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Abstract

Many innovative applications require establishing correspondences among 3D
geometric objects. However, the countless possible deformations of smooth sur-
faces make shape matching a challenging task. Finding an embedding to represent
the different shapes in high-dimensional space where the matching is easier to
solve is a well-trodden path that has given many outstanding solutions. Recently,
a new trend has shown advantages in learning such representations. This novel
idea motivated us to investigate which properties differentiate these data-driven
embeddings and which ones promote state-of-the-art results. In this study, we
analyze, for the first time, properties that arise in data-driven learned embedding
and their relation to the shape-matching task. Our discoveries highlight the close
link between matching and smoothness, which naturally emerge from training.
Also, we demonstrate the relation between the orthogonality of the embedding
and the bijectivity of the correspondence. Our experiments show exciting results,
overcoming well-established alternatives and shedding a different light on relevant
contexts and properties for learned embeddings.

1 Introduction

Deep learning largely bases its success on converting input features into others useful to solve
specific applications. From a more abstract perspective, training a neural network is no more than
optimizing the parameters of a non-linear function which maps between two embeddings. Scholars
largely explored this perspective, showing also how operations like interpolation [23], algebra [50],
or analogies [64] difficult in the starting domain, may be simple in learned onece. Inferring and
manipulating relations between different objects lies at the core of learning: deciding what is different,
what is similar, and what are the relations in a population eases the learning process and enables
powerful applications. Several fields uses alignment in learned embedding as a way to infer relations;
few examples among others are Natural Language Processing [36, 53, 62], Biology [65, 32], and
3D Geometry [58, 6, 63]. This latter domain, given its nature, often paves the road with novel tools,
providing geometrical insights that quickly spread across communities [60, 42, 9].

In 3D shape analysis, point-wise features and descriptors as high-dimensional embeddings are ana-
lyzed for decades [21, 28, 55]. One practical approach, namely the multidimensional scaling [58],
consists in embedding the intrinsic geometry of a 3D shape into a higher-dimensional space where
Euclidean distances approximate the proper metric of the object. The convenience of this procedure is
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Figure 1: An example of extreme non-isometric matching. The left shape is a statue from [1], the
second is a gorilla from [7].

clear, as one commonly prefers to work with extrinsic distances (lengths of straight lines in Euclidean
space) instead of intrinsic ones (lengths of curved paths on a surface). Another possibility arises from
the eigenfunctions of the Laplace-Beltrami Operator (LBO) that have played a prominent role in de-
formable shape representation. Their theoretical properties (i.e. orthogonality and smoothness) make
them convenient for several applications, such as surface fairing, function analysis, segmentation,
and shape matching [15, 45, 34]. Among the variations on this theme [10, 29, 25, 24], recently, some
learned embeddings specific for shape matching have been proposed [61, 54]. Along this line, [22]
proposed to learn an alternative embedding to address non-rigid shape matching for point clouds.
It offers a novel data-driven direction and provides promising results. Despite the wide attention
devoted to these techniques, the research mainly follows general intuitions without analyzing how
such properties may influence the relations between elements in the learned embedding.

We aim to fill this knowledge gap by analyzing some properties and their effectiveness in the learned
embedding, which kind of relations they promote, and their applicative contexts.

We instantiate the method from [22] to work on meshes adopting a state-of-the-art feature extractor
[52]; this setting lets us define interesting properties clearly (e.g., smoothness). Moreover, the point
cloud scenario of [22] limits the possible analysis given the absence of reliable axiomatic competitors.
For the first time, we study the effect of smoothness and orthogonality on features for matching,
providing both theoretical derivations and empirical evidence of our results. Furthermore, previous
methods mainly focus on objects in bijection or with weak remeshing. Instead, we consider both
bijective and non-bijective cases, showing more realistic scenarios. Our analysis not only pursues
theoretical considerations but also has an applicative impact. Designing the embedding properties
carefully improve performances, achieving a precision level otherwise impossible with previous
representations (even when they enjoy the best transformation possible). Figure 1 is a qualitative
example of this. We believe that our results significantly impact any field where embedding alignment
is a common practice, starting from the Geometry Processing one where this problem is preminent.

To summarize, our work provides the following novelties and contributions:

1. We suggest novel effective regularizations to learn embedding for the matching task. We
introduce new simple losses, providing theoretical motivations and showing their practical
utility.

2. We offer an extensive analysis of learned embeddings in the shape matching application. We
question some of the most established beliefs from the 3D shape matching community for
the first time. We shed new light on prominent properties that characterize existing solutions
disclosing new research direction.

3. We outperform state-of-the-art alternatives. We exceed strong shape-matching competitors
in multiple scenarios. To our best knowledge, this is the first study that produces an
embedding that can represent shape correspondence better than LBO eigenfunctions, even
for the near-isometric case.

All the data and code will be made publicly available for research purposes.
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2 Related work

Shape matching has a long history [59, 49]. We cover the more closely related methods to our work.

Embeddings for shape matching Multidimensional scaling and its variants [58, 6, 8] are seminal
approaches for computing shape embeddings for shape matching. The main idea is to realize the
geodesic metric of a given 3D object as the Euclidean (also called restricted) metric of some high-
dimensional space. Such approaches are variational since, in general, a solution does not exist even
for simple cases [19]. Several works have recently proposed extensions of the Laplacian eigenbasis to
deal with difficult settings. In [29], it was proposed to augment the LBO set with a locally supported
basis, defined only in a specific region, to increase its local representation capability; [25] proposes to
add extrinsic information by appending the orthonormalized version of the three coordinates vectors;
[18] suggested finding a basis by jointly diagonalizing the Laplacians of the input pair of shapes.
Interestingly, all the previous methods base their representation on the standard LBO basis.

Another popular approach in shape matching is finding a set of features (also called descriptors)
that are able to identify each point uniquely, such as the Global Point Signature [48], Wave Kernel
Signature [4], Heat Kernel Signature [55], AWFT [28], SHOT [57] and its robust version proposed in
[30]. However, while they are widely used, such features alone are insufficient to provide accurate
point-to-point matching, especially in non-rigid scenarios.

Functional maps [34, 35] introduce and describe the paradigm considered in this paper. They
move the correspondence problem to the functional domain. The advantages come from the low-
dimensional approximation of these spaces, which arises from a set of fixed basis functions (mainly
the LBO eigenvectors). This framework has been extended to take into account partiality [47],
to provide precise matching within triangle faces [14], and improved with several regularizations
[33, 44] or iterative refinement [27, 43, 37].

Learning-based pipelines Several data-driven pipelines for shape matching only address the rigid
case [38, 17, 51, 61], while 3DCoded [16] addresses the non-rigid setting at the cost of an expensive
optimization at test time. In the latter setting, an entire line of research has been devoted to learning
the descriptors used by functional maps. This has been done using random forests [46], and more
recently via deep learning models such as FMNet [20]. Recently, [12] proposed to learn the features
directly from the point cloud coordinates while keeping the LBO basis. The main inspiration of our
work is [22], which proposes to learn both the bases and descriptors. This method only processes
3D point clouds since it uses the PointNet architecture [40] without exploiting the possible input
connectivity. Furthermore, it does not investigate the properties and applicability of the learned basis.
Among the other contributions, our work also aims to fill this gap.

3 Notation and background

3D shapes. We model 3D shapes as 2-dimensional Riemannian manifolds embedded in R3. In the
discrete setting, we encode these objects as triangular meshes composed of vertices and faces defined
by the oriented triplet of vertices that belong to the same triangular face. Each face is glued to a
maximum of three other faces, one for each edge. We denote withM andN a pair of shapes and with
XM ∈ RnM×3 and XN ∈ RnN×3 the list of the 3D coordinates of their nM and nN ∈ N vertices.
To each of these shapes, we associated the Laplace-Beltrami Operator (LBO), the second-order
partial differential operator extending the standard Laplacian to non-Euclidean domains and denoted
respectively as ∆M and ∆N . We adopt the same notation referring to the square matrices, with
size nM and nN respectively, which encode these operators in the discrete setting and that can be
estimated through the cotangent weight formula [39, 31].

The LBO is a symmetric, positive semi-definite operator which admits an eigendecomposition
with non-negative real eigenvalues, sorted in non-descending order 0 = λ1 ≤ λ2 ≤ . . .. The
eigenfunctions φ∆

1 , φ
∆
2 , . . . associated with each eigenvalue compose a basis for the space of square-

integrable functions defined over the surface, in analogy with the Fourier basis on Euclidean domains.
In the discrete setting, each eigenfunction corresponds to a vector with a length equal to the number
of vertices. We store the set of the k eigenfunctions associated to the first k eigenvalues with smallest
absolute values, as columns of a matrix Φ∆ = [φ∆

1 , . . . , φ
∆
k ]. Each row of this matrix is a vector in
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Rk and is referred to as the spectral embedding of the corresponding vertex of the mesh. The matrix
Φ∆ thus encodes the spectral embedding of the entire shape.

Functional maps. Given the two shapes M and N , together with their truncated set of LBO
eigenfunctions Φ∆

M and Φ∆
N respectively, we denote with F(M) and F(N ) the space of real-

valued functions defined onM andN . Any point-to-point correspondence TMN :M→N induces
a functional mapping (with opposite direction) TFNM : F(N )→ F(M) via pull-back. Exploiting the
Fourier analogy, we can approximate the spacesF(M) andF(N ) in the given bases Φ∆

M and Φ∆
N

of size k. Thanks to this approximation, we can compactly encode the mapping TFNM in a matrix
CNM ∈ Rk×k which corresponds to the linear transformation that maps the coefficients of functions
approximated by Φ∆

N to the coefficients of their images through TFNM represented by Φ∆
M. In

matrix notation, if we encode the point-to-point map TMN in a binary matrix ΠMN ∈ RnM×nN ,
such that its entries ΠMN (i, j) = 1 if and only if the correspondence TMN associates, to the
i-th vertex ofM, the vertex of index j on N , then we can explicitly compute the functional map
CNM = Φ∆†

MΠMNΦ∆
N , where we denote with † the Moore–Penrose pseudoinverse. In this

framework, due to the analogy with Fourier, the matrices Φ∆
M and Φ∆

N play the role of bases for
the functional spaces. For this reason, we will refer to them both as spectral embedding and as basis.

Linearly invariant training. Our work follows the architecture introduced in [22] but modifies it
accordingly to work with triangular meshes. Given a set of shape pairs (M,N ), equipped with a
ground truth correspondence Πgt

MN , we train an embedding network E . This network takes as input
the coordinates XM of a shapeM and outputs a high-dimensional embedding ΦEM. The network is
trained by considering the optimal linear transformation between the two shape embeddings:

Copt
NM = (ΦEM)†Πgt

MNΦEN , (1)

which is converted to a penalty measuring how well the embedded points are aligned; since nearest-
neighbor is not differentiable, we cast this problem as follows:

D = dist(ΦEMC
opt
NM,Φ

E
N ) (2)

SMN = softmax(−D) , (3)

where dist computes the matrix of Euclidean distances in the embedding space, and SMN acts as a
score of similarity between points. Finally, the network loss is formulated as:

LE(Φ
E
M,Φ

E
N ) =

∑
‖SMNXN −Πgt

MNXN ‖
2
2 . (4)

In experiments which also require descriptors, we learn them following [22] paradigm: we train the
same architecture of E , with the loss proposed by Equation 4 of [22].

DiffusionNet. We adopt a state-of-the-art feature extractor as the backbone. DiffusionNet [52]
relies on a diffusion process over the surface to propagate the features information. A diffusion block
is based on learning the parameters of a heat diffusion process, plus an anisotropic filter. We refer to
the related paper for the technical details. We choose DiffusionNet since it is one of the most recent
and promising architectures designed to exploit the structure of the 3D surfaces.

Notataion. We denote with ΦE the embedding learned by minimizing LE and with Φ∆ the LBO
basis (both coincide with a matrix), while we adopt Our when we use both learned embedding and
descriptors.

4 Method

The main purpose of [22] was proposing a pipeline end-to-end (learning basis and descriptors) for
sparse point clouds matching, where no good basis alternatives are known and require thousands of
training data. We emphasize that our study is orthogonal to [22] and other approaches. Our work
does not aim to introduce a novel framework but to analyze properties of existing ones by exploring
different basis in a data-driven implementation similar to [22]. Remarkably, we propose a novel
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ΦE

Φ∆

ED(ΦE)

0.62 1.18 1.94 3.02 9.63 19.27 90.97 145.51 160.99

. . .

. . .

. . .

. . .

. . .

. . .

−σ
0

+σ

ED(Φ∆) 0 2.58 3.44 5.04 87.84 156.95 221.27 226.18 239.27

1th 2nd 3rd 4th 18th 28th 38th 39th 40th

Figure 2: We visualize the dimensions of the embeddings as a function over the surface. For each
one, we report its Dirichlet energy ED as a measure of the smoothness.

perspective, a challenging setting, and a far more ambitious goal: overtaking LBO in its domain, with
a limited training set, studying which properties make it competitive and which can be relaxed. We
focus on the bases, considering descriptors only in application experiments. This approach lets us
unveil theoretical properties and insights about good representations for embedding alignment.

The main properties of Φ∆ are orthogonality and smoothness. Furthermore, these functions carry a
natural order given by the corresponding eigenvalues. We describe the losses we adopt to force the
learned basis to own the desired properties. All these losses do not require supervision at training
time.

Smoothness. A good point-wise representation for the matching application should provide similar
encoding for the nearest points. Smoothness could guarantee this property as preliminary proved
in [22]. In the functional context, smoothness coincides with the Dirichlet energy (namely ED):
the smaller the energy, the smoother the function. We refer to the supplementary materials for its
discretization. We foster this property through the following loss:

LED
(ΦEM) =

∑
‖diag(ΦE

T

MAΦ∆ΛΦ∆T
AΦEM)‖22 (5)

LED
is a dense version of the Dirichlet energy, and thus its minimization promotes smoothness.

We will show in our analysis the prominent role of smoothness in functional shape matching. A
visualization of functions with different smoothness levels is depicted in Figure 2.

Orthogonality. Given a multi-dimensional representation of the points, looking at them a vertex-
wise functions (i.e. columns of the embedding matrix), we impose orthogonality by minimizing the
following loss:

L⊥(ΦEM) =
∑
‖ΦE>MΦEM − Id‖22, (6)

where Id is the identity matrix. In the Appendix A, we prove that the orthogonality of the learned
features promotes weak bijectivity in the matching. We refer to Lw⊥ when the loss is scaled by a
10−10 factor.

Sparsity. We do not limit our analysis to the properties owned by the LBO basis. Inspired by the
great success of the compressed sensing in signal processing, we introduce a new loss to promote
sparsity in the learned embedding. Given the importance of smoothness for the matching, we only
combine the sparsity and the smoothness losses as follows:

L`1+ED
= L`1 + wED

LED
, (7)

where L`1(ΦEM) =
∑
‖ΦEM‖1. (8)

Due to the different magnitude of the losses, in L`1+S we scaled LossS by wED
= 106. We highlight

that, to assess the role of the matching loss in the proposed procedure, we do not optimize for the loss
in Equation 4 when we adopt the L`1+ED

one.
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S+F F+S

#Basis ΦE Φ∆ ΦE Φ∆

5 3.79 8.40 4.02 9.46
10 2.51 5.61 2.79 6.30
20 1.79 3.42 2.26 3.63
30 1.40 2.71 1.68 2.73
40 1.58 2.05 1.52 1.97

M

ΦE

Φ∆

max

0
5 10 20 40

Figure 3: We investigate the best possible matching achievable with our embedding. On the left, we
report the error varying the embedding dimension, comparing to the standard LBO basis Φ∆ on the
two settings S+F and F+S. Our basis always performs better. On the right, a qualitative example from
F+S; the heatmap encodes the geodesic error of the correspondence.

5 Dataset and settings.

This section introduces the benchmarks and the parameters we select in our experiments.

Bijective. We namely refer to bijective setting when the shapes in the train and in the test share
the same mesh and thus are in 1:1 correspondence. We consider two human datasets: SCAPE [3]
(12500 vertices) and FAUST [5] (6890 vertices). As done in previous work [52], we the train on one
dataset and test on the other. We denote with F+S when we train on FAUST [3] and test on SCAPE
[5]. S+F refers to the opposite. From now on, we adopt + to indicate training (on the left) and test set
(on the right). Furthermore, we consider the SMAL dataset [66], composed of animal shapes with
pose variations and from five species (big cats, canines, ovine, bovine, and hippos). The training set
comprises 25 shapes, which is tight compared to the standard ones. The test set includes 300 pairs of
25 shapes unseen at training time. This setting, namely SMAL, includes strong non-isometric pairs.

Non-bijective. In this scenario, we take pairs of shapes that do not share the same connectivity at
training or inference time. We indicate with S̃ when they come from SCAPE, one at a full resolution
and one remeshed with the 25% of the vertices. Similarly, we use F̃ for FAUST.

Different densities between train and test. Finally, with S+F
:: , we denote the case in which, at

training time, both shapes from SCAPE have a quarter of vertices, but at test time, we used the full
resolution shapes from F . In this case, the discretization density at training differs from one of the
test shapes. We choose this setting to emphasize the non-bijectivity since F is less isometric than S.

Settings. If not differently stated, we train our embedding networks to output 40-dimensional
embeddings. If descriptors are used, they are 80 functions obtained as described in Section 3. Since
[22] does not describe the relationship between basis and descriptors cardinalities, this choice is
motivated by an analysis that we report in the Supplementary Material. In our quantitative evaluation,
we compute the average of the geodesic error measured for each point as the geodesic distance
between the estimated correspondence and the ground truth one. To facilitate the comparison, we
visualize all the shapes with a similar orientation, but several rigid transformations in the 3D space
occur among the shapes both at training and test time. During training, we do data augmentation
by applying rotations on y-axis. We refer to the Supplementary Material for details on datasets,
evaluation, training, and testing procedures.
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6 Results

6.1 Analysis of the learned embeddings

We study the properties of our learned embedding, and we note that: i) It is always full rank, despite
not being orthogonal (unlike the LBO basis, which is orthogonal by construction); ii) It is smooth.
LBO eigenfunctions form the smoothest orthonormal basis. In Figure 2, we depict the embedding
dimensions as functions over the surfaces and report their Dirichlet energy. Even if we do not
explicitly impose smoothness, our embedding is significantly smoother than LBO one (smaller ED);
this is possible since we do not impose orthogonality.

Basis dimension. First, we compare our embedding ΦE with the LBO one Φ∆. Moreover, we
evaluate how the performance depends on the embedding dimension. We train 5 embedding networks
with a different number of output dimensions (i.e., 5, 10, 20, 30, and 40) both on S + F and
F + S. On the test dataset, to focus only on the embedding properties, we compute for each
embedding the optimal transformation between the 50 pairs as done in Equation 1, and we estimate
the correspondence solving the nearest neighbor search (NN ) as ΠMN = NN(ΦMC

opt
NM,ΦN ).

Even using the ground truth Πgt
MN to compute Copt

NM, the embeddings may present some differences
which are not linearly alignable. We measure the error generated by this loss of information. This
choice makes our comparison independent of the estimation of the linear transformation.

The Table on the left of Figure 3 contains the results. The first observation is that increasing the
embedding size improves both ΦE and Φ∆ representations. Secondly, we can compress the LBO
representation to significantly smaller dimensions (i.e., with 5 learned dimensions, we have the same
quality of 20 LBO basis; with 10 learned, the same of 30 LBO). But finally, and most importantly,
our basis consistently outperforms the LBO basis. On the right of Figure 3, we also visualize the
error of the two competitors. With small bases, the Φ∆ cannot distinguish between the back and front
of the shape, and at higher dimensions, the error peak at the protrusions. These are classical errors
for Φ∆, which suffers the front-back symmetry and the missing details on the tiny components such
as arms and legs due to the low pass representation. Learned embedding distributes the error more
homogeneously over the surface.

F+S
ΦE 1.58
ΦEHKS 1.81
Φ∆ 2.05

Rotation invariance In shape matching, the rotation invariance is a desirable
property. Our data augmentation is an effective technique to build resilience to
rotations without giving up extrinsic information. To clarify this, we considered
a pair of test shapes in the F+S setting. We fixed one of the two, applying 50
different random 3D rotations to the second. The error without rotations is 2.43, while the mean error
after the rotations is 2.52 with a standard deviation of 0.11. Moreover, in the inset Table, we input 50
scales of HKS (a rotation-invariant descriptor) to train a 40-dimensional embedding as done in [52].
Even if ΦEHKS does not overcome ΦE trained on coordinates, it is better than LBO, showing that
our method could work with different input features.

S+F F+S SMAL
ΦE 1.58 1.52 1.8
Φ∆ 2.05 1.97 4.3
L-Invariant 2.94 2.85 2.4
L`1+ED 13.18 5.72 14.9

Table 1: Quantitative comparison
on shape matching, learning a 40 di-
mensional embedding and computing
the ground truth transformation Copt.
Each row is a different training.

Comparison of learned embeddings. We compare ΦE

and Φ∆ to learned embeddings that exploit: i) a different
architecture (L-Invariant obtained from [22]) and ii) and a
different loss (with L`1+ED

and without LE ). Again, we
adopt the ground truth linear transformation Copt highlight-
ing the performance of each alternative in the optimal setting.
In Table 1, we report the results for the matching task. As
expected, the embeddings learned with the supervised loss
LE perform better. However, we note that L`1+ED

preserves
some matching capacity in the F+S setting, highlighting in-
teresting relations between matching and general properties,
which merit further explorations as future work. Finally, L-Invariant reveals that [22] cannot overtake
Φ∆ on meshes.

Regularizations in the bijective scenario. Noticing the potential of the learned embedding, we
decided to explore additional regularizations during the training, starting from the bijective setting.
Table 2 shows the comparisons obtained combining LE with one or more losses from Section4.
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S+F F+S SMAL
ΦE 1.58 1.52 1.8
ΦE+LED

1.29 1.34 2.0
ΦE+L⊥ 15.35 23.10 19.0
ΦE+Lw⊥ 1.19 1.41 1.4
ΦE+LED

+Lw⊥ 1.19 1.35 5.9

Table 2: Quantitative comparison on dif-
ferent regularizations, learning a 40 di-
mensional embedding, and computing the
ground truth transformationCopt. Each row
is a different training.

S̃+F S̃+F̃ F̃+S F̃+S̃ S+F
::

Φ∆ 2.05 1.88 1.97 2.04 2.05
ΦE 1.12 0.76 1.24 1.27 1.07
ΦE+LED

1.10 0.77 1.23 1.27 1.07
ΦE+Lw⊥ 1.60 1.61 1.50 1.55 1.14
ΦE+LED

+Lw⊥ 1.77 1.76 1.58 1.61 1.19

Table 3: Quantitative comparison on shape matching,
learning a 40 dimensional embedding, and computing
the ground truth transformation Copt. Each row is a
different training.

Promoting the smoothness (ΦE `+LED
) produces a slight improvement or keeps stable results both

with and without L⊥. Our analysis anticipated this result since LE produces smoothness as a good
property for the matching. Including L⊥ instead is disruptive due to its magnitude, which strongly
bounds the network to favour the bijectivity induced by L⊥ over good matching. We thus scale L⊥
to a magnitude similar to LED

. With ΦE+Lw⊥ , the network obtained a significant gain. We highlight
that SMAL is the only dataset where smoothness seems slightly dangerous. We attribute this drop to
the discontinuous self-intersections and artifacts present on the muzzle of animals.

Regularizations in challenging scenarios. Given the previous results, we verify our intuitions
considering challenging contexts without bijection. Unlike previous works (that considered remeshed
datasets where shapes have a similar density), we consider configurations with a significant change in
the number of vertices. In Table 3, we train and test on different scenarios as described in Section
5. Once again, the smoothness does not change the performance. Adding orthogonality confirms
our hypothesis: promoting bijectivity when this is not present worsen the results. Finally, in the last
column, even if the shapes inside each dataset are in bijection, orthogonality does not help in the
presence of huge density variations.

6.2 Applicative test

Learning descriptors Many previous works that we discussed in Section 2, validate their matching
performance on the S+F and F+S settings. We report in the Supplementary Material the results of
our approach on them, learning also the descriptors. Here we focus on more exciting challenges:
non-isometric shapes from SMAL, in which the considered animals may have a significant difference
in their surface metric. In the Table on the left of Figure 4, we report the results.

Competitors We considered four competitors in our analysis. Universal shares our same architec-
ture but it does not foster a linear transformation to align them and is optimized with a different loss:

LU (Φuni
M ,Φuni

N ) =
∑
‖Φuni
M −Πgt

MNΦuni
N ‖22 . (9)

LU promotes universal signatures for the points in a similar fashion as the descriptor-based methods
described in Section 2. This comparison is essential to highlight the merits of considering linear
alignable embeddings. The other main competitor is [52], referred to as GFMDN . As done in
our pipeline, this method adopts the same architecture to learn the features, but it exploits the Φ∆

instead of ΦE . This comparison highlights the contributions of the learned embedding with respect to
Φ∆. We will also consider two other methods to align Φ∆: i) GFMKP [12], that uses a KPConv
backbone [56], and ii) Deep Shells [13] that relies on a registration approach. For completeness, we
also report the results of L-Invariant with its PointNet network [22]. In the experiments, we measure
the error as the geodesic distance between the predicted match and the ground truth, and we report
the average over all the points. While our analysis mainly focuses on theoretical properties of learned
embeddings, we would emphasize contexts in which they show significant applicability. Not only we
can learn descriptors that surpass state-of-the-art methods, but we also obtain better performance than
the theoretically best possible results with LBO. Further preliminary evidence on descriptor learning,
matching refinement, and functional reconstruction can be found in Supplementary Material.
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SMAL
ΦC ΦCopt

OurE 5.67 1.8
OurE+LED

11.0 2.0
OurE+Lw⊥ 3.9 1.4
OurE+LED

+Lw⊥ 11.5 5.9

Universal 5.91 4.3
GFMDN 7.94 4.3
GFMKP [12] 8.00 4.3
Deep Shells [13] 15.23 4.3
L-Invariant [22] 21.10 4.3

M Our GFMDN

[12]
Universal L-Invariant

[22]

Figure 4: On the left, a quantitative comparison for non-isometric shape matching on SMAL dataset;
the first column is learning also the descriptor, while the second is the theoretically best possible
matching with that embedding using the optimal transformation Copt. On the right, a pair of animals
from TOSCA [7] dataset, showing our generalization capability.

We notice that, without any further regularization, we can recover good descriptors even for ΦE .
Once again, we observe that smoothness is not particularly favorable in this context. Finally,
OurE+Lw⊥

gives rise to the most exciting result, confirming our theoretical and empirical insights and
outperforming the best possible performance achievable by LBO (that is 4.3, from Table 1).

Computational specifications We use an i9-9820X Intel processor at 3.31GHz and an RTX 2080
Ti GPU card for the experiments. Embedding training requires ∼ 180min for the F+S setting and
210min for S+F, regardless of the number of basis functions.

7 Conclusions

Insights. The observed saturation on the basis sets of increasing dimensions is caused by different
reasons. Including more Φ∆ basis functions introduces instability due to high frequencies that
are hardly alignable linearly. Instead, ΦE , being a learning method, is prone to overfitting if the
representation is too rich. Smoothness seems an emerging natural property from matching. Intuitively,
a linear alignment is simpler to achieve if there are no outliers or drastic changes; also, in our cases,
the correspondence is a smooth function over the surface. However, if the data present discontinuities,
the smoothness becomes dangerous. Orthogonality seems advantageous in contexts where bijectivity
is a good prior. On the other hand, it requires proper weighting and could harm the results even if
training and tests are not bijective. We believe this latter is a consequence of the global nature of
orthogonality, which limits its adaptation if shapes change their number of vertices. We highlight
that fully intrinsic approaches are rotation invariant but do not distinguish symmetries and may
unrecoverably degrade the performance. Finally, our non-isometric and applicative domain results
highlight the importance of having a proper basis to further push the matching results.

Limitations. While our work expands the understanding of learned embeddings, several questions
remain. Investigating other classes of transformations different from the linear one is still entirely
open. Other challenges like clutter and partial-to-partial matching (touched on in the Supplementary
Materials) may require sophisticated strategies. Finally, cases in which the correspondence between
two shapes is highly discontinuous would open to a completely different and intriguing analysis.

Future directions. In recent years, several methods have relied on refining the matching using
ZoomOut [27]. This is a significantly important aspect for real applications, and it may seem a
drawback of learned embedding of which dimension must be decided at training time. In the Sup-
plementary Materials, we show that thanks to their smoothness, the learned basis can be augmented
by ZoomOut, refining the matching by including the LBO eigenfunctions at increasing frequencies.
These results are novel and exciting, but even more importantly, they pave the way for further explo-
ration of possible refinement techniques designed explicitly for learned embeddings. Moreover, we
focus on the shape matching task, but the learned embeddings can target other applications. In the
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Supplementary Materials, we collect some coordinate function transfer results, and we foster other
possible tasks as fascinating future work.

Our work shows a series of promising properties. We wish to motivate the community to foster
research in this direction. Pointing out that smoothness seems a superior property to orthogonality in
some contexts sheds new light on the study of shape embedding for matching, which for many years
focused in a contrary direction [29, 41]. Generalization to challenging scenarios is appealing and
highlights the importance of proper embedding instead of refining existing ones. Our joint analysis of
learned and axiomatic embedding opens to look for other properties to impose and a broad set of
different applications.
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A Appendix

Given a networkN that takes a shape S and produces a d-dimensional embedding for every vertex on
S. Stacking these values into a matrix (where rows correspond to vertices) we get a basis matrix ΦS .

Now, suppose the network N is trained so that for any input shape S, the basis matrix ΦS = N (S)
should be approximately orthonormal: Φ>S ΦS ≈ Id. We will call such a network N an orthonormal
feature network.

In a simpler scenario, suppose that we use the trained network to compute dense correspondences
across shape pairs using nearest neighbor search in embedding space. Thus, given two shapes S1, S2,
we first compute the basis matrices Φ1 = N (S1) and Φ2 = N (S2). We then compute a map by
solving the problem:

ΠS1S2 = arg min
Π∈P

‖Φ1 −ΠΦ2‖2. (10)

Here P is the space of all binary matrices that represent point-to-point maps: i.e., binary matrices
with exactly one 1 per row, and we use the Frobenius norm. Note that the optimization problem in
Eq.(10) is row separable, meaning that it can be solved via nearest neighbor search in the L2 sense.
Lemma A.1. If the basis matrices are exactly orthonormal and the residual when solving for the
map in Eq. (10) is zero, then the optimal map Π = ΠS1S2

must satisfy Φ>2 Π>ΠΦ2 = Id.

Proof. By assumption we have Φ1 = ΠΦ2. Moreover since Φ>1 Φ1 = Id, left-multiplying the
first equation by Φ>1 , we get: Φ>1 Φ1 = Φ>1 ΠΦ2, so that Φ>1 ΠΦ2 = Id. Using again the fact that
Φ1 = ΠΦ2 we get ΦT

2 Π>ΠΦ2 = Id.

Lemma A.2. Under the assumptions of Lemma A.1, if, moreover, the dimensionality d of the basis
matrices equals n, the number of points on S1, then the optimal map Π = ΠS1S2

must be orthonormal,
and thus represent a bijective map.
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Proof. If d = n then Φ2 is a square matrix, and since it is orthonormal, it must have an inverse
Φ−1

2 = Φ>2 . Using this fact and applying Lemma A.1 we get Π>Π = Id. Since Π is, by assumption
a binary matrix, it must therefore be doubly stochastic and represent a bijective map.

Lemma A.3. More generally, for an arbitrary dimension d of the basis matrix, suppose that there
is a subset of vertices S ⊆ S2 such that the indicator function IS lies within the span of the basis
matrix Φ2. I.e., IS = Φ2a for some vector of coefficients a. Then, again under the assumptions of
Lemma A.1, we have ‖ΠIS‖ = ‖IS‖. Thus the map Π must preserve the cardinality of the set IS , or,
in other words, Π must be injective when restricted to S.

Proof. We have ‖IS‖ = aT Φ>2 Φ2a = a>a. On the other hand, ‖ΠIS‖ = a>Φ>2 Π>ΠΦ2a = a>a
using Lemma A.1.

Lemma A.4. In particular, if the feature matrix Φ2 contains the constant function, regardless of the
dimensionality, then under the assumptions of Lemma A.3, Π must be injective on the entire shape.
Moreover, if size of Φ1,Φ2 is the same, then the map must be bijective.

Proof. The first part follows directly from Lemma A.3. For the second part, observe that if ‖ΠIS‖ =
‖IS‖ then, if IS is the indicator of the entire shape, the cardinality of ΠIS is the same as the number
of rows in Φ1, which means that the map is also surjective, and thus, must be bijective.
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Supplementary Materials

Abstract

Here we list additional material as support to the main manuscript. We provide
more details about the training processes and hyperparameters choice. We also
offer an analysis on the relationship between the cardinality of basis and descriptors,
quantitative results in isometric cases, and qualitative results both on humans and
non-isometric animals. We describe more in detail the partiality setting, and finally,
we include some more examples of ZoomOut process.

1 Training Details

We compose the Diffusion networks with 12 Diffusion Blocks in all cases. In the diffusion process,
we use 128 eigenvalues and eigenvectors. We use an ADAM optimizer with an initial learning rate of
10e−4 and a Cosine Annealing Warm Restarts scheduler. Due to computational reasons, we use batch
size 2 and accumulate the gradient for 4 batches to simulate a batch size of 8. We set the maximum
number of epochs to 1200. We will release our data and method implementation.

Datasets . We consider two human datasets: the 100 shapes of FAUST [5], a dataset of ten different
subjects in ten different poses, and the 71 shapes of SCAPE [3], a single subject in 71 different poses.
Both of them are used with their original connectivity. At test time, we evaluate on 50 random pairs
of the testing dataset.

SMAL dataset comprises different animal groups (big cats, canines, ovine, bovine, and hippos),
presenting significant non-isometries. The training set is composed of 25 shapes of different species
and poses, that is definitely small if compared to the ones generally adopted. The test set is composed
of 300 pairs of 25 shapes unseen at training time.

1.1 Loss stability

In Figure 5, we report the behavior of training loss when we train our basis, our descriptor, and the
universal embedding in the two settings of S+F and F+S. Both our networks show stability. We
attribute the peaks to the Cosine Annealing scheduler restart, which increases the learning rate to
escape from local minima. For this reason, we think our solution spaces are more regular than the
one of the universal embedding.
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Figure 5: Training losses of our embedding (top left), features (top right) and Universal embedding
formulation (bottom).
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M Φ∆ LE Lcoord [22] L`1+ED

Figure 6: Coordinate reconstruction with different basis. Optimizing only the coordinates brings
to a dramatical overfitting. LBO causes loss of information on the protrusions. Optimizing for the
matching produce sharper results, while considering smoothness and sparsity may produce better
detail recover.

2 Function representation and coordinates as proxies

F+S S+F
ΦE 2.86 2.26
Φ`1+ED 1.07 0.89
ΦCoord 47.58 45.90
Φ∆ 2.96 3.06
L-Invariant [22] 3.62 1.91
L-Invariant L`1+ED 25.35 44.40

Table 4: Results in coordinates rep-
resentation.

Until now, the functional perspective has been carried only
by the Functional Maps paradigm. How learned embeddings
can represent functions was left unexplored by [22], but we
think it is an important aspect, given the number of tools and
analogies that it suggests. We focus on coordinates as a triplet of
functions defined over the vertices. The interest in how the basis
can represent such functions is multiple. Coordinates evolve
smoothly across a shape, particularly in the human domain;
hence, they are good examples of a continuous global function.
Representing the coordinates of each point can be visualized,
and it gives an interpretation of the loss of information. Finally, and importantly, reconstructing the
coordinates means that the basis can represent the points on the surface. In this case, we considered
three different trainings of ΦE . In the first one, we used the LE defined in Eq. 4 of the main
manuscript. Then, we trained using L`1+ED

presented in Equations 7 and 8 of the paper. To highlight
the benefit of our mesh approach, we also compare [22] trained on LE and L`1+ED

. Finally, we
consider the case in which we train the features to represent the coordinates. We perform this training
considering the following loss:

Lcoord(ΦEM) =
∑
‖ΦEMΦE

†
MXM −XM‖22, (11)

which quantifies the error in the reconstruction of the coordinates functions XM, provided by the
learned basis. In Table 4 we report the results of our experiment on F+S and S+F settings. Error is
expressed as Equation 11. A qualitative example is reported in Figure 6.

Insights. Interestingly, learning for matching generates good bases also for function representation.
The geometry of the shape is significantly more inflated than in the LBO case, in which the protrusions
collapsed. L`1+ED

also gave rise to an interesting result, in which we obtain a precise characterization,
even in the finer details. This result shows that a functional basis that produces a good representation
of the vertices does not imply an improved matching capability. The ad-hoc training with Lcoord is
the worst result, probably due to a lack of generalization: learning to reproduce specific functions
for a small set of shapes may cause a quick overfit. Giving structure to the embeddings seems
promising in obtaining more general tools for shape analysis. We finally highlight that matching
loss for L-Invariant trained with LE produces worst results on F+S settings but a better result in S+F
where the poses seen at training time are more comprehensive than the ones observed at test time.
The complete absence of intrinsic information in [22] makes it harder to generalize on new poses.
Finally, L-Invariant cannot be trained with L`1+ED

; we believe this is a strong motivation for our
approach.
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Figure 7: An example of partiality involved in our experiments. On the top, the 0.2 setting. On
the bottom, the 0.4 one. Comparison between Our and GFMDN . Near to each case we report the
avarage geodesic error over the surface.

3 Partiality. 0.0 0.4 0.8
ΦECopt 1.58 6.8 10.5
Φ∆Copt 2.05 7.3 10.6
OurE 3.80 8.4 12.0
GFMDN 2.90 8.2 11.9

Table 5: Results with different par-
tialities in S+F setting, training on
full shapes.

To test the resilience of learned features to missing geometry,
we used ΦE trained on the full shapes of SCAPE (i.e., without
any data augmentation with partial shapes). We constructed our
dataset as follows:

1. We consider the 100 FAUST shapes.
2. For each shape, we take a landmark on the right foot.
3. We remove all surface that is within a certain geodesic distance to the landmark. We consider

two different ranges: 0.4 and 0.8.

Then, we kept the 50 pairs considered in the other experiments, substituting the source shape with
the partial one. Hence, we look for a point on the complete shape for each point of the partial shape.
Notice that the partial and the complete are different subjects in different poses. We want to remark
that partiality has not to be seen at training time. We argue that this dataset is more interesting from
an applicative perspective compared to SHREC16 [11]: the latter has been designed to analyze some
specific theoretical properties of LBO basis. Instead, we are not aware of any other work that tackled
the problem of missing limbs in human shape matching, also providing a more fair representation of
different human beings. We show the results in Table 5; in the first two rows, we consider the optimal
matching, while in the last two, we consider the one with the features obtained by F . In Figures
7 and 8 we depict two qualitative examples. On the left, the full shape. The ground-truth, our and
GFMDN matchings in the 0.4 setting, with texture transfer and error on the top right. On the bottom
right, the same for the 0.8 setting. The LBO bases are unstable, and the results of matching between
0.4 and 0.8 settings vary significantly even in regions far from the missing part (e.g., the right arm).
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Figure 8: An example of partiality involved in our experiments. On the top, the 0.2 setting. On
the bottom, the 0.4 one. Comparison between Our and GFMDN . Near to each case we report the
avarage geodesic error over the surface.

S+F F+S

#Features #Features
20 40 80 120 20 40 80 120

5 Basis 34.75 30.80 18.29 29.81 15.28 13.14 10.61 15.56
10 Basis 11.01 19.88 6.85 15.03 8.83 18.92 16.30 12.90
20 Basis 32.07 9.83 4.67 10.77 40.62 12.72 7.68 12.78
30 Basis 14.60 13.18 3.98 3.46 8.34 29.71 8.87 9.82
40 Basis 7.61 29.66 3.77 4.63 12.68 49.85 8.76 11.49

Table 6: Analysis with different number of basis embedding dimensions and features.

4 Matching

4.1 Basis and Descriptors relation

Given that [22] does not provide any insight on the relation between the basis and descriptors, we
investigated this relation. In Table 6, we performed an extensive analysis with different combinations
of embedding dimensions and a number of features. Each entry of Table 6 corresponds to a separate
training. Concerning the dimensionality of the embedding, we notice that coherently with Figure
3 of the main manuscript, an increasing number of basis functions does not always produce better
results. For example, in the F+S case, 40 basis functions tend to be hardly alignable. We believe this
is mainly because the SCAPE dataset contains a wide variety of poses. Hence, overfitting FAUST by
using a larger representation would make it difficult to generalize at test time.

Our analysis also gives a good rule of thumb for features: a number bounded between ×2 and ×3
seems the one producing the most stable results. We consider this number reasonable to overcome the
noise and in line with the literature [2]. This analysis sheds light on the role of the two components of
the matching pipeline; the embedding should provide a structure shared across the objects to be easily

19



M GT Our GFMDN Universal

S+F

F+S

Figure 9: Texture transfer for matching quality comparison.

alignable. The features help to identify such structure. A complex structure is not desirable, while
sometimes redundant information in the features can help to identify the correct transformation.

Given such analysis, we decide to keep 40 dimensions for the basis and 80 for the features for all our
experiments. This choice provides coherence in the results and good performance in all the settings.

4.2 Near-Isometric matching S+F F+S
OurE 3.8 8.8
GFMDN 2.9 10.2
Universal 4.5 12.4

Table 7: Quantita-
tive comparison on shape
matching.

We tested our capability of matching near-isometric shapes using the
learned embedding and features. In Table 7, we reported a comparison of
our embeddings and main competitors in the S+F and F+S settings. For
all the experiments, we kept a 40-dimensional embedding and 80. As can
be seen, we perform better in F+S settings where generalization is relevant
to obtain good results.

In Figure 9, we show texture transfer on S+F and F+S. While all methods produce an excellent
matching, we observe a misalignment of high-frequency details.

4.3 Qualitative results

Here we report some additional qualitative results:

1. In Figure 10 we report another example of our matching on two statues. Notice that they do
not share the same topology structure: despite this, we obtain a smooth matching.

2. In Figure 11 we report an example between two similar animals. Even in the isometric case
(which is favorable to the LBO) we show better results.

3. In Figure 12 we have a significant non-isometric case; the error is localized on protrusions
(ears, legs).
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Figure 10: An example of extreme non-isometric matching. The two shapes are from [1].

M

0

max

GT OurE GFMDN Uni OurE GFMDN Uni

Figure 11: An isometric pair from the remeshed SMAL dataset. From the left: the source shape,
the target shape with color transferred using Πgt

MN . Then, the color transfer is performed by our,
GFMDN , and the Universal Embedding Baseline. On the right, the geodesic error depicted over the
surface.

4. In Figure 13 we show our results on three pairs of animals from the TOSCA dataset [7]. We
matched highly non-isometric shapes to test our generalization capability. Notice that cats
and horses are classes not seen at training time.

5. in Figures 14, 15, and 16 we show three more qualitative results. We would like to highlight
that our methods seems to obtain better matching on protrusions (i.e., legs and arms).

6. in Figure 17 we show an example on two further different datasets. On the left, a pair from
SHREC19 [26]; notice that the two shapes are different for their pose but also for their
quality (i.e., theM is a real scan, while the target one is a synthetic model). On the right, a
woman is matched with a gorilla from TOSCA dataset [7]. We consider this case particularly
extreme since arms and legs have entirely different proportions. Even if there are some
evident artifacts on the stomach, we observe an overall coherence in the obtained matching.
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Figure 12: A non-isometric pair from the remeshed SMAL dataset. From the left: the source shape,
the target shape with color transferred using Πgt

MN . Then, the color transfer performed by our,
GFMDN , and the Universal Baseline. On the right, the geodesic error depicted over the surface.

M OurE M OurE M OurE

Figure 13: Three pair of animals from TOSCA [7] dataset, showing our generalization capability.

S+F F+S

Init ZO10 ZO20 ZO40 ZO60 Init ZO10 ZO20 ZO40 ZO60

IOur Φ
E

3.77
3.18 3.16 3.18 3.21

8.76
7.33 7.20 7.30 7.30

IOur Φ
∆ 3.98 4.02 4.13 4.17 8.32 8.58 8.58 8.71

IGFMDN ΦE
2.85

2.55 2.54 2.57 2.62
10.17

8.99 8.97 9.03 9.11
IGFMDN Φ∆ 2.96 3.04 3.12 3.18 9.63 9.72 10.03 10.08

Table 8: Matching results using ZoomOut as further refinement of an input matching. Replacing the
first 40 Φ∆ with ΦE , we obtain a better matching even for the initialization provided by GFMDN .

5 ZoomOut

5.1 Can we refine the learned embeddings?

One of the main advantages of a spectral embedding is its arbitrary dimensionality, which can be
selected at test time. However, in [22] the basis dimension is fixed a priori. Inspired by this, we
propose to incorporate ZoomOut [27] in our pipeline, considering our 40-dimensional embedding
equivalent to the first 40 eigenfunctions of the LBO. Then, we apply ZoomOut by introducing LBO
eigenfunctions (starting from the 41st). In the first two rows of Table 8, we initialize with the matching
produced by our method the C ∈ R40×40 (IOur) exploiting our basis (1st row) or the first 40 LBO

M GT OurE GFMDN Universal

Figure 14: Texture transfer for matching quality comparison (F+S setting).
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M GT OurE GFMDN Universal
Figure 15: Texture transfer for matching quality comparison (F+S setting).

M GT OurE GFMDN Universal

Figure 16: Texture transfer for matching quality comparison (S+F setting).

M OurE M OurE

Figure 17: Color transfer for matching quality comparison on two out of distributions couples.
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Figure 18: ZoomOut applied to ΦE and Φ∆. On the left, the two transformation matrices have
been initialized by the same correspondence ΠMN . Then, in the middle, we increased their size by
20 dimensions, using in both cases the LBO basis from 41 to 60. We show the absolute difference
between the initialization and the new upper right part of the matrix on the right.

basis functions (2nd row). Then, we applied ZoomOut to increase the set with higher frequencies
(adding 5 basis functions at each iteration in the ZoomOut pipeline). We observe that our basis
can replace the low frequencies of the LBO. In the 3rd and 4th rows, we repeated the experiment
initializing with the matching provided byGFMDN (IGFMDN

), improving a matching optimized for
another basis. ZoomOut shows instability for some dimensionality while, remarkably, our embedding
seems more stable.

We depict in Figure 18 the different effects of ZoomOut on the linear transformation. Starting with
ΠMN , we obtain the 40× 40 transformation using either our embedding (CΦE

init) or the first 40 LBO
basis functions (CΦ∆

init). Then, we applied ZoomOut obtaining CΦE

ZO and CΦ∆

ZO of dimension 60× 60.
We observe that CΦE

ZO presents a block structure: the top-left block highlights how ΦE have been
recombined to match higher frequencies of Φ∆; the bottom-left block is almost 0. On the right, we
report the variations in the upper left 20× 20; the Φ∆ one is left unchanged, while our basis shows
flexibility thanks to its non-orthogonality.

In Figures 19 and 20 we report two other cases of ZoomOut and their impact on the initialization
matrix (the considered pairs are the ones of Figure 14 and 15 respectively). In the first one, we
observe that the initial LBO matrix has a less diagonal behaviour than the latter. This is in general
due to a non-isometric deformation that in this case, could be reasonably caused by a twist of the
torso of Figure 14. The Cinit seems to be almost preserved by the ZoomOut process. In the second
case, the initialization is more diagonal, witnessing two almost isometrical shapes. In this case, the
ZoomOut process can recombine a few parts of the LBO Cinit, while this impacts mainly the last
dimensions. However, in both cases, our matrix shows better flexibility. Also, in all experiments, we
observe the block division of our CZO matrix discussed above.

Insights. This experiment shows that learned embeddings are a good initialization for refinement
techniques and improve existing learning pipelines. The structure of the final C matrix also reveals
the reason behind this. In the obtained matrix using only Φ∆, the top right and bottom left rectangles
are almost empty, and the only significant interaction appears in the added frequencies. Considering
the C produced with ΦE , this interaction is almost unchanged. However, the top right block shows
the interaction between ΦE and higher frequencies. This opens to a new perspective in the field
of shape matching: instead of seeking competition between representations, incorporating the two
seems a promising direction. Note that our merging is naive, and more sophisticated combinations
are possible; we leave this analysis for future work.

5.2 Step size ablation study

In Table 8, we reported the results by using ZoomOut and step size 5 (i.e., including 5 more basis at
each ZoomOut iteration). Here, we report also results using a step of 1 (Table 9) and 2 (Table 10). We
show that our basis is always a better choice to improve the matching. We noticed that by reducing
the step size, the results at higher C dimensions become more unstable. We believe this is due to the
more iterations required to reach the same C dimensions, introducing noise in the correspondence.
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Figure 19: ZoomOut applied to ΦE and Φ∆. On the left, the two transformation matrices have been
initialized by the same correspondence ΠMN . Then, in the middle, we increased their size of 20
dimensions, using in both cases the LBO basis from 41 to 60. On the right, we show the absolute
difference between the initialization and the new upper left part of the matrix. The considered
example refers to the pair shown in Figure 14.

−1

1

−1

1

0

0.5

Cinit

Φ∆ ΦE

CZO
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Figure 20: ZoomOut applied to ΦE and Φ∆. On the left, the two transformation matrices have been
initialized by the same correspondence ΠMN . Then, in the middle, we increased their size of 20
dimensions, using in both cases the LBO basis from 41 to 60. On the right, we show the absolute
difference between the initialization and the new upper left part of the matrix. The considered
example refers to the pair shown in Figure 15.

S+F F+S

Init ZO10 ZO20 ZO40 ZO60 Init ZO10 ZO20 ZO40 ZO60

IOur ΦE
3.77

3.45 3.45 3.45 3.67
8.76

7.78 7.50 7.37 7.42
IOur Φ∆ 3.81 4.11 4.55 4.82 8.44 8.66 8.86 8.99

IGFMDN
ΦE

2.85
2.88 2.93 3.00 3.22

10.17
9.44 9.35 9.43 9.38

IGFMDN
Φ∆ 2.92 3.28 3.70 3.95 9.72 9.89 10.27 10.41

Table 9: Matching results using ZoomOut with step size 1.

S+F F+S

Init ZO10 ZO20 ZO40 ZO60 Init ZO10 ZO20 ZO40 ZO60

IOur ΦE
3.77

3.34 3.36 3.52 3.54
8.76

7.54 7.35 7.27 7.28
IOur Φ∆ 3.89 4.21 4.49 4.49 8.37 8.61 8.75 8.94

IGFMDN
ΦE

2.85
2.76 2.83 3.03 3.03

10.17
9.28 9.18 9.22 9.34

IGFMDN
Φ∆ 2.97 3.25 3.51 3.56 9.65 9.99 10.19 10.48

Table 10: Matching results using ZoomOut with step size 2.

25


	1 Introduction
	2 Related work
	3 Notation and background
	4 Method
	5 Dataset and settings.
	6 Results
	6.1 Analysis of the learned embeddings
	6.2 Applicative test

	7 Conclusions
	A Appendix
	1 Training Details
	1.1 Loss stability


	2 Function representation and coordinates as proxies
	3 Partiality.
	4 Matching
	4.1 Basis and Descriptors relation
	4.2 Near-Isometric matching
	4.3 Qualitative results

	5 ZoomOut
	5.1 Can we refine the learned embeddings?
	5.2 Step size ablation study


