N

N

PERFORMANCE PORTABILITY THROUGH SYCL:
LBM AS A CASE STUDY
Youssef Mesri, Ouadie El Farouki

» To cite this version:

Youssef Mesri, Ouadie El Farouki. PERFORMANCE PORTABILITY THROUGH SYCL: LBM AS
A CASE STUDY. 33rd International Conference on Parallel Computational Fluid Dynamics, May
2022, Alba, Italy. hal-03938112

HAL Id: hal-03938112
https://hal.science/hal-03938112
Submitted on 13 Jan 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-03938112
https://hal.archives-ouvertes.fr

ParCFD2022
3374 International Conference on Parallel Computational Fluid Dynamics
May 25-27 2022, Alba Italy

PERFORMANCE PORTABILITY THROUGH SYCL : LBM
AS A CASE STUDY

Ouadie EL FAROUKI* AND Youssef MESRI'

* Mines ParisTech, Codeplay Software Ltd

R&D
e-mail: ouadie.elfarouki@codeplay.com

"Mines ParisTech
HPC & Al
Sophia Antipolis, France
e-mail: youssef.mesri@mines-paristech.fr

Key words: Parallel programming, Performance Portability, SYCL, LBM

Abstract. The present work falls under the umbrella of computational fluid dynamics
from a software engineering perspective. The cornerstone of this study is to highlight func-
tional and performance portability challenges rising from the software-hardware diversity
we observe nowadays, along with the constraints and dependencies it brings. In order
to lift this burden, we’ve adopted SYCL as a parallel programming language to leverage
its hardware-agnostic property and implement an abstract parallelization of a 2D Lattice
Boltzmann Method, able to compile and execute on a wide range of hardwares, including
intel multi-core CPUs and GPUs and Nvidia GPUs.

1 INTRODUCTION

Computational methods have emerged from a cross-discipline intersection, including
natural sciences such as physics, applied mathematics, and computer sciences. This set of
techniques proved to be powerful and efficient, and made it possible for both researchers
and industries to push further the limits of investigation and exploration of physical and
chemical phenomena, and consequently solve to a high degree of efficiency and robustness
many real world engineering problems. Computational Fluid Dynamics (CFD) gained
particularly significant momentum thanks to the theoretical advances on one hand, and
the considerable progress and innovations in computer sciences. This considerable leap in
software engineering techniques was specifically made possible through the development of
High Performance Computing frameworks and languages for GPGPU (General Purpose
Computing on Graphical Processing units), besides the availability of highly efficient
hardware accelerators.

The resulting diversity on both development stack and hardware architecture ends
caused the emergence of some challenges, namely the stack-hardware dependency. In
fact, developers can focus on a target hardware architecture and use an adequate tool
(CUDA for Nvidia GPUs for instance) to implement highly efficient models, but will

Ouadie EL FAROUKI, Youssef MESRI

find it impractical to reuse their code base on different platforms without making radical
changes or even complete re-writings. Even when such a ”functional-portability” is han-
dled through adequate software-hardware combinations, performance portability is not
always guaranteed.

We'll turn our focus throughout this paper, on the performance portability of one of
the major computational techniques widely adopted nowadays : the Lattice Boltzmann
Method (LBM). Similar studies[I] have been conducted to tackle this subject using li-
braries such as Kokkos to implement abstract unique code able to execute efficiently
on multiple platforms such as x86 (intel, amd CPUs), Nvidia GPUs, and ARM. In the
present work, we’ll dive into another approach targeting the same challenge using SYCL
as a parallel programming model for heterogeneous systems, along with some of its main
implementations and libraries.

2 Background
2.1 SYCL in a Nutshell

SYCL [2] is an industry-driven open standard that brings data parallelism to C++ for
heterogeneous systems. It’s a ”"single-source” programming model and a cross-platform
abstraction layer built on top of OpenCL’s concepts, that ensures a high level of ab-
straction. SYCL promises improved maintainability, productivity, and ease of use, while
offering the same degree of low level control and optimization through its underlying
backends. SYCL is basically a pure C++ programming model, with no language exten-
sions or special syntax like the one we find in CUDA Nvidia for instance and no special
preprocessing directives (pragmas) such as OpenACC or OpenMP.

As a high level abstraction, SYCL uses dedicated backends to target specific hard-
ware accelerators, such as OpenCL, Hip, and CUDA using adequate IRs (SPIR/SPIR-V,
PTX etc...), and the list is growing with the additional SYCL implementations and their
supported backends (ComputeCPP[3], OneAPI[4], HipSYCL[9] etc..).

The main construct of a SYCL programm is the SYCL Queue, to which actions are
submitted in an asynchronous way to be executed on the underlying device. A queue
incorporates a DIrected Acyclic Graph of Kernels and memory operations (Nodes), along
with implicit or explicit dependencies (Edges), either implemented using explicit event
management policies or implicitly inherited from the data buffers access dependencies.
From a parallelization perspective, SYCL relies on a built-in abstract representation of
the multi-level parallelization space denoted as ND-range, which can be mapped explicitly
(by the user) or implicitly (by the SYCL implementation) to the underlying hardware
parallelism(s) of the device.

2.2 Lattice Boltzmann Method

The Lattice Boltzmann Method falls under the recent computational methods intro-
duced to solve modeling and simulation problems for CFD applications. It originated
from Boltzmanns work on the kinetic theory of gazes where he formulated the equation
named after him (Boltzmann Equation) to describe fluid dynamics using a distribution

Ouadie EL FAROUKI, Youssef MESRI

function f(x, &, t) representing normalized density of abstract groups of particle at a given
point in space x, with velocity ¢ at a given time ¢. The scale of such a modeling approach
(mesoscopic) actually lies between two other well known methods : the Navier-Stokes
formulation which stands as a macro description of fluid using macro variables such as
temperature and density, and the molecular dynamic simulation (MDS) which applies
basic Newton principles to individual particles at a microscopic scale.

After discretization of LBE into a velocity and physical space following a DdQq scheme,
the numerical resolution becomes straightforward using the discrete-velocity distribution
function f;(x,t) i € [0 : ¢] where the space vector = takes discrete values in the d-
dimension physical grid and ¢ corresponds to time-steps used for iterations. Following an
initialization step of the system’s macro-variables, these iterations consist of two physically
intuitive steps: collision and streaming. The collision is a simple algebraic local operation.
First, the density and the macroscopic velocity are calculated to find the equilibrium and
the post-collision distributions. After collision, the resulting distribution is streamed to
neighboring nodes.

Unlike legacy CFD methods that require complex implementations and rely on heavy
solver operations, LBM turns out to be easier to implement and proved to be highly-
parallelizable[6] given its relatively local operations dependencies when computing the
distribution function states throughout the streaming and collision phases. Even though
additional memory allocation is usually required in LBM compared to other computational
methods, management of such computer resources remains feasible.

3 Experimental Settings and Implementation
3.1 Simulation model

For the sake of simplicity and demonstration purposes, a 2D single-phase fluid flow
within a horizontal parallel pipe will be used as a simulation model. The LBM scheme is
set to D2QQ9, and the BGK (Bhatnagar-Gross-Krook) formulation will be used for the col-
lision operator. An inflow condition is setting the velocity profile and an outflow condition
simulates an infinite extension through simple values copy. Besides, periodic boundary
conditions are imposed on the upper and lower pipe limits. The physical obstacle has
been modeled as a no-slip circular surface to verify and visualize turbulence phenomena
such as Karman vortex street.

In this setting, the discretization of LBE using BGK operator in the velocity space
(9 discrete velocities), physical space (2 dimensions x and y), and time is formulated as
follow for each discrete velocity direction i € [1 : 9]:

e+ et) = il 1) = = () —))

Where f;? is the discrete distribution at equilibrium, % being the relaxation frequency
(also linked to the fluid’s viscosity) and ¢; the discrete velocity vectors.

The macroscopic variables, a.k.a mass density p and momentum density pu at (x,t)
are deduced as moments of f; :

Ouadie EL FAROUKI, Youssef MESRI

pla,t) = Z fila,t) pule,t) =) eifit) (2)

The BGK operator relaxes the population to an equilibrium given by (after truncation):

. u.c; (u.c)? wwu
[z, t) = wip (1+ 2 - 904 _@> (3)

s

where the weights w; specific to the chosen discrete velocity set. It’s clear how f/(z,t)
only depends on local quantities (density and velocity at (z,t)) which can be obtained
directly from equations (2) given that u(z,t) = pu(x,t)/p(z,t).

Decomposition of LBM can be done to separate collision from streaming steps as follow

- Collision :
A
i) = fiw.t) = (i) = 7 1) @
- Streaming :
filx + At t + At) = ff(x,1) (5)

3.2 Implementation overview

The implementation of this simple 2D simulation will be conducted using standard
C++ combined with SYCL runtime library, and compiled in two seperate setups using
DPCPP for Nvidia GPUs target through CUDA backends and ComputeCPP for intel
CPU/GPU targets through OpenCL backends.

SYCL Buffers and accessors, supported by both DPCPP and ComputeCPP will be
used to implicitly manage memory operations between host and device, including initial
allocation and persistence of relevant variables on device memory and on-demand copy
of macroscopic variables back to host for display/store to hard drive purposes. Different
data layouts (namely [ng, 1y, pop] VS. [Mpop, 71z, 1y|) and parallelization schemes (simple
1-D, 2-D with SIMD vectorization and 3-D ranges) will be evaluated for benchmarking
purposes. A granular as well as aggregated profiling process was implemented to assess
performance at kernel, copy and iteration levels.

Further details about the implementation will be published at a later stage, an initial
Proof of Concept has been made public on our Github Repository[7].

Ouadie EL FAROUKI, Youssef MESRI

REFERENCES

[1] Werner Verdier, Pierre Kestener, Alain Cartalade. 2020. Performance portability of
lattice Boltzmann methods for two-phase flows with phase change.

[2] SYCL official website. Khronos, 2022. https://www.khronos.org/sycl.

[3] ComputeCPP developer guide. Codeplay, 2022. https: //developer.codeplay.com /products/computecpp,
started.

[4] OneAPI official website. Intel, 2022. https://www.oneapi.io.
[5] HipSYCL github repository. 2022. https://github.com/illuhad /hipSYCL

[6] Timm Krger, Halim Kusumaatmaja, Alexandr Kuzmin, Orest Shardt, Goncalo Silva,
Erlend Magnus Viggen. 2017. The Lattice Boltzmann Method : Principles and Prac-
tice.

77 LBM On SYCL : Proof of Concept. Github repository. 2021.
https://github.com/Ouadio/Parallel-Lattice-Boltzmann-SYCL

	INTRODUCTION
	Background
	SYCL in a Nutshell
	Lattice Boltzmann Method

	Experimental Settings and Implementation
	Simulation model
	Implementation overview

