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Abstract. Computational fluid dynamics (CFD) has been successfully applied in vari-
ous industrial areas. However, the accuracy of the CFD result depends on not only the
software but also the user’s comprehension of the simulated flow phenomena. Compared
with a CFD beginner, an expert with sufficient knowledge of both the simulated phe-
nomenon and the computational tools can generally set a proper numerical and model
parameters of the simulation, such as the turbulence model, mesh refinement, etc., which
finally leads to a more accurate result. On the other hand, Deep Learning algorithms
trained on validated cases can give the users confidence on the CFD results by helping
them to properly configure the CFD simulation with regard to the corresponding flow
phenomenon. To achieve this goal, the flow phenomena inside the simulation domain
shall first be correctly identified in order to propose adequate and optimal configurations.
In this paper, using carefully selected indicators of vortex location as an input dataset, a
Graph Convolutional Neural Network (GCNN) algorithm is proposed to accurately detect
the presence of vortices. The results show that the GCNN algorithm trained on limited
cases can successfully detect the vortex location in new cases which are not included in
the dataset. The datasets are generated in parallel using the code saturne open source
CFD code.

1 INTRODUCTION

We intend to find a way to give the users of code saturne, an open-source 3D CFD
code developed by EDF, the confidence on their simulated CFD results with the help of
deep learning. The credibility of the CFD results highly depends on the users’ mastery of
the CFD code and the simulated flow phenomenon. Generally speaking, an experienced
user of a certain code with sufficient knowledge of the simulated flow phenomenon tends
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to better choose a numerical and model configuration compared with a CFD beginner,
leading to higher credible result. The users’ influence on the CFD result can be minimized
by integrating the experts’ experience of the code and their knowledge of the corresponding
flow phenomenon. It is difficult to select the optimal CFD configuration for CFD case
since there are various flow phenomena, numerous geometries and lots of combinations
for numerical and model parameters. However, the deep learning [4] is good at finding
the mapping between countless results and a huge amount of configurations when it is
trained on the dataset formed by the validated CFD cases such as the ones included in
the validation suite of code saturne [1].

To achieve this goal, using a deep learning algorithm, our research is scheduled in two
steps: identify the flow phenomenon inside the simulated case and then propose the op-
timal configuration according to the detected flow phenomenon. Nowadays, many deep
learning algorithms are employed to detect the flow phenomena, among which Graph
Neural Networks are the most promising ones thanks to its perfect adaptability to un-
structured mesh. GCNN is the most popular one of GNNs because of its simplicity.
Currently focusing on the first step, the present paper introduces the GCNN detection of
the location of vortex, the first of four basis flow phenomena that we intend to detect -
vortex, thermal stratification, boundary layer and jet.

2 GRAPH CONVOLUTIONAL NEURAL NETWORK ARCHITECTURE

The CFD mesh can be naturally viewed as a graph, G(V,E) where V is the set of nodes
storing the flow fields information and E is the set of edges representing the connectivity
between two adjacent nodes. The graph convolution can update the node features by ag-
gregating the neighboring nodes features. In this paper, a GCNN is proposed to detect the
vortex location. The architecture of the GCNN is shown in Fig.1. The input is composed
of four non-dimensional vortex indicators[3], whose definitions and physical meanings are
listed in Table 1. The algorithm has eight main blocks. Each block contains a convolution
block and a smoothing layer. The skip connection is added between the leading blocks
and the corresponding trailing blocks which is similar to U-net architecture[2]. A fully
connected layer is added at the end to classify the node features into non-vortex zone or
vortex zone.

Figure 1: The architecture of GCNN.
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Table 1: Four non-dimensional vortex indicators

No. Description Formula

1 Turbulence intensity k
0.5UiUi+k

2 Pressure gradient along streamline
Uk

dP
dxk√

dP
dxj

dP
dxj

UiUi+|Ul
dP
dxl

3 Ratio of pressure normal stresses to shear stresses

√
dP
dxi

dP
dxi√

dP
dxj

dP
dxj

+0.5ρ
dU2

k
dxk

4 Deviation from parallel shear flow
|UkUl

dUk
dxl|√

UnUnUi
dUi
dxj

Um
dUm
dxj

+|UiUj
dUi
dxj

|

3 DATASET

The dataset was formed by a 2D diffuser case which is from the code saturne validation
suite. The diffuser geometry is shown in Fig.2. The entrance is followed by an slope ex-
pansion. The flow is turbulent, the Reynolds number is 20000 based on bulk inlet velocity.
A circulation zone is formed behind the slope due to the adverse pressure gradient. This
case was simulated with seven combinations of different turbulence models and meshes.

Figure 2: The geometry of diffuser case.

4 TRAINING

The network is trained using the Adam optimizer for 200 epochs with cross-entropy
loss as the loss function. One typical training history of the loss for is shown in Fig.3.
As can be seen, the loss for both training and validation dataset reaches the lowest level
around 0.05 after 60 epochs and no longer decreases significantly with more epochs.

5 RESULTS

The trained GCNN model is tested on the new cases which are not include in the
dataset: backward facing step case (BFS), periodical hill case (PH) and heat transfer
channel with ribs (RIBS). As can be seen in Fig.4, the trained GCNN model can predict
the vortex positions with completely different geometry, different Reynolds numbers, Re =
5000, 3500, 30000 for BFS, PH and RIBS respectively and even multiple vortexes - RIB
case.
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Figure 3: The average loss hisotry of five trainings.

Figure 4: The GCNN model prediction of vortex position on unseen cases. (From left to right: BFS,
PH, RIB; From top to bottom: streamline plot, GCNN prediction of vortex.)

6 CONCLUSIONS

A GCNN model was trained to detect the vortex position in the 2D flow case. With
four selected non-dimensional vortex indicators as the input, the GCNN model trained
on limited cases can detect the vortex with high accuracy in unseen cases with different
geometries and Reynolds numbers. In the future, we intend to test the generality of the
current GCNN model with more cases and other flow phenomena such as jet impingement,
boundary layer and thermal stratification, and also extend its application to 3D cases.
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