
HAL Id: hal-03938219
https://hal.science/hal-03938219

Submitted on 13 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MDSCAN: RMSD-based HDBSCAN clustering of long
molecular dynamics

Roy González-Alemán, Daniel Platero-Rochart, Alejandro
Rodríguez-Serradet, Erix Hernández-Rodríguez, Julio Caballero, Fabrice

Leclerc, Luis Montero-Cabrera

To cite this version:
Roy González-Alemán, Daniel Platero-Rochart, Alejandro Rodríguez-Serradet, Erix Hernández-
Rodríguez, Julio Caballero, et al.. MDSCAN: RMSD-based HDBSCAN clustering of long molecu-
lar dynamics. Bioinformatics, 2022, 38 (23), pp.5191-5198. �10.1093/bioinformatics/btac666�. �hal-
03938219�

https://hal.science/hal-03938219
https://hal.archives-ouvertes.fr

i
i

“MDSCAN” — 2022/9/11 — 23:09 — page 1 — #1 i
i

i
i

i
i

Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Original Paper

Structural Bioinformatics

MDSCAN: RMSD-Based HDBSCAN Clustering of
Long Molecular Dynamics
Roy González-Alemán 1, 2,∗, Daniel Platero-Rochart 1, Alejandro
Rodríguez-Serradet 1, Erix W. Hernández-Rodríguez 3, Julio Caballero 4,
Fabrice Leclerc 2,∗ and Luis Montero-Cabrera 1

1Laboratorio de Química Computacional y Teórica (LQCT), Facultad de Química, Universidad de La Habana, La Habana, 10400, Cuba
2Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Saclay,Gif-sur-Yvette, F-91198, France
3Laboratorio de Bioinformática y Química Computacional, Departamento de Medicina Traslacional, Facultad de Medicina, Universidad
Católica del Maule, Talca 3480094, Chile
4Departamento de Bioinformática, Facultad de Ingeniería, Centro de Bioinformática, Simulación y Modelado (CBSM), Universidad de
Talca, Talca, Chile

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: The term clustering designates a comprehensive family of unsupervised learning methods
allowing to group similar elements into sets called clusters. Geometrical clustering of Molecular Dynamics
(MD) trajectories is a well-established analysis to gain insights into the conformational behavior of simulated
systems. However, popular variants collapse when processing relatively long trajectories because of their
quadratic memory or time complexity. From the arsenal of clustering algorithms, HDBSCAN stands out as
a hierarchical density-based alternative that provides robust differentiation of intimately related elements
from noise data. Although a very efficient implementation of this algorithm is available for programming-
skilled users (HDBSCAN*), it cannot treat long trajectories under the de facto molecular similarity metric
RMSD.
Results: Here, we propose MDSCAN, an HDBSCAN-inspired software specifically conceived for
non-programmers users to perform memory-efficient RMSD-based clustering of long MD trajectories.
Methodological improvements over the original version include the encoding of trajectories as a particular
class of vantage-point tree (decreasing time complexity), and a dual-heap approach to construct a quasi-
minimum spanning tree (reducing memory complexity). MDSCAN was able to process a trajectory of
one-million frames using the RMSD metric in about 21 hours with less than 8 GB of RAM, a task that would
have taken a similar time but more than 32 TB of RAM with the accelerated HDBSCAN* implementation
generally used.
Availability and implementation: The source code and documentation of MDSCAN are free
and publicly available on GitHub (https://github.com/LQCT/MDScan.git) and as a PyPI package
(https://pypi.org/project/mdscan/).
Contact: roy_gonzalez@fq.uh.cu, fabrice.leclerc@i2bc.paris-saclay.fr
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Molecular Dynamics (MD) is a physical-based computational technique
aiming to describe the dynamic evolution of a system at the atomic level.

© The Author 2021. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

i
i

“MDSCAN” — 2022/9/11 — 23:09 — page 2 — #2 i
i

i
i

i
i

2 González-Alemán et al.

Widely applied in the structural bioinformatics field, MDs are useful
to understand, complement, or even predict experimental results. The
primary outcome of an MD simulation is its trajectory, a compendium
of the explored conformations sampled at specific periods. Nowadays,
many snapshots can be contained in MD trajectories whose complexity
often hides their inherent relationship. By grouping (clustering) similar
conformations, it becomes easier to correlate MD results with experimental
data as the relative importance of the sampled conformations becomes
evident.

Geometrical clustering is one of the most frequently found post-
processing analyses of MD. Although many options are available to
the user (Shao et al., 2007; Peng et al., 2018), their results are not
always analogous, as they assume different cluster definitions. Density-
based variants represent clusters as regions of high density surrounded
by noisy low-density zones. This notion, translated to the MD jargon, is
the equivalent of defining a cluster as a temporary stable region of the
conformational landscape.

From the density-based clustering alternatives (Campello et al., 2020),
HDBSCAN (Campello et al., 2013) has proved one of the most robust
currently accessible solutions. This method generates a complete hierarchy
of the most significant and stable clusters through two intuitive parameters
(which, when equally set, generate a pseudo-non-parametric algorithm):
the minimum size of a cluster (m), and thekth nearest neighbor to consider
when determining an element’s neighborhood (k).

Among the HDBSCAN’s advantages described in the original paper,
the following are of particular interest: (i) the ability to characterize
datasets with nested clusters or clusters of different densities (a challenging
task with other variants like DBSCAN (Schubert et al., 2017) or
DENCLUE (Hinneburg and Keim, 2003)), (ii) the straightforward
simplification of the cluster hierarchy into an easily interpretable
representation of the most significant clusters (as opposed to methods like
gSkeletonClu (Sun et al., 2010)), (iii) the fact of not being circumscribed
to specific classes of problems (like gSkeletonClu) or element sets in the
real coordinate space (like DECODE (Pei et al., 2009) or Generalized
Single-Linkage (Stuetzle and Nugent, 2010)), and (iv) the non-reliance on
multiple (often critical) input parameters like the mentioned algorithms
and many others.

From the previous list, DBSCAN (implemented in the cpptraj module
of the AMBER suite) is an appealing choice for the analysis of MD
trajectories. As stated by Schubert et al., it is an algorithm proven to work in
practical situations, that received the SIGKDD test-of-time Award in 2014
(Schubert et al., 2017). Conceptually, HDBSCAN supersedes DBSCAN,
being able to report clusters over all values of the DBSCAN’s distance
scale parameter ϵ and find those clusters that persist for many values of
this magnitude.

Though not primarily conceived to deal with molecular ensembles,
HDBSCAN has been used successfully in the conformational study of
MD simulations (Melvin et al., 2016, 2018) through a deeply optimized
implementation referred as HDBSCAN* from now on (McInnes and
Healy, 2017). HDBSCAN*’s authors creatively addressed each major step
of the original version, reducing their complexity from O(N2) to near
O(N log N) in the average case (and even for the worst cases, a fast
sub-quadratic complexity of the algorithm is expected).

Unfortunately, HDBSCAN* excludes RMSD (the de facto metric
in MD analysis despite its thoroughly described drawbacks (Sargsyan
et al., 2017)) or any other high dimensional metric to assess the pairwise
similarity of elements. Although HDBSCAN* can receive a pre-processed
RMSD float square matrix, its explicitly fixed double-precision float data
type bounds the range of applications to small MD trajectories.

Euclidean or Euclidean-like metrics are exploited in MD clustering
under the assumption that they are faster to compute than the optimal
RMSD (as less unitary operations are involved, and also because no

alignment is performed between every pair of structures). However, we
have previously shown that efficient approaches of Theobald’s method for
computing the optimal RMSD outperform most clustering software based
on Euclidean or RMSD metrics (González-Alemán et al., 2020a,b, 2021;
Platero-Rochart et al., 2022).

Here, we propose MDSCAN, a fast and memory-efficient RMSD-
based implementation of HDBSCAN that is suitable to process long
MD trajectories with no distance matrix involved. MDSCAN, similar to
HDBSCAN*, is an approximate approach to the reference implementation
whose moderate deviations make a suitable compromise between the
computational cost of the clustering job and the quality of returned clusters.
The encoding of MD trajectories as a distinctive variant of vantage-point
trees (decreasing the run times of RMSD computation up to a half) and a
double-heap approach to calculate a quasi-minimum spanning tree of the
MD trajectory’s complete graph (significantly decreasing the RAM usage)
are the major methodological contributions of this work.

MDSCAN clustered a 1 million frames MD trajectory using the RMSD
metric in about 21 hours with less than 8 GB of RAM. The same job would
have taken a similar time, but over 32 TB of RAM in the RMSD version
of HDBSCAN*. Our proposal is designed as a command-line interface for
non-programmer users and provides helpful VMD visualization scripts.

2 Computational Details
MDSCAN has been coded in Python 3 programming language and is freely
available at GitHub (https://github.com/LQCT/MDScan.git) and as a PyPi
package (https://pypi.org/project/mdscan/). It depends on version 1.9.4 of
MDTraj (McGibbon et al., 2015) for the fast optimal RMSD calculations.

To contrast the computational performance of MDSCAN with other
density-based clustering alternatives, we designed a benchmark against
the following software: (i) the cpptraj (Roe and Cheatham, 2013)
implementation of DBSCAN (using the RMSD metric), (ii) the scikit-
learn (Pedregosa et al., 2011) implementation of DBSCAN (using the
RMSD metric), and (iii) the accelerated HDBSCAN* implementation of
McInnes and Healy (McInnes and Healy, 2017) (using the Euclidean and
RMSD metrics).

The benchmark was conducted on a set of previously published
trajectories that are referred by their size (kF = kilo Frame, MF = mega
Frame) as follows: (i) 6 kF, a 6001 frames REMD simulation of the Tau
peptide (Shea and Levine, 2016), (ii) 30 kF, a 30605 frames MD of villin
headpiece (PDB 2RJY) (Melvin et al., 2016), (iii) 50 kF, a 50500 frames
MD of serotype 18C of Streptococcus Pneumoniae (González-Alemán
et al., 2021), (iv) 100 kF, a 100500 frames MD of Cyclophilin A (PDB
2N0T) (González-Alemán et al., 2021), (v) 250 kF, a 250000 frames MD
of four chains of the Tau peptide that corresponds to the MD simulation of
an extended Tau peptide (PDB PHF8) during 1µs developed by Álvarez-
Ginarte et al.(Laboratory of Computational and Theoretical Chemistry,
University of Havana) in an unpublished work, (vi) 500 kF. a 500000
frames MD toy trajectory constructed from randomly selected snapshots
of 6K (González-Alemán et al., 2020a), and (vii) 1 MF, a one-million
frames MD of ubiquitin (PDB 1UBQ) (Platero-Rochart et al., 2022).

All trajectory and topology files are available online at the
following addresses: 6 kF, 50 kF, 100 kF, 250 kF, 500 kF at
https://doi.org/10.6084/m9.figshare.c.5403930.v1, 30 kF at
https://doi.org/10.6084/m9.figshare.3983526.v1, and 1 MF at
https://lbqc.ucm.cl/ubiquitin_1MF/.

Though all trajectories and topologies in this study are formatted as
.dcd and .pdb respectively, MDSCAN’s users can choose from any of the
available formats MDTraj provides, namely [arc, dcd, binpos, xtc, trr,
hdf5, h5, ncdf, netcdf, nc, pdb.gz, pdb, lh5, crd, mdcrd, inpcrd, restrt, rst7,
ncrst, lammpstrj, dtr, stk, gro, xyz.gz, xyz, tng, xml, mol2, hoomdxml,

i
i

“MDSCAN” — 2022/9/11 — 23:09 — page 3 — #3 i
i

i
i

i
i

MDSCAN 3

Fig. 1. Main steps of the HDBSCAN clustering algorithm.

and gsd] for trajectories, and [pdb, pdb.gz, h5, lh5, prmtop, parm7, prm7,
psf, mol2, hoomdxml, gro, arc, hdf5, and gsd] for topologies.

Calculations were performed on an AMD Ryzen 5 Hexa-core
Workstation with a processor speed of 3.6 GHz and 64 GB RAM under a
64-bit Xubuntu 18.04 operating system. Run times and RAM peaks were
recorded with the /usr/bin/time Linux command.

3 HDBSCAN Formalism
Like other density-based clustering algorithms, the main idea behind
HDBSCAN is to isolate high-density regions from the lower-density or
noisy zones. In the context of an MD trajectory, denser regions can be
regarded as a highly-populated location of the system’s conformational
space, surrounded by transitional or noisy conformations. The main steps
of this algorithm are detailed in Figure 1.

HDBSCAN formally defines the density of each frame i in terms of a
core distance κ(i); the distance from i to its kth nearest neighbor. Note
that the chosen metric for κ(i) can be Euclidean, RMSD, or any other
selected by the user. Computing κ(i) for every frame of the trajectory
permits to effectively spread apart denser frames from noise by defining
a new similarity metric, the mutual reachability distance (dmr , Equation
1), in which d(i, j) is the distance between elements i and j in the input
metric. Under dmr , dense conformations (having low κ(i)) remain at the
same original distance from each other while sparser frames are "pushed"
to be at least their core distance away from any other point.

dmr(i, j) =

{
max{ κ(i), κ(j), d(i, j) }, i ̸= j

0 , i = j
(1)

From a graph-theoretic point of view, a molecular trajectory can be seen
as a complete graph (T) in which nodes represent frames, and pairwise
edges hold the dmr distance between nodes. In this scenario, creating a
hierarchical divisive partition of T can proceed by setting a high threshold
value (dist) at which to start erasing edges, in a way thatT would pass from
a complete graph to a completely disconnected one. As this naive approach
is computationally prohibitive, HDBSCAN recurs to the construction of
a minimum spanning tree (MST) whose progressive disconnection leads
to the same hierarchy of components just described. An MST of T is a
subset of T edges that connects all T nodes (without forming cycles) with
the minimum total weight.

The MST inferred from T can be progressively disconnected to
produce a hierarchy of clusters. HDBSCAN introduces a parameter m

that represents the minimum number of points in a component to classify
it as a cluster. m allows condensing the cluster hierarchy because now,
cutting an edge that produces a component with less than m points is

considered as a "just-loosing-elements" cluster and not as an independent
one.

Concretely, the MST disconnection process (Figure 2) proceeds in this
fashion: A new magnitude λ is defined as the inverse of the dmr distance
(λ = 1/dist). MST’ edges are sorted in increasing order of their λ

value (high distances edges come first). Successive edge cutting produces
two child sub-trees at each cleavage, giving rise to one of the following
situations: (i) one of the child sub-trees contains m or fewer points, (ii)
both child sub-trees includes m or fewer points, and (iii) both child sub-
trees carries more thanm points. In the first situation, a component without
the lost members is retained, and the split is considered spurious. No child
is returned, only a shrink component. The second situation marks the MST
disconnection endpoint, as no further valid components will be produced.
The third case corresponds to a "true split", and effectively separates the
parent component into two new independent ones.

Fig. 2. Condensed hierarchy of clusters produced by the HDBSCAN’s disconnection
process. The stability of cluster Cx is inside parentheses. Final selected clusters have
an asterisk. Components’ size is scaled by their relative width.

The extraction of final clusters from the condensed hierarchy takes
place according to the definition of cluster stability (σ(Ci), Equation 2).
First, for a given cluster Ci (see C2 in Figure 2) let’s define its λbirth

and λdeath as the λ values at which Ci becomes a cluster and disappears
respectively. Inside Ci, for each element e, the λe value denotes when
e "abandons" Ci, either as a spurious or a true split (note that λbirth <

λe < λdeath). Then the stability of Ci is calculated through the Equation
2.

σ(Ci) = Σe∈Ci
(λe − λbirth) (2)

Once σ(Ci) of all hierarchical clusters are computed, the final step
is to find a flat (non-hierarchical) set of disjoint clusters with maximum
stability. To that end, the cluster tree is processed from the leaves
(C3, C9, C10, C8, C5, and C6 in Figure 2) upwards. Initially, all leaves
are declared as clusters. Then, the stabilities of sibling leaves i, j (sharing
the same parent k) are summed and the result is compared to the stability
of their parent . If σ(i) + σ(j) > σ(k), σ(k) is set to σ(i) + σ(j), but
i and j (not k) are still considered the selected clusters. On the contrary,
if σ(i) + σ(j) ≤ σ(k), σ(k) conserve its value, k is marked as selected
cluster, and all descendants of k are unselected.

In Figure 2 (cluster stability values are inside parentheses) we can start
the previously described process from leaves C9 and C10. As 3+ 3 > 2,
σ(C7) is set to 6, but C7 is not selected as cluster. Repeating with C7

and C8 results in selecting C4 as cluster and unselecting C9, C10, and

i
i

“MDSCAN” — 2022/9/11 — 23:09 — page 4 — #4 i
i

i
i

i
i

4 González-Alemán et al.

C8 (6 + 2 < 9). Continuing with C3 and C4 excludes the possibility to
select C1 as a final cluster because 8 + 9 > 8. Note that no comparison
is ever made against C0. Similarly for the right section of the tree, C2 is
selected as cluster (excluding C5 and C6) giving that 3 + 2 < 6. In this
manner, final clusters with maximal stability are C3, C4, and C2.

4 MDSCAN Approach

4.1 Encoding an MD trajectory as a Vantage Point Tree

As discussed in Section 3, HDBSCAN must compute the core distance of
every element under consideration. By organizing the input data into some
well-defined manner, data structures like kd-trees (Baskett and Shustek,
1975) are commonly employed to look up for the k nearest neighbors of
query elements without having to explore the whole database each time.

A kd-tree is constructed through iterative bisections of the input data
along a single coordinate. These cuts are made at points producing a
maximum spread in the selected coordinate’s distribution. Unfortunately,
efficient usage cases of kd-trees are restricted to Euclidean metric spaces of
low dimensionality. Such limitation automatically prevents their utilization
in the high-dimensional spaces that characterize molecular conformations.

Vantage point trees (vp-trees, Yianilos, 1993) are an alternative to kd-
trees conceived to work with general metrics in high-dimensional spaces.
Rather than performing cuts among the coordinates values, nodes of the
vp-tree split the database into smaller subspaces employing distinctive
elements known as vantage points (vp). By convention, near-to-vp
instances constitute the left subspace while far points are grouped into
the right subspace. The recursive partition of the input database then leads
to a binary tree. In a vp-tree, every frame has a "perspective" on the entire
T via their distance to all other frames. This notion of "perspective" is a
direct consequence of the triangle inequality represented in Equation 3 that
holds for every pair of frames (a, b) ∈ T . In Equation 3, d(a, b) denotes
the distance between two points a and b, which will always be greater or
equal than the absolute value of the difference between distances from p

to a and b respectively.

d(a, b) ≥ |d(p, a)− d(p, b)| (3)

Given a metric space (S, d), and some finite subset (T ∈ S)

representing the trajectory of an MD simulation, the goal of a vp-tree
encoding is to organize T in a way that the k nearest neighbors of every
query frame q, may be located faster than the naive approach of visiting
all frames in T for each query. Suppose that for some frame p ∈ T , the
median (µ) of the p-versus-all distances is determined. Then T can be split
into two subspaces; the left subspace (or inside sphere Spl), containing
frames closer than µ to p, and the right subspace (or outside sphere Spr),
containing frames at µ or larger distance values from p (see Figure 3). Spl

and Spr will have roughly the same size if there are relatively few frames
lying exactly at µ.

Fig. 3. Partition of a database via the vantage pointp. Elements closer thanµ top conforms
the left subspace (inside sphere in light gray) while the rest conforms the right subspace
(outside sphere in dark gray). q and k denote a query point and its kth nearest neighbor
respectively. τ and d(p, q) represent the distances from q to k and to p respectively.

Now suppose that for a query frame q ∈ Spl the kth nearest neighbors
is solicited. By only visiting frames inside Spl, it is possible to define a
variable τ storing the distance from q to the kth neighbor found so far. The
relevance of vp-trees comes from the fact that if d(p, q) ≥ µ + τ , then
the Spr subspace can be safely removed from consideration as searching
their elements would not lead to a τ ≤ d(p, q). Similarly, if q ∈ Spr

and d(p, q) ≤ µ − τ , searching the Spl subspace is unnecessary. In
both cases, a single point’s "perspective" sufficed to prune significantly
the search. However, if µ − τ < d(p, q) < µ + τ no such reduction is
possible and the whole T must be explored. Details on the mathematical
validity of described notions are available in the fundamental publication
of Yianilos on vp-trees (Yianilos, 1993).

Fig. 4. Two representations of the binary splitting of a 32-element trajectory into a set
of 8 sub-trajectories or buckets. A-) Binary vp-tree. Circles represent vantage points and
rectangles the sub-trajectories. B-) Spherical cuts applied to the trajectory. Each vantage
point has an arrow whose size equals the corresponding µ value.

In this work, we implemented a variation of vp-trees that join leaves
into buckets of frames or sub-trajectories. Thus we benefited from both;
the efficient pruning offered by the vp-tree and the fast optimal RMSD
computation provided by the MDTraj package. In Figure 4A, a trajectory
of 32 frames is partitioned as a bucket-type vp-tree (vpb-tree). The same
partitioning is represented in Figure 4B, but using a spherical view of the
cuts. Note that, in both cases, the binary splitting of the input trajectory
propagates until the formation of buckets.

4.2 Dual-Heap construction of a quasi-Minimum Spanning
Tree

HDBSCAN is a general algorithm that can be useful in multiple fields.
We will focus on how simple observations lead to substantial memory

i
i

“MDSCAN” — 2022/9/11 — 23:09 — page 5 — #5 i
i

i
i

i
i

MDSCAN 5

savings of optimal RMSD-based implementations for processing long MD
trajectories. Even when other alternatives are possible, we believe that the
optimal RMSD is a well-studied popular metric whose performance and
limitations are thoroughly described and accepted by the community.

In Section 3, κ(i) was defined as the distance from i to its kth nearest
neighbor. Consequently, the k-neighborhood of i (denoted by η(i)) can be
defined as the set of nodes j for which d(i, j) ≤ κ(i). As a derivation of
Equation 1 it can be stated that: Any node j belonging to η(i) and having a
core distanceκ(j) ≤ κ(i), leads to a minimum value ofdmr(i, j) = κ(i)

(Equation 4).

dmr(i, j) = {κ(i) | ∀j ∈ η(i) : κ(j) ≤ κ(i)} (4)

This means that if we would like to construct an MST from T nodes,
joining i it to any node j ∈ η(i) with κ(j) ≤ κ(i) would create a
minimum weighted edge of that MST. In the hypothetical case in which
we could connect all nodes of T as a tree following the special case in
Equation 4, we would end up with an MST from which the final steps of
HDBSCAN may continue (see Section 3).

Although possible, the described scenario is unlikely to occur for a real
MD trajectory. The principal assumption of MDSCAN is that it happens
for most nodes, generating not an MST but a minimum spanning forest
(MSF); a collection of disconnected minimum spanning trees of T nodes.
The number of MST inside the MSF equals the number of nodes that could
not find another node j satisfying Equation 4. For those disconnected i, it is
still possible to find a node j in one of theMST ∈ MSF whosedmr(i, j)

though not minimal, would be small enough. Joining all disconnected
nodes in the MSF without creating cycles gives a quasi-MST (instead of
an exact one). This quasi-MST could be used later to perform subsequent
steps of the original formulation of HDBSCAN. The capital importance
of this workflow to get a quasi-MST is that no similarity matrix must be
stored in RAM.

Nodes i more likely to find a neighbor j satisfying Equation 4 are
those with higher values of κ(i). As MDSCAN continuously checks for
Equation 4 to hold, we used a heap data structure that retrieves the node
with maximum κ(i) found so far in logarithmic time. MDSCAN uses two
heaps; the first one (main heap) will contain some next-to-analyze nodes,
while an auxiliary heap involves already analyzed nodes failing Equation
4 that will be re-processed after exhaustion of the main heap.

The algorithm starts by randomly choosing a not-analyzed node i

from the trajectory. This will occur whenever the main heap is empty,
so choosing its first element (highest core distance found so far) is not
possible. To retrieve the η(i) and κ(i) of every node, MDSCAN queries
the vpb-tree data structure described in Section 4.1. Then, the software
searches nodes j ∈ η(i) having κ(j) ≤ κ(i). If such a node is found, a
directed edge from i to j is created, and its weight set as dmr(i, j) = κ(i).

During this process, all inspected j for which κ(j) ≥ κ(i) are
transferred to the main heap as a tuple containing κ(j), j index, and
η(j). If the opposite situation happens, i.e. a node j whose κ(j) ≤ κ(i)

is not found in η(i), then a tuple containing κ(i) and i index is passed to
an auxiliary heap for future processing. The previous process goes on until
consideration of all nodes. At the end of this stage, an MSF is achieved.
The deviation from an exact MST will thus arise from the connection of
nodes in the auxiliary heap. The less populated this heap is, the smaller
the deviation.

To join the remaining nodes at the auxiliary heap, MDSCAN runs
the following steps for each one. First, the RMSDix vector, containing
distances from i to all other nodes in T is calculated. Then, the dmr(i, j)

is calculated for all nodes j that are not in the same tree that i. The smallest
value of these dmr is taken as the weight of a directed connection from
i to j. Once the quasi-MST is constructed, MDSCAN continues with the

building of a cluster hierarchy and the extraction of the most stable clusters
exactly as it was described in Section 3 (see Figure 1).

5 MDSCAN Benchmark

5.1 Time and memory consumption

Several density-based clustering options were compared against
MDSCAN in terms of run time and memory consumption: (i) the
HDBSCAN*’s generic options (using the RMSD or Euclidean metrics), (ii)
the HDBSCAN*’s Prim option (using Euclidean metric), (iii) the DBSCAN
implementation included in the AMBER package cpptraj (using RMSD
metric), and (iv) the DBSCAN algorithm available in the scikit-learn
Python library (using RMSD metric). The Prim and generic labels of
HDBSCAN* refer to the approach followed for constructing the quasi-
MST (see Section S3: Approaches for computing the quasi-MST in the
HDBSCAN* software of Supporting Information).

Although HDBSCAN can be recognized as a replacement for
DBSCAN, we included the latter in our benchmark as it is still a popular
choice for clustering MD (possibly because of the absence of accessible
implementations of HDBSCAN).

For benchmark purposes, we used k = m = 5 for all HDBSCAN
variants, and an equivalent value of ϵ for DBSCAN alternatives (see
Supplementary Information S1: Search of equivalent parameters between
DBSCAN and HDBSCAN*. Both m and k parameters can impact the
performance and results of the algorithm. Choosingm too high outputs few
clusters, as at every cut of the spanning tree, the number of lost elements
will be less than m, and thus, no novel cluster is produced (the parent
is considered a just-loosing-elements cluster and does not split). This
marginally accelerates the algorithm because the hierarchy would contain
fewer clusters to process. The most conservative and natural choice for
m in the MD context is 2, as this is the minimum number of elements
a cluster can have. One-element clusters or singletons are not considered
real clusters because they are not similar to any other element.

On the other hand, the value of k is an estimate of each element’s local
density (used to calculate the mutual reachability distance). Taking too
high values of k would lead to the homogenization of density estimates,
and consequently, fewer points in the dataset will be marked as clusters.
Increasing k could potentially affect the performance of the data structure
selected to retrieve the kth nearest neighbor (as more elements must be
inspected from the total.) For benchmark purposes, we used k = m = 5

for all HDBSCAN variants, and an equivalent value of ϵ for DBSCAN
alternatives (see Supplementary Information S1: Search of equivalent
parameters between DBSCAN and HDBSCAN*).

From the analyzed variants, MDSCAN is the fastest option in all cases
except for the smallest 6 kF trajectory, where the effort of constructing a
vpb-tree is significant compared to the time taken by the computation of
pairwise similarities. MDSCAN’s time efficiency comes mainly from the
accelerated RMSD computations offered by the MDTraj suite and from our
vpb-tree encoding (discussed in Section 4.1). Indeed, results showed that
while the quasi-MST’s weight computed by MDSCAN with and without
using vpb-tree is equivalent, the run time decreases up to a half when
the vp-tree encoding is exploited (see Section S2: Impact of the vp-tree
encoding on MDSCAN performance of Supporting Information).

While the generic implementations of HDBSCAN* (RMSD and
Euclidean-based) have run times comparable to MDSCAN, their high RAM
consumption only permitted them to process the two smallest trajectories.
HDBSCAN*’s generic implementations are fast primarily because they use
a single-linkage approach to get a tree and do not provide an exact MST
at all .

The HDBSCAN*’s Prim-Euclidean alternative could analyze all
trajectories (except the 1 MF job that was stopped after running for 72h),

i
i

“MDSCAN” — 2022/9/11 — 23:09 — page 6 — #6 i
i

i
i

i
i

6 González-Alemán et al.

Table 1. Run time and memory consumption of analyzed software on different trajectories.1

MDSCAN HDBSCAN* HDBSCAN* HDBSCAN* DBSCAN DBSCAN
[RMSD] [generic-RMSD] [generic-Euclidean] [Prim-Euclidean] [scikit-RMSD] [cpptraj-RMSD]

Traj. Name Traj. Size # Atoms Run time RAM peak Run time RAM peak Run time RAM peak Run time RAM peak Run time RAM peak Run time RAM peak
(GB) (selection)a (hh:mm:ss) (GB) (hh:mm:ss) (GB) (hh:mm:ss) (GB) (hh:mm:ss) (GB) (hh:mm:ss) (GB) (hh:mm:ss) (GB)

6 kF 0.02 217 (all) 0:00:06 0.18 0:00:04 1.49 0:00:02 1.29 0:00:30 0.15 0:00:03 0.78 0:00:10 0.09
30 kF 0.02 64 (CA) 0:00:19 0.21 0:00:53 35.90 0:00:25 29.01 0:02:14 0.18 0:00:41 17.58 0:01:39 1.78
50 kF 0.05 78 (no H) 0:01:37 0.26 — 83.82 — 74.60 0:04:28 0.26 0:02:03 46.73 0:05:46 4.71

100 kF 0.75 660 (back) 0:36:42 1.78 — 335.28 — 299.49 2:31:14 2.58 — 150.51 2:10:39 19.38
250 kF 0.47 160 (back) 0:37:46 1.20 — 2103.87 — 1863.54 5:52:37 1.64 — 931.32 — 125.50
500 kF 1.25 217 (all) 6:42:18 2.83 — 8381.90 — 7453.01 21:00:04 4.41 — 3725.29 — 499.99
1 MF 3.47 304 (back) 21:01:06 7.67 — 33534.32 — 29809.12 > 72:00:00 14.23 — 14901.16 — 2048

1 Bold entries denote either a memory crash (jobs taking over 64 GB) or a time crash (jobs taking more than 72h). For each memory-crashed job, an
estimation of its memory peak is provided. a all: all atoms, CA: alpha carbon atoms, no H: non-hydrogen atoms, back: backbone atoms.

but taking up to nine more times than MDSCAN (see Traj. 250 kF in Table
1). This option neither constructs an exact MST from the input data, though
a less simplistic approach than a single-linkage is followed to construct
a tree (see Section S3: Approaches for computing the quasi-MST in the
HDBSCAN* software of Supporting Information).

DBSCAN alternative available in the scikit-learn Python library has
a run time performance that compares well to that of the HDBSCAN* ’s
RMSD generic implementation, but could only process the three smallest
trajectories. The cpptraj’s implementation of DBSCAN is twice slower
than the former and, though less memory-hunger, it could not either process
trajectories bigger than 100 kF due to its excessive RAM consumption.

Regarding the RAM management, the only efficient alternatives are
MDSCAN and HDBSCAN*’s Prim-Euclidean, which do not employ square
pairwise similarity matrices to derive the required tree. They both have a
similar consumption for the smallest trajectories (from 6 to 50 kF, Table
1), with MDSCAN displaying the best behavior for the longest cases (from
100 kF to 1 MF, Table 1). With MDSCAN, the RAM is consumed mainly
by the MD trajectory file. One copy of this object is needed to instantiate
the vpb-tree data structure and to make the similarity recalculations to
complete the final quasi-MST. Another copy is created when producing
the vantage tree’s buckets. As it is shown in Section S2: Impact of the
vp-tree encoding on MDSCAN performance of Supporting Information,
using MDSCAN without a vpb-tree encoding is more memory-friendly (as
the second copy never gets created). However, we are persuaded that this
small memory trade-off is justified given the speed up reached with the
vantage point-based alternative.

The generic-RMSD and generic-Euclidean options of HDBSCAN*
carry the highest memory consumption because, besides the input, these
implementations produce another four double-precision float matrices
living simultaneously on memory. The estimated RAM consumption of
these five objects (Equation 5) is reported in Table 1 for those trajectories
that produced a memory crash.

VRAM =
(M ∗m1 + 4m2) ∗N

230
(5)

In Equation 5, m1 is the size of the float data type employed in the input
matrix (m1 = 4), m2 is the size of the float data type employed internally
by HDBSCAN* (m2 = 8), N denotes the number of conformations in the
trajectory, and M represents the number of columns in the input matrix
(M = N for the generic-RMSD, while M = 3 ∗ number_of_atoms

in the generic-Euclidean variant).
The memory consumption of DBSCAN alternatives is not as huge as

in the generic implementations of HDBSCAN*, but it is still considerable.
The cpptraj choice consumes the equivalent of an upper triangle in a square
matrix of single-precision floats (m = 4), while the scikit-learn option
depletes the equivalent of four such square matrices (8X more RAM than
cpptraj).

5.2 Approximations and uncertainties in the Minimum
Spanning Tree computation

In the HDBSCAN’s formalism, an MST in the dmr space is required (see
Section 3, Figure 1). It must be stressed that a graph may contain more than
one MST, so two exact implementations of HDBSCAN that used distinct
algorithms to retrieve the MST may produce different results in terms
of cluster composition. Producing the exact MST is a time-consuming
task, usually approached from a heuristic perspective to speed up the
algorithm run time. For instance, HDBSCAN* generic variants do not
produce an exact MST, as they use a simplistic single-linkage union of
elements to quickly create a tree and then proceed with the subsequent
steps of HDBSCAN. Though a more robust approach is followed in the
Prim-Euclidean case of HDBSCAN*, no MST gets ever created with this
approach either (see Section S3: Approaches for computing the quasi-MST
in the HDBSCAN* software of Supporting Information).

MDSCAN does not attempt to construct the exact MST, but it provides
a quasi-MST with minor deviation from the exact one, as it is presented in
Table 2. The exact MST in the dmr metric for trajectories 6, 30, 50, and
100 kF was calculated using a Prim-based in-house script (this analysis
was not conducted for the biggest trajectories because the available RAM
was insufficient). The exact MST’s weight was then compared to that of
the quasi-MST computed with MDSCAN, and the deviation never exceeds
0.8% in any trajectory. For comparison, the exact MST obtained with
the Boruvka algorithm in HDBSCAN* (not presented in the benchmark
because of the very long run time of this option) deviates up to 5.8%
regarding the Prim-Euclidean approximate tree provided by this software.

Table 2. Deviations from the exact MST in MDSCAN and HDBSCAN*

MDSCAN (RMSD) HDBSCAN (Euclidean-boruvka)

Traj. Name MST quasi-MST
Deviation

MST quasi-MST
Deviation

(%) (%)
6 kF 1553.8121 1565.6521 0.76 22505.5140 23812.1929 5.81

30 kF 5247.5244 5286.8418 0.75 44017.5060 46044.3410 4.60
50 kF 2699.6461 2713.9600 0.53 22092.1187 23103.7774 4.58
100 kF 5477.1217 5516.5962 0.72 132284.1054 136900.7708 3.49

5.3 Comparing clusters composition

As stated in Section 5.2, the HDBSCAN clustering alternatives analyzed
in this work are expected to produce distinct partitions for each trajectory,
mainly because the algorithm for the MST construction drastically
varies among them. However, it is worth assessing the impact of this
methodological divergence on the outcome clusters produced by each
variant. The Adjusted Rand Index (ARI) serves this purpose by comparing
two partitions and ranking their similarity from non-related (unbound
negative values) to maximal correspondence (positive values bound to
1.00).

The upper triangle of each matrix in Table 3 shows the global ARI
between the MDSCAN (A), the generic RMSD-based HDBSCAN* (B),

i
i

“MDSCAN” — 2022/9/11 — 23:09 — page 7 — #7 i
i

i
i

i
i

MDSCAN 7

the generic Euclidean-based HDBSCAN* (C), and the Prim Euclidean-
based HDBSCAN* (D) implementations. As envisioned, the global
similarity of clusterings is far from 1.00 in every case. However,
there is an appreciable resemblance in clusterings produced by generic
implementations of HDBSCAN* using RMSD or Euclidean metric in
the 6 and 30 kF trajectories. In the particular case of the 30 kF
trajectory, all clusterings coming from HDBSCAN* are correlated but not
analogous to MDSCAN outcomes. For trajectories bigger than 30 kF, only
MDSCAN and Euclidean-based HDBSCAN* produced results, and they
were also divergent.

Table 3. Adjusted Rand Index (ARI) of clustering outputs obtained with
different HDBSCAN implementations for each analyzed trajectory. The upper
triangle of each matrix corresponds to the global ARI, while in the lower triangle
only the ARI of those clusters whose population is higher than 1% of the
trajectory size is depicted.a

6 kF 30 kF 50 kF
A B C D A B C D A B C D

A 1.00 0.34 0.35 0.34 1.00 0.24 0.44 0.48 1.00 — — 0.00
B 0.74 1.00 0.66 0.32 0.34 1.00 0.61 0.64 — 1.00 — —
C 0.74 1.00 1.00 0.38 0.46 0.49 1.00 0.76 — — 1.00 —
D 0.74 0.99 0.99 1.00 0.50 0.55 0.76 1.00 0.00 — — 1.00

100 kF 250 kF 500 kF
A B C D A B C D A B C D

A 1.00 — — -0.02 1.00 — — -3.66 1.00 — — -27.61
B — 1.00 — — — 1.00 — — — 1.00 — —
C — — 1.00 — — — 1.00 — — — 1.00 —
D 0.80 — — 1.00 -4.8 — — 1.00 1.00 — — 1.00

a Each different HDBSCAN variant is represented by a letter: A-
MDSCAN, B- the generic RMSD-based HDBSCAN*, C- the generic
Euclidean-based HDBSCAN*, and D- the Prim Euclidean-based
HDBSCAN*.

When clustering MD simulations, users are often more interested in the
representative bigger clusters found in trajectories. Although there is no
universal or well-established size limit for what a ‘representative cluster’
can be, we selected as representative those clusters whose sizes are greater
or equal than the 1% of the trajectory size. This choice seems reasonable
and even conservative, considering that a common practice is to select only
the first few biggest N clusters for analyses. In the lower-triangle of each
matrix in Table 3, it is shown the pairwise ARI of previous clusterings
when considering these bigger clusters.

The ARI between MDSCAN and the other alternatives gets doubled
in 6 kF. For this trajectory, the most populated clusters reported by all
software are indeed similar (clusterings from all variants of HDBSCAN*
are equivalent). This fortuitous agreement is trajectory-dependent, as
appreciated in the 30 kF case for which no such prominent improvement
of the clustering analogy is attained.

While the ARI can globally inform on partitions similarity, it yields no
clues on the equivalence of individual clusters fetched by every software.
In Section S4: Equivalence of representative clusters of Supporting
Information, we designed a more detailed analysis on the correlation of
individual clusters across MDSCAN and HDBSCAN* implementations for
trajectories 6 and 30 kF (the only trajectories all software could analyze).
As a general trend, clusters from all implementations are interconnected.
MDSCAN often produces smaller groups of frames with the advantage of
them having a higher collective similarity (shorter average diameter). The
smaller size of some clusters produced by MDSCAN (together with the
fact that they are tighter than those seized with Euclidean-based options
of HDBSCAN*), is a direct consequence of the pairwise superposition
followed when using the RMSD metric. Having tight clusters is the desired
behavior when clustering MD as more related frames get included in

the same group, facilitating the visual analysis or quantitative averages
calculated from clustered structures.

6 Conclusions
HDBSCAN is a solid, popular hierarchical density-based clustering
alternative with a broad range of applications. Though already tested for
MD simulations, current implementations are oriented to programming-
skilled users. Besides, they are impractical to analyze long trajectories
because of their quadratic memory complexity (if using RMSD as
similarity metric) or due to slow run times (when the Euclidean metric
is preferred).

Here we presented MDSCAN, an efficient approach to HDBSCAN
designed to treat long MD simulations. MDSCAN employs the RMSD
metric, but it does not rely on a pairwise similarity matrix as most
related software. Instead, it uses a double heap method that constructs
a quasi-Minimum Spanning Tree, a neuralgic step in HDBSCAN’s
workflow. MDSCAN’s run time efficiency is accomplished by encoding
the MD trajectory as a vantage point tree data structure that avoids futile
recalculations of the similarity information.

MDSCAN is a publicly available and intuitive command-line interface
whose results can be visualized through VMD scripts.

Funding
This work was supported by the Cuban Oficina de Gestión de
Fondos y Proyectos Internacionales, CITMA [PN223LH010-02 to
R.G.A and L.M.C], the Eiffel Scholarship Program of Excellence
of Campus France [P104786Z to R.G.A]; the Project Hubert
Curien-Carlos J. Finlay [41814TM to R.G.A, F.L, and L.M.C];
and the Fondo Nacional de Desarrollo Científico y Tecnológico
[CONICYT/FONDECYT/INACH/POSTDOCTORADO/No. 3170107 to
E.W.H.R].

Data availability
The source code and documentation of MDSCAN are free and publicly
available on GitHub (https://github.com/LQCT/MDScan.git) and as a PyPI
package (https://pypi.org/project/mdscan/).

References
Baskett, F. and Shustek, L. J. (1975). An Algorithm for Finding Nearest

Neighbors. IEEE Transactions on Computers, C-24(10), 1000–1006.
Campello, R. J. G. B. et al. (2013). Density-Based Clustering Based on

Hierarchical Density Estimates. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 7819 LNAI, pages 160–172.

Campello, R. J. G. B. et al. (2020). Density-based clustering. WIREs Data
Mining and Knowledge Discovery, 10(2).

González-Alemán, R. et al. (2020a). BitClust: Fast Geometrical Clustering
of Long Molecular Dynamics Simulations. Journal of Chemical
Information and Modeling, 60(2), 444–448.

González-Alemán, R. et al. (2020b). Quality Threshold Clustering
of Molecular Dynamics: A Word of Caution. Journal of Chemical
Information and Modeling, 60(2), 467–472.

González-Alemán, R. et al. (2021). BitQT: a graph-based approach to
the quality threshold clustering of molecular dynamics. Bioinformatics,
38(1), 73–79.

i
i

“MDSCAN” — 2022/9/11 — 23:09 — page 8 — #8 i
i

i
i

i
i

8 González-Alemán et al.

Hinneburg, A. and Keim, D. A. (2003). A General Approach to Clustering
in Large Databases with Noise. Knowledge and Information Systems,
5(4), 387–415.

McGibbon, R. T. et al. (2015). MDTraj: A Modern Open Library for
the Analysis of Molecular Dynamics Trajectories. Biophysical Journal,
109(8), 1528–1532.

McInnes, L. and Healy, J. (2017). Accelerated Hierarchical Density
Based Clustering. In IEEE International Conference on Data Mining
Workshops, ICDMW , volume 2017-November, pages 33–42. IEEE.

Melvin, R. L. et al. (2016). Uncovering Large-Scale Conformational
Change in Molecular Dynamics without Prior Knowledge. Journal of
Chemical Theory and Computation, 12(12), 6130–6146.

Melvin, R. L. et al. (2018). Visualizing correlated motion with HDBSCAN
clustering. Protein Science, 27(1), 62–75.

Pedregosa, F. et al. (2011). Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12, 2825–2830.

Pei, T. et al. (2009). DECODE: A new method for discovering clusters
of different densities in spatial data. Data Mining and Knowledge
Discovery, 18(3), 337–369.

Peng, J. H. et al. (2018). Clustering algorithms to analyze molecular
dynamics simulation trajectories for complex chemical and biological
systems. Chinese Journal of Chemical Physics, 31(4), 404–420.

Platero-Rochart, D. et al. (2022). RCDPeaks: Memory-efficient density
peaks clustering of long molecular dynamics. Bioinformatics, 38(7),
1863–1869.

Roe, D. R. and Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software
for processing and analysis of molecular dynamics trajectory data.

Journal of Chemical Theory and Computation, 9(7), 3084–3095.
Sargsyan, K. et al. (2017). How Molecular Size Impacts RMSD

Applications in Molecular Dynamics Simulations. Journal of Chemical
Theory and Computation, 13(4), 1518–1524.

Schubert, E. et al. (2017). DBSCAN revisited, revisited: Why and how you
should (still) use DBSCAN. ACM Transactions on Database Systems,
42(3), 1–21.

Shao, J. et al. (2007). Clustering molecular dynamics trajectories:
1. Characterizing the performance of different clustering algorithms.
Journal of Chemical Theory and Computation, 3(6), 2312–2334.

Shea, J. E. and Levine, Z. A. (2016). Studying the early stages of protein
aggregation using replica exchange molecular dynamics simulations. In
Methods in Molecular Biology, volume 1345, pages 225–250.

Stuetzle, W. and Nugent, R. (2010). A generalized single linkage method
for estimating the cluster tree of a density. Journal of Computational
and Graphical Statistics, 19(2), 397–418.

Sun, H. et al. (2010). gSkeletonClu: Density-based network clustering
via structure-connected tree division or agglomeration. In Proceedings -
IEEE International Conference on Data Mining, ICDM, pages 481–490.
IEEE.

Yianilos, P. N. (1993). Data structures and algorithms for nearest neighbor
search in general metric spaces. Proceedings of the Fourth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 311–321.

