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Abstract 
We describe the system used by our team for the VoxCeleb 
Speaker Recognition Challenge 2022 (VoxSRC 2022) in the 
speaker diarization track. Our solution was designed around a 
new combination of voice activity detection algorithms that 
uses the strengths of several systems. We introduce a novel 
multi stream approach with a decision protocol based on 
classifiers entropy. 
We called this method a multi-stream voice activity detection 
and used it with standard baseline diarization embeddings, 
clustering and resegmentation. With this work, we successfully 
demonstrated that using a strong baseline and working only on 
voice activity detection, one can achieved close to state-of-the-
art results.  
Index Terms: speaker diarization, voice activity detection 

1. Introduction 
Performing speaker diarization is equivalent to answering the 
question of “who spoke when?” within a given audio scenario. 
Diarization is a key element of almost every modern speech 
processing application especially those which then use voice 
recognition algorithms.  
Diarization approaches are diverse as shown in [1] and [2] but 
the principle is often the same. First homogeneous speech 
segments are being isolated within an audio file and then they 
are clustered to determine which segments has been 
pronounced by which speaker. In the past ten years tremendous 
improvements of diarization performances and robustness have 
been achieved, partially because of the development of neural 
networks that are now able to deal with large amount of data 
and especially new speech embedding features [3], [4].  
Following this algorithmic pattern, front-end analysis of almost 
every diarization method consists in determining when there are 
voices within a media. This necessary step is called voice 
activity detection (VAD). 
VAD methods are also very diverse [5]–[8] but the choice of 
the right algorithm for diarization pre-processing is often 
neglected. 
The speaker diarization track 4 of VoxCeleb Speaker 
Recognition Challenge (VoxSRC) focuses on the analysis of 
online content such as talk-shows, discussions, debates, and 
interviews. For the challenge we decided to study the impact of 
the voice activity detection system on speaker diarization 
results. 

2. System description 
To improve diarization performances we chose to work on the 
preprocessing part and especially voice activity detection. We 
implemented a multi stream approach with a decision protocol 
based on classifiers entropy. 
Once we had our voice activity results, we used a standard VBx 
system. This system contains a standard x-vectors extractor 
followed by a Bayesian HMM clustering. Diarization results are 
then resegmented to get the overlap regions right. 
Our work started by testing several voice activity detection 
algorithms, among which pyannote 2.0 and the GPVAD 
systems. 

2.1. Voice activity detection 

Our work started by testing several voice activity detection 
algorithms, among which pyannote 2.0 and the GPVAD 
systems. 

2.1.1. Pyannote 2.0 voice activity detection  

This approach is purely neural based since it relies on the 
PyanNet architecture described in [7]. MFCCs are used as input 
features for a binary classifier. This method is robust to domains 
mismatch and an extensive description of the recurrent neural 
networks is available in [7]. For this experiment, open-sourced 
pyannote model was used. It has been pretrained on the AMI 
dataset [9]. 

2.1.2. GPVAD 

To achieve a more robust voice activity detection, authors of [8] 
proposed a neural network approach designed with a 
combination of convolutional and recurrent layers and based on 
a weakly supervised training scheme. Trained on the Audioset 
dataset, this approach learns to detect 517 sound classes among 
which speech. The large variety of labels obtained was radically 
reduced to obtain a Speech/Non speech binary classifier. 

2.1.3. Multi-Stream voice activity detection 

We noticed a complementarity between pyannote 2.0 and 
GPVAD voice activity detections since the first one seems to 
produce more constant results and the second one seems to 
work better for noisy audios. We decided to implement a 
solution to take the advantage of both VAD systems.  
The two VAD systems were run in parallel. Thresholds 
optimized on the VoxConverse development set were applied 
before the decision protocol. 



 

Figure 1: System Description 

 

Table 1: Thresholds used for our system. All of them 
were optimized on VoxConverse development set  

Method Onset Offset Min. duration 
on 

Min. 
duration off 

Pyannote VAD 0.767 0.713 - - 
GPVAD 0.010 0.010 - - 

Multi-Stream 
VAD - - 0.182 0.501 

Resegmentation 0.537 0.724 0.410 0.563 
 
We introduced a decision protocol based on entropy to 
dynamically choose the VAD classifier. For each classifier, 
local entropy is computed over sliding 250ms windows. For 
each window, entropy hk,i of each binary classifier were 
calculated with the following formula (1). 
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Where i is the time index and k the classifier index of the 
observation denoted ok,i.  
After that, we chose for each window the classifier with the 
lowest entropy to obtain our multi-stream voice activity 
detection as depicted in Fig.3.  
The two VADs were run in parallel on a Nvidia T4 GPU and an 
Intel Cascade Lake CPU with a maximum inference time of 14s 
for a single file. 
 

Figure 2: Raw and thresholded voice activity detection scores 
from both pyannote 2.0 (in red) and  

GP-VAD (in green) 

 

Figure 3: Local entropies of both VAD classifiers (left) 
and multi-stream voice activity output (left) 

2.2. Speech embedding 

X-vectors[4] extraction is based on 64 Mel filter banks going 
through a ResNet101 [10] network to create 256-values speech 
embeddings. The embedder is trained on VoxCeleb 1 & 2 [11]. 
As presented in [12], a probabilistic linear discriminant analysis 
(PLDA) is also applied to reduce the dimensionality before 
clustering.  

2.3. Clustering 

A Bayesian HMM clustering method was used as presented in 
[13] with one state per speaker and AHC as initialization. 

2.4. Resegmentation 

All previous components were not made to handle overlapping 
speech segments so we added a neural resegmentation [14] to 
recover these regions. It allowed us to divide by two our errors 
in terms of missed speech. 

3. Results and analysis 
We evaluated the proposed systems on VoxConverse 0.3 test 
set and report the detailed results with a 250ms collar that 
matches the challenge evaluation rules.  
Diarization error rate (DER) and Jaccard error rate (JER) [15] 
are reported together with the percentages of missed speech 
(MS), false alarm (FA) and speaker confusion (SC). 
For comparison we also report the results obtained with 
pyannote 2.0 neural diarization pipeline. 

Table 2: Speaker diarization results on VoxConverse 
test set  

 Method MS FA SC DER JER 

pyannote diarization 2.29 1.31 4.36 7.96 43.38 

pyannote VAD + VBx 3.09 0.79 2.78 6.66 29.61 
    w/ resegmentation 1.55 1.65 2.98 6.18 29.73 

GP-VAD + VBx 3.78 2.30 3.68 9.76 31.82 
    w/ resegmentation 1.55 1.65 3.5& 6.88 30.44 

Multi-Stream VAD + 
VBx 3.05 1.41 3.09 7.54 30.22 

    w/ resegmentation 1.55 1.65 3.04 6.39 29.80 



 
For the VoxSRC Track 4, we report the results of our three best 
systems. 

Table 3: Speaker diarization results obtained on the 
challenge platform 

Method DER JER 
Challenge baseline 19.60 41.43 

Pyannote 2.0 VAD + VBx 8.30 31.14 

Pyannote 2.0 VAD + VBx + resegmentation 7.32 30.12 

Multi-Stream VAD + VBx + resegmentation 6.62 29.01 

 
Although all our systems achieve similar scores, the best 
solution for the challenge was not the best on VoxConverse test 
set. This can be explained by slight domain differences between 
the two corpuses. 
With the proposed system, we achieved 6.62% on the challenge 
leaderboard which places it only 2% away from the best 
solutions. This shows that improving VAD only can lead to 
significant improvements of diarization scores. Moreover, we 
ranked 5th in term of JER which indicates probably a relatively 
fair distribution of errors across all speakers. This would need 
to be further investigated to determine under which conditions 
(noise, speaker turn duration, etc.) our multi-stream approach 
outperforms standard speaker diarization methods with only 
one VAD. 

3.1. Reproducible research 

All our experiments, systems and results are reproducible since 
they rely mostly on open-sourced algorithms. Thanks to their 
authors, VAD systems 1 , 2  and our baseline diarization 3  are 
directly available for use. 

4. Conclusion 
For this year challenge we chose to work exclusively on voice 
activity detection. Our work led to significant improvements of 
diarization scores and proved that improving diarization 
preprocessing was a direct way to make our system more 
robust. We aim to further improve this system to improve its 
performances on various datasets. For this, we will need to 
precise in which scenario, our multi-stream approach is the 
most relevant.  
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