4: Increased numbers of long-term repopulating cells contribute to myelopoiesis with 

age.  

A. Absolute number of GFP+ and GFP- myeloid cells (CD11b+) in blood between month 4 and 

12. N=4 mice, black line depicts the mean, ribbon depicts the 95% confidence intervals for the 

true mean. B. Models for age-related increased myeloid cell production. An increase in myeloid 

production may happen through two non-mutually exclusive mechanisms: an increase in the 
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number of myeloid-biased HSPCs (model 1), or an increase in the number of myeloid cells that 

are produced per individual HSPC (model 2). C. Diversity of barcodes in blood between month 

4 and 12 using the Simpson index. Each sample was analyzed in duplicate. Black line represents 

the mean Simpson’s index estimate, obtained from the fitted gamma generalized linear mixed 

model with a break point; grey ribbon represents the 95% CI for the true mean. D. Number of 

myeloid cells produced per barcode (i.e. clone size) over time post-induction. Pooled data of 

four mice, with each color representing a different mouse, are depicted.  

 

 

 
 

Figure 5: Age-related changes in cellular composition of the HSPC compartment  

(A) Experimental timeline for profiling HSPCs across adulthood. Mice were given tamoxifen 

at 8-20 weeks of age to induce barcode recombination. At subsequent timepoints HSPCs were 

purified from the bone marrow of induced mice and processed for scRNAseq or flow cytometry 

analysis. For each timepoint we give the number of mice processed as well as the number of 

cells recovered for scRNAseq profiling. (B) UMAP embedding of the scRNAseq data. 

Unsupervised clustering was used to discretize the data into colored subgroups and cluster 
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annotation was performed by overlaying published gene signatures and markers 27,28,59. (C) 

Overlaying published gene signatures 28,59 onto the UMAP embedding of the data. For each cell 

the gene signature score was calculated as the mean expression across all genes in the signature 

(after background correction). (D) The proportional abundance of cells amongst clusters at 6-7 

months, 12 months and 18-19 months old. (E) Pseudotime projection of the data with cells 

organized into clusters as in C. Pseudotime inference was performed using a diffusion map 

based approach as implemented in the R-package destiny 42. (F) Density plot showing the 

proportional abundance of cells within the UMAP embedding as a function of age. 

 

 
 

Figure 6: Transcriptomic differences between young and aged HSPCs  

A. Proportion of cells per cell cycle phase, per cluster and age. Cells were classified into 

G1/G2+M/S phases of the cell cycle using the classifier approach developed by 44. B. 

Differentially expressed genes between HSPCs from mice aged 6.5, 12 and 19 months. 

Differential expression analysis was performed using a logistic regression test as implemented 

in the Seurat R package. Bonferoni correction was applied to correct for multiple testing C. 

Pathways enriched in HSPCs at different ages. Pathway analysis was performed using the 

enrichR R package using a variation of Fisher’s exact test, which also considers the size of each 

gene set when assessing the statistical significance of a gene set 60. D. Expression of the aged 

HSPC gene signature across all cell clusters. The gene signature was obtained by differential 
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expression analysis for all HSPCs between young (6.5 months) and aged (19 months) mice. 

Genes that are upregulated in aged HSPCs are aggregated into the aged HSPC signature. For 

each cell, the gene signature score was calculated as the background corrected mean expression 

across all genes in the signature. 
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Supplementary information, Urbanus J et al 

 
DRAG construct    

A GFP-based VJ recombination substrate 1 (kindly provided by Dr. R. Gerstein, University of 

Massachusetts Medical School, USA) was inserted into the plasmid pSBEX3IB. To assemble 

the DRAG substrate, a “12 RSS-J segment” fragment was generated by PCR and cloned into 

pBluescript using SacI and KpnI. An eGFP encoding gene fragment was ligated 3’ of the J-

segment using NcoI and SacII. Next, a “V-segment-12 RSS” fragment was generated by PCR 

and inserted 5’ of the J-segment using SacI and EcoRI. Then, a “23 RSS-D segment-23 RSS-

bovine growth hormone (BGH) polyA signal” fragment was generated by PCR and cloned in 

between the V- and J-segment using BglII and EcoRI. Spacer sequences of the two D-segment 

23-RSSs were varied to prevent hairpin formation. D-segment sequence is the naturally 

occurring IgH DSP2.4, in which the naturally occurring ATG sequence was mutated into ATC, 

to prevent premature translational initiation. The complete “V-segment-12 RSS-23 RSS-D-

segment-23 RSS-BGH polyA-12 RSS-J segment-GFP” fragment was cloned into a Rosa26 

targeting vector containing a CMV enhancer and chicken beta-actin promoter using AscI. 

Finally, the “loxP-TdT-E2A-RAG2-T2A-RAG1-loxP” cassette was inserted in antisense 

orientation 3’ of the V-segment, using PmlI and MfeI, to give rise to the DRAG targeting 

construct as depicted in Fig. 1A. 

 

Quantifying the sensitivity and specificity of the DRAG barcoding system 

 

Taking advantage of the VDJ recombination system that produces a high degree of genetic 

diversity in the lymphoid lineages, we designed a DNA cassette, termed DRAG (Diversity 

through RAG), with the aim to allow endogenous barcoding of all cellular lineages in an 

organism in a temporally controlled manner (Fig. 1A). The DRAG system has been designed 

such that upon CRE induction, a segment between two loxP sites is inverted, leading to the 

expression of both the RAG1 and 2 enzymes and Terminal deoxynucleotidyl transferase (TdT). 

Upon such expression, recognition of recombination signal sequences (RSSs) within the DRAG 

cassette by the RAG1/2 complex leads to recombination of the synthetic V-, D- and J-segments, 

with diversity being generated both by nucleotide deletion and TdT-mediated N-addition. 

Notably, as the RAG/TdT cassette and RSSs are spliced out during this recombination step, 

further recombination of the DRAG locus is prevented, and any generated VDJ sequence is 
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thus stable over time. Finally, recombination of the DRAG locus results in the removal of a 

BGH polyA site that precludes GFP expression in the native DRAG configuration, allowing 

one to identify barcode+ cells by flow cytometry or imaging.  Note that the GFP expression is 

driven by the CAGGS promoter upfront of the barcode to link its expression with the presence 

of a barcode.  

 

To understand DRAG recombination patterns, we isolated MEF cells from DRAG mice, 

induced DRAG recombination with tamoxifen, and derived MEF clones (n=24) that carried a 

single DRAG barcode by limited dilution. In line with expectations, recombined DRAG loci 

were characterized by insertions and deletions between the VDJ segments (Table S1), and only 

2 over 24 barcodes were shared.  In addition, consistent with the DRAG design, longitudinal 

analysis of barcode sequences showed that identified barcodes were stable over time, as 

assessed by Sanger and deep sequencing, for 7 out of 7 MEF clones tested. The barcodes that 

are generated upon DRAG recombination are random, precluding the use of barcode reference 

lists to distinguish true recombination events from amplification and sequencing errors. To 

address this issue, we developed a DRAG barcode processing platform that incorporates unique 

molecular identifiers (UMI) during PCR amplification (Fig. S1B Sup Method) and a strict 

filtering pipeline of sequencing data. Application of this strategy to defined mixtures of 7 MEF 

clones that each contain a different barcode demonstrated that this platform allows the robust 

detection and quantification of barcodes (Fig. 1D). Specifically, clones equal or greater than 10 

cells were efficiently and quantitatively identified in samples with few cells (97 cells), and 

clones equal or greater than 100 cells were efficiently and quantitatively identified in samples 

with larger cell numbers (25,000 cells), the latter corresponding to detection of clones that make 

up as little as 0.4% of the total cell population. The number of false positive events was 1 or, in 

most cases, 0. Importantly, across the range of detection, experimentally observed frequencies 

were highly correlated to input frequencies (Fig. 1D), demonstrating the ability of DRAG to 

allow quantitative analyses of cellular output.  

 

To explore the genetic diversity obtained by in vivo DRAG barcoding, we next analyzed 

barcode diversity in myeloid cells 15 months post induction of DRAG recombination. Deep 

sequencing analysis of resulting barcode sequences revealed that DRAG barcodes characterized 

by up to 15 nucleotide insertions and 32 nucleotide deletions were formed (Fig. S2A) and that 

the D-segment was inverted in 12% of cases.  
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In any system that creates semi-random codes for lineage tracing, the information value of such 

codes depends on the probability of their occurrence, as barcodes with a lower likelihood of 

generation form more reliable single cell identifiers 2. Applying a mathematical model 3 to infer 

the probability of generation of each barcode (Pgen) from the data (Suppl. methods and Table 

S4-9), we observed a distribution of Pgen that spanned over at least ten orders of magnitude (Fig 

S2B). To experimentally test the values of the Pgen estimates, we analyzed the occurrence of 

shared and unique barcodes across a cohort of four tamoxifen-induced DRAG mice. 

Importantly, barcodes with a low Pgen estimate were in almost all cases unique to each mouse 

(Fig. S2B). In contrast, barcodes with a high Pgen estimate were generally shared between mice 

(Fig. S2B) and also had a higher average read frequency (Fig. S2C), consistent with their 

independent occurrence in multiple progenitor cells. On the basis of these results, we selected 

a Pgen estimate of <10-4 for further data analysis (Fig. S2D-E). At this probability cut-off, 61% 

of barcode sequences were retained, and 92% of the retained barcodes were unique to an 

individual mouse. In addition, using this analysis strategy, hundreds of barcodes that could be 

used for analysis were retained for each mouse. Together, these data show that the DRAG 

mouse model allows the in vivo creation of a large barcode diversity without a requirement for 

cell transplantation, and that the prevalence of these barcodes in downstream progeny can be 

detected in a quantitative manner. 

 

 

Mice. All animal breeding and experiments were performed in accordance with national 

guidelines and were approved by the Experimental Animal Committee of the NKI (DEC 09036) 

or Institut Curie (#16854-2018092412148925-v1).  

 

DRAG mice generation. The DRAG targeting construct was linearized using PvuI and 

electroporated into IB10 E14 129/ola ES cells. Stable transfectants were selected with 

puromycin and resistant clones were picked and expanded. Correct integration was determined 

by Southern blotting, using a probe directed against the 5’ Rosa26 homology arm. Two 

independent ES cell clones were injected into C57Bl/6 blastocysts to generate 28 transgene-

positive chimeric mice and establish two independent DRAG transgenic lines (DRAG1 and 

DRAG2). GFP expression in peripheral blood B and T cells was screened using anti-CD19-PE 

(BD, clone 1D3, dilution 1/100), anti-CD3e-PerCP-Cy5.5 (eBioscience, clone 145-2C11, 

1/100) and anti-CD11b-APC (BD, clone M1/70, 1/100), and the DRAG1 line was selected. 
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DRAG1 mice were crossed with B6.Cg-Tg(CAG-cre/Esr1*)5Amc/J (CAGGCre-ERTM) to 

obtain heterozygous mice for experimental use.  

 

Tamoxifen induction. Six to 20 week old male mice received 7 mg Tamoxifen/ 40 gr 

bodyweight each day for 3 consecutive days by intraperitoneal injection. Tamoxifen (T5648-

1G, Sigma) was dissolved 10% EtOH and 90% sunflower oil (Sigma).  

 

Blood sampling. 100-200µl tail vein blood samples were obtained at the indicated time points. 

At sacrifice, a larger blood volume was obtained by heart puncture.  

 

Single barcoded MEF clones. Embryos from DRAG1 homozygote CagCreERT2 homozygote 

mice were harvested at day 14.5 and PCR genotyped. Extracted MEFs were immortalized by 

transduction with p53shRNA (in pRetro-super backbone, kindly provided by M. v. Lohuizen) 

and puromycin selected. Recombination of the DRAG transgene was induced in vitro using 5 

µM 4-OH-Tamoxifen. Following induction, single GFP+ cells were grown by limiting dilution. 

Clones were individually Sanger sequenced to identify DRAG barcodes. To confirm barcode 

identities, clones were also deep-sequenced using the same PCR pipeline (including capture) 

as used for other DRAG samples (see below). To create MEF mixes, 7 clones, each harboring 

a different barcode, were mixed in a ratio of 64:32:16:8:4:2:1. Resulting mixtures were used to 

prepare pools of 50,000, 12,500, 3,125, 781 and 195 cells, and samples were further processed 

as described for DRAG samples. 

 

Hematopoietic cell isolation and sorting for DRAG analysis  

100-200 µl blood samples were directly harvested in 800 µl Erylysis buffer (80.2 g NH4Cl, 

8.4g NaHCO3, 3.7 g disodium EDTA in 1 L H2O, pH 7.4), incubated on ice, diluted with 5 ml 

Erylysis buffer, washed with medium RPMI, resuspended in 0.5 ml 10% RPMI medium and 

put on ice overnight. Subsequently, blood cells were stained in 50 µl 2% FCS RPMI medium 

with antibodies against CD11C (APC, clone HC3, BD biosciences, dilution 1/100), CD11b 

(PercPCy5.5 or Pacific Blue, clone M1/70, ebioscience, 1/100), CD19 (APC-Cy7, clone 1D3, 

BD Pharmingen, 1/100) and CD3 (percp 5.5, clone 145-2C11 or PE, clone eBio500A2, 

eBioscience, 1/100). At sacrifice, BM was harvested from femurs, tibias and ilia and cells were 

enriched using anti-CD117 magnetic beads (Miltenyi). The c-kit+ fraction was stained with 

antibodies against CD117 (c-kit APC, clone 2B8, Biolegend, 1/100), Sca-1 (Pacific Blue, clone 
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D7, eBioscience, 1/200), CD135 (Flt3 PE, clone A2F10, ebiosciences, 1/100) and CD150 (Slam 

Pecy7, clone TC15-12F12.2, biolegend, 1/100). The c-kit- fraction was stained with antibodies 

against CD11C (APC, clone HC3, BD biosciences, 1/100), CD11b (PercPCy5.5 or Pacific 

Blue, clone M1/70, ebioscience, 100), CD19 (APC-Cy7, clone 1D3, BD Pharmingen, 1/100). 

When two colors are indicated for a given antibodies, they were used for the same cohort but 

at different time points for all mice. Cells were sorted on a FACSAriaTM (BD Biosciences) in 

FCS coated eppendorf tubes, according to the gating strategy presented in Fig. S4C and D.  

 

Barcode PCR and deep sequencing. Lysis: Sorted cells were lysed in 40 µl DirectPCR Lysis 

Reagent (Cell) from Viagen Biotech with 0.4 mg Prot K, and incubated for at least 1 h at 55oC, 

followed by a 30 min heat inactivation at 85oC and 5 min at 94oC. Samples were stored at -

20oC. Shearing genomic DNA (gDNA): samples were complemented up to 130 µl with 10 

mM Tris, and shearing was performed on a ME220 Focused-ultrasonicator (Covaris) in 130 µl 

reaction tubes under the following conditions: time: 20 sec; peakpower:70; duty% 20; 

cycles/burst:1000. Capture: sheared gDNA of each sample was split in two duplicates and 

samples were incubated o/n at 65oC after mixing with an equal volume hybridization buffer (1 

ml composition: 667 µl 20x SSPE (Gibco); 267 µl 50x Denhardt’s solution (Sigma-Aldrich); 

13.3 µl 20% SDS (Sigma-Aldrich); 26.7 µl 0.5M EDTA (Sigma-Aldrich); 26.7 µl nuclease free 

water (Ambion), together with capture oligos (50 fmol each). The next day, 5 µl streptavidin 

beads (Dynabeadstm MyOnetm streptavidin T1) were washed twice with 100 µl 2X B&W Buffer 

(2M NaCl in TE buffer) in pre-rinsed (with 400 µl 10 mM Tris solution) low retention 

microtubes (axygen). The Biotinylated gDNA was mixed with the beads in an equal volume 

2X B&W Buffer and samples were incubated for 30 min at RT, mixed every 10 min. Beads 

were washed subsequently in:-500 µl 1X B&W Buffer(2X B&W diluted with TE buffer);-200 

µl ½x b&w Buffer(2X B&W diluted with TRIS buffer);-75 µl ¼x b&w Buffer(2X B&W 

diluted with TRIS buffer); twice in 75 µl 10 mM TRIS buffer. Preamp PCR: Beads were 

resuspended in 200 µl PCR mix (20 µl 5x phusion HF buffer (NEB); 1 µl Phusion DNA 

Polymerase (NEB); 2 µl 10 mM dNTPs; 0.5 µl 100 uM preamp forw. oligo; 0.5 µl 100 uM 

preamp rev. oligo; 76 µl PCR grade water) and split in two replicates. PCR program: 2 min. at 

98ºC; N* cycles of 10 sec at 98ºC, 20 sec at 60ºC, 25 sec at 72ºC; 5 min. at 72ºC; 4ºC forever 

* The number of cycles (N) is adjusted according to number of barcoded cells in the sample, 

such that every sample has the same number of molecules at the start of the tagging PCR (See 

table S3 for cycle numbers used). Tagging PCR: 2 µl preramp PCR product was mixed with 

48 µl tagging PCR mix (10 µl 5x phusion HF buffer (NEB); 1 µl Phusion Hot Start II DNA 
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Polymerase (2U/ µl) (NEB); 1 µl 10 mM dNTPs; 0.25 µl 1 µM M1 tag forward oligo; 35.75 µl 

PCR grade water). PCR program: 1 min. at 98ºC; 2 cycles of 10 sec at 98ºC, 2 min. at 57ºC, 1 

min. at 72ºC; 20ºC forever). To digest remaining M1 tag forward oligo: 3 µl 20U/ µl 

Exonuclease I (NEB) was added and samples were incubated for 1 h at 37ºC ExoI denaturation 

was performed for 5 min at 98ºC, and samples were cooled down to 20ºC. 0.5 µl 100 µM 

Illumina forward seq oligo and M1rev oligo (both with 2 Phosphorothioate bonds at the 3’end 

to prevent breakdown because of residual ExoI activity) were added, followed by PCR 

program: 1 min. at 98ºC; 30 cycles of 10 sec at 98ºC, 20 sec at 67ºC, 25 sec at 72ºC; 5 min. at 

72ºC; 4ºC forever. Sample index PCR: 2 µl tagging PCR product was mixed with 18 µl PCR 

mix (4 µl 5x phusion HF buffer (NEB); 0.4 µl Phusion DNA Polymerase (NEB); 0.4 µl 10 mM 

dNTPs; 0.1 µl 100 uM P5 forw. oligo; 4 µl 2.5 uM P7 index rev. oligo; 9.1 µl PCR grade water). 

PCR program: 30 sec at 98ºC; 15 cycles of 10 sec at 98ºC, 20 sec at 67ºC, 25 sec at 72ºC; 5 

min. at 72ºC; 4ºC forever). Deepseq analysis: 10 µl from each index PCR product was taken 

and pooled (140 samples per deepseq run), cleaned and concentrated 20x using the Monarch 

PCR & DNA Cleanup Kit (5 µg) (NEB). Further cleanup was done with the E-gel imager 

system (Invitrogen) and the extracted PCR product mix was concentrated to its original volume 

by means of speedvac concentration and analyzed on a 2100 Bioanalyser instrument (Agilent). 

Pooled samples were deep-sequenced on a HiSeq 2500 System (Illumina) in SR100bp Rapid 

run mode. 

 

Oligo sequences 

Mef clones 2nd round PCR for Sanger sequencing 

M1seqv2for: 

ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCTCGAGGTCATCGAAGTA

TCAAG 

SM2index v2: GTGACTGGAGTTCAGACGTGTGCTCTTCCGATC 

CGTCCAGCTCGACCAGGAT 

Capture 

Biotinylated capture forward: 

5’-BiotinTeg-CCGCTAGCGGCCAGGGCGGCCGGAGAATTGTAATACGACTCACTAT 

AGGGAGACGCGTGTTACCTCCTCGAGGTCATCGAAGTATCAAG 

Biotinylated capture: 

5’-BiotinTeg-CTATAGCGGCCGCCTAGGCCGCTCTTCAACTACC 
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TTGTACAGCTCGTCCATGCCGAGAGTGATCCCGGCGGCGGTCACGAACTCCAGCA

GGACCATGTGA 

Tagging PCR 

Preamp forward: ACTCACTATAGGGAGACGCGTGTTACC 

Preamp reverse: GACACGCTGAACTTGTGGCCGTTTA 

M1 tag forward: 

ACACTCTTTCCCTACACGACGCTCTTCCGATCNNNNNNNNNNNNCCTCGAGGTCA

TCGAAGTATCAAG 

Illumina forward seq (Read 1): ACACTCTTTCCCTACACGACGCTCTTCCGA*T*C (*= 

Phosphorothioate bond) 

M1 rev Read2: AGTTCAGACGTGTGCTCTTCCGATC CAGCTCGACCAGGATG*G*G 

P5 forward : 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGA

TC 

P7 index rev:  

CAAGCAGAAGACGGCATACGAGATXXXXXXXGTGACTGGAGTTCAGACGTGTGC

TCTTCCGATC 

Complete list of the i7 indexes in table S11.   

All oligos were ordered at IDT with HPLC purified grade.  

 

Hematopoietic and myeloid cell composition analysis by cytometry 

BM was harvested from femurs, tibias and ilia and cells were enriched using anti-CD117 magnetic 

beads (Miltenyi). The c-kit+ fraction was stained with antibodies against CD117 (c-kit APC, clone 

2B8, Biolegend, dilution 1/100), Sca-1 (APC-Cy7, clone D7, Biolegend, 1/100), CD135 (Flt3 PE-

Cy5, clone A2F10, Life technologies, 1/50), CD150 (Slam Pecy7, clone TC15-12F12.2, Biolegend, 

1/100), CD48 (Pacific Blue, HM48-1, Biolegend, 1/100), CD16/32 (PercPCy5.5, clone M1/70, 

ebioscience, 1/100), CD34 (Alexa 700, 1/100) and a lineage cocktail (PE, CD3ε clone 145-2C11; Ly-

6G/Ly-6C clone RB6-8C5; CD11b clone M1/70; CD45R/B220 clone RA3-6B2; TER-119, 

Biolegend, 1/200). The c-kit- fraction was stained with antibodies against CD11b (PercPCy5.5, clone 

M1/70, ebioscience, 1/100), Ly6C (APC, HK1.4, Thermofisher, 1/200), Ly6G (BV510, RUO, 

Biolegend, 1/100), Siglec F (PE CF594, RUO, BD 1/100), F4/80 (alexa 700, clone BM8, Ozyme, 

1/100), in addition to a lineage cocktail in PeCy7 (B220 clone RA3-6B2 Biolegend, CD3, clone 17A2 

Biolegend, CD11c clone N418, ebioscience, NK1.1 clone PK136 Biolegend, Ter119 clone TER-119 

BD Biosciences) and DAPI (1/1000) as live/dead marker. All cells were analyzed on a Ze5 (bio-rad) 
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plate-reader cytometers. Data analysis was performed using FlowJo v10.2 software (TreeStar) and 

Prism v9. 

 

DRAG induction in mammary gland tissue 

ROSACreERT2+/- DRAG+/- mice were induced by one single injection of tamoxifen (0.1mg/g 

body weight) at P21. Mammary glands were collected 1 month after induction. Single cell 

dissociation was performed through enzymatic digestion (5mg/ml collagenase (Roche, 

57981821) and 200U/ml hyaluronidase (Sigma, H3884) for 1h30 at 37°C under agitation. 

Subsequently, cells were treated with trypsin for 1 min and DNAse I and dispase for 5min at 

37°C. Cell suspension was filtered through a 40µm cell strainer, and cells were stained in FACS 

buffer (PBS, EDTA 5mM, BSA 1%, FBS 1%) using a ‘lineage cocktail’ in APC (CD45 clone 

30-F11, CD31 clone MEC13.3, Ter119+ clone TER-119, all diluted 1/100), PE EpCAM (clone 

G8.8, 1/100), APC/Cy7 CD49f (clone GoH3, 1/100) and DAPI. All antibodies were purchased 

from Biolegend. Cells were analyzed on a FACSAriaTM flow cytometer (BD Biosciences), and 

results were analysed using FlowJo software. 

 

DRAG induction in brain 

CagGCre-ERTM+/- DRAG+/- mice aged 15 weeks for the uninduced group and 37 weeks for the 

induced group were sacrificed and their head fixed in 4% formaldehyde in PBS. Tamoxifen 

induction was performed in 17 week old mice as described in the tamoxifen induction section. 

Brains were sectioned into 30-um sections using a Leica vibratome, and sections were mounted 

on glass slides. Three sections, from the same rostro-caudal level in each mouse, were analyzed 

per mouse. Sections were imaged using a Zeiss LSM 700 confocal microscope on Tile Scan 

mode, using a 20x objective and 3-µm optical sections. All microscope settings (e.g., laser, 

gain, offset, pinhole, averaging) were kept constant for each image. 

 

Barcode Preprocessing and Filtering.  

Each recombined sequence includes nucleotide additions and deletions (referred to as the 

‘barcode’) and constant parts that flank both sides of this barcode. Moreover, each barcode was 

associated with a random unique molecular identifier (UMI) of 12bp during the tagging PCR 

step. 

Preprocessing. We use the pipeline described below to demultiplex fastq files and identify the 

reads that match a potential recombination of the DRAG construct. First the bcl2fastq 

(Illumina) program is used to demultiplex the fastq files based on the i7 index sequence. Only 
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records that match the i7 index perfectly are considered for the next step. In the constant part 

of the V and the J, the reads tend to be error-prone and a consensus sequence with Ns is 

manually created. The Xcalibr program (https://github.com/NKI-GCF/xcalibr) is then used to 

extract counts for all combinations of the 12bp UMI and the recombined barcodes only for the 

reads that contain the constant sequence of the V (ctcgaggtcatcgaagtatcaag) at the expected 

coordinates. After this, the J constant part 

(tagcaagctcgagagtagacctactggaatcagaccgccaccatggtgagc) is aligned to the barcode part using 

the NBCI blast2 program 4. When a suitable match is found, the barcode is trimmed at the start 

coordinate of the match, resulting in the final matrix.  

Barcode filtering. We used the steps described below to identify barcode sequences and 

remove PCR and deep-sequencing errors. First, we removed any barcode and associated UMI 

containing one or multiple ‘N’ values (within either the barcode, constant flanking parts or 

UMI). Second, barcodes that did not have an exact match to the expected constant parts (for the 

V region : cctcgaggtcatcgaagtatcaag and the J region : tagcaagctcgagagtagacctactggaatcaga) of 

the V and J that precede or follow the barcode were removed. Third, when multiple sequences 

were found associated with a single UMI, only the most frequently occurring barcode 

associated with that UMI was kept. Note that in theory, the number of different UMIs (412) 

should be in excess to the number of template molecules present in a PCR pre-amplified sample 

at the point at which tagging takes place (with a maximum of 5.104 expected molecules). 

However, we did observe rare cases in which the same UMI was associated with multiple true 

barcodes, presumably due to a lower than expected diversity of the tagging primer and a biased 

composition. Dominant barcodes that were associated with a UMI are highly likely to also be 

the dominant barcode associated with another UMI when samples are sequenced sufficiently 

deep and therefore likely to be true barcodes. Fourth, we removed UMI-barcode combinations 

with a read count of 10 or below to remove low-abundant combinations from our main list of 

barcodes. As a fifth step, we summed up the read counts for all UMI associated with the set of 

remaining barcodes, including the UMI from UMI-barcode combinations below the 10-read 

threshold for which the barcode matched one of the barcodes that passed the 10-read threshold.  

 

To verify that the barcodes obtained match the expected structure of a VDJ recombination 

product, we developed an algorithm to compare barcodes to the original VDJ template and 

identify which nucleotides were deleted due to exonuclease activity and which ones were 

inserted due to Tdt activity. This enabled us to recognize barcodes containing residual error, 

and also to quantify barcode creation patterns (i.e. the number of deleted and inserted 
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nucleotides at the junctions between V, D and J segments per barcode). Specifically, the 

algorithm performed several matching steps to the following template parts: V 

element=TCCAGTAG, forward D element=TCTACTATCGTTACGAC, reverse D 

element=GTCGTAACGATAGTAGA, and J element=GTAGCTACTACCG. The locations in 

between the V and D, as well as the D and J elements, are the sites where recombination can 

occur. Note that the residues matching the V and J region were actually longer but we did not 

observe deletions extending beyond the above-described residues. The algorithm started by 

performing exact matching to the V element, comparing residues from left to right, and to the 

J element from right to left. This resulted in matched V and J parts and a ‘middle part’ that 

contains a part of the forward or reverse D element (provided that this was not completely 

deleted during recombination). In order to find the most likely match of the middle part to the 

D element, we separately searched for the longest matches to both the forward and the reverse 

D element, while considering that there could be residual sequencing error within this constant 

element. We achieved this by starting with an attempt to match to the longest possible sequence 

(i.e., the entire D element of length 17 nucleotides), and decreasing the attempted match length 

by 1 until a match could be established. In this matching process we first searched for exact 

matches amongst all permutations of the considered length. For example, a comparison of the 

remaining middle part to a part of the D element of length 15 involves comparing to three 

potential D parts, i.e., a D part where two nucleotides are deleted on the left side, one where 

one nucleotide is deleted on both sides, and one where two nucleotides are deleted on the right 

side. In case no exact match could be found for the considered length, we searched for potential 

approximate matches in which a mismatch of a single nucleotide was allowed, provided that 

the mismatch did not occur in one of the two flanking residues on the left and right side (note 

that this implies that the minimal D fragment length for which such a mismatch can be detected 

is a length of 5 nucleotides). This is because a mismatch close to the flanking regions may easily 

be caused by nucleotide deletions and insertions during the recombination process, whereas 

single mismatches at locations further away from the D element flanks are more likely to be 

due to sequencing errors. 

 

Having established the longest match to both the forward and the reverse D element, the longest 

of these two was selected for further analysis, provided that the match length was at least five 

nucleotides. When this longest match contained a nucleotide mismatch, the sequence was no 

longer considered as real and thus discarded. However, when an exact match was observed, the 

remaining left and right flanks of the middle part were considered insertions between V and D, 
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and between D and J, respectively. The nucleotides of the original forward or reverse D 

template that were no longer present in such barcodes were considered to be deleted. For a case 

with a longest match of at most four nucleotides, we considered it most likely that the entire D 

template had been erased during recombination. In that special case, the remaining few 

nucleotides were assigned as follows: (i) to insertions between the V and D element in case the 

already recovered V element was empty and the recovered J element was not empty (because 

we wanted to consider the possibility that the V element was in fact non-empty but contained 

residual sequencing error; see below), (ii) to insertions between the D and J element in case the 

already recovered V and J elements were both empty (in which case we considered it likely that 

in fact the recovered J element was non-empty because of the large number of residues that 

would have been deleted on that flank otherwise), and (iii) to insertions on both insertion flanks 

that were equally divided amongst the V/D and D/J flank for an even number of nucleotides 

and with one insertion more for the D/J flank for an uneven number. 

 

The above part of the algorithm only considered potential residual sequencing errors within the 

D element and not within the V and J constant elements, which was done subsequently. This 

was achieved by considering whether extension of the earlier detected exact matches to the V 

and J templates into the determined insertions between V/D and D/J, respectively, would lead 

to longer matches when allowing for a single mismatch in either of the constant regions. In the 

case of a mismatch in the constant regions, the mismatch was allowed to occur at the nucleotide 

immediately close to the already detected V and J parts (in the rightward and leftward direction, 

respectively). When a second mismatch was detected within either the second or the third 

nucleotide flanking the already determined exact match, an extension was not accepted. In that 

case, the deletions on the right side of the original V template and on the left side of the J 

template were determined based on the missing nucleotides. However, if the two nucleotides 

(in second and third position away from the exact match) did match to the original template, 

the position immediately flanking the earlier detected exact match was considered as an error 

and in that case the sequence was discarded. In summary, the algorithm detected residual 

sequencing errors within the constant V, D and J elements, and it determined both the insertions 

between V/D and D/J and the deletions from the original V, D and J templates. Note that the 

algorithm detected only a limited number of spurious sequences, because most of those were 

already removed by the other steps applied to the cellular barcoding data. 

 

Probability Generation Model  
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We used the barcode sequence lists from the previous filtering step to infer the properties of the 

recombination process that produce these barcodes using the IGoR algorithm, similarly to 

previous work 3. To adapt IGoR to fit the DRAG system, the genomic templates for 

recombination were redefined as the V, J, and D genes in the DRAG construct, adding also the 

inverted form of the D segment. Then, IGoR was run using all unique barcode as inputs to infer 

the probabilities of each possible insertion (ins) and deletion (del) scenario.  

The inferred probability of recombination of a barcode 𝜎 is 

 

𝑃#$%(𝜎) = ∑ 𝑃*+,-./(𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜)89$%:;<=→? , (1) 

 

i.e. the sum of the probabilities 𝑃*+,-./(𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜)	of all recombination scenarios leading to 

barcode 𝜎. Scenario probabilities are in turn given by: 

 

𝑃*+,-./(𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜) = 𝑃(𝐷)𝑃(𝑑𝑒𝑙𝑉)𝑃(𝑑𝑒𝑙𝐷)𝑃(𝑑𝑒𝑙𝐽)𝑃(𝑖𝑛𝑠𝑉𝐷)𝑃(𝑖𝑛𝑠𝐷𝐽) 

where P(D) corresponds to the probability the usage of the D or the inverted D; P(delV), P (ins 

VD) and P (ins DJ) correspond to insertion between the V and D segments and D and J segments 

respectively; P(delV), P(delD) and P(delJ) correspond to the deletion in the V,D or J segment 

respectively.  

 

P(D) is calculated from the occurrence of the inverted and non-inverted form in the data, with 

P(D non inverted)=0.88 and P(D inverted)= 0.12. The probabilities for the insertion (P(ins)) 

depend both on the length of the segment (lenVD) and on its composition through a Markov 

Model: 

𝑃(𝑖𝑛𝑠𝑉𝐷) = 𝑃(𝑙𝑒𝑛𝑉𝐷)𝑃FG(𝜎H)I𝑃FG(𝜎<|𝜎<KH)
<LM

 

where the product runs over the non-templated inserted nucleotides. 𝑃(𝑖𝑛𝑠𝐷𝐽) is defined 

similarly. The inferred parameters are summarized in the Table S7-9. In the Markov model, the 

insertions are parameterized both by their length, and by the probability of insertion of each of 

the four bases, given what was the last insertion. 

 

Note that deletion numbers for the V and J segments include the possibility of short palindromic 

insertions, which are given by negative deletions. Negative deletion means that, instead of being 

deleted, the sequence gets up to 4 additional nucleotides that are reverse-complement to the last 

ones. Since the J segment is longer, it can have more deletions. The D segment can be deleted 
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from both sides, and these are correlated, so the model incorporates a joint deletions 

distribution, different for the reverse D. The inferred probabilities for P(del) are summarized in 

the Table S4-6.  

 

This inferred model was used to calculate a generation probability (Pgen) for every barcode using 

Eq. (1). The generation probability of each barcode determines how probable it is to find two 

cells with the same barcode, coming from different recombination events. Where indicated, we 

discarded barcodes above a certain threshold generation probability (Pgen) to eliminate barcodes 

that are likely to be independently generated in more than one cell.  

 

 

Barcode Analysis.  

All analyses were carried out using R software 5. After running the barcode filtering pipeline, 

the data was placed in a count matrix for each barcode in rows and samples in columns. All 

barcodes that had a read value below 0.003% of total reads were set to zero to clean residual 

errors. The reads per sample were then renormalized to 1 or to cell numbers obtained from 

sorting. This renormalized matrix was used for diversity analysis. The chao index was 

computed using a custom script on the renormalized read to cell numbers per duplicate for each 

sample, using the formula below:  

𝑐ℎ𝑎𝑜2 = 𝑁=Q8 +
1
2	×

𝑁HM

2𝑁M
 

 

where Nobs is the number of barcodes observed in both duplicates, N1 the number of barcodes 

present in one duplicate and N2 the number of barcodes shared between duplicates. As there are 

different ways to compute diversity from occurrence data, we compare the results for different 

indexes: the bias-corrected chao2 (chao2corr), the first order jackknife (jack1), and the 

bootstrap (boot) (Fig. S4B) using the vegan package 6. The formulas for computing theses 

indexes are below:  

𝑐ℎ𝑎𝑜2𝑐𝑜𝑟𝑟 = 𝑁=Q8 +
1
2 	×

𝑁H × (𝑁H − 1)
2(𝑁M + 1)

	 

𝑗𝑎𝑐𝑘1 = 𝑁=Q8 +
1
2	× 𝑁H	 

𝑏𝑜𝑜𝑡 = 𝑁=Q8 +	Z(1 − 𝑝<)M 
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where Nobs, N1 and N2 are defined as before and pi is the frequency of the barcodes merging 

both duplicates.   

The absolute number of HSC per blood sample was extrapolated using the chao2 index and the 

percentage of GFP+ cells in the sort sample (as all the bone marrow sample was sorted). We 

estimated that between 100-200µl of blood was collected at each time point. For the evolution 

of HSC diversity over time, Renyi indices were computed using a custom script on 

renormalized read to cell numbers to 1 per duplicate for each sample, using the formula below 
7: 

𝐷 = \Z𝑝<
]

8

<

^

H
HK]

	
]  

where q is the order of the diversity index, pi is the frequency of a given barcode in the sample. 

q=0 is the richness in the sample, the number of barcodes present, q=1 is the Shannon index, 

q=2 is the Simpson index.  For the Shannon index q=1, the limit of the qD formula gives: 

𝐷 = exp	 \Z𝑝< ln 𝑝<

8

<

^	
H  

 

Renyi indexes were then analyzed using a gamma generalized linear mixed model, as described 

below.  

For heatmap analyses (Fig. 3B, 4B, S4A), barcodes not present in both duplicates were 

removed, the technical duplicates were summed, renormalized to the arbitrary value of 105 for 

visualization, and transformed using the hyperbolic arcsine function. Where applicable, 

barcodes with a Pgen>10x were filtered out. Heatmaps were generated using the heatmap 

package gplots 8, using Euclidean distance and complete linkage.  

To classify barcodes into LSK, MP, and M categories (Fig. 3C), we used a previously described 

hand tailored classifier 9,10. In summary, barcodes were classified into categories based on their 

presence or absence in the given cell type (LSK, MP, or M). The contribution of the sum of all 

barcodes in each category was computed and is displayed in figure 3C.  

For the analysis of barcode sharing between duplicates, time points and mice, the Jaccard index 

was computed using the biomod2 11 and the ade4 12 packages, transformed into a fraction of 

barcode shared (1-jaccard2) and then plotted using the corrplot package 13.  

FACS data were analyzed using FlowJo software (Becton Dickinson).  

 

Gamma generalized linear mixed model for diversity over time 
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Since the Renyi entropy indices are positive and continuous variables, gamma generalized 

linear mixed models were fitted to the data. Let 𝑌<ef  be a random variable representing the 

richness measured on mouse i, month j, and subsample k. The conditional distribution 

𝑌<ef|𝑚<, 𝑠<e ∼ Gamma(𝜇<ef, 𝜙) was assumed, with 𝑚< ∼ 𝑁(0, 𝜎pM ) random mouse effects and 

𝑠<e ∼ 𝑁(0, 𝜎8M) random sample effects, and 𝜙 the dispersion parameter. These random effects 

were included to model the correlation between the observations taken on the same mouse and 

duplicates. The mean was modelled with an identity link, and a piecewise-linear predictor over 

time (months) was used, i.e. 

𝜇<ef = 𝑚< + 𝑠<e + 𝛽r + 𝛽H ∗ monthw + 𝛽M ∗ xmonthw − 𝜅z ∗ Ixmonthw > 𝜅z	(1), 

where 𝜅 is the break point estimated by maximising the profile log-likelihood of the model, and 

Ixmonthw > 𝜅z is a dummy variable assuming value 1 when monthw > 𝜅 and 0 otherwise. 

Maximum likelihood estimates were obtained using the Laplace approximation for the integrals 

in the log-likelihood function. The best fit parameter estimates are summarized in Table S10.  

Goodness-of-fit of the models were assessed using half-normal plots with simulation envelopes 
14. The models were fitted using package lme4 15 from the R software. 

 

Gamma generalized linear mixed model for cell output per barcode over time 

The cell output data consisted of continuous, strictly positive data, and therefore gamma 

generalized linear mixed models were used for this analysis, including random intercepts and 

slopes over time per mouse, and different dispersion per mouse. Let 𝑌<ef  be the response for the 

𝑖-th mouse, 𝑗-th tag and 𝑘-th time point. It was assumed that 

𝑌<ef|𝑚r<, 𝑚H<, 𝑡r<e~Gamma(𝜇<ef, 𝜙<), with 𝑚r<~𝑁(0, 𝜎prM ) and 𝑚H<~𝑁(0, 𝜎pHM ) the random 

intercepts and slopes per mouse, respectively, 𝑡r<e~𝑁(0, 𝜎~rM ) the random intercept for tag 𝑗 

within mouse 𝑖, and 𝜙< the mouse-specific dispersion parameter. These random effects were 

included to model the correlation between the observations taken on the same mouse and tag. 

The mean was modelled with a log-link, such that 

logx𝜇<efz = 𝛽r +𝑚r< + 𝑡r<e + (𝛽H +𝑚H<) ∗ monthf	(2), 

and the dispersion was also modelled using a log-link, and included different intercepts per 

mouse, i.e. 

log(𝜙<) = 𝛾<	(3) 

Maximum likelihood estimates were obtained using the Laplace approximation for the integrals 

in the log-likelihood function. Two statistical hypotheses were tested: (1) 𝐻r: 𝛽H = 0 versus the 

alternative 𝐻:: 𝛽H ≠ 0, which is equivalent to testing whether there was a trend over time, and 
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(2) 𝐻r: 𝜎~rM = 0 versus the alternative 𝐻:: 𝜎~rM > 0, which is equivalent to testing whether within 

a mouse at a given time point all barcodes are equivalent. Hypotheses were tested using 

likelihood-ratio tests for nested models. Goodness-of-fit of the models were assessed using half-

normal plots with simulation envelopes 14. The models were fitted using package glmmTMB 16 

for R software. 

 

Bone marrow single cell transcriptomics for the HSPC composition of Figure 2.  

Bone marrow cell preparation: At sacrifice, BM was harvested from femurs, tibias and ilia 

and enriched using anti-CD117 magnetic beads (Miltenyi). The c-kit+ fraction was stained with 

antibodies against CD117 (c-kit APC, clone 2B8, Biolegend) and Sca-1 (Pacific Blue, clone 

D7, eBioscience). Cell sorting was performed on a FACSAriaTM (BD Biosciences) using a 70 

µm nozzle at precision 0/16/0 and high efficiency. LSK (c-Kit+sca1+) cells were sorted into 

GFP+ and GFP- cells from the c-Kit-enriched bone marrow fraction. 10X Genomics V2 3’ 

Library preparation: The two sorted fractions (3,000 GFP+ and GFP- cells) were then processed 

using the V.2 10X genomics protocol. cDNA amplification was performed with 11-13 PCR 

cycles depending on the targeted cell recovery, as per the manufacturer’s recommendations. 

Sequencing was performed on a NovaSeq (illumina) on paired-end (PE28-8-91). Single-Cell 

RNA-seq analysis: Sequencing reads were processed using the default cell-ranger pre-

processing pipeline and were aligned to the mouse mm10 reference genome. Gene-expression 

count matrices for the 642 GFP+ cells and 2231 GFP- cells were loaded into R and analysed 

using Seurat v4.0. We performed QC by visual inspection of library sizes, numbers of genes 

expressed and mitochondrial content per cell. Cells with less than 500 genes or with a high 

percentage (> 10% of mitochondrial genes) were removed from downstream analyses. Cells  

with numbers of genes recovered were considered as doublets and filtered from the data. In this 

filter 1500 genes was used as an upper limit and this threshold was defined based on outlier 

points from plotting UMI counts and numbers of genes detected. After filtering, our count 

matrix contained 2,775 cells and 13,183 genes. Data was then normalised using scTransform 17 

for which the normalized values are Pearson residuals from regularized negative binomial 

regression and cellular sequencing depth is used as a covariate. In our data, we observe a batch 

effect between GFP+ and GFP- LSKs, likely arising because of the parallel processing of the 

two samples on the 10X machine as genes showed a linear increase in expression in the GFP+ 

fraction compare to the GFP- fraction but not the inverse (Fig. S3A). To correct for this batch 

effect, we modelled the batch effect using a negative binomial model, with model residuals 

representing the batch-corrected expression values. We then performed dimensionality 
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reduction on the 2,500 variably expressed genes using first principal component analysis 

followed by the non-linear dimensionality reduction technique UMAP 18 (Fig. S3B). We then 

performed unsupervised Louvain clustering of the data across a range of resolution parameters 

and chose the resolution value that led to the most stable clustering profiles 19 (Fig. S3C). This 

approach yielded 9 distinct clusters, which were manually annotated (LT-HSCs, MPP2-5) using 

existing markers and transcriptomic signatures 20,21 (Fig. 2B and S3D). Consistent with reports 

that HSPCs do not form discrete cell subsets 22–25 we observed that many clusters co-expressed 

signatures of the MPP1-5 subtypes (Figure 5C, S7A-B). In cases in which clusters could not be 

assigned to a single HSPC subset, we named the cluster according to the combination of the 

different HSC and MPP signatures that they expressed 26. To test for possible enrichment of 

GFP+ cells within a given cluster, Fisher’s exact test was used. Signature expression scores 

were calculated using the AddModuleScore() method of Seurat V4.  

 

Bone marrow single cell transcriptomics for Figure 5.  

Bone marrow cell preparation: At sacrifice, BM was harvested from femurs, tibias and ilia 

and enriched using anti-CD117 magnetic beads (Miltenyi). The c-kit+ fraction was stained with 

antibodies against CD117 (c-kit APC, clone 2B8, Biolegend) and Sca-1 (Pacific Blue, clone 

D7, eBioscience). Flow cytometry was performed on a FACSAriaTM (BD Biosciences) or sh800 

(Sony). DRAG barcoded LSK (c-Kit+ Sca1+ GFP+) cells were sorted using a 70 µm nozzle at 

precision 0/16/0 and high efficiency. 10X Genomics V3 3’ Library preparation: Samples were 

processed using the 10X genomics Chromium Single Cell 3′ v3 kit. Specifically, 1,000-16,000 

cells were loaded for each experiment for a targeted recovery of 500-10,000 cells. cDNA 

amplification was performed with 11-13 PCR cycles depending on the targeted cell recovery, 

as per the manufacturer’s recommendations. Sequencing was performed on a NovaSeq 

(illumina) on paired-end (PE28-8-91). Single-Cell RNA-seq analysis: Raw sequencing reads 

were processed using Cellranger and reads were mapped to the mouse mm10 reference genome. 

During filtering, Gm, Rik, and Rp genes were filtered from the dataset. Cells with less than 500 

genes per cell or with a high percentage (> 15% of mitochondrial genes) were removed from 

downstream analyses. Cells with a UMI count greater than 50,000 were considered as doublets 

and removed from the data. Following these filtering procedures, the average UMI count per 

cell was 11,829. The median number of genes detected per cell was 2,845, 2.9% mapped to 

mitochondrial genes. Cell cycle annotation using the cyclone method from the scran R package 

showed that 13,866 cells were in G1 phase, 2,230 cells were in G2M phase, and 682 cells were 

in S phase. Data normalization and integration were performed using the default Seurat v4 
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approach FindIntegrationAnchors() followed by IntegrateData(), and differentially expressed 

genes were determined using a logistic regression in Seurat on the non-integrated data using 

the FindMarkers() function. Pathway based analyses were performed using the enrichR package 
27,28. To create the aged HSPC signature we performed differential gene expression analysis 

between HSPCs from 6.5 month old and 19 month old mice. Genes upregulated in 19 month 

old mice were then aggregated into a signature using the AddModuleScore() method of Seurat. 

Annotation of the data was obtained by unsupervised clustering of the data followed by 

supervised annotation in which we mapped published signatures using the AddModuleScore() 

method of Seurat. The MolO LT-HSC signature was taken from 29, and the MPP2/3/4/5 

signatures were taken from 21 and from 26. Similarly to the analysis for Figure 2, in cases in 

which clusters could not be assigned to a single HSPC subset, we named the cluster according 

to the combination of different HSC and MPP signatures that they expressed. Pseudotime 

analysis was performed using the destiny R package. In this diffusion map approach, the 

algorithm creates a pairwise cell transition probability matrix. This probability is calculated by 

modelling cell state transitions as a random walk, in which cells can move within a local 

neighbourhood specified by the parameter σ. The greater the overlap between the gene 

expression neighbourhoods of two cells, the higher the transition probability. Label transfer 

was performed in Seurat using the FindTransferAnchors() and TransferData() methods. Briefly, 

this approach involves projecting the PCA structure of the reference dataset onto the query 

dataset. Within this shared PCA projection paired mutual nearest neighbours (anchors) are 

defined for each dataset. To perform label transfer, a weight matrix is defined that defines the 

association between query cells and anchor cells. This matrix is then multiplied by a binary 

classification matrix to compute a prediction score that a query cell belongs to a certain class 

of reference cells. In this binary classification matrix rows correspond to the different cell 

classes and columns correspond to the anchors. If the reference cell in the anchor pair belongs 

to a certain class the matrix entry is filled with a 1, otherwise 0.  

 

Flow cytometry analysis and statistical testing: 

Data analysis was performed using FlowJoTM v.10 (TreeStar). Data was then exported from 

FlowJo and imported in GraphPad Prism. Where indicated, a Mann-Whitney test was 

performed.  

 

Code and data availability: All data and code are available at 

https://github.com/TeamPerie/UrbanusCosgrove-et-al-DRAG-mouse.git 
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Supplementary Tables 

 

Table S1: DRAG barcode sequences observed in MEF clone panel. The DRAG barcodes were 

split to see which parts of the sequence match the original V, D and J segments (template 

sequence on the first line) and compute the number of insertions and deletions.  

 
 

Table S2: Stability of DRAG barcodes in MEF clones cultured up to 138 days. 7 MEF clones 

were cultured after being verified as being monoclonal and sequenced by either Sanger or 

Illumina NGS at the indicated time points. All clones showed the same sequence over time 

(indicated using a green tick).  

 
 

Table S3: Preamp PCR cycles 

cells/half-sample #preamp cycles 

300,000-600,000 6 

150,000-300,000 7 

75,000-150,000 8 

35,000-75,000 9 
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17,500-35,000 10 

9,250-17,500 11 

4,600-9,250 12 

2,300-4,600 13 

1,150-2,300 14 

575-1,150 15 

300-575 16 

150-300 17 

75-150 18 

36-75 19 

18-36 20 

9-18 21 

 

 

Table S4: Inferred probabilities of V and J segment deletions. 

Number of deletions P(delV) P(delJ) 

-4 0.00023 0.00373 

-3 0.00027 0.00675 

-2 0.00158 0.04580 

-1 0.00143 0.09663 

0 0.06288 0.14633 

1 0.04412 0.05708 

2 0.42011 0.08510 

3 0.11279 0.21527 

4 0.19543 0.09233 

5 0.12640 0.04405 

6 0.02430 0.03664 

7 0.01048 0.02933 

8 6.79E-20 0.03713 

9 0 0.0232225 

10 0 0.0259772 
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11 0 0.0245276 

12 0 0.00795459 

13 0 0.00121003 

14 0 0.00381861 

15 0 0.00561702 

16 0 0.00199825 

17 0 0.00021349 

18 0 0.00929067 

 

Table S5: Inferred joint probabilities for D segment deletions.  5’ deletions are depicted in rows, 

3’ deletions in columns 
P(delD) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

0 0.012 0.005 0.009 0.005 0.011 0.003 0.009 0.009 0.003 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 

1 0.031 0.011 0.020 0.020 0.030 0.009 0.012 0.020 0.005 0.001 0.002 0.003 0.004 0.001 0.002 0.005 0.016 

2 0.009 0.002 0.003 0.003 0.004 0.002 0.002 0.002 0.000 0.000 0.000 0.002 0.001 0.000 0.004 0.008 0.000 

3 0.032 0.015 0.019 0.019 0.031 0.009 0.017 0.024 0.007 0.002 0.002 0.002 0.002 0.000 0.002 0.000 0.000 

4 0.021 0.009 0.011 0.009 0.011 0.005 0.008 0.007 0.003 0.001 0.001 0.002 0.001 0.003 0.000 0.000 0.000 

5 0.016 0.003 0.007 0.005 0.006 0.001 0.002 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

6 0.019 0.004 0.007 0.006 0.007 0.004 0.005 0.003 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.000 

7 0.003 0.001 0.002 0.001 0.001 0.000 0.000 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

8 0.020 0.004 0.008 0.009 0.012 0.003 0.001 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

9 0.003 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

10 0.001 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

11 0.002 0.002 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

12 0.002 0.001 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

13 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

14 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

15 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

Table S6: Inferred probabilities for inverted D segment deletions. 5’ deletions are depicted in 

rows, 3’ deletion in columns 
P(delD) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

0 0.012 0.006 0.004 0.007 0.000 0.046 0.009 0.003 0.015 0.004 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

1 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.009 0.000 0.001 0.025 0.015 0.003 

2 0.020 0.009 0.015 0.013 0.012 0.128 0.026 0.017 0.034 0.010 0.002 0.007 0.001 0.011 0.009 0.008 0.000 

3 0.005 0.021 0.003 0.001 0.001 0.006 0.001 0.001 0.005 0.000 0.000 0.000 0.000 0.000 0.030 0.000 0.000 
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4 0.003 0.002 0.001 0.001 0.001 0.007 0.000 0.000 0.000 0.000 0.002 0.002 0.000 0.000 0.000 0.000 0.000 

5 0.000 0.014 0.011 0.009 0.005 0.021 0.003 0.000 0.004 0.002 0.039 0.000 0.000 0.000 0.000 0.000 0.000 

6 0.001 0.004 0.003 0.004 0.002 0.003 0.000 0.004 0.002 0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

7 0.006 0.002 0.004 0.003 0.003 0.012 0.001 0.004 0.012 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

8 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

9 0.000 0.000 0.000 0.000 0.001 0.000 0.008 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

10 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

11 0.000 0.000 0.001 0.004 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

13 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

14 0.002 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

15 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

 

Table S7: Inferred parameters of the Markov model for insertions between V and D segments, 

with the probabilities for inserting different bases n1 in rows, given the last inserted base n2 in 

columns, in the 5’ direction. 

PVD(n1|n2) A C G T 

A 0.20 0.10 0.24 0.26 

C 0.26 0.51 0.16 0.39 

G 0.41 0.13 0.49 0.16 

T 0.131 0.25 0.10 0.18 

 

Table S8: Inferred parameters of the Markov model for insertions between the D and J 

segments, with the probabilities for inserting different bases n1 in rows, given the last inserted 

base n2 in columns, in the 3’ direction. 

PDJ(n1|n2) A C G T 

A 0.26 0.18 0.24 0.09 

C 0.17 0.46 0.14 0.41 

G 0.39 0.16 0.53 0.29 

T 0.17 0.20 0.09 0.20 

 

Table S9: Inferred probabilities for insertions 

number of insertions P(insVD) P(insDJ) 
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0 0.77 0.38 

1 0.05 0.09 

2 0.05 0.14 

3 0.04 0.16 

4 0.04 0.10 

5 0.02 0.05 

6 0.02 0.04 

7 0.01 0.02 

8 0.01 0.01 

9 1E-03 0.01 

10 3E-03 0.01 

11 1.03E-03 1.80 E-03 

12 3.87E-04 2.72 E-03 

13 2.82E-04 3.94 E-04 

14 0 1.03 E-03 

15 5.49E-05 0 

16 0 0 

17 4.76E-05 0 

18 2.46E-26 2.24E-04 

19 0 1.27E-10 

 

Table S10: Parameter estimates from equation (1) of the gamma generalized linear mixed model 

for barcode diversity over time for different Renyi indexes.  

Renyi index 𝜅̂ 𝛽r� 𝛽H� 𝛽M� 

richness 7.02 63.27 -7.55 10.67 

shannon 7.02 53.04 -6.32 8.77 

simpson 7.02 45.79 -5.44 7.33 

hill3 7.01 40.54 -4.8 6.32 

hill4 7.01 36.85 -4.33 5.63 

hill5 7.02 34.24 -4.00 5.17 

hill6 7.02 32.35 -3.76 4.84 
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Table S11: List of i7 indexes (attached) 

Table S12: Comparisons between in situ barcoding methods (attached) 

Table S13: Differentially expressed genes across clusters (Figure 5) (attached) 

Table S14: Differentially expressed genes across HSPCs taken from mice of different ages 

(attached) 

Table S15: Pathway enrichment analysis comparing HSPCs taken from mice of different ages 

(attached) 
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Supplementary figures: 

 

 

 

 

 

 

 
 
 
Figure S1: A. DRAG induction is neutral with respect to cell differentiation. Data depict the 
percentage of B cells (CD19+), T cells (CD3+) and myeloid cells (CD11b+) within either the GFP+ 
(green) or GFP- (black) cell population in blood of tamoxifen-induced mice, 9 months after induction. 
The line represents the median and individual points the 4 mice analyzed. B. Sample processing pipeline 
for DRAG barcode amplification and deep sequencing. 
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Figure S2: Quality control data for DRAG barcode recombination A. Left, middle, bar graphs 
depicting the number of nucleotides inserted and deleted between the V, D, and J segments. All summary 
statistics in this graph are derived from an experiment using 4 mice. B. Distribution of the generation 
probability of barcodes (Pgen) of barcodes observed in an experiment using 4 mice. Pgen was calculated 
using the model described in the methods section. C. Frequency of reads of barcodes as a function of 
their estimated Pgen. D. Fraction of total barcodes discarded per mouse for different Pgen threshold 
values (Pgen < 10-x). For example, when using Pgen<10-4, on average 39+/-3% of barcodes are 
discarded. E. Fraction of barcodes that are present in more than one mouse for different values of the 
Pgen threshold (Pgen < 10-x).  For example, when using Pgen<10-4, 92% of the retained barcodes were 
unique to an individual mouse.  
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Figure S3: Supplementary Data for scRNAseq analysis in Figure 2. A. Comparison of the mean log 
expression of genes between GFP+ and GFP- LSK cells prior to batch correction. B. Unsupervised 
Louvain clustering analysis of the LSK compartment using the Seurat package plotted using a UMAP 
representation. C. Cluster stability analysis for scRNAseq profiling of HSPCs, showing the relationship 
between clusters at different resolution parameters used in Seurat. The size of each node represents the 
number of cells in each cluster and colors represent different values of the resolution parameter in 
Seurats’ implementation of the Louvain clustering algorithm. D. Flow cytometry quantification of 
proportion of GFP+ and GFP- HSPC subsets of 6 month old mice. Each point represents 1 mouse and 
n = 4. No statistically significant differences between GFP- and GFP+ representation amongst the HSPC 
subsets were observed. Statistical significance was tested using a paired Wilcoxon-Test. Full gating 
strategy is provided in figure S12A. E. Overlay of Cd48 and Ly6a expression onto the UMAP 
representation of the data. 
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Figure S4: Supporting analyses for Figure 3. A. Cell sorting strategy used to obtain bone marrow 
myeloid cells (c-Kit enriched fraction) and blood myeloid cells. In addition, a representative plot of GFP 
expression in the sorted cell population is depicted. B. Cell sorting strategy for bone marrow myeloid 
progenitors (MP) and HSPC (LSK) from the c-Kit enriched fractions of whole bone marrow. C. 
Heatmap representation of barcode output in bone marrow HSPC, MP, and myeloid cells, as defined in 
Fig3B, at month 15 post-induction. Data are depicted for different values of the threshold for barcode 
generation probability Pgen (retaining 227, 164, 97, or 42 barcodes for analysis for the Pgen values 
depicted from left to right).  Pooled data of 4 mice, renormalized, arcsine transformed data clustered by 
complete linkage using Euclidean distance are depicted. D. Chao2 estimate of the diversity of barcodes 
in bone marrow HSPC, MP, and myeloid cells in bone marrow and blood 15 months post-induction. 
mean and SD over 4 mice. E. Comparison of different diversity estimators based on abundance data. 
The estimators used are the bias-corrected chao2 (chao2corr), the first order jackknife (jack1), the 
bootstrap (boot). F. Probability of DRAG barcode generation as a function of read abundance, color 
coded by the different classes of output as in Figure 3C and 3D. G. The relative cell output represents 
the fraction of reads per barcode of the total reads found in myeloid cells. This relative cell output is 
presented per barcode category as defined in Figure 3C and 3D. The mean and SD over barcodes 
obtained from 4 mice is displayed. The colors represent the barcode categories as in Figure 3C and 3D.  
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Figure S5: Analysis of GFP expression levels upon DRAG recombination in different cell 
compartments. (A) DRAG induced GFP expression within lymphoid and myeloid lineages. Only within 
the myeloid lineage a separate GFPmid population is observed. (B) surface marker expression patterns 
for GFPmid and GFPhigh myeloid cell populations. 
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Figure S6: Supporting analyses for Figure 3. A. Fraction of barcodes in myeloid cells shared between 

mice (indicative of frequently occurring barcodes), between duplicates (indicative of sampling 

efficiency at a given time point) and between time points. Pooled data of four mice for the experimental 

set up shown in figure 3A. B. Half-normal plot of the conditional deviance residuals for the generalized 

linear mixed model (GLMM) used in Figure 3G including a simulated envelope. The simulated envelope 

(solid lines) is obtained by simulating 99 response variables assuming the fitted model is the true model, 

refitting the same GLMM to the simulated samples, then obtaining and sorting the conditional deviance 

residuals in absolute value, and calculating the 2.5% and 97.5% percentiles for each order statistic, while 

the dashed line represents the median. The envelope is such that for a well-fitted model, most points are 

expected to fall within the envelope. In this case, all 72 points lie within the simulated envelope. C. Four 

different diversity estimates (Richness, Shannon index, Hill 3 and 4 number) of the barcodes in the 

myeloid cells in blood between 4 months and 12 months per mouse. Each sample was measured in 

duplicate. The black line is the best fitted value of the gamma generalized linear mixed model with a 

break point. The grey ribbon represents the 95% CI for the true means. D. For each D and J 

recombination, the number of associated V regions was computed across all barcodes. The % of total 

barcodes (recombination) that had one, two or more V regions associated with one DJ recombination is 
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plotted for the indicated times after barcode induction. The color represents the number of associated V 

regions and each of the four graph displays the result from one of four mice.  

 

 

 

 
 
Figure S7: Changes in the composition of the bone marrow myeloid compartment during ageing. 

A. Gating strategy to identify neutrophils, eosinophils and monocytes-macrophages. B. Percentage of 

the indicated cell types in the bone marrow myeloid population of young and old mice. N = 4 mice per 

group, each point represents 1 mouse and statistical comparisons were made using a Mann-Whitney 

test. Young mice were 6.5 months old and old mice were 19 months old at the time of sample processing. 

Barcodes were induced at 10-20 weeks after birth.  

 

 

 

 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 9, 2022. ; https://doi.org/10.1101/2022.12.06.519273doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.06.519273
http://creativecommons.org/licenses/by-nc/4.0/


 32 

 
 
Figure S8: Supporting analyses for scRNAseq profiling of aged HSPCs (A) Cluster stability analysis. 
Each row represents a different resolution parameter of the Seurat default clustering algorithm. Each 
node represents a cluster and arrows represent the relationship between clusters across different 
resolution parameters. The size of each node is scaled to the number of cells in the respective cluster. 
(B) Expression of HSC and MPP signatures from Sommerkamp et al (2021) amongst different clusters. 
Signature expression for each cell was calculated by taking the mean expression across all genes (after 
background correction)  
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Figure S9: Supporting analyses for scRNAseq profiling of aged HSPCs (A) Top 5 differentially 
expressed genes for each cluster. Differential gene expression analysis was performed using a logistic 
regression test as implemented in the Seurat R package and Bonferroni correction was applied to account 
for multiple testing. (B) Label transfer for supervised annotation of cell state. scRNAseq atlas of 
hematopoiesis (left – reference dataset) comprises 44,802 c-Kit+ and c-Kit+ Sca1+ hematopoietic 
progenitors30. Cell clustering and supervised assignment of cluster identity on this reference atlas were 
taken from 31. scRNAseq data from our study (query dataset) was then mapped onto this dataset using 
Seurat’s FindTransferAnchors and TransferData methods. (C) Barplot showing the relative proportion 
of cell-state definitions obtained by label transfer mapping. (D) Cells from each individual mouse 
overlaid onto the UMAP embedding of the integrated data. (E) Cells from different cell cycle stages 
overlaid onto the UMAP embedding of the integrated data. Cell cycle stage was annotated using the 
classifier-based approach from 32 implemented as the cyclone method in the scran R package. 
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Figure S10: Pathways upregulated in HSPCs from aged mice across each cluster. Pathways 

enriched in HSPC clusters from mice aged 19 months compared to equivalent HSPC clusters 

from mice aged 6.5 months. Some clusters did not contain cells from 6.5 month old mice and 

were hence excluded from this analysis. Pathway analysis was performed using the enrichR R 

package using a variation of Fisher’s exact test, which also considers the size of each gene set 

when assessing its statistical significance.  
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Figure S11: DRAG barcoding in the mammary gland and the brain. (A) Representative GFP+ cell population 
in mammary epithelial cells of an uninduced mouse (left) and induced mouse (right) 1 month post-induction. (B) 
Representative flow cytometry dot plots of luminal and basal cells gated within the mammary epithelial GFP positive 
(left) and GFP negative (right) populations. (C) Maximum projection of whole mount mammary gland from 
uninduced and induced DRAG mice 1 month post-induction, showing DAPI and GFP signal. (D) Exemplary images 
of GFP+ signal from barcoded cells in brain tissue sections from uninduced and induced DRAG mice and (E) 
Quantification of GFP fluorescence intensities in uninduced vs induced DRAG mice from different sections of the 
brain. Each point represents a different tissue section from 2 induced and 2 uninduced mice (3 tissue sections per 
mouse). Statistical comparisons were made using a Mann-Whitney test. Boxplots represent the median and IQR, 
whiskers extend to the min and max values.  
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Figure S12. Flow cytometry analysis of HSPC and MP subsets in young and old mice. A. Gating 
strategy to identify the different HSPC and MP subsets. B. Flow cytometric quantification of the 
proportion of GFP+ and GFP- HSPC subsets in mice aged 19 months. Each point represents 1 mouse 
and n = 4. No statistically significant differences between GFP- and GFP+ representation amongst the 
HSPC subsets were observed. Statistical significance was tested using a paired Wilcoxon-Test. C. 
Quantification of HSPCs and MP subset frequencies between young (6.5 months) and old (19 months) 
mice. Each point represents 1 mouse and n = 4 mice. The Y-axis represents the percentage of each 
celltype amongst the entire cKit+ Sca1+ LSK compartment or the cKit+ Sca1- myeloid progenitor 
compartment. Statistical comparisons were made using a Mann-Whitney test. D. Quantification of 
HSPCs and MP subset cell counts between young (6.5 months) and old (19 months) mice. Each point 
represents 1 mouse and n = 4 mice. Statistical comparisons were made using a Mann-Whitney test. 
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