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This paper addresses the boundary null-controllability of the semi-linear heat equation ∂ty -∂xxy + f (y) = 0, (x, t) ∈ (0, 1) × (0, T ). Assuming that the nonlinear function f is locally Lipschitz and satisfies lim sup |r|→+∞ |f (r)|/(|r| ln 3/2 |r|) β for some β > 0 small enough and that the initial datum belongs to L ∞ (0, 1), we prove the global null-controllability using the Schauder fixed point theorem and a linearization for which the term f (y) is seen as a right side of the equation. Then, assuming that f is C 1 over R and satisfies lim sup |r|→∞ |f (r)|/ ln 3/2 |r| β for some β small enough, we show that the fixed point application is contracting yielding a constructive method to approximate boundary controls for the semilinear equation. The crucial technical point is a regularity property of a state-control pair for a linear heat equation with L 2 right hand side obtained by using a global Carleman estimate with boundary observation. Numerical experiments illustrate the results. The arguments developed can notably be extended to the multi-dimensional case.

Introduction and main results

Let Ω := (0, 1) and Q T := Ω × (0, T ) for some T > 0. We are concerned with the global boundary controllability of the following one-dimensional semilinear heat equation

     ∂ t y -∂ xx y + f (y) = 0 in Q T y(0, •) = 0, y(1, •) = v, in (0, T ), y(•, 0) = u 0 in Ω, (1) 
where u 0 ∈ L 2 (Ω) is a given initial data, f ∈ C 1 (R) a nonlinear function satisfying f (0) = 0 and for all r ∈ R and some C > 0 then the solution to (1) is globally defined in [0, T ] and satisfies y ∈ C 0 ([0, T ]; L 2 (Ω)) ∩ L 2 (0, T ; H 1 (Ω)). Without a growth condition of this kind, the solutions to (1) can blow up before t = T : in general, the blow up time depends on f and on the size of u 0 L 2 (Ω) . We refer to [START_REF] Lacey | Global blow-up of a nonlinear heat equation[END_REF] and to [19, Section 2 and Section 5] for a survey on this issue.

System (1) is said to be null-controllable at time T if for any u 0 ∈ L 2 (Ω), there exist controls in H 1 (0, T ) and associated state y satisfying y ∈ C 0 ([0, T ]; L 2 (Ω)) ∩ L 2 (0, T ; H 1 (Ω)) and y(•, T ) = 0 in Ω.

The null-controllability of the parabolic systems has been intensively studied for the past decades. We recall the pioneering work by Fattorini and Russell [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF] where the so-called moments method is introduced to prove the controllability for the linear heat equation in one space dimension. The Carleman estimates initially used by Fursikov and Imanuvilov [START_REF] Fursikov | Controllability of evolution equations[END_REF] is another useful tool to handle the controllability of linear heat equations. Neumann boundary controls are notably considered in [START_REF] Dongho Chae | Exact controllability for semilinear parabolic equations with Neumann boundary conditions[END_REF] within this approach. We also mention the Lebeau-Robbiano spectral strategy [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] leading to distributed controllability results for the linear heat equations. Both methods are applicable in any space dimension. Another method is the flatness approach addressed in [START_REF] Martin | Null controllability of one-dimensional parabolic equations by the flatness approach[END_REF] for the boundary null-controllability in one space dimension. Recently, the backstepping approach has been developed by Coron and Nguyen [START_REF] Coron | Null controllability and finite time stabilization for the heat equations with variable coefficients in space in one dimension via backstepping approach[END_REF] to recover the boundary nullcontrollability of one-dimensional linear heat equation with variable coefficients in space. More precisely, constructive controls in feedback form are given for any u 0 ∈ L 2 (Ω) and T > 0; it is also proved in [START_REF] Coron | Null controllability and finite time stabilization for the heat equations with variable coefficients in space in one dimension via backstepping approach[END_REF] that the equation can be stabilized in finite time by means of periodic time-varying feedback laws.

Regarding the global boundary controllability problem for the semilinear heat equations, we mention the work by Fabre, Puel and Zuazua [START_REF] Fabre | Approximate controllability of the semilinear heat equation[END_REF] where approximate controllability (boundary or interior) results

has been proved for globally Lipschitz function f .

For locally Lipschitz function f , the free solution may blow up if f behaves like |r| ln p (1 + |r|) for any p > 1 (see [START_REF] Victor | The problem of blow-up in nonlinear parabolic equations[END_REF] and [START_REF] Lacey | Global blow-up of a nonlinear heat equation[END_REF]). However, with an action of a control, the blow-up phenomenon can be compensated is p > 1 is not too large. In this regard, we recall the work by Fernández-Cara and Zuazua where a global null-controllability result has been established for the system

       ∂ t y -∂ xx y + f (y) = v 1 ω in Q T := Ω × (0, T ), y = 0 on Σ T := ∂ Ω × (0, T ), y(•, 0) = u 0 (•) in Ω, (2) 
where ω is any bounded subdomain of Ω ⊂ R for some β = β( Ω) > 0 small enough, it is proved that for any T > 0 and any u 0 ∈ L ∞ ( Ω) there exists a null control function v ∈ L ∞ (ω × (0, T )) for [START_REF] Barbu | Exact controllability of the superlinear heat equation[END_REF]. Here and in the sequel, we note

ln + |r| = 0 if |r| 1 ln |r| else.
We also mention [START_REF] Barbu | Exact controllability of the superlinear heat equation[END_REF] which gives a similar result assuming in addition that f (r)r -C(1 + r 2 ) for all r ∈ R and some C > 0. On the contrary, if |f (r)| grows faster than |r| ln p + (|r|) with p > 2, then for some initial data, the control cannot compensate the blow-up phenomenon occurring out of ω (see [17, Theorem 1.1]). We mention the work of Le Balc'h [START_REF] Le Balc'h | Global null-controllability and nonnegative-controllability of slightly superlinear heat equations[END_REF] where uniform controllability results in large time are obtained for p 2 assuming additional sign conditions on f , notably that f (r) > 0 for r > 0 or f (r) < 0 for r < 0, a condition not satisfied for f (r) = -r ln p + |r|. We also refer to [START_REF] Coron | Global steady-state controllability of one-dimensional semilinear heat equations[END_REF] by Coron and Trélat where it is proved that one may reach any steady-state to any other (of the semilinear problem) by means of a boundary control for sufficiently large time T , provided that both are in the same connected component of the set of steady-states.

The main controllability result of [START_REF] Fernández | Null and approximate controllability for weakly blowing up semilinear heat equations[END_REF] is based on a fixed point argument, initially introduced in [START_REF] Zuazua | Exact controllability for semilinear wave equations in one space dimension[END_REF] for one-dimensional semilinear wave equations. Provided refined L 1 observability inequality (see [START_REF] Fernández | Null and approximate controllability for weakly blowing up semilinear heat equations[END_REF]Proposition 3.2]), it is shown that the operator Λ :

L ∞ ( Q T ) → L ∞ ( Q T )
, where y := Λ(z) is a null-controlled solution corresponding to the control of minimal L ∞ norm of the linear boundary value problem

∂ t y -∆y + y f (z) = v1 ω in Q T y = 0 on Σ T , y(•, 0) = u 0 in Ω , f (r) := f (r)/r r = 0 f (0) r = 0 (3)
maps a closed ball of L ∞ ( Q T ) into itself. The Kakutani's theorem provides the existence of a fixed point for Λ which is also a controlled solution for [START_REF] Barbu | Exact controllability of the superlinear heat equation[END_REF].

Recently, Ervedoza along with the second and third authors presented a simpler proof of the exact controllability in [START_REF] Sylvain Ervedoza | Exact controllability of semilinear heat equations through a constructive approach[END_REF] by Schauder fixed point approach under the assumption (H 1 ), which is not based on the cost of observability of the heat equation with respect to potentials: the underlying fixed point application Λ : L ∞ ( Q T ) → L ∞ ( Q T ) is defined by y = Λ(z) a controlled solution of

∂ t y -∆y = -f (z) + v1 ω in Q T y = 0 on Σ T , y(•, 0) = u 0 in Ω , (4) 
so that the nonlinearity is seen there as a right hand side. As in [START_REF] Fernández | Null and approximate controllability for weakly blowing up semilinear heat equations[END_REF], the crucial technical point is to prove that the controlled solution is uniformly bounded in + |r| ∀r ∈ R, [START_REF] Sylvain Ervedoza | Exact controllability of semilinear heat equations through a constructive approach[END_REF] provides a constructive sequence (y k , v k ) k∈N converging strongly to a state-control pair for the semilinear equation [START_REF] Barbu | Exact controllability of the superlinear heat equation[END_REF]. Global L 2 Carleman inequalities with large enough parameters play a crucial role as they allow to prove a contraction property. We also mention [START_REF] Lemoine | Constructive exact control of semilinear 1d heat equations[END_REF] where in the one-dimensional case a constructive method has been developed for the internal case by introducing the following (non-convex) least-squares problem inf (y,v)∈A E s (y, v); E s (y, v) := ∂ t y -∆y + f (y) -v1 ω 2

Q T . Assuming u 0 ∈ L ∞ ( Ω), Ω ⊂ R d , d 5 
L 2 (ρ0, Q T ) ,
where A is a convex space which incorporates the initial and controllability requirement and ρ 0 denotes a Carleman-type weight parametrized by s and blowing up as t → T -. Assuming (H 1 ) and the following Hölder condition

(H p ) ∃p ∈ [0, 1] such that sup a,b∈R a =b |f (a) -f (b)| |a -b| p < +∞,
a sequence (y k , v k ) k∈N converging strongly to a state-control pair for (2) with u 0 ∈ H 1 0 ( Ω) is designed in [START_REF] Lemoine | Constructive exact control of semilinear 1d heat equations[END_REF]. Moreover, after a finite number of iterations, the convergence is of order at least 1 + p. A similar construction is performed in the multi-dimensional case with d 3 in [START_REF] Lemoine | Approximation of null controls for semilinear heat equations using a least-squares approach[END_REF] assuming that f is globally Lipschitz.

The main purpose of the present work is to study the boundary controllability of the semilinear system

(1) by following the work [START_REF] Sylvain Ervedoza | Exact controllability of semilinear heat equations through a constructive approach[END_REF] devoted to the distributed case. To the best of our knowledge, there is no direct proof for the boundary controllability when the nonlinear function f behaves like |r| ln 3/2 + |r| at infinity. We mention that the distributed controllability results mentioned above imply the boundary controllability by the usual domain extension method for the scalar heat equations. We give here a direct and constructive proof of the boundary controllability and leading to accurate estimates of the state-control pair (in contrast with the indirect domain extension method).

Main results of the present work. In this paper, we prove the following result, directly in the framework of boundary controllability.

Theorem 1 (Boundary null-controllablity). Let any T > 0 and u 0 ∈ L ∞ (Ω) be given. Assume that f ∈ C 1 (R).

• There exists β > 0 such that if f satisfies the assumption (H 1 ), then the system (1) is null controllable at time T with a control v ∈ H 1 0 (0, T ).

• There exists β > 0 such that if f satisfies f (0) = 0 and the assumption (H 1 ), then one can define a sequence (z k , v k ) k∈N that strongly converges to a pair

(z, v) ∈ L 2 (0, T ; H 2 (Ω)) ∩ H 1 (0, T ; L 2 (Ω)) × H 1 0 (0, T ) such that (ηy 1 + z, v
) is a control-state pair for the system (1). η denotes a C ∞ function supported in [0, T ] and y 1 solves the free boundary value problem (6) depending on u 0 .

Moreover, the convergence of (z k , v k ) k∈N holds at least with a linear w.r.t. the norm ρ

• L 2 (Q T ) + ρ 1 • L 2 (0,T )
, where ρ and ρ 1 are some weights defined in (9), [START_REF] Sylvain Ervedoza | Exact controllability of semilinear heat equations through a constructive approach[END_REF] which are blowing up near the points t = 0, T and s is chosen sufficiently large depending on u 0 ∈ L ∞ (Ω).

Strategy of the proof. To prove the above theorem, we decompose the solution y of (1) as follows

y = ηy 1 + z, (5) 
where y 1 solves the free boundary value problem with non zero initial condition

     ∂ t y 1 -∂ xx y 1 = -f (ηy 1 ) in Q T , y 1 (0, •) = y 1 (1, •) = 0 in (0, T ), y 1 (•, 0) = u 0 in Ω (6) 
and z solves the boundary value problem

     ∂ t z -∂ xx z = -f (z + ηy 1 ) + ηf (ηy 1 ) -η y 1 in Q T , z(0, •) = 0, z(1, •) = v in (0, T ), z(•, 0) = 0 in Ω. (7) 
Here, η is a C ∞ (R) function supported in [0, T ) with T ∈ (0, T ] is chosen in term notably of the size of u 0 in order that y 1 exists in Q T ; in particular, 0 η 1 and η(0) = 1, η(T ) = 0 (see ( 14)).

The above decomposition reduces the boundary null-controllability of the initial system (1) to the one of [START_REF] Choulli | Une introduction aux problèmes inverses elliptiques et paraboliques[END_REF] with the function v. The main reason of this decomposition is to simplify the obtention of regularity properties of the state-control pair from global Carleman estimates. Such properties ensuring notably that the controlled state is uniformly bounded Q T is crucial for our fixed point strategy; we refer to Remark 3 for details.

In order to analyze the controllability of system (7), we introduce the following linearized system: for given z in some suitable class C R (s) (R > 0) depending on the Carleman parameter s > 0, find a control v such that the solution z to

     ∂ t z -∂ xx z = -f ( z + ηy 1 ) + ηf (ηy 1 ) -η y 1 in Q T , z(0, •) = 0, z(1, •) = v in (0, T ), z(•, 0) = 0 in Ω, (8) 
satisfies z(•, T ) = 0 in Ω, and (z, v) corresponds to the minimizer of a quadratic functional J s involving the state-control pair and Carleman weight functions (defined in Remark 2). The specific forms of the

solution is then z = ρ -2 (-∂ t -∂ xx )p in Q T and the associated control is v = sρ -2 1 (1, •)∂ x p(1, •) in (0, T ),
where p denotes the adjoint state associated with the system (8) and the Carleman weights are defined by ( 9)- [START_REF] Sylvain Ervedoza | Exact controllability of semilinear heat equations through a constructive approach[END_REF]. This defines an operator Λ s : z → z from some suitable class C R (s) into itself, on which we can use fixed point arguments for s sufficiently large depending on u 0 L ∞ (Ω) , namely Schauder fixed point argument for the first item of Theorem 1, and Banach-Picard fixed point argument for the second one, allowing to exhibit a sequence of convergent approximations of the control and controlled trajectory.

The analysis of the fixed point operator is based on a Carleman estimate with boundary observation introduced in [START_REF] Choulli | Une introduction aux problèmes inverses elliptiques et paraboliques[END_REF] recalled in Proposition 1 : it allows to get precise weighted estimates on the control and controlled trajectories.

In order to get L ∞ estimate for the controlled trajectories solution of (8), the boundary control v needs to be more regular than L 2 (0, T ). It is notable that the regularity issue is more delicate for the boundary control of the parabolic equations than hyperbolic ones. In this regards, we mention the work [START_REF] Ervedoza | A systematic method for building smooth controls for smooth data[END_REF] where regularity results of the null-control v for the system u = Au + Bv have been proved assuming the initial datum regular enough and that A generates a C 0 group. Their method applies mainly to the time-reversible infinite-dimensional systems (in particular to the wave equation) so as to extend solution out of the time interval (0, T ). Similar idea has been used in [START_REF] Bhandari | Exact boundary controllability of 1d semilinear wave equation through a constructive approach[END_REF] to determine the regularity of boundary control for the one-dimensional wave equations and as application, the authors proved the boundary exact controllability of semilinear wave equations with H 1 0 initial data. Nevertheless, in the case of heat equations, the C 0 -group property of the associated diffusion operator is missing. Therefore, to get higher

regularity of our control v = sρ -2 1 (1, •)∂ x p(1, •) (see Theorem 2
) for the linearized model [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF], where p denotes the associated adjoint state, we need to re-introduce a state p in such a way that takes the value 0 outside (0, T ) and equals with the adjoint state p up to some weight (vanishing at t = 0, T ) in (0, T ).

This will allow us to define a parabolic equation in p in R and then, using a similar approach as in [START_REF] Bhandari | Exact boundary controllability of 1d semilinear wave equation through a constructive approach[END_REF], we can obtain the H 1 regularity in time for the control v (see Theorem 3) as soon as u 0 ∈ L ∞ (Ω), a sufficient condition to ensure that y 1 ∈ L ∞ (Q T ). This part is crucial in the study of the boundary controllability of our system (1).

Outline. The rest of the paper is organized as follows. In Section 2.3, we discuss the decomposition [START_REF] Cazenave | An introduction to semilinear evolution equations[END_REF] of the solution y then derive in Section 2.4 a controllability result for the linear heat equation with zero initial data along with some precise estimates of the solution-control pair in term of the right hand side, provided the Carleman parameter s is large enough. Section 2.5 is devoted to prove that the optimal control for system [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF], a priori in L 2 (0, T ), belongs actually to H 1 0 (0, T ): this result stated in Theorem 3 is proved in Appendix B. Then, in Section 3.3, we prove by using Schauder fixed point argument the uniform null controllability of (1) for any time T > 0 assuming that f ∈ C 1 (R) and satisfies the condition (H 1 ). Then in Section 3.4, assuming the growth condition (H 1 ) on f and f (0) = 0, we show that the operator Λ s is contracting in the set C r (s) defined in [START_REF] Zuazua | Exact controllability for semilinear wave equations in one space dimension[END_REF], yielding the convergence of the Picard iterates z k+1 = Λ s (z k ), k 0, for any initialization z 0 ∈ C r (s). Section 4 illustrates the results with some numerical experiments while Section 5 concludes with some remarks.

Notations. In this article, C denote generic constants depending on Ω and T , which may vary from line to line, but are independent of the Carleman parameter s.

2 Boundary null-controllability of a linearized system with controlled solution in L ∞ (Q T )

Global Carleman estimate with boundary observation

We recall in this section a global Carleman estimate with boundary observation of fundamental use in the sequel (see notably [START_REF] Yu | Lipschitz stability in inverse parabolic problems by the Carleman estimate[END_REF][START_REF] Dongho Chae | Exact controllability for semilinear parabolic equations with Neumann boundary conditions[END_REF]). We define θ(t) = 1 t(T -t) for t in (0, T ). Then, for any s > 0, λ > 0, we set the weight functions

       ξ(x, t) = θ(t)e λx ∀(x, t) ∈ Q T , ϕ(x, t) = θ(t) e 2λ -e λx =: θ(t)ϕ 1 (x) ∀(x, t) ∈ Q T , ρ(x, t) = e sϕ(x,t) ∀(x, t) ∈ Q T (9)
and recall the following Carleman estimate; see for instance [START_REF] Choulli | Une introduction aux problèmes inverses elliptiques et paraboliques[END_REF]Theorem 3.4,p. 164].

Proposition 1. There exists constants λ 0 > 0, s 0 > 0 and C > 0 such that for all q ∈ P := L 2 (0, T ; H 2 (Ω) ∩ H 1 0 (Ω)) ∩ H 1 (0, T ; L 2 (Ω)), the following Carleman estimate holds

s 3 λ 4 Q T e -2sϕ ξ 3 |q| 2 + sλ 2 Q T e -2sϕ ξ|∂ x q| 2 + s -1 Q T e -2sϕ ξ -1 |∂ t q| 2 + |∂ xx q| 2 C Q T e -2sϕ |∂ t q + ∂ xx q| 2 + Csλ T 0 e -2sϕ ξ|∂ x q(1, t)| 2 (10)
for all λ λ 0 and s s 0 .

In the sequel, we fix λ = λ 0 in the above Carleman estimate and consider the following weight functions

ρ 0 := θ -3/2 ρ, ρ 1 := θ -1/2 ρ, ρ 2 := θ 1/2 ρ in Q T . (11) 
Estimate [START_REF] Coron | Global steady-state controllability of one-dimensional semilinear heat equations[END_REF] then reads in term only of the parameter s s 0 as follows

s 3 Q T ρ -2 0 |q| 2 + s Q T ρ -2 1 |∂ x q| 2 + s -1 Q T ρ -2 2 |∂ t q| 2 + |∂ xx q| 2 C Q T ρ -2 |∂ t q + ∂ xx q| 2 + Cs T 0 ρ -2 1 (1, t)|∂ x q(1, t)| 2 (12)
for all q ∈ P .

Time of existence under the growth condition (H 1 )

The time of existence of the solution u of

     ∂ t u -∂ xx u = -g(t, u) in Q T , u(0, •) = u(1, •) = 0 in (0, T ), u(•, 0) = u 0 in Ω, (13) 
for some continuous function g depends on the size of the data g and u 0 . We refer for instance to [START_REF] Lacey | Global blow-up of a nonlinear heat equation[END_REF] and [START_REF] Victor | The problem of blow-up in nonlinear parabolic equations[END_REF]Section 5]. In the particular case of nonlinearities satisfying the growth condition (H 1 ), we have the sharper result proven in Appendix A.

Proposition 2. Let α > 0, β > 0 and M > 0. There exists T > 0 such that, for all continuous function g on R 2 satisfying the growth condition |g(t, r)| |r|(α + β ln

3/2 + |r|) for all t ∈ R, for all u 0 ∈ L 2 (Ω) such that u 0 L 2 (Ω) M , there exists u ∈ C 0 ([0, T ]; L 2 (Ω)) ∩ L 2 (0, T ; H 1 0 (Ω)
) solution of (13) on Q T . Moreover, a lower bound of T is given by 1 2α(M +1)+cβ(M +1) 3/2 for some c = c(Ω) > 0.

Reformulation of the controllability problem

We now use the decomposition (5), i.e. y = ηy 1 + z for some η that we now precise and reformulate the null controllability problem in term of the variable z.

For any nonlinearity f satisfying (H 1 ), we associate a time T > 0 according to Proposition 2. Let then T := min(T, T ) and consider a smooth function η ∈ C ∞ (R) such that 0 η 1 and

η(t) =        1 if t T 2 0 if t 3 T 4 . (14) 
We then introduce the following uncontrolled semilinear system

     ∂ t y 1 -∂ xx y 1 = -f (ηy 1 ) in Q T , y 1 (0, •) = y 1 (1, •) = 0 in (0, T ), y 1 (•, 0) = u 0 in Ω. ( 15 
)
Since

f is C 1 , f 1 : (t, s) → f (η(t)s
) is a C 1 map and satisfies the hypothesis of Proposition 2 (since

η L ∞ (R) 1 and η ∈ C ∞ (R)): therefore, there exists y 1 ∈ C 0 ([0, T ]; L 2 (Ω)) ∩ L 2 (0, T ; H 1 0 (Ω)) so-
lution of (15) on Q T . We emphasize that T does not depend on η. Thus

ηy 1 ∈ C 0 ([0, T ]; L 2 (Ω)) ∩ L 2 (0, T ; H 1 0 (Ω)
) and moreover we have the following uniform estimate.

Lemma 1. Let f ∈ C 1 (R) satisfying (H 1 )
, η be defined by ( 14) and y 1 be a solution of [START_REF] Fernández | Strong convergent approximations of null controls for the 1D heat equation[END_REF]. Then

y 1 ∈ L ∞ (Q T ), ηy 1 ∈ L ∞ (Q T ) and ηy 1 L ∞ (Q T ) y 1 L ∞ (Q T ) C (α + β)(1 + u 0 2 L 2 (Ω) ) + u 0 L ∞ (Ω) . (16) 
Proof. We define y 2 and y 3 respectively the unique weak solution of

     ∂ t y 2 -∂ xx y 2 = -f (ηy 1 ) in Q T , y 2 (0, •) = y 2 (1, •) = 0 in (0, T ), y 2 (•, 0) = 0 in Ω      ∂ t y 3 -∂ xx y 3 = 0 in Q T , y 3 (0, •) = y 3 (1, •) = 0 in (0, T ), y 3 (•, 0) = u 0 in Ω.
From the maximum principle, y 3 ∈ L ∞ (Q T ) and y 3

L ∞ (Q T )
u 0 L ∞ (Ω) . On the other hand, using the L 2 regularity result of the heat equation, y 2 ∈ C 0 ([0, T ]; H 1 0 (Ω))∩L 2 (0, T ; H 2 (Ω))∩H 1 (0, T ; L 2 (Ω)) and satisfies y 2

L ∞ (Q T ) C f (ηy 1 ) L 2 (Q T )
. Then, by the uniqueness of the weak solution of the linear heat equation, we infer that y 1 coincides with the sum y 2 + y 3 , which implies that y 1 ∈ L ∞ (Q T ) and

y 1 L ∞ (Q T ) C f (ηy 1 ) L 2 (Q T ) + u 0 L ∞ (Ω) .
We also easily check that f (ηy

1 ) L 2 (Q T ) C(α y 1 L 2 (Q T ) + β ∂ x y 1 2 L 2 (Q T )
), which gives using (63) for t = T the estimate f (ηy

1 ) L 2 (Q T * ) C(α + β)(1 + u 0 2 L 2 (Ω)
). This implies ( 16)

Remark 1. If u 0 ∈ H 1 0 (Ω), then ηy 1 ∈ C 0 ([0, T ; H 1 0 (Ω)) ∩ L 2 (0, T ; H 2 (Ω)) ∩ H 1 (0, T ; L 2 (Ω)).
Let us now define

z := y -ηy 1 , (17) 
which satisfies the following set of differential equations

     ∂ t z -∂ xx z = -f (z + ηy 1 ) + ηf (ηy 1 ) -η y 1 in Q T , z(0, •) = 0, z(1, •) = v in (0, T ), z(•, 0) = 0 in Ω (18) 
and observe that a null-control v ∈ L 2 (0, T ) for z is also a null boundary control for y solution for [START_REF] Badra | Local controllability to trajectories for nonhomogeneous incompressible Navier-Stokes equations[END_REF] starting from the initial condition u 0 ∈ L ∞ (Ω). The main difference is that the system in z has zero initial condition; this will allow to employ the global Carleman estimate (1) with blowing up weights at time t = 0 and t = T .

2.4 Null-controllability of a linearized system and some a priori weighted estimates

In order to obtain the null-controllability for the system (18), we first establish the null-controllability of an associated linearized model. More precisely, we consider the following linear system

     ∂ t z -∂ xx z = B in Q T , z(0, •) = 0, z(1, •) = v in (0, T ), z(•, 0) = 0 in Ω (19) 
and makes use of the Carleman estimate [START_REF] Ervedoza | A systematic method for building smooth controls for smooth data[END_REF].

Let us denote the operator L := -∂ t -∂ xx and recall that P = L 2 (0, T ; H 2 (Ω) ∩ H 1 0 (Ω)) ∩ H 1 (0, T ; L 2 (Ω)). For any real s s 0 (appearing in the Carleman estimate ( 10)), we define the bilinear form (p, q) s :=

Q T ρ -2 L p L q + s T 0 ρ -2 1 (1, t)∂ x p(1, t)∂ x q(1, t), ∀p, q ∈ P. (20) 
(20) defines an inner product in P ; moreover the closure P s of P endowed with this inner product is a Hilbert space. The norm defined on P s is

p Ps := Q T ρ -2 |L p| 2 + s T 0 ρ -2 1 (1, t)|∂ x p(1, t)| 2 1/2 . ( 21 
)
We now prove the solvability and existence of a control function v for the linear system [START_REF] Victor | The problem of blow-up in nonlinear parabolic equations[END_REF].

Theorem 2. Let any T > 0 be given. For any s s 0 and B ∈ L 2 (ρ, Q T ), there exists a unique p ∈ P s , depending only on B such that

(p, q) s = Q T Bq, ∀q ∈ P s . ( 22 
)
Then v = sρ -2 1 (1, t)∂ x p(1, t) ∈ L 2 (ρ 1 , (0, T )
) is a control function for [START_REF] Victor | The problem of blow-up in nonlinear parabolic equations[END_REF] where z = ρ -2 L p ∈ L 2 (ρ, Q T ) is the associated controlled trajectory, that is z(x, T ) = 0 for all x ∈ Ω and the operator defined by

Λ 0 s : B → z (23) 
is linear, continuous from L 2 (ρ, Q T ) to L 2 (ρ, Q T ). Moreover, the following estimate holds for some constant C > 0 independent of s:

ρz L 2 (Q T ) + s -1/2 ρ 1 v L 2 (0,T ) Cs -3/2 ρB L 2 (Q T ) . (24) 
Proof. We first ensure the solvability of the variational equation [START_REF] Lacey | Global blow-up of a nonlinear heat equation[END_REF]. Since (•, •) s is an inner product on P s , it suffices to check that the right hand side of ( 22) is a linear continuous form on P s .

For all q ∈ P s : since ρB ∈ L 2 (Q T ), we have

| Q T Bq| Q T |ρ 0 B| 2 1/2 Q T |ρ -1 0 q| 2 1/2
. Now, since q satisfies the Carleman inequality [START_REF] Ervedoza | A systematic method for building smooth controls for smooth data[END_REF], one has ρ -1 0 q L 2 (Q T ) Cs -3/2 q Ps . Thus, we have

Q T Bq Cs -3/2 ρ 0 B L 2 (Q T ) q Ps Cs -3/2 ρB L 2 (Q T ) q Ps
since ρ 0 = θ -3/2 ρ Cρ (for some constant C > 0 depending on T ).

Thus, the right hand side of [START_REF] Lacey | Global blow-up of a nonlinear heat equation[END_REF] corresponds to a linear functional on P s : the Riesz representation theorem implies the existence of a unique p ∈ P s satisfying the formulation [START_REF] Lacey | Global blow-up of a nonlinear heat equation[END_REF] and additionally

p Ps Cs -3/2 ρB L 2 (Q T ) , (25) 
where the constant C > 0 is independent of s s 0 .

Then, we set z = ρ -2 L p and v = sρ -2 1 (1, t)∂ x p(1, t). From the equality [START_REF] Lacey | Global blow-up of a nonlinear heat equation[END_REF], the pair (z, v) satisfies

Q T zL q dxdt + T 0 v(t)∂ x q(1, t) = Q T Bq, ∀q ∈ P s , meaning that z ∈ L 2 (Q T )
is the unique solution to the linear system [START_REF] Victor | The problem of blow-up in nonlinear parabolic equations[END_REF] associated with the control function v ∈ L 2 (0, T ) in the sense of transposition. Eventually, using the estimate [START_REF] Lemoine | Approximation of null controls for semilinear heat equations using a least-squares approach[END_REF] for p, we get

that ρz = ρ -1 L p ∈ L 2 (Q T ) and s -1/2 ρ 1 v = s 1/2 ρ -1 1 (1, t)∂ x p(1, t) ∈ L 2 (0, T
) and deduce the weighted estimate [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF].

Remark 2. The pair of functions (z, v) can be characterized as the unique minimizer of the functional

J s (z, v) = s 2 Q T ρ 2 z 2 + 1 2 T 0 ρ 2 1 (1, t)|v(t)| 2 , ( 26 
)
over the set (z, v) ∈ L 2 (ρ, Q T ) × L 2 (ρ 1 , (0, T )) solution to (19) with z(•, T ) = 0 in Ω .
We refer to [START_REF] Fursikov | Controllability of evolution equations[END_REF] for a detailed analysis.

Remark 3. The decomposition y = z + ηy 1 reduces the null-controllability for a system with zero initial and terminal conditions. This allows to use standard Carleman estimates with weights blowing up both at t = 0 and t = T , in contrast for instance to what have be done in [START_REF] Sylvain Ervedoza | Exact controllability of semilinear heat equations through a constructive approach[END_REF][START_REF] Lemoine | Constructive exact control of semilinear 1d heat equations[END_REF]. On the contrary, the occurence of a non-zero initial data u 0 would lead the extra term Ω u 0 q(0) in the variational formulation [START_REF] Lacey | Global blow-up of a nonlinear heat equation[END_REF], while there is no q(0) type term in [START_REF] Badra | Local controllability to trajectories for nonhomogeneous incompressible Navier-Stokes equations[END_REF]. Similarly, a zero initial condition avoids technical difficulties when one wants to get extra regularity property for the state-control pair, as done in Appendix B.

Refined estimate of the state-control pair in

H 1 (0, T ; L 2 (Ω)) × H 1 (0, T )
We refine Theorem 2 as we improve the regularity estimate for the state-control pair for [START_REF] Victor | The problem of blow-up in nonlinear parabolic equations[END_REF]. This technical part is crucial in our analysis.

Recall the function ϕ and weight functions ρ = e sϕ , ρ 2 = θ 1/2 ρ from ( 9) and denote

max x∈Ω ϕ(x, t) = θ(t) max x∈Ω ϕ 1 (x) = θ(t) e 2λ -1 =: θ(t)ϕ 1, t ∈ (0, T ), (27) 
and

ρ (t) = max x∈Ω ρ(x, t) = e sθ(t)ϕ1, , ρ 2, (t) = θ 1/2 (t)ρ (t), ∀t ∈ (0, T ). ( 28 
)
The following technical result is proved in Appendix B.

Theorem 3. Let (z, v) ∈ L 2 (ρ, Q T ) × L 2 (ρ 1 , (0, T ))
be the state-control for system [START_REF] Victor | The problem of blow-up in nonlinear parabolic equations[END_REF] given by Theorem 2. Then, for any B ∈ L 2 (ρ, Q T ), we have the following regularity estimates

ρρ -1/2 2, ∂ t z L 2 (Q T ) + s -1/2 ρ 1 ρ -1/2 2, v t L 2 (0,T ) Cs 1/2 ρB L 2 (Q T ) , (29) 
and

z L 2 (0,T ;H 2 (Ω)) + z H 1 (0,T ;L 2 (Ω)) Cse -c3s ρB L 2 (Q T ) , (30) 
for some constants C > 0 and c 3 > 0 that do not depend on s s 0 .

Remark 4. The estimate (30) and the compact embedding

L 2 (0, T ; H 2 (Ω)) ∩ H 1 (0, T ; L 2 (Ω)) → C 0 (Q T )
in dimension one imply that the controlled solution z belongs to L ∞ (Q T ).

Null-controllability of the semilinear equation

In this section, we prove the null-controllability of the semilinear equation in z, namely of [START_REF] Fursikov | Controllability of evolution equations[END_REF].

Since the initial data u 0 belongs to L ∞ (Ω), the solution

y 1 to (15) in Q T satisfies y 1 ∈ L ∞ (Q T ).
For any R > 0 and s s 0 , we now introduce the class C R (s), closed subset of

L 2 (ρ, Q T ) and L ∞ (Q T ), as follows C R (s) := z ∈ L ∞ (Q T ) ∩ L 2 (ρ, Q T ) : z L ∞ (Q T ) R, ρ z L 2 (Q T ) R 3/4 . (31) 
Assume that the nonlinear function f satisfies the growth condition (H 1 ) and for a given z ∈ C R (s), we solve the following linearized control system in z,

     ∂ t z -∂ xx z = -f ( z + ηy 1 ) + ηf (ηy 1 ) -η y 1 in Q T , z(0, •) = 0, z(1, •) = v in (0, T ), z(•, 0) = 0 in Ω. ( 32 
)
The existence of a state-control pair (z, v) such that z(•, T ) = 0 in Ω is guaranteed by Theorem 2.

Moreover, one has v ∈ H 1 0 (0, T ) and z ∈ L ∞ (Q T ) by means of Theorem 3 and Remark 4 respectively. Now, our aim is to prove the existence of a fixed point for the operator

Λ s : C R (s) → C R (s), Λ s ( z) = z. Recall that Λ s ( z) = Λ 0 s -[f ( z +ηy 1 )-ηf (ηy 1 )+η y 1 ] in terms of the notation introduced in Theorem 2.
Claim. In the spirit of [START_REF] Bhandari | Exact boundary controllability of 1d semilinear wave equation through a constructive approach[END_REF][START_REF] Sylvain Ervedoza | Exact controllability of semilinear heat equations through a constructive approach[END_REF] our goal is to show the following properties ;

• there exists some β > 0 in (H 1 ) such that the set C R (s) is stable under the map Λ s .

• -Λ s (C R (s)) is compact in C R (s) w.r.t. the topology induced by the norm of L ∞ (Q T ).
-Λ s is a continuous map in C R (s) w.r.t. the topology induced by the norm of L ∞ (Q T ).

Then, by the Schauder fixed point theorem, Λ s will have a fixed point z in C R (s), which will be a controlled trajectory for the semilinear equation [START_REF] Fursikov | Controllability of evolution equations[END_REF].

• We also show that Λ s is a contracting map from C R (s) into itself where C R (s) is endowed with the metric associated to the norm ρ

• L 2 (Q T ) . One can then construct a sequence (z k , v k ) k∈N which strongly converges in L 2 (ρ, Q T ) × L 2 (ρ 1 , (0, T ))
to a controlled pair (z, v) for [START_REF] Fursikov | Controllability of evolution equations[END_REF]. Moreover the convergence holds at least linearly w.r.t. the norm of

L 2 (ρ, Q T ) × L 2 (ρ 1 , (0, T )). 3.1 Estimate of Λ s ( z) L ∞ (Q T )
We begin with the following lemma.

Lemma 2. Assume R > 0 such that u 0 L 2 (Ω) R 1/2 , u 0 L ∞ (Ω)
R and f ∈ C 1 (R) satisfying the growth condition (H 1 ). There exists a constant C > 0 independent of s s 0 and R, such that for any

z ∈ C R (s), ρ f ( z + ηy 1 ) -ηf (ηy 1 ) + η y 1 L 2 (Q T ) ρ z L 2 (Q T ) C + β ln 3/2 + R + Ce cs 1 + α + β ln 3/2 + (α + β + 1) + β ln 3/2 + R (1 + R 1/2 ), ( 33 
)
where c := ϕ L ∞ (Ω×( T /2,3 T /4)) and C is given in Lemma 3.
The proof is based on the following result proved in [17, section 3.4].

Lemma 3 ([17]

). Let any m > 0 be given and assume f ∈ C 1 (R) satisfying f (0) = 0 and the growth condition (H 1 ). There exists a constant C > 0 only depending in m and f , such that for all r ∈ R and for all a

∈ [-m , m ], |f (r + a) -f (a)| |r|(C + β ln 3/2 + |r|).
Proof of lemma 2. We set m = y 1 L ∞ (Q T ) and observe that

ρ f ( z + ηy 1 ) -ηf (ηy 1 ) + η y 1 L 2 (Q T ) ρ f ( z + ηy 1 ) -f (ηy 1 ) L 2 (Q T ) + (1 -η)ρf (ηy 1 ) L 2 (Q T ) + η ρy 1 L 2 (Q T ) .
Lemma 3 then implies

ρ f ( z + ηy 1 ) -f (ηy 1 ) L 2 (Q T ) ρ z L 2 (Q T ) C + β ln 3/2 + R . (34) 
Moreover, using (H 1 ) and the properties of the function η from ( 14) and ( 16), we get

Q T (1 -η)ρf (ηy 1 ) 2 1/2 Q T ρ 2 (1 -η) 2 η 2 |y 1 | 2 α + β ln 3/2 + |ηy 1 | 2 1/2 C α + β ln 3/2 + ( y 1 L ∞ (Q T ) ) 3 T 4 T 2 Ω ρ 2 |y 1 | 2 1/2 Ce cs α + β ln 3/2 + (α + β + 1) + β ln 3/2 + R (1 + R 1/2 ), (35) 
where c > 0 is defined by

c := ϕ L ∞ (Ω×( T /2,3 T /4)) , (36) 
and ϕ is given in [START_REF] Coron | Null controllability and finite time stabilization for the heat equations with variable coefficients in space in one dimension via backstepping approach[END_REF]. We finally have

Q T ρ 2 (η ) 2 |y 1 | 2 1/2 3 T 4 T 2 Ω ρ 2 |y 1 | 2 1/2 Ce cs (1 + R 1/2 ). (37) 
Combining (34), ( 35) and (37), we get the estimate (33).

Proposition 3. Under the assumptions of Lemma 2, for s s 0 and for all z ∈ C R (s), the solution z = Λ s ( z) to the linearized system (32) satisfies the following estimates:

ρz L 2 (Q T ) + s -1/2 ρ 1 v L 2 (0,T ) Cs -3/2 ρ z L 2 (Q T ) C + β ln 3/2 + R + Cs -3/2 e cs 1 + α + β ln 3/2 + (α + β + 1) + β ln 3/2 + R (1 + R 1/2 ). (38) Moreover, z ∈ L 2 (0, T ; H 2 (Ω)) ∩ H 1 (0, T ; L 2 (Ω)) and z L ∞ (Q T ) Cse -c3s ρ z L 2 (Q T ) C + β ln 3/2 + R + Cse (c-c3)s 1 + α + β ln 3/2 + (α + β + 1) + β ln 3/2 + R (1 + R 1/2 ) (39)
where C > 0 neither depends on s s 0 nor on R, C is given in Lemma 3 and c, c 3 > 0 are given by (36) and (112) respectively.

Proof. Put B = -f ( z + ηy 1 ) -ηf (ηy 1 ) + η y 1 in the linear model [START_REF] Victor | The problem of blow-up in nonlinear parabolic equations[END_REF]. Then the proof follows from Theorem 2, Theorem 3, Remark 4 and Lemma 2.

Stability of the class C R (s) for suitable choices of parameters

Lemma 4. Let C R (s) be introduced in [START_REF] Zuazua | Exact controllability for semilinear wave equations in one space dimension[END_REF]. Under the assumptions of Lemma 2, if β in (H 1 ) is small enough, there exist s and R > 0 large enough such that

Λ s C R (s) ⊂ C R (s). ( 40 
)
Proof. We start with any z ∈ C R (s) for s s 0 and we look for the bounds of the solution z = Λ s ( z)

(to (32)) with respect to the associated norms. Since

z ∈ C R (s), one has ρ z L 2 (Q T ) R 3/4 and z L ∞ (Q T ) R. Therefore, the estimate (38) yields ρz L 2 (Q T ) Cs -3/2 R 3/4 C + β ln 3/2 + R + Cs -3/2 e cs 1 + α + β ln 3/2 + (α + β + 1) + β ln 3/2 + R (1 + R 1/2 ). (41) 
Similarly, estimate (39) implies

z L ∞ (Q T ) Cse -c3s R 3/4 C + β ln 3/2 + R + Cse (c-c3)s 1 + α + β ln 3/2 + (α + β + 1) + β ln 3/2 + R (1 + R 1/2 ). ( 42 
)
We now fix the parameter s in term of R as follows :

s = 1 4c ln + R, (43) 
for some R > 0 large enough to ensure the condition s s 0 .

With this choice of s, the solution z = Λ s ( z) satisfies, in view of (41

) (since z ∈ C R (s)), ρz L 2 (Q T ) C(4c) 3/2 ln 3/2 + R R 3/4 C + β ln 3/2 + R + C(4c) 3/2 ln 3/2 + R 1 + α + β ln 3/2 + (α + β + 1) + β ln 3/2 + R (1 + R 1/2 )R 1/4 . (44) 
Now, if β > 0 is small enough such that

C(4c) 3/2 β < 1 2 , (45) 
then, it can be guaranteed for large enough R > 0 that

           C(4c) 3/2 ln 3/2 + R R 3/4 C + β ln 3/2 + R 1 2 R 3/4 , C(4c) 3/2 ln 3/2 + R 1 + α + β ln 3/2 + (α + β + 1) + β ln 3/2 + R (1 + R 1/2 )R 1/4 1 2 R 3/4 . (46) 
This yields, in view of (44

) that ρz L 2 (Q T ) R 3/4 .
Similarly, in view of (42) and the fact that z belongs to C R (s), we infer that

z L ∞ (Q T ) C ln + R 4c R -c 3 4c R 3/4 C + β ln 3/2 + R + C ln + R 4c R ( 1 4 - c 3 4c ) 1 + α + β ln 3/2 + (α + β + 1) + β ln 3/2 + R (1 + R 1/2 ). ( 47 
)
Taking β > 0 as before, R large enough, we observe that

       C ln + R M c 3 R -c 3 4c R 3/4 C + β ln 3/2 + R 1 2 R, C ln + R M c 3 R ( 1 4 - c 3 4c ) 1 + α + β ln 3/2 + (α + β + 1) + β ln 3/2 + R (1 + R 1/2 ) 1 2 R. (48) 
From (47), this implies that

z L ∞ (Q T ) R. It follows that z = Λ s ( z) ∈ C R (s).
Remark 5. The smallness condition on β is explicit:

β < 1 2C(4c) 3/2 , ( 49 
)
where C is the constant appearing in Proposition 3.

Remark 6. Within the relation (43), C R (s) is stable for Λ s for any R R 0 large enough (equivalently s s 0 large enough). With the above choices, in view of (46)-( 48) and the conditions

u 0 L 2 (Ω) R 1/2 , u 0 L ∞ (Ω)
R appearing in Lemma 2, the lower bound s 0 can be chosen as depending logarithmically on u 0 L ∞ (Ω) .

Proof of the first item of Theorem 1: Application of Schauder fixed point argument

We prove the first item of Theorem 1 which reads as follows.

Theorem 4. There exists β > 0 such that if the function f ∈ C 1 (R) satisfies (H 1 ), then for all u 0 ∈ L ∞ (Ω) and T > 0, there exists a control v ∈ H 1 0 (0, T ) and a solution y

∈ L ∞ (Q T ) ∩ L 2 (0, T ; H 1 (Ω)) of (1) such that y(•, T ) = 0. 3.3.1 Relative compactness of the set Λ s (C R (s)) Proposition 4. Under the assumptions of Lemma 4, Λ s (C R (s)) is a relatively compact subset of C R (s) for the • L ∞ (Q T ) norm.
Proof. This is a consequence of (30) and the compact embedding z ∈ L 2 (0, T ; 

H 2 (Ω)) | ∂ t z ∈ L 2 (Q T ) → C 0 (Q T ) in
: C R (s) → C R (s) is continuous with respect to the L ∞ (Q T ) norm. Proof. Let ( z n ) n∈N be a sequence in C R (s) such that z n → z as n → +∞ w.r.t. the L ∞ (Q T ) norm for some z ∈ C R (s). Let z n = Λ s ( z n ) and show that z n → z := Λ s ( z) as n → +∞ w.r.t. the same norm. Since f ∈ C 1 (R), f is uniformly continuous in [-R, R] implying that f ( z n + ηy 1 ) → f ( z + ηy 1 ) in L ∞ (Q T ) (50) 
and since ρ f ( z n + ηy 1 ) -ηf (ηy

1 ) + η y 1 n∈N is bounded in L 2 (Q T ) (see Lemma 2), we infer that ρ f ( z n + ηy 1 ) -ηf (ηy 1 ) + η y 1 ρ f ( z + ηy 1 ) -ηf (ηy 1 ) + η y 1 weakly in L 2 (Q T ). ( 51 
)
On the other hand, from Theorem 2, for all n ∈ N there exists p n ∈ P s and p ∈ P s such that z n = ρ -2 (s)L p n and z = ρ -2 (s)L p where p n and p are the unique solution of ( 22) associated to B n = f ( z n + ηy 1 ) -ηf (ηy 1 ) + η y 1 and B = f ( z + ηy 1 ) -ηf (ηy 1 ) + η y 1 respectively. Recalling the the bound [START_REF] Lemoine | Approximation of null controls for semilinear heat equations using a least-squares approach[END_REF] for p n , we infer that p n p weakly in P s , which yields, since

L 2 (Q T ) = L (P ) to z n z weakly in L 2 (Q T ). But Λ s (C R (s)) is a relatively compact subset of C R (s) for the • L ∞ (Q T ) norm (see Proposition 4) and thus z n → z in L ∞ (Q T ).

Proof of Theorem 4

Suppose that s is given by (43) and β satisfies (49

). Since C R (s) is a closed convex set of L ∞ (Q T ), by
Lemma 4, Propositions 4 and 5, we deduce from the Schauder fixed-point theorem that there exists a fixed point z ∈ C R (s) of the map Λ s . Therefore, by construction of Λ s , there exists v ∈ L 2 (ρ 1 , (0, T ))

such that z ∈ L 2 (ρ, Q T )
is the unique solution of the null controllability problem (18) associated with v.

Moreover, by Theorem 3, v ∈ H 1 0 (0, T ) and thus z ∈ L 2 (0, T ;

H 2 (Ω)) ∩ H 1 (0, T ; L 2 (Ω)).
Then, we recover the controlled solution y of our main semilinear problem (1) from the decomposition y = z + ηy 1 associated to the same control function v as above, and that satisfies y

∈ L ∞ (Q T ) ∩ L 2 (0, T ; H 1 (Ω))
, and y(•, T ) = 0. This ends the proof of Theorem 4, that is the first item of Theorem 1.

Remark 7. The C 1 regularity assumption made on the function f in Theorem 4 is technical and the consequence of the decomposition (5) allowing to apply to z the Carleman estimate [START_REF] Ervedoza | A systematic method for building smooth controls for smooth data[END_REF], which involves blowing up weights at the initial and final time. In order to avoid this decomposition and assume only f ∈ C 0 (R) as in [START_REF] Sylvain Ervedoza | Exact controllability of semilinear heat equations through a constructive approach[END_REF], one would need to replace the estimate (12) by an estimate without blowing up weight at time t = 0 (as the one used in [START_REF] Sylvain Ervedoza | Exact controllability of semilinear heat equations through a constructive approach[END_REF], see Lemma 2.1 and developed in [1, Theorem 2.5] in an interior situation). The adaptation of [1, Theorem 2.5] to a boundary situation remains to be done.

Proof of the second item of Theorem 1: Application of Banach fixed point argument

We prove the second item of Theorem 1. Precisely, we prove that Λ s is indeed a contracting map on the class C R (s) w.r.t. L 2 (ρ, Q T ) norm. This leads to a constructive method to find its fixed point.

We endow the convex set C R (s) to the metric associated with the distance function d(z 1 , z 2 ) :=

ρ(z 1 -z 2 ) L 2 (Q T ) .
Proposition 6. Assume that f ∈ C 1 (R) with f (0) = 0 satisfies (H 1 ) with β > 0 as given by (49); s and R as chosen in Lemma 4. Then, the following holds

d Λ s ( z 2 ), Λ s ( z 1 ) 1 2 d( z 2 , z 1 ), ∀ z 1 , z 2 ∈ C R (s) (52) 
and implies that Λ s is a contracting map from C R (s) into itself w.r.t. the metric d.

Proof. Let z 1 , z 2 ∈ C R (s). We have Λ s ( z j ) = Λ 0 s -[f ( z j -ηf (ηy 1 )+η y 1 )] , j = 1, 2. But Λ 0 s is linear and continuous from L 2 (ρ, Q T ) into itself and therefore, Λ s ( z 2 ) -Λ s ( z 1 ) = Λ 0 s (-[f ( z 2 + ηy 1 ) -f ( z 1 + ηy 1 )]).
Then, from [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] we get that

ρ(Λ s ( z 2 ) -Λ s ( z 1 )) L 2 (Q T ) Cs -3/2 ρ(f ( z 2 + ηy 1 ) -f ( z 1 + ηy 1 )) L 2 (Q T ) .
Then, we can use (H 1 ) to deduce

ρ(Λ s ( z 2 ) -Λ s ( z 1 )) L 2 (Q T ) C(4c) 3/2 α + β ln 3/2 + ((α + β + 2)) ln 3/2 + R + β ρ( z 2 -z 1 ) L 2 (Q T ) , (53) 
since s is given by (43). But recall that C(4c) 3/2 β < 1/2 from (45), which gives the required result as soon as R is large enough.

Theorem 5. Assume that f ∈ C 1 (R) with f (0) = 0 satisfying (H 1 ) with β > 0 satisfying (49); s and R as chosen in Lemma 4. Then, for any z 0 ∈ C R (s), the sequence (z k ) k∈N ⊂ C R (s) given by

z k+1 = Λ s (z k ), k 0,
together with the associated sequence of controls

(v k ) k∈N ⊂ H 1 0 (0, T ) strongly converge in L 2 (ρ, Q T ) × L 2 (ρ 1 , (0, T )) to a pair (z, v) such that (ηy 1 + z, v
) is a state-control pair solution of (1). Moreover, the convergence is at least linear with respect to the distance d.

Proof. The convergence of the sequence (z k ) k∈N toward z = Λ s (z) ∈ C R (s) with linear rate follows from the contracting property of Λ s :

ρ(z -z k ) L 2 (Q T ) = ρ(Λ s (z) -Λ s (z k-1 )) L 2 (Q T ) 1 2 k ρ(z -z 0 ) L 2 (Q T ) 1 2 k-1 R 3/4 . Let now v ∈ H 1 0 (0, T ) be associated with z so that z -z k satisfies, for every k ∈ N      ∂ t (z -z k ) -∂ xx (z -z k ) = -f (z + ηy 1 ) -f (z k-1 + ηy 1 ) in Q T , (z -z k )(0, •) = 0, (z -z k )(1, •) = (v -v k ) in (0, T ), (z -z k )(•, 0) = (z -z k )(•, T ) = 0 in Ω. ( 54 
)
Estimate [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] then implies (recall

s = 1 4c ln + R) ρ 1 (v -v k ) L 2 (0,T ) Cs -1 ρ f (z + ηy 1 ) -f (z k-1 + ηy 1 ) L 2 (Q T ) C M c 3 ln + R α + β ln 3/2 + (α + β + 2) + β ln 3/2 + R ρ(z -z k-1 ) L 2 (Q T )
and therefore the convergence of the sequence (v k ) k∈N toward a null control for (1) is at least linear. 

Numerical illustrations

We present some numerical illustrations of the convergence result given by Theorem 5 and emphasize the influence of the parameter s. More precisely, for s large enough, we compute the sequence (z k , v k ) k∈N solution to

     ∂ t z k -∂ xx z k = -f (z k-1 + ηy 1 ) + ηf (ηy 1 ) -η y 1 in Q T , z k (0, •) = 0, z k (1, •) = v k in (0, T ), z k (•, 0) = z k (•, T ) = 0 in Ω, (55) 
obtained through the variational formulation [START_REF] Lacey | Global blow-up of a nonlinear heat equation[END_REF] with the source term B = -f (z k-1 + ηy 1 ) + ηf (ηy 1 )η y 1 . We first sketch the algorithm by closely following the work [START_REF] Sylvain Ervedoza | Exact controllability of semilinear heat equations through a constructive approach[END_REF] and then discuss some numerical experiments obtained with the software FreeFem++ (see [START_REF] Hecht | New development in Freefem++[END_REF]).

Construction of the free solution component y 1 . At first, we need to construct a component y 1 satisfying the semilinear problem [START_REF] Fernández | Strong convergent approximations of null controls for the 1D heat equation[END_REF]. To do so, we employ the least squares variational approach developed in [START_REF] Münch | Numerical null controllability of the heat equation through a least squares and variational approach[END_REF] (actually for studying the numerical null-controllability of heat equations) well adapted to a space-time approximation.

4.1 Construction of the sequence

(z k , v k ) k 1
Starting with some suitable initial guess z 0 ∈ C R (s), we can obtain the solution z k to (55) with a control v k based on Theorem 2. Assume that the value of the Carleman parameter s satisfies Lemma 4. Then, for each k 1, we define the unique solution p k ∈ P s (see Theorem 2) of

(p k , q) s = Q T -f (z k-1 + ηy 1 ) + ηf (ηy 1 ) -η y 1 q dxdt, ∀q ∈ P s . (56) 
Then, we set

z k = ρ -2 L p k (recall that L = -∂ t -∂ xx ) in Q T and v k = sρ -2 1 (1, •)∂ x p k (1, •) in (0, T ).
The numerical approximation of the variational formulation (56) has been addressed in [START_REF] Fernández | Strong convergent approximations of null controls for the 1D heat equation[END_REF][START_REF] Fernández | Numerical exact controllability of the 1D heat equation: duality and Carleman weights[END_REF]. A conformal finite dimensional approximations, say P s,h of P s , leads to a strong convergent approximation p k,h of p k for the P s norm as the discretization parameter h goes to 0. Then, from p k,h , we can define the approximated controlled solution

z k,h := ρ -2 L p k,h and v k,h := sρ -2 1 (1, •)∂ x p k,h (1, •) in [0, T ].
The sequence (z k , v k ) k 1 is initialized with (z 0 , v 0 ) = (0, 0) so that (z 1 , v 1 ) is the solution to the linear system (55) with the right hand side B = -f (ηy 1 ) + ηf (ηy 1 ) -η y 1 . We perform the iterations until the following criterion (based on Proposition 6) is fulfilled

ρ(z k+1 -z k ) L 2 (Q T ) ρz k L 2 (Q T ) 10 -6 . ( 57 
)
We denote by k the smallest integer k such that (57) holds. Remark that, since the weight ρ is strictly positive, the convergence of the sequence (ρz k ) k∈N (stated in Proposition 6) implies the convergence of the sequence (z k ) k∈N . Finally, we express the solution-control pair (y k , v k ) of the main semilinear problem (1) as follows:

y k = ηy 1 + z k = ηy 1 + ρ -2 L p k in Q T , v k = sρ -2 1 (1, •)∂ x p k (1, •) in (0, T ), (58) 
where y 1 is obtained numerically as mentioned earlier.

Concerning the approximation of the formulation (56), we use a conformal space-time finite element method. We introduce a regular triangulation T h of Q T such that Q T = K∈T h K. We assume that {T h } h>0 is a regular family, where the index h is such that h = max K∈T h diam (K). We then approximate the variables p k in the space

V h := {v h ∈ C 1 (Q T ) : v h | K ∈ P(K)
, ∀K ∈ T h } ⊂ P s , where P(K) denotes the composite Hsieh-Clough-Tocher C 1 element defined for triangles. We refer to [8, page 356] and [START_REF] Bernadou | Basis functions for general Hsieh-Clough-Tocher triangles, complete or reduced[END_REF] where the implementation has been discussed.

Numerical experiments

In this section, we make several numerical experiments related to our boundary null controllability of the semilinear heat equation. In this way, we can numerically observe the convergence of the sequence (z k , v k ) k 1 to a state-control pair of the semilinear system (according to Theorem 5).

4.2.1

Experiments with nonlinear growth r ln 3/2 (2 + |r|)

Let us consider the nonlinear function as follows: Last, the value of the parameter λ = λ 0 is taken equal to 0.02 in [START_REF] Coron | Null controllability and finite time stabilization for the heat equations with variable coefficients in space in one dimension via backstepping approach[END_REF].

f (r) = c f r α + β ln 3/2 2 + |r| , (59) 
Finally we employ a regular space-time mesh of the domain Q T = (0, 1) × (0, 0.5) composed of 40 000 triangles and 20 301 vertices corresponding to a discretization parameter h ≈ 7.07 × 10 -3 .

I. Experiments for fixed (c f , c u0 ) w.r.t. the parameter s. Let us make some experiments for fixed parameters c f (associated with the nonlinear function) and c u0 (associated with the initial data). We first choose c f = -1.5 and c u0 = 15, and present several norms of the state-control pair in Table 1 w.r.t.

s ∈ {1, 2, 3, 4}. 

s z k L 2 (Q T ) ρz k L 2 (Q T ) y k L 2 (Q T ) v k L 2 (0,T ) v k L ∞ (0,T ) k 1 8.658 × 10 -
c f , c u0 ) = (-1.5, 15); f (r) = c f r(1 + ln 3/2 (2 + |r|)); Norms of z k , y k , v k w.r.t. s.
But as soon as we increase the value of |c f |, the convergence for a given s is lost. For instance, if we choose c f = -2.5 (with the same value c u0 = 15), we check that s = 1 is not large enough to imply the Banach contraction property (ensuring the convergence of the algorithm w.r.t. the criterion (57)).

Then, by choosing s 2, we recover the required convergence criterion (57). The results are provided in Table 2. 

s z k L 2 (Q T ) ρz k L 2 (Q T ) y k L 2 (Q T ) v k L 2 (0,T ) v k L ∞ (0,T ) k 2 
ρ(z k+1 -z k ) L 2 (Q T ) ρz k L 2 (Q T )
w.r.t. to the iteration number k for s ∈ {1, 2, 3, 4}. In agreement with Remark 8, we observe that the decay of the error is amplified with larger values of s. We also observe in Table 2 that the weighted norm ρz k L 2 (Q T ) increases as s

getting larger in agreement with the fact that the weight ρ increases with s (they behave like e sθ(t) ). We also observe that the norms

z k L 2 (Q T ) (consequently y k L 2 (Q T )
) and v k L 2 (0,T ) of the control-state pair are monotonous with respect to s.

II. Evolution of the controlled solutions. In this part, we present some figures of the controlled solutions and the associated controls for the semilinear system.

We first consider c f = -1.5 and c u0 = 15. Figure 2-left depicts the boundary control functions v k for s ∈ {2, 3, 4} for our semilinear problem (1) and in Figure 2-right, we plot the evolution of the norms y k (•, t) L 2 (Ω) w.r.t. time t (y k is given by (58)). Remark in particular that the the control functions vanish at t = 0 and t = T in accordance with our construction given by (58).

For higher values of negative c f , the norms v k L ∞ (0,T ) and y k L 2 (Q T ) are comparatively larger than the ones with lower values of negative c f as one can compare with Tables 1 and2; see also Table 3.

This can also be observed in Figure 3: Left and Right, where we consider c f = -2.5 and choose the same values of c u0 and s as before, and plot the control functions as well as the norms of solutions w.r.t. time. we also observe that the required number of iterations k increases with large negative values of c f , for example when c f = -2.9, the number of iterations is k = 79 to satisfy the convergence criterion. For larger negative c f , for instance c f = -3, the algorithm fails to converge, which is somehow in agreement with the smallness assumption on β in our Theorem 1.

ρ(z k+1 -z k ) L 2 (Q T ) ρz k L 2 (Q T ) w.r.t. iterations k for (c f , c u0 ) = (-2.5, 15); f (r) = c f r(1 + ln 3/2 (2 + |r|)).
On contrary, when c f > 0 (implying rf (r) 0), the algorithm is more favorable in the sense that the norms of the state-control pairs are much smaller. We can also observe this phenomenon in the 3. IV. Experiments for fixed (s, c f ) w.r.t. the parameter c u0 . Let us now fix some suitable parameters s (preferably large) and c f (preferably small) and then vary the size of the initial data u 0 in terms of the parameter c u0 . We give some results in Table 4 for (s, c f ) = (4, -1). One can observe that for large c u0 also, the algorithm converges which gives the evidence of the global null-controllability for our semilinear system (1) with the suitable choice of Carleman parameter s and c f (that is β, according to Remark 5).

c f z k L 2 (Q T ) ρz k L 2 (Q T ) y k L 2 (Q T ) v k L 2 (0,T ) v k L ∞ (0,T ) k -2
Since we choose initial data with very large norms, the critical time T is going to be small for the existence of solution component y 1 to the system [START_REF] Fernández | Strong convergent approximations of null controls for the 1D heat equation[END_REF]. So, in this case we set T = T /4 in order to ensure that y 1 exists in Q T . However, as expected, when we choose large initial data, it needs more number of iterations to fulfill the convergence criterion (57) of our algorithm; we refer Table 4 for several experiments. 3. V. Experiments for fixed (s, c f , c u0 ) w.r.t. different diffusion coefficients. The boundary controllability of our semilinear problem still holds true for the heat operator L ν = ∂ t -ν∂ xx with any diffusion coefficient ν > 0. In this paragraph, we make some numerical experiments when the coefficient ν > 0 is smaller than 1. More precisely, we make some simulations in Table 5 with the choices of data as given by (60) for some fixed s, c u0 and c f and w.r.t. ν. It is observable that for ν smaller, the norms of the solution-control pair is comparatively larger; also it needs more iterations to satisfy the convergence criterion (57) (see Table 5). VI. Experiments with some localized initial data. Let us now make some experiments with the initial H 1 (0, 1) data

c u0 z k L 2 (Q T ) ρz k L 2 (Q T ) y k L 2 (Q T ) v k L 2 (0,T ) v k L ∞ (0,
ν z k L 2 (Q T ) ρz k L 2 (Q T ) y k L 2 (Q T ) v k L 2 (0,T ) v k L ∞ (0,T ) k 0.
u 0 (x) = e -100(x-0.7) 2 , x ∈ (0, 1). ( 61 
)
The nonlinear function is again f (r) = c f (α + β ln 3/2 (2 + |r|)) with c f = -2.5. In Table 6, we present the results for different values of s when the diffusion coefficient is ν = 0.5. In this case, we check that s = 1 is not large enough to imply the Banach contraction property w.r.t. the stopping criterion (57). By choosing s 2, we recover the required convergence criterion. We plot the associated control functions and the evolution of the L 2 -norms of the solutions y k w.r.t. s ∈ {2, 3, 4} in Figure 9: Left and Right respectively.

s z k L 2 (Q T ) ρz k L 2 (Q T ) y k L 2 (Q T ) v k L 2 (0,T ) v k L ∞ (0,T ) k 2 7
.229 × 10 -2 1.715 × 10 -1 1.122 × 10 -1 1.923 × 10 -1 4.683 × 10 -1 27 3 7.798 × 10 -2 2.715 × 10 -1 1.156 × 10 -1 2.079 × 10 -1 5.322 × 10 -1 13 4 8.289 × 10 -2 4.219 × 10 -1 1.185 × 10 -1 2.215 × 10 -1 5.909 × 10 -1 10 Table 6: u 0 (x) = e -100(x-0.7) 2 ; ν = 0.5; We also make some experiments w.r.t. different diffusion coefficients ν when c f = -2.5 and the Carleman parameter s = 4. We refer Table 7 for several values upon experiments and 

c f = -2.5; f (r) = c f r(1 + ln 3/2 (2 + |r|)); Norms of z k , y k , v k w.r.t. s.
ν z k L 2 (Q T ) ρz k L 2 (Q T ) y k L 2 (Q T ) v k L 2 (0,T ) v k L ∞ (0,T ) k 0.3 2.837 × 10 -1
1.453 2.785 × 10 -1 8.338 × 10 -1 2.080 55 0.4 1.475 × 10 -1 7.467 × 10 -1 1.653 × 10 -1 4.034 × 10 -1 1.045 16 0.5 8.289 × 10 -2 4.219 × 10 -1 1.185 × 10 -1 2.215 × 10 -1 5.909 × 10 -1 10 0.7 2.968 × 10 -2 1.545 × 10 -1 8.279 × 10 -2 7.878 × 10 -2 2.063 × 10 -1 8 1.0 8.653 × 10 -3 4.711 × 10 -2 6.343 × 10 -2 2.260 × 10 -2 5.915 × 10 -2 6

Table 7:

u 0 (x) = e -100(x-0.7) 2 ; (s, c f ) = (4, -2.5); f (r) = c f r(1 + ln 3/2 (2 + |r|)); Norms of z k , y k , v k w.r.t. ν.

Experiments with quadratic growth nonlinearity

In order to enhance the importance of the assumption (H 1 ) on the first derivative of f , let us consider the following nonlinear function

f (r) = -r 2 , ∀r ∈ R (62)
which does not satisfy the assumption (H 1 ). It is known that, with this kind of nonlinearity one can at most expect the local null-controllability of the system, meaning that the choice of the initial data should be small enough to achieve the controllability. We shall numerically observe this phenomenon (using our algorithm) in Table 8, where we get that the number of iterations are larger associated to larger initial data. For instance (with the initial data u 0 (x) = c u0 sin(πx)), when c u0 = 12 the number of iterations is k = 12 to fulfill the convergence criterion (57) whilst by taking c u0 = 13, it needs k = 31.

Moreover, the associated norms of the solution-control pairs are significantly larger for c u0 = 13 than for c u0 = 12. Testing the algorithm with slightly larger c u0 , namely with c u0 = 13.1, we observe that the number of iterations increse to k = 51 and v k L ∞ (0,T ) ≈ 51.183 whereas for c u0 = 13, we have It is also interesting to make some experiments for fixed c u0 when the Carleman parameter s varies.

v k L ∞ (0,T ) ≈ 26.761.
c u0 z k L 2 (Q T ) ρz k L 2 (Q T ) y k L 2 (Q T ) v k L 2 (0,T ) v k L ∞ (0,T ) k 10 
= 3; f (r) = -r 2 ; u 0 (x) = c u0 sin(πx); Norms of z k , y k , v k w.
From Table 8, we recall that for c u0 = 13, the number of iterations is k = 31 to achieve the stopping criterion (57) when s = 3. Now, for this particular value c u0 = 13, our goal is to see the changes of iteration numbers as well as the norms of the state-control pair for different values of s, namely for s ∈ {2, 3, 4}. We refer Table 9 for the results. The associated control functions and evolution of the solutions (in terms of L 2 -norms) for s ∈ {2, 3, 4} are given by Figure 13: Left and Right respectively. A simple fixed point operator for which the nonlinear term is seen as a right hand side is introduced and proved to satisfy the Schauder theorem as soon the C 1 function f satisfies the usual asymptotic growth condition (H 1 ) considered in the interior case in the literature. Then, assuming a similar asymptotic condition on f , namely (H 1 ), we have proved that the fixed point operator is contracting yielding a strongly convergent sequence to a controlled solution for the nonlinear heat equation. As in [START_REF] Bhandari | Exact boundary controllability of 1d semilinear wave equation through a constructive approach[END_REF] but also in [START_REF] Sylvain Ervedoza | Exact controllability of semilinear heat equations through a constructive approach[END_REF][START_REF] Lemoine | Constructive exact control of semilinear 1d heat equations[END_REF], the analysis emphasizes the role of the Carleman weights parametrized by the real s.

s z k L 2 (Q T ) ρz k L 2 (Q T ) y k L 2 (Q T ) v k L 2 (0,T ) v k L ∞ (0,T ) k 2 
A key point in the application of the above fixe point theorems is a regularity property for a statecontrol pair of a linear heat equation. Precisely, we have proven that the unique control-state pair (y, v) for

     ∂ t z -∂ xx z = B in Q T , z(0, •) = 0, z(1, •) = u in (0, T ), z(•, 0) = 0 in Ω with B ∈ L 2 (Q T ) which minimizes (z, u) → ρz 2 L 2 (Q T ) + ρ 0 u 2 L 2 (0,T )
among the admissible statecontrol pairs enjoys the regularity L 2 (0, T ; H 2 (Ω)) ∩ H 1 (0, T ; L 2 (Ω)) × H 1 0 (0, T ); in particular, in our one dimensional setting, this optimal pair is uniformly bounded. To our knowledge, this crucial regularity property obtained from technical developments is original for the heat equation.

Following standard arguments (see for instance [START_REF] Sylvain Ervedoza | Exact controllability of semilinear heat equations through a constructive approach[END_REF][START_REF] Fernández | Null and approximate controllability for weakly blowing up semilinear heat equations[END_REF]), the analysis can be extended to address the controllability to trajectories. Moreover, by extending the above regularity property, we may also consider multi-dimensional situations as well as boundary Neumann actuations.
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Appendices

A Proof of Proposition 2

Let α > 0, β > 0, M > 0, g be a continuous function on R 2 satisfying the growth condition |g(t, r)|

|r|(α + β ln 3/2 + |r|) for all t ∈ R, and u 0 ∈ L 2 (Ω) such that u 0 L 2 (Ω)
M . There exists T g,u0 > 0 and

u ∈ C([0, T g,u0 ]; L 2 (Ω)) ∩ L 2 (0, T g,u0 ; H 1 0 (Ω)
) solution of ( 13) on Q Tg,u 0 . We refer for instance to [START_REF] Cazenave | An introduction to semilinear evolution equations[END_REF]. Let us check that T g,u0 can be chosen independently of g and u 0 but only in term of the parameter α, β and

M > 0 where u 0 L 2 (Ω) M .
We have, on (0, T g,u0 )

1 2 ∂ t Ω |u| 2 + Ω |∂ x u| 2 = Ω g(t, u)u
and thus, since ln

3/2 + |r| |r|, 1 2 ∂ t Ω |u| 2 + Ω |∂ x u| 2 g(t, u) L 2 (Ω) u L 2 (Ω) |u|(α + β ln 3/2 + |u|) L 2 (Ω) u L 2 (Ω) α u 2 L 2 (Ω) + β u 3/2 L 3 (Ω) u L 2 (Ω) . But, u L 3 (Ω) u 2/3 L 2 (Ω) u 1/3 L ∞ (Ω) C u 2/3 L 2 (Ω) ∂ x u 1/3 L 2 (Ω)
and thus u

3/2 L 3 (Ω) C u L 2 (Ω) ∂ x u 1/2 L 2 (Ω) Cβ u 2 L 2 (Ω) + 1 β ∂ x u L 2 (Ω) .
This gives

1 2 ∂ t Ω |u| 2 + Ω |∂ x u| 2 α u 2 L 2 (Ω) + Cβ 2 u 3 L 2 (Ω) + u L 2 (Ω) ∂ x u L 2 (Ω)
and thus

∂ t Ω |u| 2 + Ω |∂ x u| 2 (2α + 1) u 2 L 2 (Ω) + Cβ 2 u 3 L 2 (Ω) = G α,β u 2 L 2 (Ω)
where G α,β (r) = (2α + 1)r + Cβ 2 |r| 3/2 . Since G α,β is bounded in the bounded sets of R, there exists (see [START_REF] Simon | Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure[END_REF]Lemma 6,p. 1098]) T = T α,β,M (so independent of the choices of g and u 0 but only on the norm u 0 L 2 (Ω) M and the parameters α, β) such that for all 0 t T :

u(t) 2 L 2 (Ω) + t 0 Ω |∂ x u| 2 u 0 2 L 2 (Ω) + 1, (63) 
which shows that T g,u0 can always be chosen greater than T . Moreover, following the proof given in [START_REF] Simon | Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure[END_REF], it is easy to prove that T is greater than

1 2α(M +1)+cβ(M +1) 3/2 for some c = c(Ω) > 0.

B Proof of Theorem 3

Assuming the right hand side B ∈ L 2 (ρ, Q T ), we prove regularity properties for the state-control pair solution of [START_REF] Victor | The problem of blow-up in nonlinear parabolic equations[END_REF] given by Theorem 2. We start with the regular case B ∈ D(R; L 2 (Ω)) then conclude by a density argument. The procedure is similar as the one used in [START_REF] Bhandari | Exact boundary controllability of 1d semilinear wave equation through a constructive approach[END_REF] devoted to the wave equation (see also [START_REF] Ervedoza | A systematic method for building smooth controls for smooth data[END_REF]) and consists in using appropriate test functions in the variational formulation ( 22) so as to make appear some derivatives of the state-control pair. The group property has been used in [START_REF] Bhandari | Exact boundary controllability of 1d semilinear wave equation through a constructive approach[END_REF][START_REF] Ervedoza | A systematic method for building smooth controls for smooth data[END_REF] devoted to the wave equation to extend solution out of the time interval (0, T ), in particular for t < 0. As mentioned in [START_REF] Ervedoza | A systematic method for building smooth controls for smooth data[END_REF]Section 6], this is no longer possible for the heat equation considered here. Hopefully, the particular structure of the Carleman weights allows to extend appropriate weighted solution.

Definition 1. For any Banach space E, f ∈ C 0 (R; E) and τ = 0, we define

δ τ f := f t + τ 2 -f t - τ 2 , T τ f := 1 τ δ τ δ τ f τ = f (t + τ ) -2f (t) + f (t -τ ) τ 2 , δ τ f (t) := f (t + τ ) -f (t). ( 64 
)
Remark that T τ (f ) = 1 τ 2 δ τ f (t) -δ τ f (t -τ ) .
First, in view of the structure of the weight ρ(x, t) = e sθ(t)ϕ1(x) (see ( 9)), we extend by 0 on (-∞, 0] ∪ [T, +∞) any negative power of ρ : more precisely, we shall use that for all α ∈ R and β > 0 :

θ α ρ -β ∈ C ∞ (R; C ∞ (Ω)) and θ α ρ -β ∈ C ∞ (R; C ∞ (Ω)).
Similarly, since θ t = (2t -T )θ 2 , we shall consider the following extension :

(ρ -1 ) t = s(T -2t)θ 2 ϕ 1 ρ -1 for t ∈ (0, T ), 0 for t ∈ (-∞, 0] ∪ [T, +∞), ( 65 
) (ρ -1 ) t = s(T -2t)θ 2 ϕ ρ -1 for t ∈ (0, T ), 0 for t ∈ (-∞, 0] ∪ [T, +∞), (66) and (ρ 
-1 ) x = -sθ(ϕ 1 ) x ρ -1 for t ∈ (0, T ), 0 for t ∈ (-∞, 0] ∪ [T, +∞), (67) 
(ρ -1 ) xx = -sθ(ϕ 1 ) xx ρ -1 + s 2 θ 2 |(ϕ 1 ) x | 2 ρ -1 for t ∈ (0, T ), 0 for t ∈ (-∞, 0] ∪ [T, +∞). ( 68 
)
Recalling that ρ -1 2, = θ -1/2 ρ -1 , we shall also use in the sequel the derivative

(ρ -1 2, ) t =    T -2t 2 θ 1/2 ρ -1 + s(T -2t)θ 3/2 ϕ ρ -1 := γ(t)ρ -1 2,
for t ∈ (0, T ),

0 for t ∈ (-∞, 0] ∪ [T, +∞), (69) 
with

γ(t) := T -2t 2 θ + s(T -2t)θ 2 ϕ . (70) 
Lemma 5. Let p ∈ P s is given by Theorem 2. Then ρ -1 2, p ∈ P and the function p defined by

p = ρ -1 2, p in (0, T ), 0 in R \ (0, T )
also satisfies p ∈ P . Moreover, there exists a constant C > 0 such that

L (ρ -1 2, p) L 2 (Q T ) C p Ps . (71) 
Proof. From the Carleman estimate ( 12), since ρ -1 2,

Cρ -1 2 Cρ -1 1 Cρ -1 0 for some C > 0 and (ρ -1 2, ) t p ∈ L 2 (Q T ), we get ρ -1 2, p ∈ P ; thus ρ -1 2, p ∈ C([0, T ]; L 2 (Ω)) and thus p ∈ L 2 (R; H 2 (Ω) ∩ H 1 0 (Ω)). Moreover, since θ 2 ρ -1 2, Cρ -1 0 , ρ -1 2, Cρ -1 2 and ρ -1 0 p ∈ L 2 (Q T ), ρ -1 2 p t ∈ L 2 (Q T ), we get that (ρ -1 2, p)(0) = (ρ -1 2, p)(T ) = 0; therefore ρ -1 2, p ∈ H 1 0 (0, T ; L 2 (Ω)). It follows that p ∈ H 1 (R; L 2 (Ω))
and that p ∈ P . Furthermore, Carleman estimate [START_REF] Ervedoza | A systematic method for building smooth controls for smooth data[END_REF] yields

L (ρ -1 2, p) 2 L 2 (Q T ) 2 ρ -1 2, (p t + p xx ) 2 L 2 (Q T ) + 2 (ρ -1 2, ) t p 2 L 2 (Q T ) 2 ρ -1 L p 2 L 2 (Q T ) + CT 2 s 2 Q T θ 4 ρ -2 2, |p| 2 2 ρ -1 L p 2 L 2 (Q T ) + CT 2 s 2 Q T θ 3 ρ -2 |p| 2 2 ρ -1 L p 2 L 2 (Q T ) + CT 2 s -1 p 2 Ps ,
that is (71).

Without confusion, we shall use in the subsequent computations the notation ρ -1 2, p as defined over Ω × R instead of p.

From the previous lemma, the function

T τ (ρ -1 2, p) = (ρ -1 2, p)(t + τ ) -2(ρ -1 2, p)(t) + (ρ -1 2, p)(t -τ ) τ 2
, for any τ = 0, (72) also belongs to the space P and in particular, T τ (ρ -1 2, p) ∈ P s . Eventually, since ρ -1 2, = θ -1/2 ρ -1 does not depend on x (see ( 28)), we get that ρ -1 2, p satisfies the equation in

Q T = Ω × (0, T )        L (ρ -1 2, p) = ρ -1 2, (ρ 2 z) -(ρ -1 2, ) t p in Q T , (ρ -1 2, p)(0, •) = (ρ -1 2, p)(1, •) = 0 in (0, T ), (ρ -1 2, p)(•, 0) = 0, (ρ -1 2, p)(•, T ) = 0 in Ω (73) 
where z = ρ -2 L p is the controlled solution introduced in Theorem 2.

We now proceed to the proof of Theorem 3 decomposed into four steps:

Step 1. We prove the following estimate.

Proposition 7. Let s s 0 . Let ρ 3 and ρ 4 be defined by

ρ 3 = ρ 2 ρ -1 2,
and

ρ 4 = ρ 2 1 ρ -1 2, . (74) 
Assume B ∈ D(0, T ; L 2 (Ω)). The unique solution p ∈ P s of (22) satisfies

Q T ρ -1 3 (t) L (ρ -1 2, p) t 2 dxdt + s T 0 ρ -1 4 (1, t) (ρ -1 2, p) xt (1, t) 2 dt Cs Q T |ρB| 2 dxdt. ( 75 
)
Observe first that for all s s 0 and λ λ 0 , there exists c > 0 such that e cs ρ 3 ρ 1 and e cs ρ 4 θ -3/2 ρ = ρ 0 .

Indeed, e 2sθ(t)ϕ1 e -sθ(t)ϕ = e sθ(t)(2e 2λ -2e λx -e 2λ +1) and 0 < c λ := e 2λ -2e λ + 1 2e 2λ -2e λx -e 2λ + 1 e 2λ -e λx , ∀x ∈ (0, 1).

Thus θ -1/2 e sc λ θ(t) ρ 3 = θ -1/2 e 2sθ(t)ϕ1 e -sθ(t)ϕ θ -1/2 e sθ(t)(e 2λ -e λx ) = ρ 1 and similarly θ -3/2 e sc λ θ(t) ρ 4 θ -3/2 e sθ(t)(e 2λ -e λx ) = ρ 0 . Since the function θ is uniformly bounded by below in (0, T ), (76) holds true for some c > 0. Now, we take p = ρ 2, (ρ -1 2, p) in the formulation [START_REF] Lacey | Global blow-up of a nonlinear heat equation[END_REF] and use that L p = ρ 2, L (ρ -1 2, p) -γp (γ is defined by (70)) and p x (1, t) = ρ 2, (1, t)(ρ -1 2, p) x (1, t). This implies for all test function q ∈ P s :

Q T ρ -2 ρ 2, L ρ -1 2, p L q + s T 0 ρ -2 1 (1, t)ρ 2, (1, t) ρ -1 2, p x (1, t)q x (1, t) = Q T ρ -2 γpL q + Q T Bq. (77)
Then, according to the Lemma 5, T τ (ρ -1 2, p) belongs to P s for all τ = 0: taking q = T τ (ρ -1 2, p) in (77) then leads to

Q T ρ -1 3 L ρ -1 2, p L T τ (ρ -1 2, p) + s T 0 ρ -1 4 (1, t) ρ -1 2, p x (1, t) T τ (ρ -1 2, p) x (1, t) = Q T ρ -2 γpL T τ (ρ -1 2, p) + Q T BT τ (ρ -1 2 p). (78) 
We now intend to pass to the limit τ → 0 in this equality.

• Sub-step 1. We prove that the terms in (78) are uniformly bounded w.r.t. τ small.

• Estimate of the first term in the l.h.s. of (78).

We have

Q T ρ -1 3 L ρ -1 2, p L T τ ρ -1 2, p dxdt = 1 τ Q T ρ -1 3 (t)L ρ -1 2, p δ τ L ρ -1 2, p τ dxdt - 1 τ Q T ρ -1 3 (t)L ρ -1 2, p (t) δ τ L ρ -1 2, p (t -τ ) τ dxdt = 1 τ Q T ρ -1 3 L ρ -1 2, p δ τ L ρ -1 2, p τ dxdt - 1 τ T -τ -τ Ω ρ -1 3 (t + τ )L ρ -1 2, p (t + τ ) δ τ L ρ -1 2, p (t) τ dxdt = - Q T δ τ (ρ -1 3 L ρ -1 2, p ) τ δ τ L ρ -1 2, p τ dxdt - 1 τ 0 -τ Ω ρ -1 3 (t + τ )L ρ -1 2, p (t + τ ) δ τ L ρ -1 2, p (t) τ dxdt - 1 τ T -τ T Ω ρ -1 3 (t + τ )L ρ -1 2, p (t + τ ) δ τ L ρ -1 2, p (t) τ dxdt
(79) where we have used the fact that ρ -1 3 and L (ρ -1 2, p) vanish outside (0, T ). Observing that

- Q T δ τ (ρ -1 3 L ρ -1 2, p ) τ δ τ L ρ -1 2, p τ dxdt = - Q T ρ -1 3 δ τ L ρ -1 2, p τ 2 dxdt - Q T L ρ -1 2, p (t + τ ) δ τ (ρ -1 3 ) τ δ τ L ρ -1 2, p τ dxdt, (80) 
equality (79) gives

1 Q T ρ -1 3 L ρ -1 2, p L T τ ρ -1 2, p dxdt = - Q T ρ -1 3 δ τ L ρ -1 2, p τ 2 dxdt - Q T L ρ -1 2, p (t + τ ) δ τ (ρ -1 3 ) τ δ τ L ρ -1 2, p τ dxdt - 1 τ 0 -τ Ω ρ -1 3 (t + τ )L ρ -1 2, p (t + τ ) δ τ L ρ -1 2, p (t) τ dxdt - 1 τ T -τ T Ω ρ -1 3 (t + τ )L ρ -1 2, p (t + τ ) δ τ L ρ -1 2, p (t) τ dxdt.
(81)

• Estimate of the second term in the l.h.s. of (78). Proceeding as before we write

s T 0 ρ -1 4 (1, t) ρ -1 2, p x (1, t) T τ (ρ -1 2, p) x (1, t) dxdt = s τ T 0 ρ -1 4 (1, t)(ρ -1 2, p) x (1, t) δ τ (ρ -1 2, p) x (1, t) τ dt - s τ T -τ -τ ρ -1 4 (1, t + τ )(ρ -1 2, p) x (1, t + τ ) δ τ (ρ -1 2, p) x (1, t) τ dt = -s T 0 δ τ (ρ -1 4 (ρ -1 2, p) x )(1, t) τ δ τ (ρ -1 2, p) x (1, t) τ dt - s τ 0 -τ ρ -1 4 (1, t + τ )(ρ -1 2, p) x (1, t + τ ) δ τ (ρ -1 2, p) x (1, t) τ dt - s τ T -τ T ρ -1 4 (1, t + τ )(ρ -1 2, p) x (1, t + τ ) δ τ (ρ -1 2, p) x (1, t) τ dt = -s T 0 ρ -1 4 (1, t) δ τ (ρ -1 2, p) x (1, t) τ 2 dt -s T 0 (ρ -1 2, p) x (1, t + τ ) δ τ (ρ -1 4 )(1, t) τ δ τ (ρ -1 2, p) x (1, t) τ dt - s τ 0 -τ ρ -1 4 (1, t + τ )(ρ -1 2, p) x (1, t + τ ) δ τ (ρ -1 2, p) x (1, t) τ dt - s τ T -τ T ρ -1 4 (1, t + τ )(ρ -1 2, p) x (1, t + τ ) δ τ (ρ -1 2, p) x (1, t) τ dt. (82) 
Using ( 81) and (82), the equality (78) then reads

2 Q T ρ -1 3 (t) δ τ L (ρ -1 2, p) τ 2 dxdt + s T 0 ρ -1 4 (1, t) δ τ (ρ -1 2, p) x (1, t) τ 2 dxdt = - Q T BT τ (ρ -1 2, p) dxdt - Q T ρ -2 γpL T τ (ρ -1 2, p) dxdt - Q T L ρ -1 2, p (t + τ ) δ τ (ρ -1 3 ) τ δ τ L ρ -1 2, p τ dxdt -s T 0 (ρ -1 2, p) x (1, t + τ ) δ τ (ρ -1 4 )(1, t) τ δ τ (ρ -1 2, p) x (1, t) τ dt - 1 τ 0 -τ Ω ρ -1 3 (t + τ )L ρ -1 2, p (t + τ ) δ τ L ρ -1 2, p (t) τ dxdt - s τ 0 -τ ρ -1 4 (1, t + τ )(ρ -1 2, p) x (1, t + τ ) δ τ (ρ -1 2, p) x τ dt - 1 τ T -τ T Ω ρ -1 3 (t + τ )L ρ -1 2, p (t + τ ) δ τ L ρ -1 2, p (t) τ dxdt - s τ T -τ T ρ -1 4 (1, t + τ )(ρ -1 2, p) x (1, t + τ ) δ τ (ρ -1 2, p) x (1, t) τ dt := I 1 + I 2 + I 3 + I 4 + I 5 + I 6 + I 7 + I 8 . (83) 
• Estimate of the term I 2 .

1

I 2 = - Q T ρ -2 γpL T τ (ρ -1 2, p) dxdt = - Q T ρ -1 3 γ(ρ -1 2, p)L T τ (ρ -1 2, p) dxdt = - 1 τ Q T ρ -1 3 γ(ρ -1 2, p) δ τ L ρ -1 2, p τ dxdt + 1 τ Q T ρ -1 3 (t)γ(t)(ρ -1 2, p)(t) δ τ L ρ -1 2, p (t -τ ) τ dxdt = - 1 τ Q T ρ -1 3 γ(ρ -1 2, p) δ τ L ρ -1 2, p τ dxdt + 1 τ T -τ -τ Ω ρ -1 3 (t + τ )γ(t + τ )(ρ -1 2, p)(t + τ ) δ τ L ρ -1 2, p (t) τ dxdt = Q T δ τ (ρ -1 3 γρ -1 2, p) τ δ τ L ρ -1 2, p τ dxdt + 1 τ 0 -τ Ω ρ -1 3 (t + τ )γ(t + τ )(ρ -1 2, p)(t + τ ) δ τ L ρ -1 2, p (t) τ dxdt + 1 τ T -τ T Ω ρ -1 3 (t + τ )γ(t + τ )(ρ -1 2, p)(t + τ ) δ τ L ρ -1 2, p (t) τ dxdt = Q T ρ -1 3 γ δ τ (ρ -1 2, p) τ δ τ L ρ -1 2, p τ dxdt + Q T (ρ -1 2, p)(t + τ ) δ τ (ρ -1 3 γ) τ δ τ L ρ -1 2, p τ dxdt + 1 τ 0 -τ Ω ρ -1 3 (t + τ )γ(t + τ )(ρ -1 2, p)(t + τ ) δ τ L ρ -1 2, p (t) τ dxdt + 1 τ T -τ T Ω ρ -1 3 (t + τ )γ(t + τ )(ρ -1 2, p)(t + τ ) δ τ L ρ -1 2, p (t) τ dxdt :=I 1 2 + I 2 2 + I 3 2 + I 4 2 . ( 84 
)
Estimate of the term I 1 2 . Young inequality implies for some ε > 0

|I 1 2 | = Q T ρ -1 3 γ δ τ (ρ -1 2, p) τ δ τ L ρ -1 2, p τ dxdt C(ε) Q T ρ -1 3 γ 2 δ τ (ρ -1 2, p) τ 2 dxdt + ε Q T ρ -1 3 δ τ L ρ -1 2, p τ 2 dxdt. (85) Estimate of the term I 2 2 . |I 2 2 | = Q T (ρ -1 2, p)(t + τ ) δ τ (ρ -1 3 γ) τ δ τ L ρ -1 2, p τ dxdt Q T δ τ (ρ -1 2, p) τ δ τ (ρ -1 3 γ) τ δ τ L ρ -1 2, p dxdt + Q T (ρ -1 2, p) δ τ (ρ -1 3 γ) τ δ τ L ρ -1 2, p τ dxdt .
We have

Q T δ τ (ρ -1 2, p) τ δ τ (ρ -1 3 γ) τ δ τ L ρ -1 2, p dxdt δ τ (ρ -1 2, p) τ L 2 (Q T ) δ τ (ρ -1 3 γ) τ L ∞ (Q T ) δ τ L ρ -1 2, p L 2 (Q T ) . Since ρ -1 3 γ ∈ D(R; C 0 (Ω)) we get | δ τ (ρ -1 3 γ)(t)| |τ (ρ -1 3 γ) t (t)| + τ 2 2 (ρ -1 3 γ) tt L ∞ (R;L ∞ (Ω)) (86) 
and thus,

Q T (ρ -1 2, p) δ τ (ρ -1 3 γ) τ δ τ L ρ -1 2, p τ dxdt Q T (ρ -1 2, p)(ρ -1 3 γ) t δ τ L ρ -1 2, p τ dxdt + 1 2 (ρ -1 3 γ) tt L ∞ (R;L ∞ (Ω)) Q T (ρ -1 2, p) δ τ L ρ -1 2, p dxdt. Moreover, |(ρ -1 3 γ) t | C|ρ -1/2 3
| for some C > 0 and therefore,

Q T (ρ -1 2, p) δ τ (ρ -1 3 γ) τ δ τ L ρ -1 2, p τ dxdt C(ε) Q T (ρ -1 2, p) 2 dxdt + ε Q T ρ -1 3 δ τ L ρ -1 2, p τ dxdt + 1 2 (ρ -1 3 γ) tt L ∞ (R;L ∞ (Ω)) Q T (ρ -1 2, p) δ τ L ρ -1 2, p dxdt.
This gives

|I 2 2 | δ τ (ρ -1 2, p) τ L 2 (Q T ) δ τ (ρ -1 3 γ) τ L ∞ (R) δ τ L ρ -1 2, p L 2 (Q T ) + C(ε) Q T (ρ -1 2, p) 2 dxdt + ε Q T ρ -1 3 δ τ L ρ -1 2, p τ dxdt + 1 2 (ρ -1 3 γ) tt L ∞ (R;L ∞ (Ω)) Q T (ρ -1 2, p) δ τ L ρ -1 2, p dxdt. ( 87 
)
Gathering the previous estimates of I 1 2 and I 2 2 , we obtain for

I 2 1 |I 2 | C(ε) Q T ρ -1 3 γ 2 δ τ (ρ -1 2, p) τ 2 dxdt + 2ε Q T ρ -1 3 δ τ L ρ -1 2, p τ 2 dxdt + δ τ (ρ -1 2, p) τ L 2 (Q T ) δ τ (ρ -1 3 γ) τ L ∞ (R) δ τ L ρ -1 2, p L 2 (Q T ) + C(ε) Q T (ρ -1 2, p) 2 dxdt + 1 2 (ρ -1 3 γ) tt L ∞ (R;L ∞ (Ω)) Q T (ρ -1 2, p) δ τ L ρ -1 2, p dxdt + 1 τ 0 -τ Ω ρ -1 3 (t + τ )γ(t + τ )(ρ -1 2, p)(t + τ ) δ τ L ρ -1 2, p (t) τ dxdt + 1 τ T -τ T Ω ρ -1 3 (t + τ )γ(t + τ )(ρ -1 2, p)(t + τ ) δ τ L ρ -1 2, p (t) τ dxdt . (88) 
• Estimate of I 3 . As before, since ρ -1 3 ∈ D(R; C 0 (Ω)), we get

|I 3 | = Q T L ρ -1 2, p (t + τ ) δ τ (ρ -1 3 ) τ δ τ L ρ -1 2, p τ dxdt Q T L ρ -1 2, p (t + τ )(ρ -1 3 ) t δ τ L ρ -1 2, p τ dxdt + 1 2 (ρ -1 3 ) tt L ∞ (R;L ∞ (Ω)) Q T L ρ -1 2, p (t + τ ) δ τ L ρ -1 2, p dxdt and using again that |(ρ -1 3 ) t | Cρ -1/2 3
, we obtain

2 |I 3 | C(ε) Q T L ρ -1 2, p (t + τ ) 2 dxdt + ε Q T ρ -1 3 δ τ L ρ -1 2, p τ 2 dxdt + 1 2 (ρ -1 3 ) tt L ∞ (R;L ∞ (Ω)) Q T L ρ -1 2, p (t + τ ) δ τ L ρ -1 2, p dxdt. ( 89 
)
• Estimate of I 4 . Similarly, we have

|I 4 | s T 0 (ρ -1 2, p) x (1, t + τ ) δ τ (ρ -1 4 )(1, t) τ δ τ (ρ -1 2, p) x (1, t) τ dt s T 0 (ρ -1 2, p) x (1, t + τ )(ρ -1 4 ) t (1, t) δ τ (ρ -1 2, p) x (1, t) τ dt + s 2 (ρ -1 4 ) tt L ∞ (R) T 0 (ρ -1 2, p) x (1, t + τ ) δ τ (ρ -1 2, p) x (1, t) dt and since |(ρ -1 4 ) t | Cρ -1/2 4 
, we get

|I 4 | sC(ε) T 0 (ρ -1 2, p) x (1, t + τ ) 2 dt + sε T 0 ρ -1 4 (1, t) δ τ (ρ -1 2, p) x (1, t) τ 2 dt + s 2 (ρ -1 4 ) tt L ∞ (R) T 0 (ρ -1 2, p) x (1, t + τ ) δ τ (ρ -1 2, p) x (1, t) dt. (90) 
• An intermediate estimate. Using the estimates of I 2 , I 3 and I 4 from (88), ( 89) and ( 90) in (83), we get (1 -3ε)

Q T ρ -1 3 (t) δ τ L (ρ -1 2, p) τ 2 dxdt + s(1 -ε) T 0 ρ -1 4 (1, t) δ τ (ρ -1 2, p) x (1, t) τ 2 dt Q T BT τ (ρ -1 2, p)dt + C(ε) Q T ρ -1 3 γ 2 δ τ (ρ -1 2, p) τ 2 dxdt + δ τ (ρ -1 2, p) τ L 2 (Q T ) δ τ (ρ -1 3 γ) τ L ∞ (R;L ∞ (Ω)) δ τ L ρ -1 2, p L 2 (Q T ) + C(ε) Q T (ρ -1 2, p) 2 dxdt + 1 2 (ρ -1 3 γ) tt L ∞ (R;L ∞ (Ω)) Q T (ρ -1 2, p) δ τ L ρ -1 2, p dxdt + 1 τ 0 -τ Ω ρ -1 3 (t + τ )γ(t + τ )(ρ -1 2, p)(t + τ ) δ τ L ρ -1 2, p (t) τ dxdt + 1 τ T -τ T Ω ρ -1 3 (t + τ )γ(t + τ )(ρ -1 2, p)(t + τ ) δ τ L ρ -1 2, p (t) τ dxdt + C(ε) Q T L ρ -1 2, p (t + τ ) 2 dxdt + 1 2 (ρ -1 3 ) tt L ∞ (R;L ∞ (Ω)) Q T L ρ -1 2, p (t + τ ) δ τ L ρ -1 2, p dxdt + sC(ε) T 0 (ρ -1 2, p) x (1, t + τ ) 2 dt + s 2 (ρ -1 4 ) tt L ∞ (R) T 0 (ρ -1 2, p) x (1, t + τ ) δ τ (ρ -1 2, p) x (1, t) dt + 1 τ 0 -τ Ω ρ -1 3 (t + τ )L ρ -1 2, p (t + τ ) δ τ L ρ -1 2, p (t) τ dxdt + s τ 0 -τ ρ -1 4 (1, t + τ )(ρ -1 2, p) x (1, t + τ ) δ τ (ρ -1 2, p) x τ dt + 1 τ T -τ T Ω ρ -1 3 (t + τ )L ρ -1 2, p (t + τ ) δ τ L ρ -1 2, p (t) τ dxdt + s τ T -τ T ρ -1 4 (1, t + τ )(ρ -1 2, p) x (1, t + τ ) δ τ (ρ -1 2, p) x (1, t) τ dt := J 1 + J 2 + J 3 + J 4 + J 5 + J 6 + J 7 + J 8 + J 9 + J 10 + J 11 + J 12 + J 13 + J 14 + J 15 . (91) 
Now, fix = 1 6 and let us obtain the suitable estimates for the terms in the right hand side of (91). (i)

Estimate of J 1 . Since B ∈ D(0, T ; L 2 (Ω)), we extend B by 0 outside (0, T ). This yields

Q T BT τ (ρ -1 2, p) = 1 τ 2 Q T B(t)(ρ -1 2, p)(t + τ ) - 2 τ 2 Q T B(t)(ρ -1 2, p)(t) + 1 τ 2 Q T B(t)(ρ -1 2, p)(t -τ ) = T +τ τ Ω B(t -τ )(ρ -1 2, p)(t) - 2 τ 2 Q T B(t)(ρ -1 2, p)(t) + 1 τ 2 T -τ -τ Ω B(t + τ )(ρ -1 2, p)(t) = Q T B(t + τ ) -2B(t) + B(t -τ ) τ 2 (ρ -1 2, p)(t)
since (ρ -1 2, p) vanishes outside (0, T ) and thus

J 1 = Q T B(t + τ ) -2B(t) + B(t -τ ) τ 2 (ρ -1 2, p)(t) → Q T B tt (ρ -1 2, p) as τ → 0. ( 92 
)
It follows that the term J 1 is bounded uniformly w.r.t. τ = 0 small.

(ii) Estimate of J 2 . As τ → 0, we observe since ρ

-1 3 γ 2 ∈ L ∞ (Q T ) that J 2 C Q T δ τ (ρ -1 2, p) τ 2 dxdt C Q T (ρ -1 2, p) t 2 dxdt (93)
and thus J 2 is bounded uniformly w.r.t τ = 0 small.

(iii) J 3 is bounded uniformly w.r.t τ = 0 small since we have

δ τ (ρ -1 2, p) τ L 2 (Q T ) δ τ (ρ -1 3 γ) τ L ∞ (R;L ∞ (Ω)) δ τ L ρ -1 2, p L 2 (Q T ) → 0 as τ → 0 using that ρ -1 3 γ ∈ D(R; C 0 (Ω)), ρ -1 2, p ∈ H 1 (R; L 2 (Ω)) and L ρ -1 2, p ∈ L 2 (R; L 2 (Ω)). (iv) J 4 is bounded since ρ -1 2, p ∈ L 2 (Q T ).
(v) Estimate of J 5 . We have

J 5 1 2 (ρ -1 3 γ) tt L ∞ (R;L ∞ (Ω)) ρ -1 2, p L 2 (Q T ) δ τ L ρ -1 2, p L 2 (Q T ) → 0 as τ → 0 since ρ -1 2, p ∈ L 2 (Q T ) and L ρ -1 2, p ∈ L 2 (R; L 2 (Ω)
) and thus J 5 is bounded uniformly w.r.t τ = 0 small.

(vi) Estimate of J 6 . Observe that, if τ < 0, then

J 6 = 0 since ρ -1 3 (t + τ )γ(t + τ ) = 0 on [0, -τ ] and if τ > 0 the term J 6 satisfies, since ρ -1 3 (t)γ(t) = 0 = (ρ -1 2, p)(t) on [-τ, 0] J 6 1 τ 0 -τ Ω δ τ (ρ -1 3 γ) δ τ (ρ -1 2, p)(t + τ ) δ τ L ρ -1 2, p (t) τ dxdt 0 -τ Ω δ τ (ρ -1 3 γ) τ δ τ (ρ -1 2, p) τ δ τ L ρ -1 2, p dxdt → 0 as τ → 0, ( 94 
) since γρ -1 3 ∈ D(R; C 0 (Ω)), ρ -1 2, p ∈ H 1 (R; L 2 (Ω)) and L ρ -1 2, p ∈ L 2 (R; L 2 (Ω))
. Therefore, J 6 is uniformly bounded w.r.t. nonzero τ however small.

(vii) Estimate of J 7 . Observe that, if τ > 0, then

J 7 = 0 since ρ -1 3 (t + τ )γ(t + τ ) = 0 on [T -τ, T ] and if τ < 0 the term J 7 satisfies, since ρ -1 3 (t)γ(t) = 0 = (ρ -1 2, p)(t) on [T, T -τ ] J 7 1 τ T -τ T Ω δ τ (ρ -1 3 γ) δ τ (ρ -1 2, p)(t + τ ) δ τ L ρ -1 2, p (t) τ dxdt T -τ T Ω δ τ (ρ -1 3 γ) τ δ τ (ρ -1 2, p) τ δ τ L ρ -1 2, p dxdt → 0 as τ → 0, ( 95 
) since γρ -1 3 ∈ D(R; C 0 (Ω)), ρ -1 2, p ∈ H 1 (R; L 2 (Ω)) and L ρ -1 2, p ∈ L 2 (R; L 2 (Ω)). Therefore, J 7 is uni- formly bounded w.r.t. nonzero τ however small. (viii) J 8 is bounded since L ρ -1 2, p ∈ L 2 (R; L 2 (Ω)).
(ix) J 9 is bounded. Indeed, we see

J 9 = 1 2 (ρ -1 3 ) tt L ∞ (R;L ∞ (Ω)) Q T L ρ -1 2, p (t + τ ) δ τ L ρ -1 2, p dxdt → 0 as τ → 0 since L ρ -1 2, p ∈ L 2 (R; L 2 (Ω))
. So, J 9 is uniformly bounded w.r.t. nonzero τ however small.

(x) J 10 is bounded since (ρ -1 2, p) x (1, t) ∈ L 2 (R).

(xi) J 11 is bounded. We have

J 11 = s 2 (ρ -1 4 ) tt L ∞ (R) T 0 (ρ -1 2, p) x (1, t + τ ) δ τ (ρ -1 2, p) x (1, t) dt → 0 as τ → 0 since (ρ -1 2, p) x (1, t) ∈ L 2 (R) and (ρ -1 2, p) x (1, t) ∈ L 2 (R).
So, J 11 is uniformly bounded w.r.t. nonzero τ however small.

(xii) Estimate of J 12 . Observe that, if τ < 0, then J 12 = 0 since ρ -1 3 (t + τ ) = 0 on [0, -τ ] and if τ > 0 the term J 12 satisfies, since ρ -1 3 (t) = 0 on [-τ, 0]

J 12 = 1 τ 0 -τ Ω ρ -1 3 (t + τ )L ρ -1 2, p (t + τ ) δ τ L ρ -1 2, p (t) τ dxdt = 0 -τ Ω δ τ (ρ -1/2 3 ) τ 2 L ρ -1 2, p (t + τ ) δ τ L ρ -1 2, p (t) dxdt → 0 as τ → 0, ( 96 
) since ρ -1/2 3 ∈ D(R; L ∞ (Ω)) and L ρ -1 2, p ∈ L 2 (R; L 2 (Ω))
. Therefore, J 12 is uniformly bounded w.r.t.

nonzero τ however small.

(xiii) Estimate of J 13 . Observe that if τ < 0, then J 13 = 0 since ρ -1 4 (t + τ ) = 0 on [0, -τ ] and if τ > 0 the term J 13 satisfies, since ρ -1 4 (t) = 0 on [-τ, 0] the term

J 13 = s τ 0 -τ ρ -1 4 (1, t + τ )(ρ -1 2, p) x (1, t + τ ) δ τ (ρ -1 2, p) x τ dt = s 0 -τ δ τ ρ -1/2 4 τ 2 (ρ -1 2, p) x (1, t + τ ) δ τ (ρ -1 2, p) x dt → 0 as τ → 0, ( 97 
) since ρ -1/2 4 
∈ D(R) and (ρ -1 2, p) x (1, t) ∈ L 2 (R). Therefore, J 13 is uniformly bounded w.r.t. nonzero τ however small.

(xiv) Estimate of J 14 . Observe that if τ > 0, then J 14 = 0 since ρ -1 3 (t + τ ) = 0 on [T -τ, T ] and if τ < 0 the term J 14 satisfies, since ρ -1 3 (t) = 0 on [T, T -τ ] the term

J 14 = 1 τ T -τ T Ω ρ -1 3 (t + τ )L ρ -1 2, p (t + τ ) δ τ L ρ -1 2, p (t) τ dxdt = T -τ T Ω δ τ ρ -1/2 3 τ 2 L ρ -1 2, p (t + τ ) δ τ L ρ -1 2, p (t) dxdt → 0 as τ → 0, ( 98 
) since ρ -1/2 3 ∈ D(R; L ∞ (Ω)) and L ρ -1 2, p ∈ L 2 (R; L 2 (Ω))
. Therefore, J 14 is uniformly bounded w.r.t.

nonzero τ however small.

(xv) Estimate of J 15 . Finally, we observe that if τ > 0, then J 15 = 0 since ρ -1 4 (t + τ ) = 0 on [T -τ, T ] and if τ < 0 the term J 15 satisfies, since ρ -1 4 (t) = 0 on [T, T -τ ] the term

J 15 = s τ T -τ T ρ -1 4 (1, t + τ )(ρ -1 2, p) x (1, t + τ ) δ τ (ρ -1 2, p) x (1, t) τ dt = s T -τ T δ τ ρ -1/2 4 τ 2 (ρ -1 2, p) x (1, t + τ ) δ τ (ρ -1 2, p) x (1, t)dt → 0 as τ → 0, ( 99 
) since ρ -1/2 4 ∈ D(R) and (ρ -1 2, p) x (1, t) ∈ L 2 (R).
Therefore, J 15 is uniformly bounded w.r.t. nonzero τ however small.

• We then have proved that all the terms in the right hand side of (91) are bounded w.r.t. τ → 0. This implies that the terms (ρ -1 2, p) x,t t , (ρ -1 2, p) x,t are in L 2 (R) and ρ -1/2 4 is in D(R).

Q T ρ -1 3 δ τ L (ρ -1 2, p) τ 2 dxdt, s T 0 ρ -1 4 (1,
δ τ L (ρ -1 2, p) τ = δ τ ρ -1/2 3 L (ρ -1 2, p) τ - δ τ (ρ -1/2 3 ) τ L (ρ -1 2, p)(• + τ ) → ρ -1/2 3 L (ρ -1 2, p) t -(ρ -1/2 3 ) t L (ρ -1 2, p) = ρ -1/2 3 L (ρ -1 2, p) t in L 2 (Q T ) since ρ -1/2 3 L (ρ -
• Sub-step 2. We pass to the limit τ → 0 in the equality (83) (equivalent to (78))

Since B ∈ D(0, T ; L 2 (Ω)) and ρ -1 2, p ∈ H 2 loc (0, T ; L 2 (Ω)) we have Q T BT τ (ρ -1 2, p) → Q T B(ρ -1 2, p) tt .

We first pass to the limit in the equality (84), namely 

Q T ρ -2 γpL T τ (ρ -1 2, p) dxdt = - Q T ρ -1 3 γ δ τ (ρ -1 2, p) τ δ τ L ρ -1 2, p τ dxdt - Q T (ρ -1 2, p)(t + τ ) δ τ (ρ -1 3 γ) τ δ τ L ρ -1 2, p τ dxdt - 1 τ 0 -τ Ω ρ -1 3 (t + τ )γ(t + τ )(ρ -1 2, p)(t + τ ) δ τ L ρ -1 2, p ( 
δ τ (ρ -1 3 γ) τ δ τ L ρ -1 2, p τ dxdt = - Q T (ρ -1 2, p)(t + τ )(ρ -1 3 γ) t δ τ L ρ -1 2, p τ dxdt - 1 2 Q T (ρ -1 2, p)(t + τ )(ρ -1 3 γ) tt (t + λτ ) δ τ L ρ -1 2, p dxdt → - Q T (ρ -1 2, p)(ρ -1 3 γ) t L ρ -1 2, p t dxdt.
We also have, since |ρ -1 3 γ| C|ρ | and ρ -1 2, p ∈ H 1 (R; L 2 (Ω))

- Q T ρ -1 3 γ δ τ (ρ -1 2, p) τ δ τ L ρ -1 2, p τ dxdt → - Q T ρ -1 3 γ(ρ -1 2, p) t L ρ -1 2, p t dxdt as τ → 0. It follows that 2 - Q T ρ -2 γpL T τ (ρ -1 2, p) dxdt → - Q T ρ -1 3 γ(ρ -1 2, p) t L ρ -1 2, p t dxdt - Q T (ρ -1 2, p)(ρ -1 3 γ) t L ρ -1 2, p t dxdt. (103) 
Arguing as before we have (104)

- Q T L ρ -1 2, p (t + τ ) δ τ (ρ -1 3 ) τ δ τ L ρ -1 2, p τ dxdt → - Q T L ρ -1 2, p (ρ -1 3 ) t L ρ -
• Sub-step 3. Proof of the estimate (75).

2

First, the Carleman estimate [START_REF] Ervedoza | A systematic method for building smooth controls for smooth data[END_REF] with δ τ (ρ -1 2, p) τ ∈ P (recall that, if not specified, the weights depend on the parameter s) and any parameter s s 0 leads to

s 3 Q T ρ -2 0 ( s) δ τ (ρ -1 2, p) τ 2 + s Q T ρ -2 1 ( s) δ τ (ρ -1 2, p) x τ 2 + s -1 Q T ρ -2 2 ( s)   δ τ (ρ -1 2, p) t τ 2 + δ τ (ρ -1 2, p) xx τ 2   C Q T ρ -2 ( s) L δ τ (ρ -1 2, p) τ 2 + C s T 0 ρ -2 1 ( s)(1, t) δ τ (ρ -1 2, p) x τ (1, t) 2 . 
In order to make appear the terms ρ -1 3 (s) and ρ -1 4 (s) (see (75), we take for any s 4 3 s 0 , s = 3s 4 so that s s 0 and then check that there exists C > 0 (independent of s) such that ρ -2 ( s) Cρ -1 3 (s) and ρ -2 1 ( s)(1, •) Cρ -1 4 (s)(1, •).

Thus

s 3 Q T ρ -2 0 ( s) δ τ (ρ -1 2, p) τ 2 + s Q T ρ -2 1 ( s) δ τ (ρ -1 2, p) x τ 2 + s -1 Q T ρ -2 2 ( s)   δ τ (ρ -1 2, p) t τ 2 + δ τ (ρ -1 2, p) xx τ 2   C Q T ρ -1 3 L δ τ (ρ -1 2, p) τ 2 + C s T 0 ρ -1 4 (1, t) δ τ (ρ -1 2, p) x τ (1, t) 2 . (105) 
Therefore, in view of (104), ρ -1 0 ( s)(ρ -1 2, p) t ∈ L 2 (Q T ), ρ -1 1 ( s)(ρ -1 2, p) xt ∈ L 2 (Q T ), ρ -1 2 ( s)(ρ -1 2, p) tt ∈ L 2 (Q T ) and ρ -1 2 ( s)(ρ -1 2, p) xxt ∈ L 2 (Q T ) and passing to the limit in (105) leads to

s 3 Q T ρ -2 0 ( s) (ρ -1 2, p) t 2 + s Q T ρ -2 1 ( s) (ρ -1 2, p) xt 2 + s -1 Q T ρ -2 2 ( s) (ρ -1 2, p) tt 2 + (ρ -1 2, p) xxt 2 C Q T ρ -1 3 L (ρ -1 2, p) t 2 + C s T 0 ρ -1 4 (1, t) (ρ -1 2, p) xt (1, t) 2 . ( 106 
)
40

We now consider the r.h.s terms of (104). Using (106), we get

Q T B(ρ -1 2, p) tt = Q T ρ 2 ( s)Bρ -1 2 ( s)(ρ -1 2, p) tt s Q T ρ 2 2 ( s)|B| 2 1/2 s -1 Q T ρ -2 2 ( s)|(ρ -1 2, p) tt | 2 1/2 C(ε)s Q T ρ 2 |B| 2 + ε Q T ρ -1 3 L (ρ -1 2, p) t 2 + εs T 0 ρ -1 4 (1, t) (ρ -1 2, p) xt (1, t)
2 since ρ 2 2 ( s) ρ 2 . From (71), since ρ -1 3 γ 2 ∈ L ∞ (Q T ), we deduce using [START_REF] Lemoine | Approximation of null controls for semilinear heat equations using a least-squares approach[END_REF], that

Q T ρ -1 3 γ(ρ -1 2, p) t L ρ -1 2, p t dxdt C(ε) Q T ρ -1 3 γ 2 |(ρ -1 2, p) t | 2 + ε Q T ρ -1 3 L (ρ -1 2, p) t 2 C(ε)s p 2 Ps + ε Q T ρ -1 3 L (ρ -1 2, p) t 2 C(ε)s -2 Q T ρ 2 |B| 2 + ε Q T ρ -1 3 L (ρ -1 2, p) t 2 .
Since |(ρ -1 3 γ) t | Cs 2 ρ -1/2 3 and ρ -1

2,

Cρ -1 0 , estimate [START_REF] Lemoine | Approximation of null controls for semilinear heat equations using a least-squares approach[END_REF] together with the Carleman estimate (12) imply that

Q T (ρ -1 2, p)(ρ -1 3 γ) t L ρ -1 2, p t dxdt C(ε)s 4 Q T ρ -2 2, |p| 2 + ε Q T ρ -1 3 L (ρ -1 2, p) t 2 C(ε)s 4 Q T ρ -2 0 |p| 2 + ε Q T ρ -1 3 L (ρ -1 2, p) t 2 C(ε)s p 2 Ps + ε Q T ρ -1 3 L (ρ -1 2, p) t 2 C(ε)s -2 Q T ρ 2 |B| 2 + ε Q T ρ -1 3 L (ρ -1 2, p) t 2 .
Since |(ρ -1 3 ) t | Csρ -1/2 3

, using (71) and [START_REF] Lemoine | Approximation of null controls for semilinear heat equations using a least-squares approach[END_REF], we also get

Q T L ρ -1 2, p (ρ -1 3 ) t L ρ -1 2, p t dxdt C(ε)s 2 Q T L ρ -1 2, p 2 + ε Q T ρ -1 3 L (ρ -1 2, p) t 2 C(ε)s 2 p 2 Ps + ε Q T ρ -1 3 L (ρ -1 2, p) t 2 C(ε)s -1 Q T ρ 2 |B| 2 + ε Q T ρ -1 3 L (ρ -1 2, p) t 2 .
Eventually, since |(ρ - 

v ∈ H 1

 1 (0, T ) a control function acting only at the boundary point x = 1. According to [5, Section 5], if f is locally Lipschitz-continuous and satisfies the growth condition |f (r)| C(1 + |r| ln(1 + |r|))

d , d 1 .

 1 Assuming that f is C 1 , satisfies |f (r)| C(1 + |r| 4+d ) a.e. in R and the asymptotic growth condition (H 1 ) ∃ α > 0 s.t. |f (r)| |r| α + β ln

  , it is shown that there exists null controls v ∈ L p d (ω × (0, T )) where p d ∈ [2, ∞] depends on the dimension d such that the corresponding solution y to (4) belongs to L ∞ ( Q T ). Then, assuming that f is locally Lipschitz continuous and satisfies the growth condition (H 1 ) ∃ α > 0 s.t. |f (r)| α + β ln 3/2

Remark 8 .

 8 The constant appearing in front of ρ(s)( z 2 -z 1 ) L 2 (Q T ) (see (53)) is getting smaller as R (consequently s) getting larger (provided β is small enough). In particular, if f satisfies lim then, for any given > 0 (however small), the map Λ s is -contractive for large enough s s 0 . Consequently, the speed of convergence of the sequence (z k ) k 1 introduced by Theorem 5 increases with s.

  with α = β = 1 and c f ∈ R * . We also consider the following dataT = 0.5, T = T /2, u 0 (x) = c u0 sin(πx) ∀x ∈ Ω, with c u0 > 0. (60)Moreover, the function η introduced in the decomposition[START_REF] Cazenave | An introduction to semilinear evolution equations[END_REF] and appearing notably in (56) is defined as the C 1 ([0, T ]) function constant equal to one in [0, T /2], constant equal to zero in [3T /2, T ] and polynomial of order 3 in [T /2, 3T /2].

  Figure 1:

Figure 2 :Figure 3 :Figure 4 :

 234 Figure 2: c f = -1.5, c u0 = 15 and f (r) = c f r(1 + ln 3/2 (2 + |r|)); Left: Control functions v k * for different s; Right: Evolution of y k * (•, t) L 2 (Ω) w.r.t. time t for different s.

Figure 5 :

 5 Figure 5: Left and Right, where we respectively plot the control functions v k and the evolutions ofy k (•, t) L 2 (Ω) for c f ∈ {-2, 0, 2}. For c f = -2, we get v k L ∞ (0,T ) ≈ 15.781 whereas for c f = 2, it reduces to v k L ∞ (0,T ) ≈ 2.343 × 10 -1 .The case c f = 0 corresponds to the linearized model with the norm v k L ∞ (0,T ) ≈ 9.469 × 10 -1 ; see Table3for the details. In Figure we see how the L 2 and L ∞ norms of the control functions changes w.r.t. negative to positive values of c f according to the fifth and sixth columns of Table3.

Figure 5 :

 5 Figure 5: (s, c u0 ) = (3, 15); f (r) = c f r(1+ln 3/2 (2+|r|)); Left: Control functions v k and Right: Evolution of y k (•, t) L 2 (Ω) w.r.t. time t for c f ∈ {-2, 0, 2}.

Figure 6 :

 6 Figure 6: (s, c u0 ) = (3, 15); f (r) = c f r(1 + ln 3/2 (2 + |r|)); v k L 2 (0,T ) and v k L ∞ (0,T ) w.r.t. c f as per Table3.

Figure 7 :Figure 8 :

 78 Figure 7: c u0 = 15; (s, c f ) = (3, -0.5); f (r) = c f r(1 + ln 3/2 (2 + |r|)); Left: Control functions v k and Right: Evolution of y k (•, t) L 2 (Ω) w.r.t. time t for different diffusion coefficients ν.

Figure 9 :

 9 Figure 9: u 0 (x) = e -100(x-0.7) 2 ; ν = 0.5; c f = -2.5; f (r) = c f r(1 + ln 3/2 (2 + |r|)); Left: Control functions v k and Right: Evolution of y k (•, t) L 2 (Ω) w.r.t. time t for different values of s.

Figure 10 :

 10 Left and Right respectively depicts the associated control functions v k and the evolutions of y k (•, t) L 2 (Ω) w.r.t. t. In Figure 11: Left and Right we respectively plot the controlled solutions y k for ν ∈ {0.3, 0.5} when (s, c f ) = (4, -2.5).

Figure 10 :Figure 11 :

 1011 Figure 10: u 0 (x) = e -100(x-0.7) 2 ; (s, c f ) = (4, -2.5); f (r) = c f r(1+ln 3/2 (2+|r|)); Left: Control functions v k and Right: Evolution of y k (•, t) L 2 (Ω) w.r.t. time t for different values of ν.

Figure 12 -

 12 Figure 12-Left and Right respectively plot the control functions and the L 2 (Ω) norm of the solutions w.r.t. the time variable. For larger initial data, for instance when c u0 13.2, numerically we observe the blow-up phenomenon of the solution.

Figure 12 :

 12 Figure 12: s = 3; f (r) = -r 2 ; u 0 (x) = c u0 sin(πx); Left: Control functions v k and Right: Evolution of y k (•, t) L 2 (Ω) w.r.t. time t for different values of c u0 .

Figure 13 :

 13 Figure 13: f (r) = -r 2 ; u 0 (x) = 13 sin(πx); Left: Control functions v k and Right: Evolution of y k (•, t) L 2 (Ω) w.r.t. time t for different values of s.

1 2 ,- 1 /2 3 - 1 /2 4 ) t ( 1 ,- 1 /2 4 ( 1 ,

 213141141 p) t , L (ρ -1 2, p) are in L 2 (R; L 2 (Ω)) and ρ is in D(R; L ∞ (Ω)). We also have ρ •)(ρ -1 2, p) x (1, • + τ ) → (ρ -1 2, p) x,t ) t (1, •) -(ρ •)(ρ -1 2, p) x,t (1, •) = ρ •)(ρ -1 2, p) x,t (1, •) in L 2 (0, T ) since ρ -1/2 4

  space dimension one (see [29, Corollary 8 p. 90 and Lemma 12 p. 91]).3.3.2 Continuity of the map Λ s in C R (s) Proposition 5. Under the assumptions of Lemma 4, the map Λ s

Table 1 :

 1 (

	1	1.440	4.024	1.811	3.969	10
	2 8.673 × 10 -1	2.182	4.100	2.037	4.890	9
	3 8.924 × 10 -1	3.325	3.999	2.215	5.633	9
	4 9.312 × 10 -1	5.086	3.992	2.382	6.335	8

Table 2 :

 2 

		14.595	41.827	17.597	27.901	69.078	31
	3	13.372	55.104	16.416	25.779	68.826	26
	4	12.604	75.003	15.578	24.466	69.231	22

(c f , c u0 ) = (-2.5, 15); f (r) = c f r(1 + ln 3/2 (2 + |r|)); Norms of z k , y k , v k w.r.t. s.

Figure 1 depicts the evolution of the relative error

Table 3 :

 3 

	.9	92.063	586.555	91.532	128.472	463.126	79
	-2.5	13.372	55.104	16.416	25.779	68.826	26
	-2	2.604	9.841	6.079	6.132	15.781	13
	-1	4.185 × 10 -1	1.555	3.154	1.064	2.690	7
	0	1.442 × 10 -1 5.360 × 10 -1	2.371	3.750 × 10 -1 9.469 × 10 -1	1
	1	6.582 × 10 -2 2.454 × 10 -1	1.979	1.729 × 10 -1 4.402 × 10 -1	6
	2	3.434 × 10 -2 1.287 × 10 -1	1.735	9.067 × 10 -2 2.343 × 10 -1	7
	3	1.932 × 10 -2 7.294 × 10 -2	1.564	5.110 × 10 -2 1.349 × 10 -1	8
	4	1.140 × 10 -2 4.346 × 10 -2	1.436	3.014 × 10 -2 8.170 × 10 -2	9
	5	6.964 × 10 -3 2.683 × 10 -2	1.337	1.835 × 10 -2 5.127 × 10 -2 12

(s, c u0 ) = (3, 15); f (r) = c f r(1 + ln 3/2 (2 + |r|)); Norms of z k , y k , v k w.r.t. c f .

Table 4 :

 4 

	T ) k

(s, c f ) = (4, -1); f (r) = c f r(1 + ln 3/2 (2 + |r|)); Norms of z k , y k , v k w.r.t. c u0 .

Table 5 :

 5 

	3	10.081	36.637	10.244	29.284	71.334	40
	0.4	4.865	17.312	5.968	13.492	34.349	8
	0.5	2.566	9.01	4.427	7.105	18.393	6
	0.7 8.356 × 10 -1	2.974	3.342	2.301	5.691	6
	1.0 2.333 × 10 -1 8.665 × 10 -1	2.680	6.013 × 10 -1	1.517	5

c u0 = 15; (s,

Table 8 :

 8 s

		3.545 × 10 -1	1.311	2.601	9.157 × 10 -1	2.331	8
	11	5.376 × 10 -1	1.984	3.252	1.387	3.547	9
	12	9.539 × 10 -1	3.508	4.373	2.465	6.374	12
	12.5	1.472	5.394	5.511	3.825	10.081	16
	12.7	1.875	6.861	6.328	4.903	13.156	19
	12.9	2.632	9.625	7.803	6.966	19.459	26
	13	3.426	12.565	9.299	9.144	26.761	31
	13.1	5.927	22.307	13.432	15.512	51.183	51

Table 9 :

 9 c u0 = 13; f (r) = -r 2 ; Norms of z k , y k , v k w.r.t. s.

		3.135	8.018	9.362	8.139	22.416	35
	3	3.426	12.565	9.299	9.144	26.761	31
	4	3.752	19.604	9.243	10.064	30.919	29

  (ρ -1 2, p) x,t (1, t) in L 2 (0, T ).

								t)	δ τ (ρ -1 2, p) x (1, t) τ	2	dt	(100)
	are bounded uniformly w.r.t. τ = 0 small. Therefore,
		ρ	-1/2 3	L (ρ -1 2, p) t ∈ L 2 (Q T ) and ρ -1/2 4	(ρ -1 2, p) x,t (1, t) ∈ L 2 (0, T )
	and				ρ	-1/2 3	δ τ L (ρ -1 2, p) τ	→ ρ	-1/2 3	L (ρ -1 2, p) t in L 2 (Q T )
				ρ	-1/2 4	δ τ (ρ -1 2, p) x (1, t) τ	→ ρ	-1/2 4
	Indeed						
	ρ	-1/2 3					

  Moreover, since ρ -1 3 γ ∈ D(R; L ∞ (Ω)), for all (t, τ ) ∈ R 2 , there exists λ(t, τ ) ∈ (0, 1) such that

	and			-	1 τ	T -τ T	Ω	ρ -1 3 (t + τ ))γ(t + τ )(ρ -1 2, p)(t + τ )	δ τ L ρ -1 2, p (t) τ	dxdt → 0.
	1							
								δ τ (ρ -1 3 γ)(t) = τ (ρ -1 3 γ) t (t) +	τ 2 2	(ρ -1 3 γ) tt (t + λτ )	(102)
	and thus, since |(ρ -1 3 γ) t | C|ρ	-1/2 3	|
	-	(ρ -1 2, p)(t + τ )			
	Q T							
									τ	t)	dxdt	(101)
		-	1 τ	T -τ T	Ω	ρ -1 3 (t + τ )γ(t + τ )(ρ -1 2, p)(t + τ )	δ τ L ρ -1 2, p (t) τ	dxdt.
	Estimates (94) and (95) imply
				-	1 τ	0 -τ Ω	δ τ L ρ -1 2, p (t) τ	dxdt → 0,

ρ -1 3 (t + τ ))γ(t + τ )(ρ -1 2, p)(t + τ )

  1 4 ) t | Csρ (1, t) , we deduce from the definition (21) of p Ps and (25) :

	-1/2 4 1 p x s and (ρ -1 2, p) x (1, t) C ρ -1 T (ρ -1 2, p) x (1, t)(ρ -1 4 ) t (1, t)(ρ -1 2, p) xt (1, t) s 4 C(ε) T (ρ -1 2, p) x (1, t)	2 + sε	T	ρ -1 4 (1, t) (ρ -1 2, p) xt	2 (1, t)
	0	0				0	
	s 4 C(ε)	T	(ρ -1 1 p x )(1, t)	2 + sε	T	ρ -1 4 (1, t) (ρ -1 2, p) xt	2 (1, t)
		0				0	
	C(ε)s 3 p 2 Ps + sε	T	ρ -1 4 (1, t) (ρ -1 2, p) xt	2 (1, t)
			0				
	C(ε)						

Q T ρ 2 |B| 2 + sε T 0 ρ -1 4 (1, t) (ρ -1 2, p) xt 2 (1, t).

Taking ε small enough, the estimate (75) follows.

Step 2. We prove that ρ 1/2 3 z t ln L 2 (Q T ), ρ 1/2 4 v t ∈ L 2 (0, T ) and satisfy [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF]. System (73) first implies that z = ρ - 1 3 L (ρ -1 2, p) + ρ -1 3 (ρ -1 2, ) t p and thus

thanks to (71), (75), the Carleman estimate [START_REF] Ervedoza | A systematic method for building smooth controls for smooth data[END_REF] for p and the fact that ρ -1

Next, recalling that the control is given by v

But, (ρ -1 4 ) t (1, t)ρ 4 (1, t)ρ -1 1 (1, t) C so, thanks to [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF] and (75) :

Estimate [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF] follows from (107) and (108).

Step 3. We prove that z ∈ L 2 (0, T ;

) and satisfy [START_REF] Simon | Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure[END_REF].

As a consequence of (29), we get

and then use (by means of (76)) that there exists some positive constant c 2 such that

Therefore, v ∈ H 1 (0, T ) ⊂ C 0 ([0, T ]) and since ρ 1 v ∈ L 2 (0, T ) we have v(0) = v(T ) = 0; therefore v ∈ H 1 0 (0, T ). Therefore, by using the L 2 regularity result for the heat equation, we get that z solution of (19) satisfies

where

The regularity result z ∈ L 2 (0, T ; H 2 (Ω)) ∩ H 1 (0, T ; L 2 (Ω)) implies the desired property, namely that z ∈ L ∞ (Q T ) with the same estimate as (111) (this follows from the continuous embedding L 2 (0, T ; H 2 (Ω))∩

Step 4. We now consider the case ρB ∈ L 2 (Q T ).

We proceed by density from the estimates ( 29) and (111) proved for B ∈ D(0, T ; L 2 (Ω)): there exists

Applying Theorem 2 for all n ∈ N , there exists unique [START_REF] Victor | The problem of blow-up in nonlinear parabolic equations[END_REF] and the linearity of the map Λ 0 s (see [START_REF] Le Balc'h | Global null-controllability and nonnegative-controllability of slightly superlinear heat equations[END_REF]) and ( 24)) imply for all n, m ∈ N * ,

Similarly, ( 29) implies for ∀n, m ∈ N

Finally, estimate (111) implies

z n → z in L 2 (0, T ; H 2 (Ω)) ∩ H 1 (0, T ; L 2 (Ω)) as n → +∞,

where (z, v) is the unique state-control pair to [START_REF] Victor | The problem of blow-up in nonlinear parabolic equations[END_REF] with B ∈ L 2 (Q T ) by means of Theorem 2, more precisely z = ρ -2 L p, v = sρ -2 1 (1, t)p x (1, t). Consequently, the pair (z, v) also satisfies the announced estimates ( 29) and [START_REF] Simon | Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure[END_REF] with ρB ∈ L 2 (Q T ).