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Abstract
In recent years, a great emphasis has been put on engineering the acoustic signature of vehicles that repre-
sents the overall comfort level for passengers. Due to the inherent uncertain behavior of production cars,
probabilistic metamodels can be useful to estimate the NVH dispersion and assess different NVH risks in
the early-design stage. These metamodels mimic physical behaviors and shall aid as a design space explo-
ration tool. This work proposes a global NVH metamodelling technique for broadband noises exploiting the
Bayesian framework that considers the prior knowledge about complex physical mechanisms. Generalized
additive models (GAMs) with polynomials and Gaussian basis functions are used to model the sound pres-
sure level (SPL). Moreover, parametric bootstrap algorithm based on data-generating mechanism is used to
estimate the dispersion in unknown parameters. Probabilistic modelling is carried out using an open-source
library (PyMC3) and the developed models are validated using cross-validation technique.

1 Introduction

Noise, vibration and harshness (NVH) characteristics of a vehicle is an important criterion for validation dur-
ing the development phase as it significantly affects the customer’s quality perception and the overall image
of the vehicle. For automotive OEMs, a significant challenge is to continuously develop new methods for
estimating the performance indicators and carry out large number of testing campaigns which pushes them
towards leveraging simulation-driven design processes. During the vehicle development phase, the vibration
response and acoustic levels can be determined using physics-based numerical simulations considering the
complex full-vehicle structural-acoustic computational models (refined 3D finite element models), which
are usually time consuming. The highly uncertain behavior that arises from manufacturing tolerances, nat-
ural variability in material properties and conditions employed during the physical testing procedures [1],
leads to a challenging level of uncertainty from a modeling perspective. In such cases, methods based on
time-consuming physics based simulations are not relevant as no precise (unique) design nor the detailed
information about the vehicle and the powertrain is available. As a result, a comprehensive framework
for vehicle NVH assessment with domain expertise and experimental databases is needed along with fast
computing models. Hence, the early-stage design aspects raise the following questions: First, how much
information should be considered available to the designer in order to derive useful conclusions? Second,
how can the available measurement databases be exploited quantitatively to provide the best relevant prior
knowledge together with a measure of uncertainty in the outputs?

In light of these challenges, so called “metamodels” or “surrogate” models can be used to replace the com-



putationally intensive simulation models or measurement data (retrieved through physical testing), using
analytical relations between the design variables and system responses. Metamodels make it possible to
quickly explore the design alternatives through parameterized calculations when the general relative perfor-
mance of design alternatives is more important than a precise estimate. Conceptualized in 1974 by Blanning
and popularized by Kleijnen as a “model of a model” [2], metamodels have been used as “cheap” yet robust
approximations to get better insight into the functional relationships. Metamodelling techniques have been
applied to many engineering disciplines such as crashworthiness, engine modelling, structural reliability,
NVH and so on [3]. In the context of automotive NVH, metamodels based on design of experiments were
employed to achieve minimal piston noise [4], response surface method was used to minimize the sound
pressure level inside the cabin [5], radial basis functions was used to reduce the vehicle mass with vibration
constraints [6], and Park et al [7] reduced the structure-borne noise using Kriging surrogate models. Kuznar
et al. [8] proposed a novel approach to learning regression models that are consistent with domain-expert
knowledge in the form of quantitative constraints for aerodynamic wind-noise. A detailed review of different
metamodelling techniques can be found in [9].

In order to quantify uncertainties, deterministic metamodels are not sufficient and instead probabilistic meta-
models are used where the output response is not just a point estimate but a probability distribution. This
provides flexibility to evaluate design alternatives with a given level of knowledge and metamodel complex-
ity. Monte Carlo (MC) simulation techniques have been primarily used by researchers for the probabilistic
quantification of uncertainties. In the field of computational mechanics, several contributions have been
made by researchers, which are detailed in [10]. More precisely, in the automotive industry, Durand et
al. built a nonparametric model to capture the variability in the booming noise prediction through random
matrices [1], Barillon et al. proposed a methodology to quantify the variability in booming noise and body-
in-white [11], and recently, Brogna et al. [12] used Bayesian approaches with Gibbs sampling to model the
global vibro-acoustic behaviour. In this regard, Bayesian approach towards metamodelling suits well as it
allows to include prior knowledge (based on domain expertise) about the parameters of the system under
consideration.

In this work, a global metamodelling technique is presented, which is based primarily on the parameters that
are selected at early stages of the design process. Section 2 describes the proposed Bayesian metamodelling
workflow with the relevant theoretical foundations. The application of developed methods to assess interior
cabin noise in vehicles is described in Section 3. Section 4 describes the model assessment with convergence
statistics and the conclusions are presented in Section 5.

2 Stochastic metamodelling for uncertainty quantification

2.1 Proposed workflow

Here, a general workflow for stochastic metamodelling is proposed taking into account the predominant
physical laws. Figure 1 describes the different steps involved in the workflow. Operating point (OP) condi-
tions are typically the client usage profiles or driving conditions that are collected and represented in the form
of a distribution function. These OP conditions usually consist of vehicle speed and the wheel torque which
marks the starting point of the metamodelling toolchain. Then, the laws governing the physical process is
identified using “first-principles” (white-box) and are combined with the low-fidelity data-driven regression
fit representing the black-box part of the model. This forms an additive functional (grey-box) modelled using
Generalized additive models (GAMs) [13] of two (or multiple) predictor variables. The model is evaluated
using K-fold cross-validation. To quantify the uncertainties, selection parameters are used to refine the data
pertaining to a specific vehicle type. This allows us to consider different dataset for the same model (for
instance, the data used for M1 will be different from the data used for M2) on the basis of different se-
lection parameters and the Bayesian learning method is applied on one such sub-dataset. Bayesian part of
metamodelling is described in Section 2.4.
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Figure 1: Flowchart of the proposed metamodelling framework

2.2 Generalized Additive Models

In this research work, Generalized Additive Models (GAMs) [13] are exploited for modelling the deter-
ministic surrogates for aerodynamic noise with respect to multiple parameters. In this paper, a lower-case
character denotes a scalar variable, a lower-case bold character represents a vector, and a matrix is expressed
as an upper-case bold character.

Generalized Linear Model (GLM) relaxes the assumptions of a classical linear model by considering the
monotone transformation of the mean response to be a linear function of the predictors and that the condi-
tional distribution of the response belongs to a one-parameter exponential family of densities rather than
just being Gaussian [14]. GAM is an extension to GLM with possibly nonlinear predictors where the
smooth functions of predictors are considered in an additive fashion. Let us assume that the observations
(yi, x1i, x2i, .., xnpi), i = 1, 2, .., N are given, where yi is the response variable from the vector of observed
responses, y ∈ RN , N being the total number of observed samples and (x1, x2, .., xnp) represent different
predictor variables from their respective vector quantities (x1,x2, ..,xnp) ∈ Rnp×N with np being the total
number of predictor variables. The general form of the one-parameter exponential family of densities is
given by p(yi|x1i, x2i, .., xnpi) = exp

(yiθi−b(θi)
γ + c(yi, γi)

)
, where b(·), c(·), θi and γ determine the respec-

tive distributions. The exponential family includes many distributions for practical modelling, such as the
Gaussian, Poisson, binomial, and gamma.

The additive problem can be formulated for a particular observed point as

yi = µi + ηi, (1)

where ηi represents the fitting error and the model error, which is supposed to followN (0, σ2). Considering
α to be the intercept (or bias) term, the conditional expectation of yi, denoted as µi depends on the predictor
variables and is given by,

E[yi] = µi = α+ f1(x1i) + f2(x2i) + f3(x3i, x4i) + ... (2)

where fj denotes a series of smooth functions of the predictor variables (x1i, x2i, .., xnp). Each of these



functions can be approximated with finite basis expansions such as:

f1(x1) =

m∑
j=1

β1jφ1j(x1); f2(x2) =

n∑
k=1

β2kφ2k(x2) (3)

where φ(x) are the basis expansion functions, β the unknown parameter values, m and n the total number
of bases in each function.

Re-writing (1) using vector notations leads to:

y = Xθ + η (4)

where X = (1, x1, x2) and θT = (α,β1,β2)

Most commonly, these unknown functions f1 and f2 are fitted using penalized splines [14]. For this study,
the focus is on considering the white-box knowledge available in the form of analytical equations. The
function f1 models these known analytical relations. Therefore, two different deterministic formulations for
f2 are considered depending on the choice of basis functions. Also, it is important to build models where the
parameters have physical sense and are interpretable which in turn allows more control and flexibility over
the output response. Therefore, parametric surrogate modelling approach is investigated, where we have
a fixed number of parameters that do not grow with the size of the input data set. Such parametric models
make stronger assumptions on the nature of data distribution and are generally faster than the non-parametric
models which are more flexible but often computationally intractable [15].

• Deterministic model 1: with polynomial basis functions
The first model proposed is with polynomial bases due to their simple structure that comes at a low
computational cost where over-fitting issues can also be dealt with depending upon the particular order
[16]. This can be represented as

f2(x2) =
n∑
k=0

β2kx
k
2 (5)

where β2k is the k-th polynomial coefficient and n represents its order. Although simple enough, one
limitation with polynomials is that they are global functions of the input variable (as they are non-zero
over an infinite region) which limits their use when the input space changes.

• Deterministic model 2: with Gaussian basis functions

φ2k(x2) = exp
(
− (x2 − bk)2

c2k

)
(6)

f2(x2) =
n∑
k=0

ak exp
(
− (x2 − bk)2

c2k

)
(7)

where ak is the amplitude, bk governs their location in the input space and ck controls their spatial
width. Gaussian basis function is proposed as it allows better control with its location, width and scale
parameter.

2.3 Deterministic model validation

The accuracy of the trained or identified deterministic model when it encounters the unseen data can be
validated using K-fold cross-validation (CV). The idea is to divide the input set into K-subsets randomly.
Then the metamodel is trained K-times and each time one of the subsets is left as a test set. On this test set,
the training error measures are evaluated, for instance, the coefficient of determination, which is given by

R2 = 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

, (8)



where yi is the observed i-th datapoint, ŷ is the predicted value and ȳ is the average of the observed response.
If the R2-value for the k-th fitted subset is given by R2

k, then the expected generalization error can be
computed as follows [17]:

R2
CV =

1

K

K∑
k=1

R2
k. (9)

To find the best value of K, the ‘bias-variance’ trade-off needs to be considered. The value of K depends on
the size of the dataset [17] and should be chosen such that the samples in the training set and the test set are
representative of the larger dataset. A very common choice is to use K = 5 or K = 10 as they show lower
variance [18, 19, 17]. Another approach is to consider K = N , where N is the size of the dataset. With this
approach, each observed data-point is given an opportunity to be in the hold-out test dataset. This approach,
also referred to as leave-one-out cross-validation, as one could imagine, is computationally expensive if the
analysis is done on a huge dataset where a single model evaluation takes hours. Hence, K-fold CV (with
K = 5 and K = 10) is the preferred method of deterministic model assessment in this study.

2.4 Bayesian framework for uncertainty quantification (UQ)

To quantify and better control the non-determinism in the responses, in the context of finite element analyses,
a distinction has been made in the literature between possibilistic (non-probabilistic) approaches and prob-
abilistic approaches [20]. Probabilistic metamodels and particularly, Bayesian approaches have garnered
a lot of attention due to the flexibility they provide in choosing the plausible design alternatives based on
prior-knowledge which imposes an inherent regularization. For instance, Bayesian framework was proposed
for force reconstruction [21], inverse acoustic problems [22] and for design-driven validation approach [23].

In the Bayesian formulation, considering the GAM equation (4) and let p(θ) denote the “prior” probability
density function (pdf) of the parameters θ, and let p(θ|y) denote the “full posterior distribution” of the
parameters conditional on the observed (measured) data y. Bayes’ theorem provides an analytical relation
to compute this posterior distribution [24, 25]:

p(θ|y) =
f(y|θ)p(θ)

p(y)
. (10)

In the equation above,

• f(y|θ) = L(θ|y) is called the “likelihood” of observing the data,

• the marginal distribution, p(y) =
∫
θ f(y|θ)p(θ)dθ is the “evidence” of the observed data.

The aim here is to compute p(θ|y), but as the evidence scales with the parameter space, the closed form
of this integral is not always available which leads to its intractability. Nevertheless, only the shape of the
posterior distribution is needed for sampling the parameters (up to a proportionality constant) [24]. The
shape of the un-normalized posterior density is given by:

p(θ|y) ∝ f(y|θ)p(θ). (11)

Stochastic simulation methods (Monte Carlo methods) are used to sample from this unscaled distribution
[24] which approximates the true distribution provided that the sample size is large enough.

However, such algorithms remain inefficient for high-dimensional parameter space [24]. Therefore, another
class of methods called Markov Chain Monte Carlo (MCMC) methods [13] which is based on sequentially
simulating draws from a Markov chain1 are used in this study. The idea is to let the Markov chain run
for long enough until it converges to a limiting (or stationary) distribution. Samples drawn after this initial
run-in (also called “burn-in”) time are the draws from the approximated target posterior distribution [24].
Metropolis-Hastings sampler and Gibbs sampler are typical examples of such methods but according to [26],

1A Markov chain is defined as a stochastic process where the conditional probabilities of the process at time t given the states at
all the previous times (t− 1, t− 2, ..., 0) only depends on the single previous state at time (t− 1) [24].



these samplers can become extremely time-consuming as they explore the parameter space via inefficient
random walks.

In this study, No-U-Turn-Sampler (NUTS) is preferred, which is based on Hamiltonian Monte Carlo (HMC)
(also called as Hybrid MC) due to its ability to adapt the tunable parameters of HMC i.e. step-size and the
number of steps [27].

2.5 Parametric Bootstrapping

Bootstrapping is a data-based simulation method for statistical inference which was introduced in 1979 [28].
In principle, there are two types of Bootstrapping methods mentioned in the literature: parametric (based on
bootstrapping the input-output pairs) and non-parametric which is based on bootstrapping the residuals [29].
In this work, parametric approach is used as the model has limited parameters that need to be estimated.
Such method is useful when the estimator is a complex function of the parameters [15].

Let θ̂ denote the statistical estimate of the parameter θ. Here, the bootstrap approach is used to assign
measures of accuracy to such statistical estimates. The bootstrap algorithm works by randomly sampling n
values with replacement from the observed data (y), also called as bootstrapped samples (y∗BS(1), ..,y

∗
BS(n)),

followed by the evaluation of the corresponding bootstrap replications θ̂∗BS(i),∀i = 1, 2, .., n. The sample
variances computed from these bootstrapped samples are the estimators of the variances of the parame-
ters. The point estimates are obtained using the nonlinear least-squares approach, where the expected value
E[y|X, ε] is given by the deterministic models shown in Section 3.2. Parametric bootstrap algorithm imple-
mented in this work is as follows:

1. get a point estimate θ̂ from the observed data {y,X, ε} (y here can be the selected data points after
considering the categorical variables, defined by the nuisance parameter ε)

2. repeat for i = 1, ..., B

(a) simulate variables X∗
(i), ε

∗
(i) and η(i)

(b) simulate data ysim
(i) = f(X∗

(i), ε
∗
(i); θ̂) + η(i)

(c) estimate θ∗(i) from {ysim
(i) ,X

∗
(i), ε

∗
(i)}

3. get an approximation of p(θ|y,X, ε) from the histogram of {θ∗(i); i = 1, ..., B}

3 Application context: Interior cabin noise level assessments

3.1 Physical mechanisms

The overall noise experienced inside the passenger cabin is a relative contribution of different sources com-
ing from the engine, wheels, powertrain, and wind. At different vehicle speeds, some of these are more
dominating than the others. Especially in electric vehicles (EVs), due to the absence of engine’s masking
noise, the tonal whine from electric motors is one of the most dominant sources of noise. Regardless of the
type of propulsion, two background noise sources, which lie in the broadband frequency regime contributing
towards the masking effect, are generally present during the real driving conditions:

1. Vehicle aerodynamic noise: At higher speeds around 100 kmph, aerodynamic noise remains a domi-
nant source of noise and discomfort [30]. Three types of mechanisms associated to the aerodynamic
noise can be found in the literature [31, 30]. As shown in Figure 2a, it is characterized by different
types of sources that depend on the vehicle speed (or the flow speed) and the experimental conditions
(tightly sealed vehicle, cross-wind, etc.). In this study, the flow speed considered is 140 kmph and
200 kmph, which is same as the conditions used during wind-tunnel testing. For such high speeds,



Mach number, M > 0.1 and hence the dominant source of noise are the dipole types of sources where
the sound intensity, Idipole ∝ v6, where v is the flow speed [30]. This prior-knowledge based on first
principle will be exploited to develop deterministic surrogate for aerodynamic noise. This paper is
largely based on the analysis of this type of noise.

Quadrupole sources
(unsteady shear stresses)

Dipole sources
(solid wall interactions)

Monopole sources 
(unsteady volumetric flow)

Door mirror

A-pillar

Windscreen

(a) Aerodynamic noise generation mechanism [30]

Air pumping noise

Tire body vibrating

Air vibrating

Gap transmission

Air-borne

Interior noise

Structure-borne

Body panels
 vibrating

Road excitation

Axle vibrating

Suspension vibrating

(b) Tire-road interaction phenomenon [32]

Figure 2: Sources of vehicle masking noise due to wind (a) and due to tire-road interaction shown in (b)

2. Interior tire-road noise: Physics behind the interior noise generated due to tire-road interaction is rel-
atively more complex as it involves numerous design parameters. The structure-borne contribution
(dominant at low frequencies ≈ 100 Hz and low speeds) comes from the induced vibrations through
sources such as tread impact and rolling deflections. Air-borne noise (dominant at higher frequen-
cies ≈ 1 kHz and higher speeds) is directly propagated through the medium due to air-pumping,
air-turbulence and Helmholtz resonances [32]. Figure 2b shows various tire-road noise contributing
factors.

3.2 Model formulations

The rest of the paper considers the following convention. L is the sound pressure level (SPL) as a complex
function of frequency ω, Ldata is the SPL record available from database, Lpred is the predicted SPL, X the
vector of predictor variables, such as operating conditions, θ is the vector of parameters of a given sub-model,
and η denotes the fitting error, including both model errors and experimental noise.

Referring (4) and choosing the speed v and the frequency ω to be the predictor variables,

Ldata = Laero + η (12)
= Xθ + η

where X = (1,v,ω) and θT = (α,β1,β2). Therefore, two deterministic nonlinear mappings L[1]
aero and

L
[2]
aero are formulated for aerodynamic wind noise considering m = 4 and n = 6 (the superscript in [ ] refers

to two different models). As per [33], for dipole types of sources, r = 6 is considered in the following
equations,

L
[1]
aero(v,ω) = 10 log10

(
bvr

Cr−3
0 10−12

)
+

m∑
i=0

aiω
i; (13)

L
[2]
aero(v,ω) = 10 log10

(
bvr

Cr−3
0 10−12

)
+

n∑
k=0

ak exp
(
− (ω − bk)2

c2k

)
. (14)

Similarly, for tire-road noise, one physically informed model is:

Ltire(v,ω) = ωr1
m∑
i=0

ai v
i + vr2

n∑
k=0

ak exp
(
− (ω − bk)2

c2k

)
. (15)
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Figure 3: Data fitting over the frequency range depending on the model choice. Note that the frequency is
considered in its logarithmic form so as to ease the fitting process and be more interpretable.

3.3 K-fold Cross Validation

For the analysis, two different vehicle body-types namely, Sedan and Hatchback are considered. The values
of K, which is the number of parts the dataset is divided into, are chosen to be 5 and 10, with a total of
1000 runs carried out to analyze the model assessment process. Histograms of the K-fold CV analysis for
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(b) K=10, vehicle body-type: Sedan

Figure 4: Histogram for K-fold CV for vehicle body-type Sedan
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(a) K=5, vehicle body-type: Hatchback
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(b) K=10, vehicle body-type: Hatchback

Figure 5: Histogram for K-fold CV for vehicle body-type Hatchback

Table 1: Comparison of mean and variance of R2
CV -values for two different vehicle body types

Sedan Hatchback

K = 5 K = 10 K = 5 K = 10
µ 0.89 0.83 0.91 0.84
σ2 6.39e-04 0.0012 6.08e-04 0.0017

two different vehicle body types with polynomial basis functions can be seen in Figure 5 and summary of its



mean and variance is shown in Table 1. It is observed that if the training dataset is divided into 5 parts, then
the CV accuracy is ≈ 90% with a very small variance.

3.4 Data selection for UQ
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Figure 6: Measurement data showing inherent variability due to different types of vehicles and operating
conditions

An important aspect of stochastic modelling is to be able to capture the inherent variability in the data.
For instance, large dispersion in the measured database can be seen in Figure 6a which corresponds to a
large number of vehicles tested, depending on operating conditions. This being stated, real engineering
practice is to refine this database and select the data corresponding to the specific category of vehicle under
consideration. Therefore, categorical variables are defined, that are used as selection parameters in the
database. For instance, for aerodynamic wind-noise, the database is filtered as per one particular: 1) body
design, 2) segment, 3) energy, 4) target market, roof-type, 5) state, and 6) measurement position. Figure 6b
shows the refined database on the basis of categorical variables which is used for the Bayesian learning
approach in this paper. This particular choice of categorical variables will define the modelM1.

3.5 Bayesian hierarchical models for UQ in Laero

In this section, the two models, given by (13) and (14), are formulated in the Bayesian context. It is assumed
that the observed data in the measurement set, given by Ldata in dB, is distributed according to Normal
distribution, which belongs to the exponential family of distribution as mentioned in Section 2.2, with mean
µ and variance σ2y . Also, all the unknown parameters (non-categorical) are modelled as random variables
with a prior probability distribution. Choice of prior distributions here are supposed to be in line with the
objective knowledge the analyst has on the parameters before observing the data (through domain-expertise,
physical laws, etc.). If too little objective information is available, non-informative priors can be chosen.
Also, for the sake of simplicity, priors that are conjugate to the likelihood are preferred, refer [12, 25, 24].

Figure 7 provides a way to represent full joint probability of the random variables in the form of a graph
using the assumption of conditional independence. Let us say that there are two events A and B, then they
are conditionally independent given Y , if and only if we can express p(A,B|Y ) = p(A|Y ) p(B|Y ). These
graphical models display the independence relationships and are defined in terms of directed acyclic graphs.
The nodes in the graph are modelled as random variables and edges encode their relationships [34]. Also,
the plate notation is exploited for capturing the replication in graphical models, which indicates that the data
is independently and identically distributed (i.i.d) [15]. The observed or deterministic variables (here, the
measurement data represented as the likelihood function) are shown as shaded region and the unobserved
random variables are represented as unshaded circular regions. The arrows on the edges, for example a →
Yobs, indicate that a is causing or influencing Yobs. Moreover, the hyperparameters are not influenced by any
other parameter in the hierarchy. Each distribution is characterized by its own hyperparameters, which are
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Figure 7: Bayesian Hierarchical models: (left) first model with polynomial basis, and (right) second model
with Gaussian basis

deterministic values and are chosen by the analyst, for example, a Normal distribution can have two hyper-
parameters: µ for location and σ2 for scaling. The higher we move up the hierarchical model, lesser is the
impact of that parameter on the likelihood of observing the data and on the inference. If there’s not much
information available about the hyperparameters, then non-informative hyperpriors can be assigned to them.
In Figure 7, µc is the hyperprior for the random variable c and is characterized by its own hyperparameters
(µcc, σcc) [25]. For the sake of visual clarity, we have not shown hyper-parameters in these graphs.

ConsideringN to be the total number of measurement data available and nθ be the total number of parameters
to learn, the two Bayesian models are formulated as

• Bayesian Model 1 (BM1) with polynomial basis functions

Ldata|X,θ, η ∼ N (L
[1]
aero(v,ω), σ2y)

σ2y ∼ InvGamma(αy, βy)

θi ∼ N (µi, σ
2
i ),∀i = 1, .., nθ

(16)

• Bayesian Model 2 (BM2) with Gaussian basis functions with heteroscedasticity

Ldata|X,θ, η ∼ N (L
[2]
aero(v,ω),σ2

y)

σ2
y ∼ InvGamma(αy,βy),

α ∼ N (µα, σα)

a ∼ N (µa, σa)

b ∼ N (αb, βb)

c ∼ N (µc, σc)

µc ∼ N (µcc, σcc)

(17)

4 Model convergence and results comparison

Bayesian computational statistics allows us to approximate the posterior distribution and solve complex
Bayesian models which could have been, otherwise, mathematically intractable. In order to make sure that
the samples drawn are independently and identically distributed, several visual and numerical diagnostic
tools have been developed, for relevant metrics refer [35].

The two Bayesian models formulated in (16) and (17) are specified using an open-source library PyMC3 [36],



through which NUTS sampler can be used that automatically adapts the step-size parameter and is efficient
in generating independent samples [27]. For each model, 4 chains were simulated with 10,000 samples in
each. The burn-in samples were set to 2,000 to let the chain converge to its stationary distribution. The

(a) Convergence results for BM1 (b) Convergence results for BM2

Figure 8: MCMC convergence results for both the Bayesian models simulated with 4 chains and 10,000
samples each. Left columns of both the sub-figures are the kernel density estimate (KDE) plot corresponding
to each unobserved random variable and the right columns consist of the rank plots

convergence statistics are shown in Figure 8. It shows that the marginalized posterior distribution of the
unknown parameters in the model. Moreover, rank plots can be observed, which are the histograms of the
ranked posterior samples plotted separately for each chain [37]. If all chains are drawing from the same
posterior (i.e. there’s good mixing), the ranks in each chain should be uniform. Chains in BM1 show good
mixing behavior as compared to the BM2 where the rank plots for some parameters deviate from uniformity.
This is due to the fact that there exists a bimodal marginal posterior distribution for some parameters.

A very commonly used numerical diagnostic is the potential scale reduction factor or Gelman-Rubin statistic
denoted by R̂. It is computed for a particular parameter θ as the ratio of the standard deviation of all the
samples of θ from all chains, to the root mean square of the individual within-chain standard deviations [25].

It is expressed as

R̂ =

√
v̂ar+(θ|Ldata)

W
, (18)

where W denotes within-chain variances and v̂ar+(θ|y) is the marginal posterior variance of the parameter
given by

v̂ar+(θ|Ldata) =
N − 1

N
W +

1

N
B (19)

where N is the total number of draws per chain and B is the between-chain variance (refer [25, 37] for
detailed formulations). Ideally, R̂ ≈ 1.0 as the variance between the chains should be same as the variance
within-chain.

For BM1, R̂ = 1.0 for all the parameters in the model which indicates that the chains are mixed well and the
draws are from the same posterior distribution. For BM2, the number of parameters are significantly higher



than model 1 and 1.0 ≤ R̂ ≤ 1.06 which again denotes that the chains converged well and the samples are
not much correlated.

(a) BM1 (b) BM2

Figure 9: Posterior predictive distribution for the two Bayesian models. Blue dots refer to the measurement
data, red solid line is the mean of the samples drawn from the posterior predictive distribution, and red dashed
lines along with the shaded region represent the 95% Bayesian credible interval

The posterior predictive distribution, which is the distribution of the potential or future data p(Lpred|θ,X, ε)
is according to the posterior distribution of the parameters p(θ|Ldata,X, ε). This is the model’s prediction
after seeing the observed data Ldata. It is given by

p(Lpred|Ldata,X, ε) =

∫
f(Lpred|θ,X, ε) p(θ|Ldata,X, ε)dθ

=

∫
L(θ;Lpred,X, ε) p(θ|Ldata,X, ε)dθ (20)

where ε is the vector of nuisance variables that characterizes a particular model, for instance, model M1

described in Section 3.4.

The posterior predictive distribution plots are shown in Figure 9. It can be seen that BM1, which has sig-
nificantly less number of parameters, do not capture some intricate peaks in the model. On the other hand,
with BM2, the heteroscedasticity allows the model to capture physical phenomenon quite well. Indeed, this
comes at a cost of higher number of parameters and it requires more time to draw samples from the joint
distribution of the parameters. Depending on the final use of the metamodel, BM1 or BM2 will be preferred.

The developed models should not be too primitive that they miss or fail to capture the valuable information in
the data nor too complex that they fit the noise in the data. Therefore, computing the out-of-sample predictive
accuracy for the fitted Bayesian models becomes essential. This is also called as generalization error, which
is a measure of how well the model performs when it sees the data not used to fit it. Cross-validation and
information criteria are the two methods for estimating this out-of-sample predictive accuracy. In this work,
Bayesian Leave-One-Out cross validation (LOO-CV) [38] is used, where the hold-out dataset consists of a
single data-point. The expected log pointwise predictive density (ELPD) is given by,

ELPDLOO-CV =
n∑
i=1

log

∫
f(Ldata

i |θ,X, ε) p(θ|Ldata
−i ,X, ε)dθ (21)

where Ldata
i represents the i-th datapoint and Ldata

−i indicates all datapoints except i-th. However, computing
(21) is costly since θ is not known a priori. To circumvent this, (21) is approximated from a single fit using
Pareto smoothed importance sampling LOO-CV (PSIS-LOO-CV)[38]. The idea is that the observations
Ldata are assumed to be conditionally independent so that (21) is approximated using normalized weights w



as

ELPDPSIS-LOO =
n∑
i

log
s∑
j

wji f(Ldata
i |θj ,X, ε). (22)

Weights w are computed using importance sampling where

wji =
p(θj |Ldata

−i )

p(θj |Ldata)
∝ 1

f(Ldata
i |θj ,X, ε)

. (23)

To avoid overshooting the variance of importance weights, a smoothing procedure is applied using the gen-
eralized Pareto distribution. The estimated k̂ parameter of the Pareto distribution allows to detect highly
influencial observations. These are the observations that have a significant effect on the posterior distribution
when they are considered in the hold-out set. For well specified data and models, the value of k̂ remains low
(≈ 0.5), according to [38, 39].

Table 2 summarizes the LOO-CV approach for the two Bayesian models. Rank denotes the ranking for the
two models on the basis of LOO value. Penalization term gives an indication of the total number of effective
parameters in the model and standard error is the error of LOO computations where a lower value is preferred
[38]. Clearly from Table 2, BM2 with Gaussian basis function and heteroscedasticity is preferred over BM1
due to its lower error and better LOO value. Moreover, from Figure 10, we notice that k̂ for all the datapoints
in BM1 have a very low value (< 0.3), whereas for BM2, there are 0.4% of the data points that lie above the
threshold 0.7. These are the same points at 4 kHz, 5 kHz, and 6.3 kHz, that the model is not able to explain
due to their outlier behaviour.

Table 2: Comparison of PSIS-LOO-CV for the Bayesian models 1 and 2

Rank LOO penalization-LOO Standard error

Gaussians 0 -1259.2 40.7 22.6
Polynomials 1 -1367.6 5.2 24.1

(a) BM1

0.7

(b) BM2

Figure 10: The k̂ diagnostics from PSIS-LOO-CV

For interior tire-road noise, parametric bootstrapping algorithm was implemented since the likelihood func-
tion given by (15) is accurate only up to 84% (as per the R2-value). The parametric bootstrap algorithm is
explained in Section 2.5 which considers (15) to generate simulated data from the point estimates. Figure 11
shows the prediction on randomly test data set for multiple inputs (for eg, at speeds 50 kmph, 70 kmph, 90
kmph) and for one particular test speed. The histograms for the estimated parameters can also be seen in Fig-
ure 12. As one can notice, such an algorithm belongs to non-Bayesian category. The accuracy of the model
depends on the number of bootstrapped samples and the data-generating mechanism. The intricate peaks
in the data are not captured which indicates that the model can further be refined. Bootstrap algorithm is



simple and easy to implement, however Bayesian approaches give more control for the considered industrial
application case and provide more mathematically robust formulations and diagnostic tools.
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Figure 11: Predictions from the parametric bootstrap approach. Red dots are the unseen test data, prediction
mean is shown in solid blue line with shaded region being the 95% confidence interval
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Figure 12: Histograms of the parameters estimated through bootstrapping

5 Conclusions

In this research work, Bayesian metamodels are developed for vehicle broadband noises such as aerodynamic
wind and tire-road interaction noise using measurement databases. For aerodynamic noise, two different
Bayesian models are proposed which not just consider the available data but also rely on physical laws.
The model parameters are interpretable where the domain-expert knowledge is exploited to define prior-
distributions on them. The deterministic models are validated using K-fold cross validation with good
accuracy and the Bayesian model assessment is done through various MCMC diagnostic tools. It is noted
that, despite being computationally intensive, model with Gaussian basis functions produces better results,
in terms of the distribution shape and Leave-One-Out cross validation statistic. However, for broadband
masking noises overall estimators, detailed modelling is not usually desired and therefore BM1 can be used
for fast computations. For tire-road noise, a non-Bayesian approach was tested and it was observed that
Bayesian approaches provide more flexibility and control over the predicted responses.
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