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Abstract

Gradient methods subject images to a series of operations

to enhance some characteristics and facilitate image anal-

ysis, usually the contours of large objects. We argue that

a gradient must show other characteristics, such as minor

components and large uniform regions, particularly for the

image segmentation task where subjective concepts such as

region coherence and similarity are hard to interpret from

the pixel information. This work extends the formalism of

a previously proposed graph-based image gradient method

that uses edge-weighted graphs aggregated with Random

Forest (RF) to create descriptive gradients. We aim to ex-

plore more extensive input image areas and make changes

driven by the RF mechanics. We evaluated the proposals

on the edge and segmentation tasks, analyzing the gradient

characteristics that most impacted the final segmentation.

The experiments indicated that sharp thick contours are

crucial, whereas fuzzy maps yielded the worst results even

when created from deep methods with more precise edge

maps. Also, we analyzed how uniform regions and small

details impacted the final segmentation. Statistical analysis

on the segmentation task demonstrated that the gradients

created by the proposed are significantly better than most

of the best edge maps methods and validated our original

choices of attributes.

1 Introduction

Image segmentation is a computer vision task aiming
to group pixels into regions. It is a complex task based
on abstract concepts such as region coherence, percep-
tual similarity, and composition of objects and scenes
by aggregated parts. We could define the region coher-
ence in terms of uniformity, continuity, and contrasts
that create well-defined boundaries between two adja-
cent regions [1]. Perceptual similarity and composi-
tion are subjective, but ideally, they would reflect our
perception by hierarchically recognizing parts, objects,
and concepts [2].

This ideal could be why hierarchical methods for
segmentation have remained popular since their cre-
ation [3, 4, 5, 6]. Hierarchical methods build in their
structure different detail levels, providing easy naviga-
tion and merging operations to build more semantically
significant objects from lower-level instances. The most
well-known hierarchical method is the hierarchical wa-
tershed [3], which extends the morphological water-
shed [7] and creates a sequence of segmentations from
image magnitudes.

Traditionally, the magnitudes are extracted by mea-
suring dissimilarities in the color space (e.g., RGB,
Lab) [8, 9] or in the gray-scale representation of the
images [10, 11]. However, these approaches may pro-
duce a significant variation of absolute values, making
it hard to determine which values compose a coherent
region [12]. An alternative is to preprocess the images
by applying gradient operators to emphasize desirable
characteristics, such as the object’s contours. Well-
known gradient operators based on kernel filters for
local variation, such as Laplacian and Sobel, used to
be the preferable operators [13, 14]. However, learned
edge maps, as in the Structured Edge Detection (SED)
method [15], were proven to produce better results [8]
and became more popular [16, 17].

Our previous work [18] argued that although the
contours are essential for contrasting adjacent regions,
other characteristics reflecting uniformity and continu-
ity are desirable for the segmentation task. We pro-
posed a graph-based gradient operator that produced
gradients with firm contours of the objects and other
characteristics such as minor components, textures,
and large uniform regions. We demonstrated that these
gradients used as input for the watershed method pro-
duced better segmentation results than Laplace, Sobel,
and SED.

Our graph-based image gradient (GIG) method uses
edge-weighted graphs aggregated with Random For-
est (RF) [19] as an image gradient operator trained on
the edge detection task. The motivation behind this

1



approach is four-fold: (i) exploit the spatial image
domain preserved in the form of a grid graph:
typically, we define graphs on the image domain with
a structured grid adjacency relation, and the set of el-
emental graph components, called vertices, represents
the pixels of the image; (ii) strengthen the repre-
sentation with the graph relational features: we
represent the adjacency relation by edges connecting
neighboring vertices, and a weighting function could be
associated to represent local variation. Therefore, the
graph operator contains the structured spatial infor-
mation and measurements of relational dissimilarities;
(iii) suppress noise and encourage large consis-
tent regions with RF: the RF algorithm, through
attribute selection and implicit regularization [20], can
reinforce desirable characteristics and mitigate some
strong responses created by the local difference mea-
surements on the graph operator; and (iv) maintain
the analyses on the discrete space: each vertex
description represents an entire neighboring region as-
sociated with a single label; therefore, we avoid training
in a complex structured output space, like in [15].

Our motivation goes beyond a good performance in
a task. It also relies on a proposal of a machine learn-
ing framework operating on graphs, a topic of interest
due to its capacity to represent multivariate informa-
tion and the possibility of multiple applications, such
as classification or clustering. A significant challenge
is that most machine learning algorithms require regu-
lar inputs to operate, including RF. This requirement
is inherently opposed to the unconstrained nature of
graphs (e.g., no clear beginning or end, connected ver-
tices are not necessarily close). The GIG representa-
tion considered the type of graph, its proximity to the
original data, and the expected results, allowing us to
process the graphs as regular data with a fast machine
learning algorithm and avoid the long computations of
graph networks.

In this work, we extend the formalism to exploit
better the relationships modeled by graphs, mainly fo-
cusing on the RF mechanics and limitations. Namely,
we propose:

1. Region adjacency graphs: Extends the formal-
ism from the bijective correspondence of vertices
and pixels in GIG to vertices and a set of regions
produced by an initial segmentation into image
super-pixels. This approach could reduce the num-
ber of data points during training and impact the
gradient and the computational cost;

2. Positional features: Vertices corresponding to
the pixels on the image’s border have an in-
complete set of neighbors. In GIG, they re-
ceived padding values that disregarded the missing

value’s position on the regular representation. In
the positional feature approach, we only take the
vertices with a complete set of adjacent vertices
to avoid changing the feature connotation during
training;

3. Unique paths: The regular representation of the
grid graph in GIG is redundant, meaning not all
values are unique as the vertices on the grid path
share some neighbors. Our unique path approach
considers only the first instance of a neighboring
vertex in a region, reducing the representation’s
size and allowing the region’s expansion.

Besides the extended formalism, we add evaluations
on edge detection and comparisons with deep learning
approaches [21, 22] on edge detection and region seg-
mentation. We aim to advocate for our assertion that
a good gradient for image segmentation should present
more than precise object contours by comparing it with
even more accurate edge maps.

We organized this work as follows: Section 2
presents the theoretical background and Section 3 the
methodology. The experimental setup and results are
in Section 4, followed by a discussion in Section 5 and
the conclusions in Section 6.

2 Theoretical background

An undirected graph G = (V,E) consists of a finite
non-empty set of vertices, denoted by V , and a finite
set of edges E = {{u, v} | u, v ∈ V } ⊆ V×V . The set E
induces a unique adjacency relation Γ on V , which as-
sociates u ∈ V with Γ(u) = {v ∈ V |(u, v) ∈ E}. In the
image graph, the set of vertices represents the pixels of
the image, and the edges represent the connections be-
tween them. Usually, we define the adjacency relation
Γ by a structured component in a grid form, such as 4-
or 8-adjacency. We define vertex attributes as vertex
functions f : V → R that map low-level image features
to a vertex v.

An edge-weighted graph is denoted by (V,E,F), in
which F : V × V → R is a dissimilarity function that
weights the edges of G. We could assign multiple func-
tions to the set of edges F and vertices f . This work
uses Feuc(u, v) =

√
(fg(u)− fg(v))2, where the ver-

tex function fg maps the gray-scale magnitudes. Also,
we apply the descriptor proposed in [23] as a vertex
function f to map the pixel’s color space and color
gradients.

The edge weights may represent the local variation
around a vertex and serve as an image gradient oper-
ator bounded by the adjacency relation. The function
defined for Feuc may have a strong response to noise,
as in the case of many spatial filters based on local dif-
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Algorithm 1: Regular GIG and regular GIG-RAG

Input : G = (V,E,F): an edge-weighted graph, a flag
isTrainSet indicating if G is a train instance and the
expected representation size p.

Output: XG = {(X1,Y1), . . . , (X|V |,Y|V |)}: set of regular
representations of the graph vertices attributes
Xv ∈ Rp and its associated labels Yv in case when G
is a train instance.

Function getAttributes(v):
1 if isTrainSet then
2 X = ones[p + 1]
3 Y = getLabel(v)
4 X[p + 1]← Y // at p + 1 position

5 else X = ones[p]
6 colorFeatures← getDescriptors(v)
7 X← colorFeatures
8 firstNeighbors← {u | ∀u ∈ Γ(v)}
9 secondNeighbors← {q | ∀q ∈ Γ(u) and ∀u ∈

firstNeighbors}
10 X← {F(u, v) | ∀u ∈ firstNeighbors}
11 X← {F(q, u) | ∀q ∈ secondNeighbors and ∀u ∈

firstNeighbors}
12 return X

Main:
1 for vertex v in V do
2 Xv = getAttributes(v)
3 X ← append(Xv)

4 end
5 return X

ferences. The RF acting as a regularizer can diminish
the noise, mitigate any eventual poor topology choice
and accentuate strong connections.

RF [19] is a non-parametric ensemble method for su-
pervised classification and regression that relies on ran-
domizing selected data and features and has extensive
practical uses in many domains. Some authors [20, 24]
believe that randomness performs as an implicit regu-
larization process, promoting consistency [24] and noise
suppression [20]. The RF model consists of randomized
independent trees, each trained with bootstrap samples
of the input labeled data D. Applying RF to edge-
weighted graph representation implies deriving regular
inputs from the graph, which we will detail in Sec. 3.

3 Graph-based image gradients

The main challenge in this framework concerns the
strategy to parse the data and create the RF’s regular
input without losing too much information. In our pre-
viously proposed representation, GIG [18], the strat-
egy depicted each vertex v ∈ V of the edge-weighted
graph G = (V,E,F) as a vector Xv with dimension
p = |Gatt|, where Gatt is a set of selected attributes.
The selection belonged to two categories: (i) vertex at-
tributes (Xf ), representing the vertices functions; and
(ii) edge weights (XF ), representing the weight value
in every edge v and any adjacent u ∈ Γ(v). Thus,
Gatt = {XfXF}.

Algorithm 1 presents the steps to create the reg-
ular GIG representation XG for an edge-weighted
graph G. We repeat the procedure for all graphs
in the training set and concatenate the XG outputs
to make the RF training input D. Therefore, D =
((X1,Y1), . . . , (XM ,YM )), where M is the total num-
ber of vertices in the training set. We train the RF on
the edge detection task: Y ∈ {0, 1}, and all M entries
have a unique discrete label. In the test step, we make
the regular representation for each graph in the vali-
dation/test set and individually subject them to the
estimations of the RF. The final estimated values are
mapped back to the image coordinates as gradients.

We now extend the GIG formalism to propose
strategies to explore more extensive input image areas
without adding redundancy and make changes driven
by the RF mechanics.

3.1 GIG defined on region adjacency
graphs

The proposed region adjacency graph approach (GIG-
RAG) reduces the number of vertices by presenting re-
gions of grouped pixels in the set of vertices instead of a
single pixel as in GIG. The GIG-RAG requires a strat-
egy to group the pixels and considerations for edges,
weights, and label attribution.

Given an edge-weighted grid graph GI = (V,E,F)
and a list of grouped pixels into regions SI = {r1,
. . . , rR} for an image I, the edge-weighted RAG graph
Grag has one vertex for each labeled region in SI ,
thus Vrag = {vl | l ∈ {1, R}}. There is an edge be-
tween two vertices in Vrag if an edge connects two ver-
tices in the original grid graph GI , hence: Erag =
{{vp, vq} | vp, vq ∈ Vrag ∧ p 6= q ∧ ∃{u, v} ∈ E |u ∈
rp ∧ v ∈ rq}. The set Erag induces a unique adja-
cency relation on Vrag, which associates uq ∈ Vrag

with Γ(uq) = {vp ∈ Vrag|(vp, uq) ∈ Erag}. For the
weighting function, we average the edges’ weights in
GI , Frag(uq, vq) = mean{F(u, v) | ∀{u, v} ∈ E |u ∈
rp ∧ v ∈ rq}.

Finally, for label attribution in GIG-RAG, we take
a majority vote of the pixels within a region to deter-
mine the region label. Also, because we have multiple
vertices within each region, we do not use the vertex
attributes Xf ; thus, GIG-RAG attributes are only the
edge weights XFrag of a regular number of closest ad-
jacent regions.

3.2 Positional features

RF is an ensemble of multiple decision trees in which
each independent tree takes local decisions to split the
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data considering a combination of features. The posi-
tion of the features is an essential factor, as the model
would assume that any subsequent data in that specific
position would represent the same feature. In GIG, we
added padding values to the vertices that do not have
all neighbors in the grid path, disregarding the posi-
tion that the missing value would assume if present.
In GIG-Positional, we will take only the vertices with
a complete set of adjacent vertices, creating a more
regular representation for training.

3.3 Unique path

We tackle the redundancy created when we transpose
the edge-weighted graph to a regular representation for
our final proposal. In Algorithm 1, when we take the
first and second adjacent neighbors, we inevitably cast
repeated values to the regular representation as many
vertices share some neighbors within the grid path.
While this redundancy is not necessarily a problem,
out of the 64 values obtained with two levels of neigh-
bors with an 8−adjacency relation, only 24 of these
values are unique. In the GIG-Unique approach, we
will consider only the first instance of a neighboring
vertex within a region. Removing the redundant val-
ues allows the expansion of the region of analysis while
maintaining a similar-sized representation.

We propose three variations with an 8−adjacency
relation: (i) two levels of neighbors, a 5× 5 grid on the
original image, 24 values instead of 64; (ii) three levels
of neighbors, a 7×7 grid, 48 values instead of 512; and
(iii) four levels of neighbors, a 9× 9 grid, 80 values in-
stead of 4096. For all variations, the regular representa-
tion has the same attributes as GIG, Gatt = {XV XF},
but different dimensions for the edge’s attributes.

4 Experiments

We performed the experiments in three stages (illus-
trated in Fig. 1): (i) create the edge-weighted graph
gradient operator from the input image; (ii) train the
RF on the edge detection task to obtain the gradients;
and (iii) evaluate the quality of the gradients on the
segmentation task.

We chose the Berkeley Segmentation Dataset and
Benchmark (BSDS500) [25] because it proposes edge
detection and segmentation labels. It contains 500
RGB images (200 train, 100 validation, and 200 test)
of the same size. Each image has multiple labels per-
formed by different annotators; thus, we applied a ma-
jority vote on the edge task to get a single label.

We evaluated GIG1, GIG-RAG, GIG-Positional,
and GIG-Unique, all with an 8-adjacency relation and
without a combination of methods. The low-level de-
scriptor discussed in Sec. 3 has 13 dimensions (|XV | =
13), therefore, for GIG and GIG-Positional p = 77.
For the GIG-Unique representation, we use the ter-
minology GIG-X -Unique, with X in {24, 80} indicat-
ing the number of unique values (thus |XF |), leading
therefore to p = {37, 93}, respectively. For GIG-RAG,
p = 64 (no vertex attributes), and we use the termi-
nology GIG-RAG-R to indicate the number of desired
regions of grouped pixels, where R is in {1k, 5k, 10k,
50k}. For completeness, we also evaluate GIG-Edge,
the GIG variant considering only edge attributes, with
p = 64.

We propose an initial segmentation into image
super-pixels to group the pixels in the GIG-RAG
strategy. We tested with a well-consolidated super-
pixel method called simple linear iterative cluster-
ing (SLIC) [26]. SLIC is an iterative method, which
clusters the pixels with the closest center, initially
distributed in a regular grid, evaluates the similarity
within a cluster, and recalculates the centers until con-
vergence. SLIC execution is fast, easy to set the pa-
rameters and the number of produced regions is the
closest approximation to the number of desired regions
passed as a parameter.

In order to evaluate the impact of the super-pixel
quality in the GIG-RAG strategy, we added some com-
parisons with a more modern super-pixel method: the
superpixel segmentation with fully convolutional net-
works (SpixelFCN) [27]. The SpixelFCN is a deep net-
work trained to assign each pixel of an image, initially
partitioned into a regular grid, to one of its neighbor-
ing grids. The network is an auto-encoder, in which
the encoder learns the features, and the decoder aims
to group pixels with similar features and enforce com-
pactness. SpixelFCN is easy to set and overall produces
better regions, but as in many deep network methods,
it is limited in the number of created regions since the
regular grid has a fixed size. To increase the number of
super-pixels, one should increase the scale of the input
image.

For the RF, we used the Random Forest Regressor
included in the scikit-learn Python package [28], which
provides a parallelized implementation over the trees.
For the parameters, we performed a grid search on the
number of trees, the bootstrap sample size, and the
number of sampled features for the split, using the val-
idation set and the original GIG representation. The
selected parameters after our search are #trees = 500,

1Gradient computation code and model available at: https:

//github.com/RaquelAlmeida/GIG.git
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(a) Input image (b) Graph gradient operator (c) GIG gradient (d) Segmentation

Figure 1: The pipeline illustrated with images created at each step. We present a challenging input image (a) with
transparent materials, a body of water, object occlusion, and different objects with similar colors and patterns. The graph
gradient operator (b) is an image projection of the graph. The gradient in (c) is the RF predictions for the GIG method,
and the segmented image (d) is the Hierarchical watershed output with 20 regions. Best viewed in color.

samples = 25%, #features = log2(p).
The final step in our experimental pipeline is to eval-

uate the quality of the gradients. We propose to apply
the gradients as input to the hierarchical watershed
method (HWS) [29], whose performance is dependent
on the gradient input (discussion in Sec. 5). Because
the watershed is hierarchical, we must pass the desired
number of regions to obtain the final segmentation. We
used the Higra library [30] for the watershed implemen-
tation.

We present our quantitative analysis for edge detec-
tion and segmentation tasks, using the F -measure for
the precision-recall metrics for boundaries and regions.
We also show the Probabilistic Rand Index (PRI) [31]
measure, a metric that ponders the multiple ground-
truths for the segmentation interpretation. Results are
presented in terms of the optimal dataset scale (ODS),
optimal image scale (OIS), and average precision (AP)
through all scales. The scales for the boundaries are
different thresholds applied to the edge maps to create
a binary image and, for the regions, the desired number
of segmented regions.

4.1 Results on edge detection

First, we want to evaluate each proposed strategy’s im-
pact on the representation performance regarding the
quality of the edge maps (illustrated in Fig. 2(f)-(k)).
Table 1 presents the relevant results in the validation
set for the edge detection task. We omitted some sim-
ilar values in Tables 1-3 to avoid repetition. All varia-
tions of the GIG-X-Unique presented similar gradients
(thin contours and discreet textures) and results (less
than 1.5% difference in all metrics). Moreover, all the
GIG-Unique strategies had similar score metrics to the
original GIG, indicating that there is not much gain in
expanding the region of analysis and that the GIG re-
dundancy does not compromise the RF generalization.
The GIG-Positional results indicated that the feature
position is, in fact, an essential factor during training,

Table 1: F -score for boundaries in terms of optimal dataset
scale (ODS), optimal image scale (OIS) and average preci-
sion (AP) through all scales (perfect scores=1). Executed
on the validation set.

Method ODS OIS AP

GIG 0.623 0.651 0.619

GIG-RAG-600 (SLIC) 0.441 0.471 0.461
GIG-RAG-1k (SLIC) 0.472 0.502 0.463
GIG-RAG-5k (SLIC) 0.522 0.546 0.505
GIG-RAG-10k (SLIC) 0.542 0.566 0.541
GIG-RAG-50k (SLIC) 0.593 0.623 0.587

GIG-RAG-600 (SpixelFCN) 0.498 0.525 0.448
GIG-RAG-1k (SpixelFCN) 0.509 0.538 0.474
GIG-RAG-5k (SpixelFCN) 0.553 0.581 0.562
GIG-RAG-10k (SpixelFCN) 0.546 0.571 0.554
GIG-RAG-50k (SpixelFCN) - - -

GIG-Unique-24 0.618 0.645 0.621
GIG-Unique-80 0.615 0.640 0.619

GIG-Edge 0.605 0.611 0.599
GIG-Positional 0.712 0.727 0.729

and the edge maps created have the best performance
on the task among all the compared proposals. GIG-
Edge shares the number of regions with GIG while not
considering the vertex attributes as GIG-RAG, and the
results showed the importance of vertex attributes in
the gradients and the score.

We observed that the GIG-RAG strategy consider-
ably reduced the training time proportionally to the
number of regions. Nevertheless, it also reduced the
performance of the edge detection task. As shown in
Table 1, SpixelFCN has a slight advantage over SLIC
super-pixels, but we were limited on computational re-
sources to create a larger number of regions. For in-
stance, to make 50k regions with SpixelFCN, one must
work with images scaled to ∼ 9 times the original size.
As illustrated in Fig. 3, the computed gradients vary
with the number of regions, fewer regions create larger
super-pixels, and the predicted label is applied to a
larger area creating gradients of regions instead of con-
tours. Increasing the number of regions creates more
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(a) Input image (b) Ground-truth (c) SED (d) HED (e) RCF (f) GIG

(g) GIG-24-Unique (h) GIG-80-Unique (i) GIG-RAG-50k (j) GIG-Edge (k) GIG-Positional (l) GIG filtered

Figure 2: Gradient computations for the input image in (a). SED, HED, and RCF present reinforced contours of the main
objects but almost no details; also, most contours are fuzzy, particularly for SED and HED. GIG computes enhanced borders
for large and small objects and firm representations of textures. GIG-Unique gradients present thin contours close to the
ground-truth and discreet textures (g, h). GIG-RAG gradient with 50k regions computed with SLIC presents a contour-
oriented gradient with little texture information (i), the same is true for the GIG-Edge variation (j). GIG-Positional gradients
(k) have slightly stronger borders for the main objects than GIG. In (l), the GIG gradient filtered by the morphological
opening operation presenting thicker contours.

contour-oriented gradients, which is crucial for the edge
detection task.

Table 2 presents the best of our proposed methods,
GIG and GIG-Positional. We compared with some
leading deep methods on the task: the Holistically-
Nested Edge Detection [21] (HED, illustrated in
Fig.2(e)) and the Richer Convolutional Features for
Edge Detection [22] (RCF, illustrated in Fig.2(f)).
Both HED and RCF produced better edge maps (F -
measures reported by the authors). Still, they required
considerably longer training times (measured using a
GPU during 10, 000 iterations on the required aug-
mented dataset, following [21]).

We also included results from the Structured Edge
Detection method [15] (SED, illustrated in Fig. 2(d)),
which formalism is parallel to ours. Briefly, SED ex-
pands the RF formalism for image processing. How-
ever, to map the similarity in the structured labels of
patches in the image, SED creates an intermediary re-
duced space, reducing the computational cost by avoid-
ing the calculation of a continuous variance. By con-
trast, we made structured inputs with the image graphs
to attribute a single discrete label. SED, GIG, and
GIG-Positional were all trained using the same CPU,
with parallelized computation over the trees in 8 CPU
cores, wherein the SED’s RF is composed of 8 trees and
ours of 500. The training time reflects the gain of the
structure input on GIG instead of the structured out-
put on SED. Furthermore, the GIG-Positional scores
were comparable to SED. For the inference time, all
methods took only a fraction of a second for each im-
age, whereas RCF and ours were slightly faster.

4.2 Results on segmentation

We evaluated the segmentation task for all the pro-
posed GIG variants, the deep methods, and SED. In
Table 3, we can see that the worst metrics are for the
GIG-RAG with a small number of regions (1k and 5k)
computed from SLIC. The GIG-RAG gradients com-
puted from SpixelFCN and SLIC with a larger number
of regions (10k and 50k) perform like some of the best
methods on edge detection (SED and GIG-Positional).
HED and GIG-Edge have similar performance on the
task, whereas GIG-Edge has an advantage on the PRI
metric and the AP. GIG performs better than both in
all metrics. GIG-Unique under-performs compared to
GIG, except for the F -measure dataset scale, meaning
that we could choose a certain number of segmented
regions and have more consistent results.

Finally, we have the RCF results that outperformed
GIG and the others proposed in all metrics. The gradi-
ents produced by GIG and RCF are very different, from
the level of details to the thickness of the contours. To
investigate the thickness factor, we applied the opera-
tion opening—a well-known mathematical morphology
filtering operation, consisting of one erosion to remove
small regions followed by one dilation to increase object
boundaries—in GIG gradients to expand the contours.
We used the erosion operation with a kernel 3 × 3 to
avoid enlarging small points followed by a 4×4 dilation
kernel. We illustrate the result in Figure 2(l), where the
GIG gradient presented thicker contours while retain-
ing most of its details. As shown in Table 3, this oper-
ation resulted in better segmentation, indicating that
thick contours are crucial to the task. Also, despite
the RCF results remaining generally better, the GIG
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SLIC 1k regions SLIC 5k regions SLIC 10k regions

SpixelFCN 1k regions SpixelFCN 5k regions SpixelFCN 10k regions

Figure 3: Illustration of the gradient computations for the GIG-RAG strategy comparing the outputs of both tested super-
pixel algorithms. Gradients from SLIC present more apparent emphasis on the contours, while the ones from SpixelFCN
preserve more texture information.

Table 2: Comparison of the best proposed methods on the edge detection task with some of the well-acknowledged methods
on the dataset. We present the F -scores for boundaries in terms of optimal dataset scale (ODS), optimal image scale (OIS)
and average precision (AP) through all scales, the training and inference time (per image) for all compared methods. Perfect
scores=1. Executed on the test set.

F -measure boundaries Train time Inference time

Method ODS OIS AP (hh:mm:ss) (s/image)

SED [15] 0.712 0.724 0.750 03:53:18 0.452
HED [21]∗ 0.782 0.804 0.833 11:03:42 0.215
RCF [22]∗ 0.811 0.830 0.947 10:43:25 0.141

GIG 0.635 0.661 0.648 00:09:18 0.179
GIG-Positional 0.720 0.748 0.739 00:11:22 0.167

∗ Trained using GPU and F-score as reported by the authors.

filtered representation outperforms RCF in the AP. It
is comparable or better in the PRI metrics, which pon-
der areas without consent among the annotators, such
as the small details better captured in GIG. We illus-
trate the segmentations with highlights on some critical
areas in Fig. 4.

We performed statistical analysis for GIG to validate
the segmentation results and present in Fig. 5 scatter
graphics to illustrate. GIG is better than the best edge
maps methods (SED, HED, and GIG-Positional) with
statistical significance (p-values < 10e − 17) and com-
parable to the GIG-Unique representations (p-values
∼0.02, not depicted). GIG is statistically better than
GIG-Edge (p-value < 10e − 14) despite both present-
ing similar segmentation metrics. We present the RCF

comparison with the GIG filtered version, which was
still inferior to the RCF (p-value < 10e−9) despite the
improvement from GIG.

5 Discussion

Edge maps as gradients are commonly used as a pre-
processing step in many applications because they are
fast to compute and usually facilitate image analysis.
Knowing the application and the type of analysis, one
should always consider if the contour-oriented image
simplification is enough for the task.

Our application is the hierarchical watershed
(HWS), which deals with non-linear image analysis
based on a hierarchy of partitions. In essence, given
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(a) Ground-truth (b) RCF (c) GIG (d) GIG filtered

Highlights

Figure 4: Samples of the segmentations with 10 regions produced by the RCF, GIG and GIG filtered by the morphological
operation. The black areas in the ground-truth (a) indicate regions without consent among the annotators. Overall, the
RCF (b) boundaries between regions are cleaner. In GIG (c) and its filtered version (d), we have more details from the
object along with some background information. Also, the filtered version is more concentrated in certain details and areas
of the background. In the second row, we present some region highlights to illustrate our remarks. Best viewed in color.
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Figure 5: Pair-wise comparison of the F -measure results (red dots) on the best scale for each method. The boxes’ values
are the number of images that are better for a particular method. For a better visualization, GIG-Positional as GIG-POS
and the GIG filtered version as FILTERED. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

an input image (usually a gradient), it creates a multi-
scale image representation as an arrangement of coarse
to fine partitions as an output. A ranked set of mark-
ers is necessary to construct the partitions, usually by
identifying local minima based on a given geometric
criterion (e.g., volume, area). We could define the hier-
archy construction as the minimum spanning problem,
aiming to find a solution with the minimum total cost
by iteratively merging marked regions linked by the
cheapest cost. The solution is optimal and consistent
with the original image (details in [29]).

It is important to notice that the core of the HWS
resides on the cost value and the markers represent-
ing the topology of a region, both extracted from the
image magnitudes. From this perspective, one could
argue that the success of this method relies on a good
gradient image that reflects the distribution of the orig-

inal image. The usual gradients with well-delineated
contours provide clear extreme values for ranking, but
we argue that one should consider that these values are
constantly contrasted with neighboring regions. There-
fore, the depiction of uniformity and small details in
conjunction with strong contours could provide addi-
tional context.

The results showed that better edge maps do not
necessarily translate to better segmentation. For in-
stance, gradients with fuzzy contours like those pro-
duced by SED and HED are not the best candidates,
despite having good metrics on the edges. The small
GIG-RAG representations are primarily gradients of
regions instead of edges, yet, their segmentation re-
sults are not as bad as one could imagine except for
the precision metric.

HED and GIG-Edge have similar segmentation met-
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Table 3: Segmentation results for all compared methods when applied as gradient input to the hierarchical watershed
method. Results presented as F -scores for boundaries in terms of optimal dataset scale (ODS), optimal image scale (OIS),
and average precision (AP) through all scales, and for the Probabilistic Rand Index (PRI). Perfect F -score and PRI=1.

F -measure regions PRI

Gradient ODS OIS AP ODS OIS

SED [15] 0.559 0.617 0.477 0.746 0.742
HED [21] 0.616 0.687 0.485 0.747 0.746
RCF [22] 0.721 0.787 0.548 0.835 0.877

GIG-RAG-1k (SLIC) 0.537 0.571 0.420 0.718 0.727
GIG-RAG-5k (SLIC) 0.540 0.580 0.427 0.728 0.729
GIG-RAG-10k (SLIC) 0.549 0.598 0.438 0.737 0.739
GIG-RAG-50k (SLIC) 0.582 0.638 0.482 0.758 0.788

GIG-RAG-1k (SpixelFCN) 0.550 0.607 0.470 0.749 0.780
GIG-RAG-5k (SpixelFCN) 0.558 0.624 0.535 0.758 0.786
GIG-RAG-10k (SpixelFCN) 0.559 0.625 0.518 0.756 0.786
GIG-RAG-50k (SpixelFCN) - - - - -

GIG-24-Unique 0.624 0.652 0.456 0.777 0.795
GIG-80-Unique 0.625 0.656 0.449 0.781 0.791

GIG 0.620 0.689 0.508 0.788 0.820
GIG-Edge 0.613 0.674 0.487 0.768 0.798
GIG-Positional 0.599 0.619 0.465 0.742 0.751

GIG (filtered) 0.645 0.715 0.556 0.832 0.885

rics but distinct gradients: HED has fuzzy, thick con-
tours with little details, while GIG-Edge has thin, de-
tailed contours. GIG performed better than both in
all metrics: GIG shares the thick contours but not the
fuzziness with HED, and it shares the details with GIG-
Edge, plus additional information about patterns. To
identify which characteristics command the improve-
ment, we could examine the GIG-Unique methods,
which also performed better than HED and GIG-Edge.
GIG and GIG-Unique share sharp contours, details,
and information patterns, indicating that these are the
factors that differ and improve from HED and GIG-
Edge. In contrast, GIG performs better than GIG-
Unique and is varied by the thicker contours. We could
also see the importance of the details and pattern in-
formation on the different results obtained with GIG-
RAG from SLIC and SpixelFCN. While we could arrive
at more contour-oriented gradients with a larger num-
ber of super-pixels with SLIC, the pattern information
preserved with SpixelFCN gave us superior segmen-
tation metrics and values comparable with SED and
HED, even with as little as 1k regions.

Overall, gradients with thick, sharp contours per-
form better. But as indicated in the qualitative analy-
sis (Fig. 4) and the precision and PRI metrics for the fil-
tered GIG compared to RCF, additional details and in-
formation about uniform regions positively contributed
to the segmentation results regarding small objects and
uniformity.

6 Conclusions

In this work, we presented an extended formalism
for the edge-weighted image gradient operator, named
GIG, initially proposed in [18]. We proposed three
strategies to explore larger image areas and make
changes driven by the RF mechanics to achieve a well-
considered learning framework operating on graphs.
Experiments demonstrated that reducing the number
of data points by grouping the image pixels before the
graph creation reduced the training time but compro-
mised the performance on the edge detection and seg-
mentation tasks. Also, expanding the analysis region
by removing redundancy yielded similar results to the
original proposal, indicating that the initial area of
study already captured the necessary information, and
the redundancy did not diminish the RF generalization
in this particular application. Finally, the strategy that
considered the position of the features regarding the
RF mechanism resulted in better results in the edge
detection task.

Furthermore, we extensively analyzed the gradients
in the segmentation task, contrasting them with well-
known methods for the edge detection task. The results
indicated that gradients with fuzzy contours yielded
the worst outcomes and that uniform regions and small
objects details had a substantial impact but were not
as crucial as the sharp thick contours. We performed
statistical analysis for GIG on the segmentation task,
which is significantly better than most of the best edge
maps methods. Moreover, it validated our original se-
lection of attributes, where GIG was superior to the
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grouped pixels and the positional strategies and equiv-
alent to the extended region. For future work, we will
explore enriched graphs like the ones produced by hi-
erarchical methods.
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