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Let N = {1, 2, . . . } be the set of positive integers and Z ≥0 = {0, 1, 2, . . . } be the set of non-negative integers. The multiple zeta values (MZV's for short) are real positive numbers that were studied notably by Euler in the eighteenth century. They are given by the following convergent series where n i are positive integers with n i ≥ 1 and n r ≥ 2. Here r is called the depth and w := n 1 + • • • + n r is called the weight of the presentation ζ(n 1 , . . . , n r ). These numbers generalize the zeta values

ζ(n) = k>0 1
k n , where n ∈ N and n ≥ 2, which were studied well before Riemann studied them as a function ζ(s) of a complex variable s, and its links with the distribution of primes. The simple zeta values, and more generally the multiple zeta values, still keep many secrets and play the role of fundamental constants. They are ubiquitous in many fields of mathematics and physics, in particular through the Feynman integrals which govern the interactions between elementary particles or through the Drinfeld associators coming from quantum groups and knot theory.

The even zeta values are well understood. In fact, Euler proved in 1735 that, when n is even, ζ(n) is a rational multiple of π n . Thanks to Lindemann's proof of the transcendence of π, it follows that all these numbers are transcendental. However, the odd zeta values are much more mysterious. Indeed, a folklore conjecture states Conjecture 1.1. The numbers π, ζ(3), ζ(5), . . . are all algebraically independent over Q.

To our knowledge, we know nothing about the transcendence of odd zeta values. Concerning the irrationality of these numbers, Apéry [START_REF] Apéry | Irrationalité de ζ2 et ζ3[END_REF] showed that ζ(3) is irrational, and Ball-Rivoal [START_REF] Ball | Irrationalité d'une infinité de valeurs de la fonction zêta aux entiers impairs[END_REF] proved that there are infinitely many irrational numbers among the remaining odd zeta values (see [START_REF]La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs[END_REF][START_REF]Irrationalité d'au moins un des neuf nombres ζ(5)[END_REF][START_REF] Zudilin | One of the numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational[END_REF] for related works).

The product of two multiple zeta values is a linear combination, with integral coefficients, of multiple zeta values. For instance, Euler proved the following identity

ζ(m)ζ(n) = ζ(m, n) + ζ(n, m) + ζ(m + n)
for all integers m, n ≥ 2. It follows that the Q-vector space Z spanned by all MZV's has an algebra structure. One can argue that the main goal of this theory is to understand all Q-linear relations among MZV's. Unlike the algebra generated by simple zeta values, there are lots of linear relations among MZV's that endow Z with a rich combinatorial structure. One systematic way to produce linear relations among MZV's is to use the so-called extended double shuffle relations introduced by Ihara-Kaneko-Zagier [START_REF] Ihara | Derivation and double shuffle relations for multiple zeta values[END_REF]. To do so, one first defines Hoffman's algebra h and its subalgebras h 0 ⊂ h 1 ⊂ h with respect to the following algebra structures. Next, one constructs two algebra structures as particular cases of quasi-product algebras introduced by Hoffman [START_REF] Hoffman | Quasi-shuffle products[END_REF]: the stuffle algebra (h 1 , * ) and the shuffle algebra (h, ¡). By regularization [33, §2], there exist zeta maps which are Q-algebra homomorphisms ζ * : (h 1 , * ) → Z, and ζ ¡ : (h, ¡) → Z, which give rise to a generalization of the stuffle product and the shuffle product. The extended double shuffle relations are obtained by "comparing" the stuffle and shuffle products on h 1 (see [START_REF] Ihara | Derivation and double shuffle relations for multiple zeta values[END_REF]Theorem 2] for a precise statement). Further, Ihara, Kaneko and Zagier formulated the following influential conjecture (see [33, Conjecture 1]): Conjecture 1.2 (Ihara-Kaneko-Zagier's conjecture). The extended double shuffle relations exhaust all Q-linear relations among MZV's.

In particular, it implies Goncharov's conjecture which states that all Q-linear relations among MZV's can be derived from those among MZV's of the same weight.

Surprisingly, if Z k denotes the Q-vector space spanned by MZV's of weight k for k ∈ N, Zagier [START_REF] Zagier | Values of zeta functions and their applications[END_REF] and Hoffman [START_REF] Hoffman | The algebra of multiple harmonic series[END_REF] were able to predict the dimension and an explicit basis for Z k . 

dim Q Z k = d k .
Conjecture 1.4 (Hoffman's conjecture). The Q-vector space Z k is generated by the basis consisting of MZV's of weight k of the form ζ(n 1 , . . . , n r ) with n i ∈ {2, 3}.

The algebraic part of these conjectures which concerns upper bounds for dim Q Z k was solved by Terasoma [START_REF] Terasoma | Mixed Tate motives and multiple zeta values[END_REF], Deligne-Goncharov [START_REF] Deligne | Groupes fondamentaux motiviques de Tate mixte[END_REF] and Brown [START_REF] Brown | Mixed Tate motives over Z[END_REF] using the theory of mixed Tate motives.

Theorem 1.5 (Deligne-Goncharov, Terasoma).

For k ∈ N we have dim Q Z k ≤ d k .
Theorem 1.6 (Brown). The Q-vector space Z k is generated by MZV's of weight k of the form ζ(n 1 , . . . , n r ) with n i ∈ {2, 3}.

The proofs of this theorem use by a crucial manner different Hopf algebra structures of Hoffman's algebra h as described above. We mention that the transcendental part which concerns lower bounds for dim Q Z k is completely open. We refer the reader to [START_REF] Gil | Multiple zeta values: from numbers to motives[END_REF][START_REF] Deligne | d'après Francis Brown[END_REF][START_REF] Zagier | Values of zeta functions and their applications[END_REF] for more details and more exhaustive references.

Multiple zeta values in positive characteristic.

There is a well-known analogy between number fields and function fields (see [START_REF] Iwasawa | Analogies between number fields and function fields[END_REF][START_REF] Mazur | Analogies between function fields and number fields[END_REF][START_REF] Weil | Sur l'analogie entre les corps de nombres algébrique et les corps de fonctions algébrique[END_REF]). Inspired by Euler's work on multiple zeta values and that of Carlitz [START_REF] Carlitz | On certain functions connected with polynomials in Galois field[END_REF] on zeta values in positive characteristic, Thakur [START_REF] Thakur | Multizeta values for function fields: a survey[END_REF] introduced multiple zeta values attached to the affine line over a finite field. We now need to introduce some notations. Let A = F q [θ] be the polynomial ring in the variable θ over a finite field F q of q elements of characteristic p > 0. We denote by A + the set of monic polynomials in A. Let K = F q (θ) be the fraction field of A equipped with the rational point ∞. Let K ∞ be the completion of K at ∞. We denote by v ∞ the discrete valuation on K corresponding to the place ∞ normalized such that v ∞ (θ) = -1, and by |•| ∞ = q -v∞ the associated absolute value on K.

In [ where the sum runs through the set of tuples (a 1 , . . . , a r ) ∈ A r + with deg a 1 > • • • > deg a r . We call r the depth of ζ A (s) and w(s) := s 1 + • • • + s r the weight of ζ A (s). We note that Carlitz zeta values are exactly depth one MZV's. Thakur [START_REF] Thakur | Power sums with applications to multizeta and zeta zero distribution for Fq[t][END_REF] showed that all the MZV's do not vanish. We refer the reader to [START_REF] Anderson | Tensor powers of the Carlitz module and zeta values[END_REF][START_REF] Anderson | Multizeta values for Fq[t], their period interpretation, and relations between them[END_REF][START_REF] Gezmis | Trivial multiple zeta values in Tate algebras[END_REF][START_REF] Goss | Basic Structures of function field arithmetic[END_REF][START_REF] Lara Rodriguez | Zeta-like multizeta values for Fq[t][END_REF][START_REF] Lara Rodriguez | Zeta-like multizeta values for higher genus curves[END_REF][START_REF] Pellarin | Values of certain L-series in positive characteristic[END_REF][START_REF] Thakur | Function field arithmetic[END_REF][START_REF] Thakur | Relations between multizeta values for Fq[t][END_REF][START_REF] Thakur | Shuffle relations for function field multizeta values[END_REF][START_REF] Thakur | Multizeta values for function fields: a survey[END_REF][START_REF] Thakur | t-motives: Hodge structures, transcendence and other motivic aspects[END_REF][START_REF] Yu | Transcendence and special zeta values in characteristic p[END_REF] for more details about these objects.

Thakur proved that the product of two MZV's is a K-linear combination of MZV's and we call it the shuffle product in positive characteristic. As in the classical setting, the main goal of the theory is to understand all linear relations over K among MZV's. Analogues of Zagier-Hoffman's conjectures in positive characteristic were formulated by Thakur in [54, §8] and by Todd in [START_REF] Todd | A conjectural characterization for Fq(t)-linear relations between multizeta values[END_REF]. In 2021, the fourth author [START_REF] Dac | On Zagier-Hoffman's conjectures in positive characteristic[END_REF] solved these conjectures in the case of small weights. While the algebraic part uses tools introduced by Chen [START_REF] Chen | On shuffle of double zeta values over Fq[t][END_REF], Thakur [START_REF] Thakur | Shuffle relations for function field multizeta values[END_REF][START_REF] Thakur | Multizeta values for function fields: a survey[END_REF] and Todd [START_REF] Todd | A conjectural characterization for Fq(t)-linear relations between multizeta values[END_REF], the transcendental part uses the theory of t-motives and dual motives of Anderson [START_REF] Anderson | t-motives[END_REF][START_REF] Brownawell | A rapid introduction to Drinfeld modules, t-modules and t-motives[END_REF][START_REF] Hartl | Pink's theory of Hodge structures and the Hodge conjectures over function fields[END_REF] and a powerful transcendental tool called the Anderson-Brownawell-Papanikolas criterion in [START_REF] Anderson | Determination of the algebraic relations among special Γ-values in positive characteristic[END_REF] (see [START_REF] Papanikolas | Tannakian duality for Anderson-Drinfeld motives and algebraic independence of Carlitz logarithms[END_REF][START_REF] Chang | Linear independence of monomials of multizeta values in positive characteristic[END_REF][START_REF] Chang | An effective criterion for Eulerian multizeta values in positive characteristic[END_REF] for further development). Then the authors [START_REF] Im | Zagier-Hoffman's conjectures in positive characteristic[END_REF] have developed a completely new approach and been able to solve these conjectures for all weights. More precisely, we prove (see [START_REF] Im | Zagier-Hoffman's conjectures in positive characteristic[END_REF]Theorem B]): Theorem 1.7 (Zagier's conjecture in positive characteristic). For w ∈ N we denote by Z w the K-vector space spanned by the MZV's of weight w. Letting

d(w) =      1 if w = 0, 2 w-1 if 1 ≤ w ≤ q -1, 2 w-1 -1 if w = q,
we put d(w) = q i=1 d(w -i) for w > q. Then for any w ∈ N, we have dim K Z w = d(w).

Theorem 1.8 (Hoffman's conjecture in positive characteristic). We keep the above notation. A K-basis for Z w is given by T w consisting of ζ A (s 1 , . . . , s r ) of weight w with s i ≤ q for 1 ≤ i < r, and s r < q.

We mention that in loc. cit. we also extended these results to the setting of alternating multiple zeta values introduced by Harada [START_REF] Harada | Alternating multizeta values in positive characteristic[END_REF]. We note that the classical alternating multiple zeta values have been studied by Broadhurst, Deligne-Goncharov, Hoffman, Kaneko-Tsumura and many others due to many connections in different contexts. We refer the reader to [START_REF] Charlton | On motivic multiple t values, Saha's basis conjecture, and generators of alternating MZV[END_REF][START_REF] Deligne | Le groupe fondamental unipotent motivique de Gm -µ N , pour N = 2, 3, 4, 6 ou 8[END_REF][START_REF] Harada | Alternating multizeta values in positive characteristic[END_REF][START_REF] Hoffman | An odd variant of multiple zeta values[END_REF][START_REF] Zhao | Multiple zeta functions, multiple polylogarithms and their special values[END_REF] for some references.

As pointed out by one of the referees of [START_REF] Dac | On Zagier-Hoffman's conjectures in positive characteristic[END_REF], we do not know any algebraic structures of MZV's in positive characteristic (see [41, Remark 2.2, Part 1]). As mentioned above, unlike the classical setting, the proofs of the above theorems are based on new ingredients: some operations introduced by Todd [START_REF] Todd | A conjectural characterization for Fq(t)-linear relations between multizeta values[END_REF] and the fourth author [START_REF] Dac | On Zagier-Hoffman's conjectures in positive characteristic[END_REF] as well as a transcendence criterion of Anderson-Brownawell-Papanikolas [START_REF] Anderson | Determination of the algebraic relations among special Γ-values in positive characteristic[END_REF].

Main results.

In this manuscript we present a systematic study of algebraic structures of MZV's in positive characteristic. This paper grew from an attempt to answer the question in [41, Remark 2.2, Part 1] raised by one of the referees of loc. cit.. It turned out that in a private letter to Thakur in 2017, Deligne [START_REF] Deligne | Letter to Dinesh Thakur[END_REF] went further and suggested the existence of a Hopf algebra structure of MZV's in positive characteristic. Subsequently, the composition space which plays the role of Hoffman's algebra in our context was suggested by Shuji Yamamoto [START_REF] Thakur | Multizeta values for function fields: a survey[END_REF], and Shi in [START_REF] Shi | Multiple zeta values over Fq[END_REF] formulated a conjectural Hopf algebra structure for this composition space (see [START_REF] Shi | Multiple zeta values over Fq[END_REF]Conjectures 3.2.2 and 3.2.11]).

In this paper we succeed in constructing both the Hopf stuffle algebra and the Hopf shuffle algebra in positive characteristic. In particular, we completely solve all the aforementioned questions and conjectures of Deligne, Thakur and Shi in the previous paragraph. Our approach is based on various tools of analytic, algebraic and combinatorial nature.

Let us give now more precise statements of our results.

1.3.1. Composition space.

We introduce the composition space C suggested by Shuji Yamamoto (see [54, §5.2]) which plays the role of the Hoffman algebra h in our context. Let Σ = {x n } n∈N be a countable set equipped with the weight w(x n ) = n. The set Σ will be called an alphabet and its elements will be called letters. A word over the alphabet Σ is a finite string of letters. In particular, the empty word will be denoted by 1. The depth depth(a) of a word a is the number of letters in the string of a, so that depth(1) = 0. The weight of a word is the sum of the weights of its letter and we put w(1) = 0. Let Σ denote the set of all words over Σ. We endow Σ with the concatenation product defined by the following formula:

x i1 . . . x in • x j1 . . . x jm = x i1 . . . x in x j1 . . . x jm .

Let C = F q Σ be the free F q -vector space with basis Σ . The concatenation product extends to C by linearity. For a letter x a ∈ Σ and an element a ∈ C, we write simply x a a instead of x a • a. For each nonempty word a ∈ Σ , we can write a = x a a -where x a is the first letter of a and a -is the word obtained from a by removing x a . 1.3.2. Shuffle algebra and shuffle map.

We define the unit u : F q → C by sending 1 to the empty word 1. Next we define recursively two products on C as F q -bilinear maps if (q -1) | i and 0 < i < a + b, 0 otherwise.

: C × C -→ C and ¡: C × C -→ C by setting 1 a = a 1 = a, 1 ¡ a = a ¡ 1 = a and a b = x a+b (a -¡ b -) + i+j=a+b ∆ j a,b x i (x j ¡ (a -¡ b -)), a ¡ b = x a (a -¡ b) + x b (a ¡ b -) + a b,
We call the diamond product and ¡ the shuffle product.

Our first result gives an affirmative answer to both questions in [41, Remark 2.2, Part 1] and [START_REF] Shi | Multiple zeta values over Fq[END_REF]Conjectures 3.2.2 and 3.2.11]. It reads as follows (see Theorems 6.9 and 5.5):

Theorem A. The spaces (C, ) and (C, ¡) are commutative F q -algebras. Further, for all words a, b ∈ C we have

ζ A (a ¡ b) = ζ A (a) ζ A (b).
If we denote by Z the K-vector space spanned by MZV's, then the homomorphism of K-algebras

Z ¡ : C ⊗ Fq K → Z a → ζ A (a)
is called the shuffle map in positive characteristic.

To prove Theorem A, we are reduced to prove that the diamond and shuffle products are associative. It turns out that this claim is very hard to prove since a direct check involves complicated combinatorics as already noticed by Shi [47, §3.1]. Our method uses analytic tools and consists of unpacking the coefficients ∆ i a,b involved in the definition of the diamond product. Then we use the uniqueness of partial fraction decomposition to prove the desired associativity.

1.3.3. Shuffle Hopf algebra.

We also define recursively a product on C as a F q -bilinear map

: C × C -→ C
by setting 1 a = a 1 = a and

a b = x a (a -¡ b)
for any words a, b ∈ Σ . We call the triangle product. We stress that the triangle product is neither commutative nor associative. Inspired by the work of Shi [47, §3.2.3] we define a coproduct ∆ : C → C ⊗ C.

using rather than the concatenation on recursive steps for words with depth > 1 (see §7.1). The counit : C → F q is defined as follows: (1) = 1 and (u) = 0 otherwise. We note that for quasi-shuffle algebras introduced by Hoffman [START_REF] Hoffman | Quasi-shuffle products[END_REF] and their generalization, the coproduct is roughly speaking the deconcatenation. The coproduct ∆ defined as above is completely different from the deconcatenation and involves complicated combinatorics. We refer the reader to Proposition 8.18 and Appendix A for numerical calculations of ∆.

Our second result shows that this construction gives rise to a Hopf algebra structure of the shuffle algebra (see Theorem 7.11).

Theorem B. The connected graded bialgebra (C, ¡,u,∆, ) is a connected graded Hopf algebra of finite type over F q .

The proof of Theorem B is of algebraic nature by exploiting key properties among the diamond, shuffle and triangle products. Next we study the coproduct ∆ for letters in detail and prove some key properties in Proposition 8. [START_REF] Ball | Irrationalité d'une infinité de valeurs de la fonction zêta aux entiers impairs[END_REF]. As an immediate consequence, we deduce that the coproduct ∆ coincides with the coproduct introduced by Shi in [47, §3.2.3]. Thus we settle Conjecture 3.2.11 of [START_REF] Shi | Multiple zeta values over Fq[END_REF] (see Theorem 8.9).

Theorem C. Conjecture 3.2.11 in [START_REF] Shi | Multiple zeta values over Fq[END_REF] holds.

We note that to convince ourselves its validity, we made intensive numerical calculations (see Proposition 8.18 and the Appendix A). The proof of Theorem C is based on combinatorial techniques. 1.3.5. Stuffle algebra and stuffle Hopf algebra.

The stuffle algebra is easier to define. We introduce the stuffle product in the same way as that of (h 1 , * ) as above. The * product * : C × C -→ C is given by setting 1 * a = a * 1 = a and

a * b = x a (a - * b) + x b (a * b -) + x a+b (a - * b -)
for any words a, b ∈ Σ . We call * the stuffle product and see that (C, * ) is a commutative F q -algebra.

We now define a coproduct ∆ * : C → C ⊗ C and a counit : C → F q by ∆ * (w) = uv=w u ⊗ v and (w) = 1 if w = 0, 0 otherwise, for any words w ∈ Σ . We deduce from the work of Hoffman [START_REF] Hoffman | Quasi-shuffle products[END_REF] that Theorem D. The stuffle algebra (C, * , u, ∆ * , ) is a connected graded Hopf algebra of finite type over F q .

1.3.6. Stuffle map.

Finally, using our previous works [START_REF] Im | Zagier-Hoffman's conjectures in positive characteristic[END_REF][START_REF] Dac | On Zagier-Hoffman's conjectures in positive characteristic[END_REF] we know that there is a connection between MZV's of Thakur and Carlitz's multiple polylogarithms. Thus we are able to construct a homomorphism of K-algebras called the stuffle map (see §9.3).

Theorem E. Recall that Z is the K-vector space spanned by MZV's. Then there exists a homomorphism of K-algebras Z * : C ⊗ Fq K → Z called the stuffle map in positive characteristic.

Organization of the paper.

We briefly explain the plan of the manuscript.

• In §2 we recall the definition and basic facts of different notions of algebras (algebras, coalgebras, bialgebras and Hopf algebras) that will be used in this paper. • In §3 we present the stuffle algebra and the shuffle algebra of MZV's in the classical setting. We recall different zeta maps and Hopf algebra structures associated to these algebras as well as important conjectures and theorems concerning these objects. • In §4 we introduce the notion of MZV's in positive characteristic and define the composition space that is an analogue of Hoffman's algebra in this context.

• In §5 and §6 we define the shuffle product ¡ and the shuffle map (see Theorem 5.5). Using partial fraction decompositions we prove that the composition space equipped with the shuffle map is a commutative F q -algebra (see Theorem 6.9). • In §7 we define the coproduct ∆ and the counit on the shuffle algebra. We prove that these give a Hopf algebra structure of the shuffle algebra (see Theorem 7.11). In §8 we study the coproduct for words of depth one in detail and deduce that the coproduct ∆ coincide with that introduced by Shi (see Theorem 8.9). Explicit formulas for the coproduct of such words are given in many cases in §8.5 and the Appendix A. • Finally, in §9 we introduce the stuffle product * and get the algebra and the Hopf algebra structures of the stuffle product as well as the stuffle map in our context (see Theorem 9.2). The key ingredient is a connection between MZV's and Carlitz multiple polylogarithms as explained in [START_REF] Dac | On Zagier-Hoffman's conjectures in positive characteristic[END_REF] and [START_REF] Im | Zagier-Hoffman's conjectures in positive characteristic[END_REF].
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Review of Hopf algebras

We briefly review the notion of Hopf algebras and follow closely the presentation of [9, §3.2]. Throughout this section, we let k denote a ground field. Unless otherwise specified, all tensor products will be assumed to be over k.

Hopf algebras.

For each k-vector space H, we denote by ι : H ⊗ H → H ⊗ H the transposition map given by x ⊗ y → y ⊗ x. Definition 2.1. An algebra over k is a triple (H, m, u) consisting of a k-vector space H together with k-linear maps m : H ⊗ H → H called the multiplication and u : k → H called the unit such that the following diagrams are commutative:

(1) associativity

H ⊗ H ⊗ H H ⊗ H H ⊗ H H m⊗id id⊗m m m (2) unitary H ⊗ k H ⊗ H k ⊗ H H id⊗u m u⊗id
where the diagonal arrows are canonical isomorphisms.

The algebra is said to be commutative if the following diagram is commutative:

H ⊗ H H ⊗ H H m ι m
Turning all arrows around, one obtains the definition of coalgebras over k.

Definition 2.2. A coalgebra over k is a triple (H, ∆, ) consisting of a k-vector space H together with k-linear maps ∆ : H → H ⊗ H called the coproduct and : H → k called the counit such that the following diagrams are commutative:

(1) coassociativity

H ⊗ H ⊗ H ⊗H H ⊗ H H ∆⊗id id⊗∆ ∆ ∆ (2) counitary H ⊗ k H ⊗ H k ⊗ H H id⊗ ⊗id ∆
where the diagonal arrows are canonical isomorphisms.

The coalgebra is said to be cocommutative if the following diagram is commutative:

H ⊗ H H ⊗ H H ι ∆ ∆ Definition 2.3.
A bialgebra over k is a tuple (H, m, u, ∆, ) consisting of an algebra (H, m, u) over k and a coalgebra (H, ∆, ) over k which are compatible, i.e., the following diagrams are commutative:

(1) product and coproduct

H ⊗ H H H ⊗ H H ⊗ H ⊗ H ⊗ H H ⊗ H ⊗ H ⊗ H ∆⊗∆ m ∆ id⊗ι⊗id m⊗m
(2) unit and coproduct

H H ⊗ H k k ⊗ k ∆ u u⊗u
(3) counit and product 

H H ⊗ H k k ⊗ k ⊗ m ( 
H ⊗ H H ⊗ H H k H H ⊗ H H ⊗ H S⊗id m ∆ ∆ u id⊗S m
We note that a bialgebra does not always admit an antipode (see [START_REF] Gil | Multiple zeta values: from numbers to motives[END_REF]Exercise 3.83] for an example).

Graded Hopf algebras.

In this section we introduce the notion of connected graded bialgebras which will be useful. We will see later that every connected graded bialgebra has an antipode, and hence a Hopf algebra structure. Definition 2.5.

(1) A bialgebra (H, m, u, ∆, ) over k is said to be graded if one can write H as a direct sum of k-vectors subspaces

H = ∞ n=0 H n ,
such that for all integers r, s ≥ 0, we have

m(H r ⊗ H s ) ⊆ H r+s and ∆(H r ) ⊆ i+j=r H i ⊗ H j .
A graded bialgebra is said to be connected if H 0 = k. (2) A graded Hopf algebra is a Hopf algebra H whose the underlying bialgebra is graded and the antipode S satisfies S(H n ) ⊆ H n . (3) A graded Hopf algebra is said to be connected if H 0 = k. (4) A graded Hopf algebra is said to be of finite type if H n is a k-vector space of finite dimension.

The following proposition shows that a connected graded bialgebra automatically admits an antipode, thus it is always a Hopf algebra. It is given as an exercise in [48, §11.2] (see also [START_REF] Gil | Multiple zeta values: from numbers to motives[END_REF]Exercise 3.84]).

Proposition 2.6. Let (H, m, u, ∆, ) be a connected graded bialgebra over k.

(1) For each element x ∈ H n with n ≥ 1, we have

∆(x) = 1 ⊗ x + x ⊗ 1 + x (1) ⊗ x (2) , where x (1) ⊗ x (2) ∈ i,j>0 i+j=n H i ⊗ H j .
Moreover, the counit vanishes on H n for all n ≥ 1. (2) We continue the notation as in [START_REF] Anderson | t-motives[END_REF] and define recursively a k-linear map S : H → H given by

S(x) = x if x ∈ H 0 , -x -m(S(x (1) ) ⊗ x (2) ) if x ∈ H n with n ≥ 1.
Then H is a graded Hopf algebra whose antipode is S.

Proof. See [19, Lemma 2.1].

Classical multiple zeta values

In this section we review classical multiple zeta values studied by Euler in the late eighteenth century. In §3.1 we recall the theory of quasi-shuffle algebras introduced by Hoffman in 2000 and give basic facts such as the associated Hopf algebra structure. The stuffle algebra and the shuffle one defined in §3.3 and §3.5 are examples of this class. We explain their connection with MZV's and the regularization of Ihara-Kaneko-Zagier in §3.2 and §3.4.

Quasi-shuffle algebras.

We review the notion of quasi-shuffle product introduced by Hoffman [START_REF] Hoffman | Quasi-shuffle products[END_REF]. Let Σ = {x i } i∈N be a countable set. To each letter x i we associate a weight w(x i ) ∈ N and we suppose that for any n ∈ N the set Σ n of letters of weight n is finite. In this context, we follow the notations in Section 1.3.1.

Let Σ denote the set of all words over Σ. We denote by Q Σ (resp. QΣ) the Q-vector space with Σ (resp. Σ) as a basis. The concatenation product extends to Q Σ by linearity so that Q Σ is a graded algebra with respect to weight.

We set Σ = Σ ∪ {0}. Let : Σ × Σ → Σ be a commutative and associative product which preserves the grading. It means that this map satisfies the following properties: for all a, b, c ∈ Σ,

• a 0 = 0. • a b = b a. • (a b) c = a (b c). • Either a b = 0 or w(a b) = w(a) + w(b).
We define a new product * on Q Σ recursively by setting 1 * u = u * 1 = u, and au * bv = a(u * bv) + b(au * v) + (a b)(u * v) for all letter a, b ∈ Σ and all words u, v ∈ Q Σ . This product is called the quasishuffle product associated to . Hoffman [START_REF] Hoffman | Quasi-shuffle products[END_REF]Theorem 2.1] showed that the vector space Q Σ equipped with the product * is a commutative Q-algebra.

We now define a coproduct ∆ :

Q Σ → Q Σ ⊗ Q Σ and a counit : Q Σ → Q by ∆(u) = ab=u a ⊗ b and (u) = 1 if u = 1, 0 otherwise,
for all words u ∈ Σ . Hoffman [START_REF] Hoffman | Quasi-shuffle products[END_REF]Theorem 3.1] showed that Q Σ equipped with the * -multiplication and ∆-comultiplication is a bialgebra. Since both * and ∆ respect the grading, Proposition 2.6 implies Theorem 3.1. The algebra Q Σ with the * -multiplication and ∆-comultiplication is a graded Hopf algebra. Further, it is connected and of finite type.

Moreover, the antipode S : Q Σ → Q Σ is given explicitly in [27, Theorem 3.2]: for any word u = x i1 . . . x in we have

S(u) = (j1,...,j k ) (-1) k x i1 . . . x ij 1 * x ij 1 +1 . . . x ij 1 +j 2 * • • • * x ij 1 +•••+j k-1 +1 . . . x ij 1 +•••+j k
where the sum runs through the set of all partitions (j 1 , . . . , j k ) of n.

For recent developments on quasi-shuffle products, we refer the reader to [START_REF] Hoffman | Quasi-symmetric functions and mod p multiple harmonic sums[END_REF][START_REF] Hoffman | Quasi-shuffle algebras and applications[END_REF][START_REF] Hoffman | Quasi-shuffle products revisited[END_REF][START_REF] Ihara | Multiple zeta values vs. multiple zeta-star values[END_REF].

Multiple zeta values of Euler.

We now illustrate two examples of quasi-product that are related to the classical MZVs. Recall that multiple zeta values of Euler (MZV's for short) are real positive numbers given by the following convergent series

ζ(n 1 , . . . , n r ) = 0<k1<•••<kr 1 k n1 1 . . . k nr r , where n i ≥ 1, n r ≥ 2.
Here r is called the depth and w = n 1 + • • • + n r is called the weight of the presentation ζ(n 1 , . . . , n r ). When r = 1, we recover the special zeta values ζ(n) for n ≥ 2 of the Riemann zeta function. It was studied by Euler in the eighteenth century and have been studied intensively especially in the last three decades by mathematicians and physicists. We refer the reader to [START_REF] Gil | Multiple zeta values: from numbers to motives[END_REF][START_REF] Zagier | Values of zeta functions and their applications[END_REF] for more details. As mentioned in these references, the main goal of this theory is to understand all Q-linear relations among MZV's. We note that precise conjectures formulated by Zagier [START_REF] Zagier | Values of zeta functions and their applications[END_REF] and Hoffman [START_REF] Hoffman | The algebra of multiple harmonic series[END_REF] give the dimension and an explicit basis for the Qvector space Z k spanned by MZV's of weight k for k ∈ N. The algebraic part of these conjectures was completely settled by Brown [START_REF] Brown | Mixed Tate motives over Z[END_REF], Deligne-Goncharov [START_REF] Deligne | Groupes fondamentaux motiviques de Tate mixte[END_REF] and Terosoma [START_REF] Terasoma | Mixed Tate motives and multiple zeta values[END_REF].

3.3. The Hoffman algebra, stuffle product and shuffle product.

In this section we take k = Q. Let X be the alphabet with two letters x 0 , x 1 with weight 1, that means w(x 0 ) = w(x 1 ) = 1. We denote h = Q X and call it the Hoffman algebra. A word in the alphabet X is said to be positive if it is of the form x 1 u and is said to be admissible if it is of the form x 1 ux 0 . We denote by h 1 (resp. h 0 ) the subspace of h spanned by positive words (resp. admissible words).

For all i ∈ N we put

z i = x 1 x i-1 0 . Then w(z i ) = i.
Let Z be the alphabet with letters {z i } i∈N . Then h 1 = Q Z . We now equip the alphabet Z with the commutative and associative product : Z × Z → Z given by z i z j = z i+j for all i, j ∈ N. The associated quasi-product on h 1 = Q Z will be denoted by * and called the stuffle product. A word in h 1 is called admissible if it can be expressed as z s1 . . . z s with s > 1. We note that h 0 is the subspace generated by admissible words in h 1 and that (h 0 , * ) is a subalgebra of (h 1 , * ). Further, the harmonic product on MZV's gives rise to a homomorphism of Q-algebras ζ * : h 0 → R which sends an admissible word z s1 . . . z s to the associated zeta value ζ(s 1 , . . . , s r ), that means

ζ * (u * v) = ζ * (u)ζ * (v)
for all words u, v ∈ h 0 . This map is called the stuffle zeta map. We now recall the shuffle algebra. We endow X with the trivial product : X × X → X given by a b = 0 for all a, b ∈ X. The associated quasi-product on h = Q X will be denoted by ¡ and called the shuffle product. We see that (h 0 , ¡) and (h 1 , ¡) are subalgebras of (h, ¡). The shuffle product on MZV's defines a homomorphism of Q-algebras

ζ ¡ : h 0 → R
which sends an admissible word z s1 . . . z s to the associated zeta value ζ(s 1 , . . . , s r ), that means

ζ ¡ (u ¡ v) = ζ ¡ (u)ζ ¡ (v)
for all words w, v ∈ h 0 . This map is called the shuffle zeta map. Using these zeta maps yield the so-called double shuffle relations in the convergent case: for all words u, v ∈ h 0 ,

ζ * (u * v) = ζ ¡ (u ¡ v).

Regularized zeta maps.

Following Ihara-Kaneko-Zagier [START_REF] Ihara | Derivation and double shuffle relations for multiple zeta values[END_REF], we note that the homomorphism of (h 0 , * )algebras ϕ * : h 0 [T ] → h 1 which sends T to z 1 is an isomorphism. Further, the following homomorphisms of (h 0 , ¡)-algebras

ϕ ¡ : h 0 [T ] → h 1 , T → x 1 , ϕ ¡ : h 0 [T, U ] → h, T → x 1 , U → x 0 , are isomorphisms.
Now we define the stuffle regularized zeta map

(3.1) ζ * : h 1 → R as the composition h 1 → h 0 [T ] → R[T ] → R
where the first map is ϕ -1 * , the second map is induced by the stuffle zeta map and the last one is the evaluation at T = 0. Similarly, we define the shuffle regularized zeta map

(3.2) ζ ¡ : h → R as the composition h → h 0 [T, U ] → R[T, U ] → R
where the first map is ϕ -1 ¡ , the second map is induced by the shuffle zeta map and the last one is the evaluation at T = U = 0. We mention that Ihara, Kaneko and Zagier [START_REF] Ihara | Derivation and double shuffle relations for multiple zeta values[END_REF] use the restriction of these maps on h 1 to extend the previous double shuffle relations among MZV's. Further, they conjectured that these extended double shuffle relations exhaust all linear relations among MZV's (see Conjecture 1.2). As mentioned in the Introduction, other important conjectures in this theory are those of Zagier and Hoffman which give precise dimension and a basis for the Q-vector space spanned MZV's of fixed weight (see Conjectures 1.3 and 1.4).

Recall that the algebraic part of these conjectures was solved by Terasoma [START_REF] Terasoma | Mixed Tate motives and multiple zeta values[END_REF], Deligne-Goncharov [START_REF] Deligne | Groupes fondamentaux motiviques de Tate mixte[END_REF] and Brown [START_REF] Brown | Mixed Tate motives over Z[END_REF] using the theory of mixed Tate motives (see Theorems 1.5 and 1.6). The proofs of this theorem use by a crucial manner different Hopf algebra structures of Hoffman's algebra h as described above. We mention that the transcendental part which concerns lower bounds for dim Q Z k is completely open. We refer the reader to [START_REF] Gil | Multiple zeta values: from numbers to motives[END_REF][START_REF] Deligne | d'après Francis Brown[END_REF][START_REF] Zagier | Values of zeta functions and their applications[END_REF] for more details and more exhaustive references.

Stuffle Hopf algebra and shuffle Hopf algebra.

By the work of Hoffman [START_REF] Hoffman | Quasi-shuffle products[END_REF] the above algebras can be endowed with a richer structure, i.e., that of Hopf algebras. In fact, as a direct consequence of Theorem 3.1, we get two Hopf algebras for classical MZV's.

The first graded Hopf algebra

H * = (h 1 , * )
comes from the stuffle product. We note that it is related to the algebra of quasisymmetric functions over k (see [START_REF] Ehrenborg | On posets and Hopf algebras[END_REF][START_REF] Hoffman | Quasi-symmetric functions and mod p multiple harmonic sums[END_REF]). For some applications of Hopf algebra structure, we refer the reader to [START_REF] Hoffman | Quasi-symmetric functions and mod p multiple harmonic sums[END_REF] (see also [START_REF] Kaneko | A generalized regularization theorem and Kawashima's relation for multiple zeta values[END_REF]).

The second graded Hopf algebra

H ¡ = (h, ¡)
is the shuffle algebra (see [START_REF] Reutenauer | Free Lie algebras[END_REF]). Explicitly,

• h = Q x 0 , x 1 .
• The coproduct is given by the shuffle product ¡.

• The unit is given by the empty word 1.

• The coproduct ∆ : h → h ⊗ h is given by the deconcatenation

∆(u) = ab=u a ⊗ b for any words u ∈ h. • The counit : h → Q is given by (u) = 1 if u = 1, 0 otherwise.
• The antipode S : h → h is given by

S(x i1 . . . x in ) = (-1) n x in . . . x i1 .
This Hopf algebra and its motivic version introduced by Goncharov [START_REF] Goncharov | Galois symmetries of fundamental groupoids and noncommutative geometry[END_REF] lie in the heart of the works of Brown [START_REF] Brown | Mixed Tate motives over Z[END_REF], Deligne-Goncharov [START_REF] Deligne | Groupes fondamentaux motiviques de Tate mixte[END_REF] and Terosoma [START_REF] Terasoma | Mixed Tate motives and multiple zeta values[END_REF] (see also [START_REF] Gil | Multiple zeta values: from numbers to motives[END_REF]).

Multiple zeta values in positive characteristic

In §4.1 we recall the notion of multiple zeta values of Thakur and present the main goal and results of this theory. Then we define the composition space which plays the role of Hoffman's algebra in the function field setting (see §4.2).

Multiple zeta values in positive characteristic.

By analogy between number fields and function fields, Carlitz [START_REF] Carlitz | On certain functions connected with polynomials in Galois field[END_REF] introduced zeta values in positive characteristic which are studied extensively in the last three decades. More recently, Thakur [START_REF] Thakur | Function field arithmetic[END_REF] generalized the work of Carlitz and defined analogues of multiple zeta values in positive characteristic. We recall some notations in the Introduction. The ring A = F q [θ] is the polynomial ring in the variable θ over a finite field F q of q elements of characteristic p > 0. We recall that A + denotes the set of monic polynomials in A and K = F q (θ) is the fraction field of A equipped with the rational point ∞. Then K ∞ is the completion of K at ∞ and C ∞ is the completion of a fixed algebraic closure K of K at ∞. We denote by v ∞ the discrete valuation on K corresponding to the place ∞ normalized such that v ∞ (θ) = -1, and by |•| ∞ = q -v∞ the associated absolute value on K. The unique valuation of C ∞ which extends v ∞ will still be denoted by v ∞ .

For any tuple of positive integers s = (s 1 , . . . , s r ) ∈ N r , Thakur [START_REF] Thakur | Function field arithmetic[END_REF] defined the characteristic p multiple zeta value (MZV for short) ζ A (s) or ζ A (s 1 , . . . , s r ) by

ζ A (s) := 1 a s1 1 . . . a sr r ∈ K ∞
where the sum runs through the set of tuples (a 1 , . . . , a r ) ∈ A r + with deg a 1 > • • • > deg a r . We call r the depth of ζ A (s) and w(s) = s 1 + • • • + s r the weight of ζ A (s). We note that Carlitz zeta values are exactly depth one MZV's. Thakur [START_REF] Thakur | Power sums with applications to multizeta and zeta zero distribution for Fq[t][END_REF] showed that all the MZV's do not vanish. As in the classical setting, the main goal of the theory is to understand all linear relations over K among MZV's. In fact, analogues of Zagier-Hoffman's conjectures in positive characteristic were formulated by Thakur in [54, §8] and by Todd in [START_REF] Todd | A conjectural characterization for Fq(t)-linear relations between multizeta values[END_REF] that we recall below.

For w ∈ N we denote by Z w the K-vector space spanned by the MZV's of weight w. We denote by T w the set of ζ A (s) where s = (s 1 , . . . , s r ) ∈ N r of weight w with 1 ≤ s i ≤ q for 1 ≤ i ≤ r -1 and s r < q.

Conjecture 4.1 (Zagier's conjecture in positive characteristic). Letting

d(w) =      1 if w = 0, 2 w-1 if 1 ≤ w ≤ q -1, 2 w-1 -1 if w = q,
we put d(w) = q i=1 d(w -i) for w > q. Then for any w ∈ N, we have

dim K Z w = d(w).
Conjecture 4.2 (Hoffman's conjecture in positive characteristic). A K-basis for Z w is given by T w consisting of ζ A (s 1 , . . . , s r ) of weight w with s i ≤ q for 1 ≤ i < r, and s r < q.

These conjectures have been completely solved by the works of [START_REF] Dac | On Zagier-Hoffman's conjectures in positive characteristic[END_REF] and [START_REF] Im | Zagier-Hoffman's conjectures in positive characteristic[END_REF].

The composition space.

In this section, we recall the notion of the composition space C as mentioned in the Introduction. Let Σ = {x n } n∈N be a countable set equipped with the weight w(x n ) = n. The elements of Σ will be called letters. A word over Σ is a finite string of letters. In particular, the empty word will be denoted by 1. Let Σ denote the set of all words over Σ. We endow Σ with the concatenation product defined by the following formula:

x i1 . . . x in • x j1 . . . x jm = x i1 . . . x in x j1 . . . x jm .
The composition space C is the free F q -vector space F q Σ with basis Σ . The concatenation product extends to C by linearity.

Shuffle algebra and shuffle map in positive characteristic

This section aims to introduce the notion of the shuffle product of MZV's in positive characteristic. Then we define different products related to the associated shuffle algebra (see §5.2) and also the shuffle map (see Theorem 5.5).

Shuffle product for power sums.

For d ∈ Z we introduce

S d (s) := 1 a s1 1 . . . a sr r ∈ K ∞
where the sum runs through the set of tuples (a 1 , . . . , a r ) ∈ A r + with d = deg a 1 > . . . > deg a r . Further, we define

S <d (s) := 1 a s1 1 . . . a sr r ∈ K ∞
where the sum is over (a 1 , . . . , a r )

∈ A r + with d > deg a 1 > . . . > deg a r . Thus S <d (s) = d-1 i=0 S i (s), S d (s) = S d (s 1 )S <d (s -) = S d (s 1 )S <d (s 2 , . . . , s r ).
Here by convention we define empty sums to be 0 and empty products to be 1. In particular, S <d of the empty tuple is equal to 1.

We briefly recall some results of Thakur concerning the shuffle product for power sums in [START_REF] Thakur | Shuffle relations for function field multizeta values[END_REF] (see also [54, §5.2]). Thakur first proved (see [START_REF] Thakur | Shuffle relations for function field multizeta values[END_REF]Theorems 1 and 2]) that for all a, b ∈ N, there exist ∆ i a,b ∈ F p for 0 < i < a + b such that for all d ∈ Z,

(5.1) S d (a)S d (b) = S d (a + b) + 0<i<a+b ∆ i a,b S d (a + b -i, i).
Shortly after, Chen [START_REF] Chen | On shuffle of double zeta values over Fq[t][END_REF] gave explicit formulas for the coefficients ∆ i a,b and proved

∆ i a,b = (-1) a-1 i-1 a-1 + (-1) b-1 i-1 b-1 if (q -1) | i and 0 < i < a + b, 0 otherwise.
Here we recall that for integers a, b with b ≥ 0,

a b = a(a -1) . . . (a -b + 1) b! .
It should be remarked that a b = 0 if b > a ≥ 0.

Proposition 5.1 (Chen). Let r, s be positive integers. For all d ∈ Z, we have

S d (r)S d (s) = S d (r + s) + i,j∈N, i+j=r+s ∆ j r,s S d (i, j).
Proposition 5.2. Let r, s be positive integers. For all d ∈ Z, we have S <d (r)S <d (s) = S <d (r + s) + S <d (r, s) + S <d (s, r) + i,j∈N, i+j=r+s ∆ j r,s S <d (i, j).

Proof. Using Proposition 5.1, we have

S <d (r)S <d (s) = k<d S k (r)S k (s) + k<d S k (r)S <k (s) + k<d S k (s)S <k (r) = k<d S k (r + s) + i,j∈N, i+j=r+s ∆ j r,s S k (i, j) + k<d S k (r, s) + k<d S k (s, r) = S <d (r + s) + i,j∈N, i+j=r+s ∆ j
r,s S <d (i, j) + S <d (r, s) + S <d (s, r).

This proves the proposition.

The shuffle algebra in positive characteristic.

Recall that the composition space is defined as in §1.3.1. We define the unit u : F q → C by sending 1 to the empty word 1. Next we define recursively two products on C as F q -bilinear maps

: C × C -→ C and ¡: C × C -→ C by setting 1 a = a 1 = a, 1 ¡ a = a ¡ 1 = a and a b = x a+b (a -¡ b -) + i+j=a+b ∆ j a,b x i (x j ¡ (a -¡ b -)), a ¡ b = x a (a -¡ b) + x b (a ¡ b -) + a b
for any words a, b ∈ Σ . We call the diamond product and ¡ the shuffle product. We proceed the proof by induction on depth(a) + depth(b). If one of a or b is empty word, then (5.2) holds trivially. We assume that (5.2) holds when depth(a) + depth(b) < n with n ∈ N and n ≥ 2. We need to show that (5.2) holds when depth(a) + depth(b) = n.

Indeed, we have

a b = x a+b (a -¡ b -) + i+j=a+b ∆ j a,b x i (x j ¡ (a -¡ b -)), b a = x b+a (b -¡ a -) + i+j=b+a ∆ j b,a x i (x j ¡ (b -¡ a -)).
It follows from the induction hypothesis that a -¡b -= b -¡a -, hence a b = b a.

On the other hand, we have

a ¡ b = x a (a -¡ b) + x b (a ¡ b -) + a b, b ¡ a = x b (b -¡ a) + x a (b ¡ a -) + b a.
It follows from the induction hypothesis and the above arguments that a

-¡ b = b ¡ a -, a ¡ b -= b -¡ a and a b = b a, hence a ¡ b = b ¡ a. This proves the proposition.
We next define recursively a product on C as a F q -bilinear map

: C × C -→ C by setting 1 a = a 1 = a and a b = x a (a -¡ b)
for any words a, b ∈ Σ . We call the triangle product. We stress that the triangle product is neither commutative nor associative, as one verifies at once. Lemma 5.4. For all words a, b ∈ Σ , we have [START_REF] Anderson | t-motives[END_REF] 

a b = (x a x b ) (a -¡ b -) (2) a ¡ b = a b + b a + a b.
Proof. We have

a b = x a+b (a -¡ b -) + i+j=a+b ∆ j a,b x i (x j ¡ (a -¡ b -)) = x a+b (a -¡ b -) + i+j=a+b ∆ j a,b x i x j (a -¡ b -) = (x a+b + i+j=a+b ∆ j a,b x i x j ) (a -¡ b -) = (x a x b ) (a -¡ b -).
This proves part [START_REF] Anderson | t-motives[END_REF]. Part (2) is straightforward from the commutativity of the shuffle product. We finish the proof.

The shuffle map in positive characteristic.

For all d ∈ Z, we define two F q -linear maps

S <d : C → K ∞ and ζ A : C → K ∞ ,
which map the empty word to the element 1 ∈ K ∞ , and map any word x s1 . . . x sr to S <d (s 1 , . . . , s r ) and ζ A (s 1 , . . . , s r ), respectively. The main result of this section reads as follows:

Theorem 5.5. For all words a, b ∈ C and for all d ∈ Z we have

S <d (a ¡ b) = S <d (a) S <d (b), ζ A (a ¡ b) = ζ A (a) ζ A (b).
Proof. See [START_REF] Shi | Multiple zeta values over Fq[END_REF]Theorem 3.1.4].

We denote by Z w (resp. Z) the K-vector space spanned by MZV's of weight w (resp. by MZV's). Then the K-linear map

Z ¡ : C ⊗ Fq K → Z,
which sends a word a ∈ C to ζ A (a), is a homomorphism of K-algebras, and is called the shuffle map in positive characteristic.

Algebra structure of the shuffle algebra

The main goal of this section is to prove that the composition space C equipped with the shuffle product ¡ given by Thakur is an algebra (see Theorem 6.9). The key point is to show the associativity of the shuffle product which consequently solves [47, Conjecture 3.2.2]. In fact, the associativity property of (C, ¡) turned out to be very hard to prove (see [41, Remark 2.2, Part 1]) as pointed out one of the referees of [START_REF] Dac | On Zagier-Hoffman's conjectures in positive characteristic[END_REF]. Our method is of algebraic nature. It consists of unpacking the nature of the coefficients ∆ i a,b appearing in the shuffle product of Thakur by using partial fractional decompositions.

We mention that the associativity could follow from a transcendental approach. As mentioned in [47, §3.2.1], it follows from a conjecture of Thakur about the F q -linear independence of MZV's (see [47, 3.2.3]). 6.1. Expansions for S d of depth one.

6.1.1. Let r, s, t be positive integers. We first expand (S d (s)S d (t))S d (r). We have

(S d (r)S d (s))S d (t) =   S d (r + s) + i+j=r+s ∆ j r,s S d (i, j)   S d (t) = S d (r + s)S d (t) + i+j=r+s ∆ j r,s S d (i, j)S d (t) =   S d (r + s + t) + i+j=r+s+t ∆ j r+s,t S d (i, j)   + i+j=r+s ∆ j r,s   S d (i + t, j) + i1+j1=i+t ∆ j1 i,t S d (i 1 )S <d (j 1 )S <d (j)   .
The sum of the terms of depth 2 in the above expansion is the following:

i+j=r+s+t ∆ j r+s,t S d (i, j) + i+j=r+s ∆ j r,s   S d (i + t, j) + i1+j1=i+t ∆ j1 i,t S d (i 1 , j 1 + j)   (6.1)
The sum of the terms of depth 3 in the above expansion is the following:

i+j=r+s ∆ j r,s i1+j1=i+t ∆ j1 i,t   S d (i 1 , j 1 , j) + S d (i 1 , j, j 1 ) + i2+j2=j+j1 ∆ j2 j,j1 S d (i 1 , i 2 , j 2 )   .
6.1.2. We next expand S d (r)(S d (s)S d (t)).

S d (r)(S d (s)S d (t)) = S d (r)   S d (s + t) + i+j=s+t ∆ j s,t S d (i, j)   = S d (r)S d (s + t) + i+j=s+t ∆ j s,t S d (r)S d (i, j) =   S d (r + s + t) + i+j=r+s+t ∆ j r,s+t S d (i, j)   + i+j=s+t ∆ j s,t   S d (i + r, j) + i1+j1=i+r ∆ j1 i,r S d (i 1 )S <d (j 1 )S <d (j)   .
The sum of the terms of depth 2 in the above expansion is the following:

i+j=r+s+t ∆ j r,s+t S d (i, j) + i+j=s+t ∆ j s,t   S d (i + r, j) + i1+j1=i+r ∆ j1 i,r S d (i 1 , j 1 + j)   . (6.
2)

The sum of the terms of depth 3 in the above expansion is the following:

i+j=s+t ∆ j s,t i1+j1=i+r ∆ j1 i,r   S d (i 1 , j 1 , j) + S d (i 1 , j, j 1 ) + i2+j2=j+j1 ∆ j2 j,j1 S d (i 1 , i 2 , j 2 )   .
6.1.3. Partial fraction decompositions.

In this section, we will give some partial fraction decompositions which will be used in the next section. To simplify the notations, for j, r ∈ N, we set

∇ j r : = (-1) r j -1 r -1 .
Lemma 6.1. Let r, s be positive integers. The following equality of rational function holds:

1 X r Y s = i,j∈N, i+j=r+s j-1 s-1 (X + Y ) j X i + j-1 r-1 (X + Y ) j Y i . Proof. See [9, Lemma 1.49].
Lemma 6.2. Let R be a ring, and let a, b be elements in R such that a = b. Then for all positive integers r, s, we have the following partial fraction decomposition:

1 (X + a) r (X + b) s = i,j∈N, i+j=r+s ∇ j s (a -b) j (X + a) i + ∇ j r (b -a) j (X + b) i .
Proof. The result follows immediately from Lemma 6.1 by taking X = X + a and Y = -(X + b).

It should be remarked that Chen's formula is based on the following identity. Corollary 6.3. Let a, b be elements in A such that a = b. Then for all positive integers r, s, we have

1 a r b s = i,j∈N, i+j=r+s ∇ j s (a -b) j a i + ∇ j r (b -a) j b i .
Proof. The result is straightforward from Lemma 6.2 when X = 0 and R = A. Let r, s, t be positive integers. Let R be a ring, and let u, v be elements in R such that u = 0, v = 0 and u = v. Consider the following fractional function

P (A) = 1 A r (A + u) s (A + v) t Set B = A + u and C = A + v.
Using Lemma 6.2, we give the partial fraction decomposition of P (A) in two ways. First, we expand P (A) from the left to the right as follows:

1 A r B s • 1 C t = i+j=r+s ∇ j s (A -B) j A i + ∇ j r (B -A) j B i 1 C t (6.3) = i+j=r+s i1+j1=i+t ∇ j s (A -B) j ∇ j1 t (A -C) j1 1 A i1 + i+j=r+s i1+j1=i+t ∇ j s (A -B) j ∇ j1 i (C -A) j1 1 C i1 + i+j=r+s i1+j1=i+t ∇ j r (B -A) j ∇ j1 t (B -C) j1 1 B i1 + i+j=r+s i1+j1=i+t ∇ j r (B -A) j ∇ j1 i (C -B) j1 1 C i1 .
Next we expand P (A) from the right to the left as follows:

1 A r • 1 B s C t = 1 A r i+j=s+t ∇ j t (B -C) j B i + ∇ j s (C -B) j C i (6.4) = i+j=s+t i1+j1=i+r ∇ j t (B -C) j ∇ j1 i (A -B) j1 1 A i1 + i+j=s+t i1+j1=i+r ∇ j t (B -C) j ∇ j1 r (B -A) j1 1 B i1 + i+j=s+t i1+j1=i+r ∇ j s (C -B) j ∇ j1 i (A -C) j1 1 A i1 + i+j=s+t i1+j1=i+r ∇ j s (C -B) j ∇ j1 r (C -A) j1 1 C i1 .
6.2. Associativity for S d of depth one.

Main results.

To simplify the notations, for j, k ∈ N, we set

δ j : = λ∈F × q 1 λ j = -1 if (q -1) | j, 0 otherwise, δ j,k : = λ,µ∈F × q ;λ =µ 1 λ j µ k .
The following formulas will be used frequently later: ∆ j r,s = δ j (∇ j r + ∇ j s ), (6.5) δ j = δ j (-1) j , (6.6)

δ j δ k = δ j+k + δ j,k . (6.7)
Consider all the cases of tuples (a, b, c)

∈ A + (d) × A + (d) × A + (d), we set M 0 = {(a, b, c) ∈ A + (d) × A + (d) × A + (d) : a = b = c}, M 1 = {(a, b, c) ∈ A + (d) × A + (d) × A + (d) : a = b = c}, M 2 = {(a, b, c) ∈ A + (d) × A + (d) × A + (d) : a = b = c}, M 3 = {(a, b, c) ∈ A + (d) × A + (d) × A + (d) : c = a = b}, M 4 = {(a, b, c) ∈ A + (d) × A + (d) × A + (d) : a = b, b = c, c = a}.
The last set M 4 can be decomposed by the following partition:

M 4 = N 0 N 1 N 2 N 3 N 4 .

Here

• the set N 0 consists of tuples (a, b, c) ∈ M 4 where b = a + λf, c = a + µf with λ, µ ∈ F × q such that λ = µ and f ∈ A + such that d > deg f ; 

• the set N 1 consists of tuples (a, b, c) ∈ M 4 where b = a + λf, c = a + µu with λ, µ ∈ F × q and f, u ∈ A + such that d > deg f > deg u; • the set N 2 consists of tuples (a, b, c) ∈ M 4 where b = a + λu, c = a + µf with λ, µ ∈ F × q and f, u ∈ A + such that d > deg f > deg u; • the set N 3 consists of tuples (a, b, c) ∈ M 4 where b = a + λf, c = a + λf + µu with λ, µ ∈ F × q and f, u ∈ A + such that d > deg f > deg u; • the set N 4 consists of tuples (a, b, c) ∈ M 4 where b = a + λf, c = a + µf + ηu with λ, µ, η ∈ F × q such that λ = µ and f, u ∈ A + such that d > deg f > deg u.
0 , M 1 , M 2 , M 3 , N 0 , N 1 , N 2 , N 3 , N 4 . Moreover, (1) the expansion of 1 a r b s • 1 c t (respectively, 1 a r • 1 b s c t )
, where (a, b, c) ranges over all tuples in M 0 , yields the term of depth 1 in the expression of (S d (r)S d (s))S d (t) (respectively, S d (r)(S d (s)S d (t)));

(2) the expansion of

1 a r b s • 1 c t (respectively, 1 a r • 1 b s c t )
, where (a, b, c) ranges over all tuples in M 1 M 2 M 3 N 0 , yields the terms of depth 2 in the expression of (S d (r)S d (s))S d (t) (respectively, S d (r)(S d (s)S d (t)));

(3) the expansion of

1 a r b s • 1 c t (respectively, 1 a r • 1 b s c t )
, where (a, b, c) ranges over all tuples in N 1 N 2 N 3 N 4 , yields the terms of depth 3 in the expression of (S d (r)S d (s))S d (t) (respectively, S d (r)(S d (s)S d (t))).

As a direct consequence, we obtain the following theorem. Theorem 6.5. Let r, s, t be positive integers. For all d ∈ N, the expansions using Chen's formula of (S d (s)S d (t))S d (r) and S d (s)(S d (t)S d (r)) yield the same expression in terms of power sums.

The rest of this section is devoted to a proof of Proposition 6.4. 6.2.2. Depth 1 terms: proof of Proposition 6.4, Part 1.

It is obvious that

(a,b,c)∈M0 1 a r b s • 1 c t = (a,b,c)∈M0 1 a r • 1 b s c t = S d (r + s + t),
which yields the term of depth 1 in the expression of (S d (r)S d (s))S d (t) and S d (r)(S d (s)S d (t)). Consider the following cases:

Case 1: (a, b, c) ranges over all tuples in M 1 .

For each λ ∈ F × q , consider the rational function

P λ (A, F ) = 1 A r+s (A + λF ) t .
We will deduce the partial fraction decomposition of P λ (A, F ) by the following process: we first give the partial fraction decomposition of P λ (A, F ) in variable A with coefficients are rational functions of the form Q(F ) ∈ F q (F ); then we continue to give the partial fraction decomposition of Q(F ) in variable F whose coefficients are elements in F q .

Set C = A + λF . Using Lemma 6.2, we proceed the process in two ways. First, we expand P λ (A, F ) from the left to the right as follows:

1 A r+s • 1 C t = i+j=r+s+t ∇ j t (A -C) j A i + ∇ j r+s (C -A) j C i (6.8) = i+j=r+s+t ∇ j t (-λF ) j A i + ∇ j r+s (λF ) j C i = i+j=r+s+t ∇ j t (-λ) j 1 A i F j + i+j=r+s+t ∇ j r+s λ j 1 C i F j .
Next we expand P λ (A, F ) from the right to the left as follows:

1 A r • 1 A s C t = 1 A r i+j=s+t ∇ j t (A -C) j A i + ∇ j s (C -A) j C i (6.9) = i+j=s+t ∇ j t (A -C) j 1 A i+r + i+j=s+t i1+j1=i+r ∇ j s (C -A) j ∇ j1 i (A -C) j1 1 A i1 + i+j=s+t i1+j1=i+r ∇ j s (C -A) j ∇ j1 r (C -A) j1 1 C i1 = i+j=s+t ∇ j t (-λF ) j 1 A i+r + i+j=s+t i1+j1=i+r ∇ j s (λF ) j ∇ j1 i (-λF ) j1 1 A i1 + i+j=s+t i1+j1=i+r ∇ j s (λF ) j ∇ j1 r (λF ) j1 1 C i1 = i+j=s+t ∇ j t (-λ) j 1 A i+r F j + i+j=s+t i1+j1=i+r ∇ j s (-1) j1 ∇ j1 i λ j+j1 1 A i1 F j+j1 + i+j=s+t i1+j1=i+r ∇ j s ∇ j1 r λ j+j1 1 C i1 F j+j1 .
For each (a, b, c) ∈ M 1 , there exist λ ∈ F × q and f ∈ A + with d > deg f such that c = a + λf . Replacing A = a, F = f , one deduces from (6.8) that

(a,b,c)∈M1 1 a r b s • 1 c t = a,f ∈A+ d=deg a>deg f λ∈F × q 1 a r+s • 1 (a + λf ) t = i+j=r+s+t δ j ∇ j t a,f ∈A+ d=deg a>deg f 1 a i f j + i+j=r+s+t δ j ∇ j r+s c,f ∈A+ d=deg c>deg f 1 c i f j = i+j=r+s+t δ j ∇ j t S d (i, j) + i+j=r+s+t δ j ∇ j r+s S d (i, j) = i+j=r+s+t ∆ j r+s,t S d (i, j).
Similarly, one deduces from (6.9) that (a,b,c)∈M1

1 a r • 1 b s c t = a,f ∈A+ d=deg a>deg f λ∈F × q 1 a r • 1 a s (a + λf ) t = i+j=s+t δ j ∇ j t a,f ∈A+ d=deg a>deg f 1 a i+r f j + i+j=s+t i1+j1=i+r δ j+j1 ∇ j s (-1) j1 ∇ j1 i a,f ∈A+ d=deg a>deg f 1 a i1 f j+j1 + i+j=s+t i1+j1=i+r δ j+j1 ∇ j s ∇ j1 r c,f ∈A+ d=deg c>deg f 1 c i1 f j+j1 = i+j=s+t δ j ∇ j t S d (i + r, j) + i+j=s+t i1+j1=i+r δ j+j1 ∇ j s (-1) j1 ∇ j1 i S d (i 1 , j + j 1 ) + i+j=s+t i1+j1=i+r δ j+j1 ∇ j s ∇ j1 r S d (i 1 , j + j 1 ).
Since the partial fraction decomposition of P λ (A, F ) obtained from the process is unique, it follows that the above expansions of (a,b,c)∈M1

1 a r b s • 1 c t and (a,b,c)∈M1 1 a r • 1 b s c t
yield the same expression in terms of power sums.

Case 2: (a, b, c) ranges over all tuples in M 2 .

For each λ ∈ F × q , consider the rational function

P λ (A, F ) = 1 A r (A + λF ) s+t .
Set B = A + λF . From the same process as in the the case of M 1 , we expand P λ (A, F ) in two ways. First, we expand P λ (A, F ) from the left to the right as follows:

1 A r B s • 1 B t = i+j=r+s ∇ j s (A -B) j A i + ∇ j r (B -A) j B i 1 B t (6.10) = i+j=r+s i1+j1=i+t ∇ j s (A -B) j ∇ j1 t (A -B) j1 1 A i1 + i+j=r+s i1+j1=i+t ∇ j s (A -B) j ∇ j1 i (B -A) j1 1 B i1 + i+j=r+s ∇ j r (B -A) j 1 B i+t = i+j=r+s i1+j1=i+t ∇ j s (-λF ) j ∇ j1 t (-λF ) j1 1 A i1 + i+j=r+s i1+j1=i+t ∇ j s (-λF ) j ∇ j1 i (λF ) j1 1 B i1 + i+j=r+s ∇ j r (λF ) j 1 B i+t = i+j=r+s i1+j1=i+t ∇ j s ∇ j1 t (-λ) j+j1 1 A i1 F j+j1 + i+j=r+s i1+j1=i+t ∇ j s (-1) j1 ∇ j1 i (-λ) j+j1 1 B i1 F j+j1 + i+j=r+s ∇ j r λ j 1 B i+t F j .
Next we expand P λ (A, F ) from the right to the left as follows:

1 A r • 1 B s+t = i+j=r+s+t ∇ j s+t (A -B) j A i + ∇ j r (B -A) j B i (6.11) = i+j=r+s+t ∇ j s+t (-λF ) j A i + ∇ j r (λF ) j B i = i+j=r+s+t ∇ j s+t (-λ) j 1 A i F j + i+j=r+s+t ∇ j r λ j 1 B i F j .
For each (a, b, c) ∈ M 2 , there exist λ ∈ F × q and f ∈ A + with d > deg f such that b = a + λf . Replacing A = a, F = f , one deduces from (6.10) that

(a,b,c)∈M2 1 a r b s • 1 c t = a,f ∈A+ d=deg a>deg f λ∈F × q 1 a r (a + λf ) s • 1 (a + λf ) t = i+j=r+s i1+j1=i+t δ j+j1 ∇ j s ∇ j1 t a,f ∈A+ d=deg a>deg f 1 a i1 f j+j1 + i+j=r+s i1+j1=i+t δ j+j1 ∇ j s (-1) j1 ∇ j1 i b,f ∈A+ d=deg b>deg f 1 b i1 f j+j1 + i+j=r+s δ j ∇ j r b,f ∈A+ d=deg b>deg f 1 b i+t f j = i+j=r+s i1+j1=i+t δ j+j1 ∇ j s ∇ j1 t S d (i 1 , j + j 1 ) + i+j=r+s i1+j1=i+t δ j+j1 ∇ j s (-1) j1 ∇ j1 i S d (i 1 , j + j 1 ) + i+j=r+s δ j ∇ j r S d (i + t, j).
Similarly, one deduces from (6.11) that

(a,b,c)∈M2 1 a r • 1 b s c t = a,f ∈A+ d=deg a>deg f λ∈F × q 1 a r • 1 (a + λf ) s+t = i+j=r+s+t δ j ∇ j s+t a,f ∈A+ d=deg a>deg f 1 a i f j + i+j=r+s+t δ j ∇ j r b,f ∈A+ d=deg b>deg f 1 b i f j = i+j=r+s+t δ j ∇ j s+t S d (i, j) + i+j=r+s+t δ j ∇ j r S d (i, j) = i+j=r+s+t ∆ j r,s+t S d (i, j).
Since the partial fraction decomposition of P λ (A, F ) obtained from the process is unique, it follows that the above expansions of

(a,b,c)∈M2 1 a r b s • 1 c t and (a,b,c)∈M2 1 a r • 1 b s c t
yield the same expression in terms of power sums.

Case 3: (a, b, c) ranges over all tuples in M 3 .

For each λ ∈ F × q , consider the rational function

P λ (A, F ) = 1 A r (A + λF ) s A t .
Set B = A + λF . From the same process as in the the case of M 1 , we expand P λ (A, F ) in two ways. First, we expand P λ (A, F ) from the left to the right as follows:

1 A r B s • 1 A t = i+j=r+s ∇ j s (A -B) j A i + ∇ j r (B -A) j B i 1 A t (6.12) = i+j=r+s ∇ j s (A -B) j 1 A i+t + i+j=r+s i1+j1=i+t ∇ j r (B -A) j ∇ j1 t (B -A) j1 1 B i1 + i+j=r+s i1+j1=i+t ∇ j r (B -A) j ∇ j1 i (A -B) j1 1 A i1 = i+j=r+s ∇ j s (-λF ) j 1 A i+t + i+j=r+s i1+j1=i+t ∇ j r (λF ) j ∇ j1 t (λF ) j1 1 B i1 + i+j=r+s i1+j1=i+t ∇ j r (λF ) j ∇ j1 i (-λF ) j1 1 A i1 = i+j=r+s ∇ j s (-λ) j 1 A i+t F j + i+j=r+s i1+j1=i+t ∇ j r ∇ j1 t λ j+j1 1 B i1 F j+j1 + i+j=r+s i1+j1=i+t ∇ j r (-1) j1 ∇ j1 i λ j+j1 1 A i1 F j+j1 .
Next we expand P λ (A, F ) from the right to the left as follows:

1 A r • 1 B s A t = 1 A r i+j=s+t ∇ j t (B -A) j B i + ∇ j s (A -B) j A i (6.13) = i+j=s+t i1+j1=i+r ∇ j t (B -A) j ∇ j1 i (A -B) j1 1 A i1 + i+j=s+t i1+j1=i+r ∇ j t (B -A) j ∇ j1 r (B -A) j1 1 B i1 + i+j=s+t ∇ j s (A -B) j 1 A i+r = i+j=s+t i1+j1=i+r ∇ j t (λF ) j ∇ j1 i (-λF ) j1 1 A i1 + i+j=s+t i1+j1=i+r ∇ j t (λF ) j ∇ j1 r (λF ) j1 1 B i1 + i+j=s+t ∇ j s (-λF ) j 1 A i+r = i+j=s+t i1+j1=i+r ∇ j t (-1) j1 ∇ j1 i λ j+j1 1 A i1 F j+j1 + i+j=s+t i1+j1=i+r ∇ j t ∇ j1 r λ j+j1 1 B i1 F j+j1 + i+j=s+t ∇ j s (-λ) j 1 A i+r F j .
For each (a, b, c) ∈ M 3 , there exist λ ∈ F × q and f ∈ A + with d > deg f such that b = a + λf . Replacing A = a, F = f , one deduces from (6.12) that

(a,b,c)∈M3 1 a r b s • 1 c t = a,f ∈A+ d=deg a>deg f λ∈F × q 1 a r (a + λf ) s • 1 a t = i+j=r+s δ j ∇ j s a,f ∈A+ d=deg a>deg f 1 a i+t f j + i+j=r+s i1+j1=i+t δ j+j1 ∇ j r ∇ j1 t b,f ∈A+ d=deg b>deg f 1 b i1 f j+j1 + i+j=r+s i1+j1=i+t δ j+j1 ∇ j r (-1) j1 ∇ j1 i a,f ∈A+ d=deg a>deg f 1 a i1 f j+j1 . = i+j=r+s δ j ∇ j s S d (i + t, j) + i+j=r+s i1+j1=i+t δ j+j1 ∇ j r ∇ j1 t S d (i 1 , j + j 1 ) + i+j=r+s i1+j1=i+t δ j+j1 ∇ j r (-1) j1 ∇ j1 i S d (i 1 , j + j 1 ).
Similarly, one deduces from (6.13) that

(a,b,c)∈M3 1 a r • 1 b s c t = a,f ∈A+ d=deg a>deg f λ∈F × q 1 a r • 1 (a + λf ) s a t = i+j=s+t i1+j1=i+r δ j+j1 ∇ j t (-1) j1 ∇ j1 i a,f ∈A+ d=deg a>deg f 1 a i1 f j+j1 + i+j=s+t i1+j1=i+r δ j+j1 ∇ j t ∇ j1 r b,f ∈A+ d=deg b>deg f 1 b i1 f j+j1 + i+j=s+t δ j ∇ j s a,f ∈A+ d=deg a>deg f 1 a i+r f j . = i+j=s+t i1+j1=i+r δ j+j1 ∇ j t (-1) j1 ∇ j1 i S d (i 1 , j + j 1 ) + i+j=s+t i1+j1=i+r δ j+j1 ∇ j t ∇ j1 r S d (i 1 , j + j 1 ) + i+j=s+t δ j ∇ j s S d (i + r, j).
Since the partial fraction decomposition of P λ (A, F ) obtained from the process is unique, it follows that the above expansions of

(a,b,c)∈M3 1 a r b s • 1 c t and (a,b,c)∈M3 1 a r • 1 b s c t
yield the same expression in terms of power sums.

Case 4: (a, b, c) ranges over all tuples in N 0 .

For each λ, µ ∈ F × q such that λ = µ, consider the rational function

P λ,µ (A, F ) = 1 A r (A + λF ) s (A + µF ) t .
Set B = A + λF and C = A + µF . From the same process as in the the case of M 1 , we expand P λ,µ (A, F ) in two ways. First, we expand P λ,µ (A, F ) from the left to the right. From (6.3), we have;

1 A r B s • 1 C t = i+j=r+s i1+j1=i+t ∇ j s (-λF ) j ∇ j1 t (-µF ) j1 1 A i1 (6.14) + i+j=r+s i1+j1=i+t ∇ j s (-λF ) j ∇ j1 i (µF ) j1 1 C i1 + i+j=r+s i1+j1=i+t ∇ j r (λF ) j ∇ j1 t [(λ -µ)F ] j1 1 B i1 + i+j=r+s i1+j1=i+t ∇ j r (λF ) j ∇ j1 i [(µ -λ)F ] j1 1 C i1 = i+j=r+s i1+j1=i+t ∇ j s ∇ j1 t (-λ) j (-µ) j1 1 A i1 F j+j1 + i+j=r+s i1+j1=i+t ∇ j s (-1) j1 ∇ j1 i (-λ) j (-µ) j1 1 C i1 F j+j1 + i+j=r+s i1+j1=i+t ∇ j r ∇ j1 t λ j (λ -µ) j1 1 B i1 F j+j1 + i+j=r+s i1+j1=i+t ∇ j r (-1) j1 ∇ j1 i λ j (λ -µ) j1 1 C i1 F j+j1 .
Next we expand P λ,µ (A, F ) from the right to the left. From (6.4), we have;

1 A r • 1 B s C t = i+j=s+t i1+j1=i+r ∇ j t [(λ -µ)F ] j ∇ j1 i (-λF ) j1 1 A i1 (6.15) + i+j=s+t i1+j1=i+r ∇ j t [(λ -µ)F ] j ∇ j1 r (λF ) j1 1 B i1 + i+j=s+t i1+j1=i+r ∇ j s [(µ -λ)F ] j ∇ j1 i (-µF ) j1 1 A i1 + i+j=s+t i1+j1=i+r ∇ j s [(µ -λ)F ] j ∇ j1 r (µF ) j1 1 C i1 = i+j=s+t i1+j1=i+r ∇ j t (-1) j1 ∇ j1 i (λ -µ) j λ j1 1 A i1 F j+j1 + i+j=s+t i1+j1=i+r ∇ j t ∇ j1 r (λ -µ) j λ j1 1 B i1 F j+j1 + i+j=s+t i1+j1=i+r ∇ j s (-1) j1 ∇ j1 i (µ -λ) j µ j1 1 A i1 F j+j1 + i+j=s+t i1+j1=i+r ∇ j s ∇ j1 r (µ -λ) j µ j1 1 C i1 F j+j1 . For each (a, b, c) ∈ N 0 , we have b = a + λf, c = a + µf with λ, µ ∈ F × q such that λ = µ and f ∈ A + such that d > deg f . Replacing A = a, F = f , one deduces from (6.14) that (a,b,c)∈N0 1 a r b s • 1 c t = a,f ∈A+ d=deg a>deg f λ,µ∈F × q ;λ =µ 1 a r (a + λf ) s • 1 (a + µf ) t = i+j=r+s i1+j1=i+t δ j,j1 ∇ j s ∇ j1 t a,f ∈A+ d=deg a>deg f 1 a i1 f j+j1 + i+j=r+s i1+j1=i+t δ j,j1 ∇ j s (-1) j1 ∇ j1 i c,f ∈A+ d=deg c>deg f 1 c i1 f j+j1 + i+j=r+s i1+j1=i+t δ j,j1 ∇ j r ∇ j1 t b,f ∈A+ d=deg b>deg f 1 b i1 f j+j1 + i+j=r+s i1+j1=i+t δ j,j1 ∇ j r (-1) j1 ∇ j1 i c,f ∈A+ d=deg c>deg f 1 c i1 f j+j1 = i+j=r+s i1+j1=i+t δ j,j1 ∇ j s ∇ j1 t S d (i 1 , j + j 1 ) + i+j=r+s i1+j1=i+t δ j,j1 ∇ j s (-1) j1 ∇ j1 i S d (i 1 , j + j 1 ) + i+j=r+s i1+j1=i+t δ j,j1 ∇ j r ∇ j1 t S d (i 1 , j + j 1 ) + i+j=r+s i1+j1=i+t δ j,j1 ∇ j r (-1) j1 ∇ j1 i S d (i 1 , j + j 1 ).
Similarly, one deduces from (6.15) that

(a,b,c)∈N0 1 a r • 1 b s c t = a,f ∈A+ d=deg a>deg f λ,µ∈F × q ;λ =µ 1 a r • 1 (a + λf ) s (a + µf ) t = i+j=s+t i1+j1=i+r δ j,j1 ∇ j t (-1) j1 ∇ j1 i a,f ∈A+ d=deg a>deg f 1 a i1 f j+j1 + i+j=s+t i1+j1=i+r δ j,j1 ∇ j t ∇ j1 r b,f ∈A+ d=deg b>deg f 1 b i1 f j+j1 + i+j=s+t i1+j1=i+r δ j,j1 ∇ j s (-1) j1 ∇ j1 i a,f ∈A+ d=deg a>deg f 1 a i1 f j+j1 + i+j=s+t i1+j1=i+r δ j,j1 ∇ j s ∇ j1 r c,f ∈A+ d=deg c>deg f 1 c i1 f j+j1 = i+j=s+t i1+j1=i+r δ j,j1 ∇ j t (-1) j1 ∇ j1 i S d (i 1 , j + j 1 ) + i+j=s+t i1+j1=i+r δ j,j1 ∇ j t ∇ j1 r S d (i 1 , j + j 1 ) + i+j=s+t i1+j1=i+r δ j,j1 ∇ j s (-1) j1 ∇ j1 i S d (i 1 , j + j 1 ) + i+j=s+t i1+j1=i+r δ j,j1 ∇ j s ∇ j1 r S d (i 1 , j + j 1 ).
Since the partial fraction decomposition of P λ,µ (A, F ) obtained from the process is unique, it follows that the above expansions of

(a,b,c)∈N0 1 a r b s • 1 c t and (a,b,c)∈N0 1 a r • 1 b s c t
yield the same expression in terms of power sums.

Using Formulas (6.5), (6.6) and (6.7), one verifies easily that

(a,b,c)∈M1 1 a r b s • 1 c t + (a,b,c)∈M2 1 a r b s • 1 c t + (a,b,c)∈M3 1 a r b s • 1 c t + (a,b,c)∈N0 1 a r b s • 1 c t = i+j=r+s+t ∆ j r+s,t S d (i, j) + i+j=r+s ∆ j r,s S d (i + t, j) + i1+j1=i+t ∆ j1 i,t S d (i 1 , j 1 + j) ,
which is the sum of the terms of depth 2 in the expression of (S d (r)S d (s))S d (t).

Similarly, one verifies easily that

(a,b,c)∈M1 1 a r • 1 b s c t + (a,b,c)∈M2 1 a r • 1 b s c t + (a,b,c)∈M3 1 a r • 1 b s c t + (a,b,c)∈N0 1 a r • 1 b s c t = i+j=r+s+t ∆ j r,s+t S d (i, j) + i+j=s+t ∆ j s,t S d (i + r, j) + i1+j1=i+r ∆ j1 i,r S d (i 1 , j 1 + j) ,
which is the sum the terms of depth 2 in the expression of S d (r)(S d (s)S d (t)).

6.2.4. Depth 3 terms: proof of Proposition 6.4, Part 3.

Consider the following cases:

Case 1: (a, b, c) ranges over all tuples in N 1 .

For λ, µ ∈ F × q , consider the rational function

P λ,µ (A, F, U ) = 1 A r (A + λF ) s (A + µU ) t .
We will deduce the partial fraction decomposition of P λ,µ (A, F, U ) by the following process: we first give the partial fraction decomposition of P λ,µ (A, F, U ) in variable A with coefficients are rational functions of the form Q(F, U ) ∈ F q (F, U ); then we continue to give the partial fraction decomposition of Q(F, U ) in variable F with coefficients are rational functions of the form R(U ) ∈ F q (U ); finally, we give the partial fraction decomposition of R(U ) in variable U with coefficients are elements in F q .

Set B = A + λF, C = A + µU and G = F + µ U where µ = -µ λ , so that B -C = λG. Using Lemma 6.2, we proceed the process in two ways. First, we expand P λ,µ (A, F, U ) from the left to the right. From (6.3), we have;

1 A r B s • 1 C t = i+j=r+s i1+j1=i+t ∇ j s (-λF ) j ∇ j1 t (-µU ) j1 1 A i1 (6.16) + i+j=r+s i1+j1=i+t ∇ j s (-λF ) j ∇ j1 i (µU ) j1 1 C i1 + i+j=r+s i1+j1=i+t ∇ j r (λF ) j ∇ j1 t (λG) j1 1 B i1 + i+j=r+s i1+j1=i+t ∇ j r (λF ) j ∇ j1 i (-λG) j1 1 C i1 .
Here,

∇ j s (-λF ) j ∇ j1 t (-µU ) j1 1 A i1 = ∇ j s ∇ j1 t (-λ) j (-µ) j1 1 A i1 F j U j1 , ∇ j s (-λF ) j ∇ j1 i (µU ) j1 1 C i1 = ∇ j s ∇ j1 i (-λ) j µ j1 1 C i1 F j U j1 and ∇ j r (λF ) j ∇ j1 t (λG) j1 1 B i1 = ∇ j r ∇ j1 t λ j+j1 i2+j2=j+j1 ∇ j2 j1 (F -G) j2 F i2 + ∇ j2 j (G -F ) j2 G i2 1 B i1 = ∇ j r ∇ j1 t λ j+j1 i2+j2=j+j1 ∇ j2 j1 (-µ U ) j2 F i2 + ∇ j2 j (µ U ) j2 G i2 1 B i1 = ∇ j r ∇ j1 t λ j+j1 i2+j2=j+j1 ∇ j2 j1 (-µ ) j2 1 B i1 F i2 U j2 + ∇ j r ∇ j1 t λ j+j1 i2+j2=j+j1 ∇ j2 j (µ ) j2 1 B i1 G i2 U j2 , ∇ j r (λF ) j ∇ j1 i (-λG) j1 1 C i1 = (-1) j ∇ j r ∇ j1 i (-λ) j+j1 i2+j2=j+j1 ∇ j2 j1 (F -G) j2 F i2 + ∇ j2 j (G -F ) j2 G i2 1 C i1 = (-1) j ∇ j r ∇ j1 i (-λ) j+j1 i2+j2=j+j1 ∇ j2 j1 (-µ U ) j2 F i2 + ∇ j2 j (µ U ) j2 G i2 1 C i1 = (-1) j ∇ j r ∇ j1 i (-λ) j+j1 i2+j2=j+j1 ∇ j2 j1 (-µ ) j2 1 C i1 F i2 U j2 + (-1) j ∇ j r ∇ j1 i (-λ) j+j1 i2+j2=j+j1 ∇ j2 j (µ ) j2 1 C i1 G i2 U j2 .
Next we expand P λ,µ (A, F, U ) from the right to the left. From (6.4), we have;

1 A r • 1 B s C t = i+j=s+t i1+j1=i+r ∇ j t (λG) j ∇ j1 i (-λF ) j1 1 A i1 (6.17) + i+j=s+t i1+j1=i+r ∇ j t (λG) j ∇ j1 r (λF ) j1 1 B i1 + i+j=s+t i1+j1=i+r ∇ j s (-λG) j ∇ j1 i (-µU ) j1 1 A i1 + i+j=s+t i1+j1=i+r ∇ j s (-λG) j ∇ j1 r (µU ) j1 1 C i1 .
Here,

∇ j t (λG) j ∇ j1 i (-λF ) j1 1 A i1 = (-1) j ∇ j t ∇ j1 i (-λ) j+j1 i2+j2=j+j1 ∇ j2 j1 (G -F ) j2 G i2 + ∇ j2 j (F -G) j2 F i2 1 A i1 = (-1) j ∇ j t ∇ j1 i (-λ) j+j1 i2+j2=j+j1 ∇ j2 j1 (µ U ) j2 G i2 + ∇ j2 j (-µ U ) j2 F i2 1 A i1 = (-1) j ∇ j t ∇ j1 i (-λ) j+j1 i2+j2=j+j1 ∇ j2 j1 (µ ) j2 1 A i1 G i2 U j2 + (-1) j ∇ j t ∇ j1 i (-λ) j+j1 i2+j2=j+j1 ∇ j2 j (-µ ) j2 1 A i1 F i2 U j2 , ∇ j t (λG) j ∇ j1 r (λF ) j1 1 B i1 = ∇ j t ∇ j1 r λ j+j1 i2+j2=j+j1 ∇ j2 j1 (G -F ) j2 G i2 + ∇ j2 j (F -G) j2 F i2 1 B i1 = ∇ j t ∇ j1 r λ j+j1 i2+j2=j+j1 ∇ j2 j1 (µ U ) j2 G i2 + ∇ j2 j (-µ U ) j2 F i2 1 B i1 = ∇ j t ∇ j1 r λ j+j1 i2+j2=j+j1 ∇ j2 j1 (µ ) j2 1 B i1 G i2 U j2 + ∇ j t ∇ j1 r λ j+j1 i2+j2=j+j1 ∇ j2 j (-µ ) j2 1 B i1 F i2 U j2 . and ∇ j s (-λG) j ∇ j1 i (-µU ) j1 1 A i1 = ∇ j s ∇ j1 i (-λ) j (-µ) j1 1 A i1 G j U j1 , ∇ j s (-λG) j ∇ j1 r (µU ) j1 1 C i1 = ∇ j s ∇ j1 r (-λ) j µ j1 1 C i1 G j U j1 . For each (a, b, c) ∈ N 1 , we have b = a + λf, c = a + µu with λ, µ ∈ F × q and f, u ∈ A + such that d > deg f > deg u. Set g = f + µ u where µ = -µ λ . Replacing A = a, F = f, U = u, one deduces from (6.16) that (a,b,c)∈N1 1 a r b s • 1 c t = a,f,u∈A+ d=deg a>deg f >deg u λ,µ∈F × q 1 a r (a + λf ) s • 1 (a + µu) t = i+j=r+s i1+j1=i+t δ j ∇ j s δ j1 ∇ j1 t a,f,u∈A+ d=deg a>deg f >deg u 1 a i1 f j u j1 + i+j=r+s i1+j1=i+t δ j ∇ j s δ j1 ∇ j1 i c,f,u∈A+ d=deg c>deg f >deg u 1 c i1 f j u j1 + i+j=r+s i1+j1=i+t δ j+j1 ∇ j r ∇ j1 t i2+j2=j+j1 δ j2 ∇ j2 j1 b,f,u∈A+ d=deg b>deg f >deg u 1 b i1 f i2 u j2 + i+j=r+s i1+j1=i+t δ j+j1 ∇ j r ∇ j1 t i2+j2=j+j1 δ j2 ∇ j2 j b,g,u∈A+ d=deg b>deg g>deg u 1 b i1 g i2 u j2 + i+j=r+s i1+j1=i+t δ j+j1 (-1) j ∇ j r ∇ j1 i i2+j2=j+j1 δ j2 ∇ j2 j1 c,f,u∈A+ d=deg c>deg f >deg u 1 c i1 f i2 u j2 + i+j=r+s i1+j1=i+t δ j+j1 (-1) j ∇ j r ∇ j1 i i2+j2=j+j1 δ j2 ∇ j2 j c,g,u∈A+ d=deg c>deg g>deg u 1 c i1 g i2 u j2 = i+j=r+s i1+j1=i+t δ j ∇ j s δ j1 ∇ j1 t S d (i 1 , j, j 1 ) + i+j=r+s i1+j1=i+t δ j ∇ j s δ j1 ∇ j1 i S d (i 1 , j, j 1 ) + i+j=r+s i1+j1=i+t δ j+j1 ∇ j r ∇ j1 t i2+j2=j+j1 δ j2 ∇ j2 j1 S d (i 1 , i 2 , j 2 ) + i+j=r+s i1+j1=i+t δ j+j1 ∇ j r ∇ j1 t i2+j2=j+j1 δ j2 ∇ j2 j S d (i 1 , i 2 , j 2 ) + i+j=r+s i1+j1=i+t δ j+j1 (-1) j ∇ j r ∇ j1 i i2+j2=j+j1 δ j2 ∇ j2 j1 S d (i 1 , i 2 , j 2 ) + i+j=r+s i1+j1=i+t δ j+j1 (-1) j ∇ j r ∇ j1 i i2+j2=j+j1 δ j2 ∇ j2 j S d (i 1 , i 2 , j 2 ) = i+j=r+s i1+j1=i+t δ j ∇ j s ∆ j1 i,t S d (i 1 , j, j 1 ) + i+j=r+s i1+j1=i+t δ j+j1 ∇ j r ∇ j1 t i2+j2=j+j1 ∆ j2 j,j1 S d (i 1 , i 2 , j 2 ) + i+j=r+s i1+j1=i+t δ j+j1 (-1) j ∇ j r ∇ j1 i i2+j2=j+j1 ∆ j2 j,j1 S d (i 1 , i 2 , j 2 ).
Similarly, one deduces from (6.17) that

(a,b,c)∈N1 1 a r • 1 b s c t = a,f,u∈A+ d=deg a>deg f >deg u λ,µ∈F × q 1 a r • 1 (a + λf ) s (a + µu) t = i+j=s+t i1+j1=i+r δ j+j1 (-1) j ∇ j t ∇ j1 i i2+j2=j+j1 δ j2 ∇ j2 j1 a,g,u∈A+ d=deg a>deg g>deg u 1 a i1 g i2 u j2 + i+j=s+t i1+j1=i+r δ j+j1 (-1) j ∇ j t ∇ j1 i i2+j2=j+j1 δ j2 ∇ j2 j a,f,u∈A+ d=deg a>deg f >deg u 1 a i1 f i2 u j2 + i+j=s+t i1+j1=i+r δ j+j1 ∇ j t ∇ j1 r i2+j2=j+j1 δ j2 ∇ j2 j1 b,g,u∈A+ d=deg b>deg g>deg u 1 b i1 g i2 u j2 + i+j=s+t i1+j1=i+r δ j+j1 ∇ j t ∇ j1 r i2+j2=j+j1 δ j2 ∇ j2 j b,f,u∈A+ d=deg b>deg f >deg u 1 b i1 f i2 u j2 + i+j=s+t i1+j1=i+r δ j ∇ j s δ j1 ∇ j1 i a,g,u∈A+ d=deg a>deg g>deg u 1 a i1 g j u j1 + i+j=s+t i1+j1=i+r δ j ∇ j s δ j1 ∇ j1 r c,g,u∈A+ d=deg c>deg g>deg u 1 c i1 g j u j1 = i+j=s+t i1+j1=i+r δ j+j1 (-1) j ∇ j t ∇ j1 i i2+j2=j+j1 δ j2 ∇ j2 j1 S d (i 1 , i 2 , j 2 ) + i+j=s+t i1+j1=i+r δ j+j1 (-1) j ∇ j t ∇ j1 i i2+j2=j+j1 δ j2 ∇ j2 j S d (i 1 , i 2 , j 2 ) + i+j=s+t i1+j1=i+r δ j+j1 ∇ j t ∇ j1 r i2+j2=j+j1 δ j2 ∇ j2 j1 S d (i 1 , i 2 , j 2 ) + i+j=s+t i1+j1=i+r δ j+j1 ∇ j t ∇ j1 r i2+j2=j+j1 δ j2 ∇ j2 j S d (i 1 , i 2 , j 2 ) + i+j=s+t i1+j1=i+r δ j ∇ j s δ j1 ∇ j1 i S d (i 1 , j, j 1 ) + i+j=s+t i1+j1=i+r δ j ∇ j s δ j1 ∇ j1 r S d (i 1 , j, j 1 ) = i+j=s+t i1+j1=i+r δ j+j1 (-1) j ∇ j t ∇ j1 i i2+j2=j+j1 ∆ j2 j,j1 S d (i 1 , i 2 , j 2 ) + i+j=s+t i1+j1=i+r δ j+j1 ∇ j t ∇ j1 r i2+j2=j+j1 ∆ j2 j,j1 S d (i 1 , i 2 , j 2 ) + i+j=s+t i1+j1=i+r δ j ∇ j s ∆ j1 i,r S d (i 1 , j, j 1 ).
Since the partial fraction decomposition of P λ,µ (A, F, U ) obtained from the process is unique, it follows that the above expansions of

(a,b,c)∈N1 1 a r b s • 1 c t and (a,b,c)∈N1 1 a r • 1 b s c t
yield the same expression in terms of power sums.

Case 2: (a, b, c) ranges over all tuples in N 2 .

For λ, µ ∈ F × q , consider the rational function

P λ,µ (A, F, U ) = 1 A r (A + λU ) s (A + µF ) t . Set B = A + λU, C = A + µF and G = F + λ U where λ = -λ µ , so that C -B = µG.
From the same process as in the the case of N 1 , we expand P λ,µ (A, F, U ) in two ways. First, we expand P λ,µ (A, F, U ) from the left to the right. From (6.3), we have;

1 A r B s • 1 C t = i+j=r+s i1+j1=i+t ∇ j s (-λU ) j ∇ j1 t (-µF ) j1 1 A i1 (6.18) + i+j=r+s i1+j1=i+t ∇ j s (-λU ) j ∇ j1 i (µF ) j1 1 C i1 + i+j=r+s i1+j1=i+t ∇ j r (λU ) j ∇ j1 t (-µG) j1 1 B i1 + i+j=r+s i1+j1=i+t ∇ j r (λU ) j ∇ j1 i (µG) j1 1 C i1 = i+j=r+s i1+j1=i+t ∇ j s ∇ j1 t (-λ) j (-µ) j1 1 A i1 F j1 U j + i+j=r+s i1+j1=i+t ∇ j s ∇ j1 i (-λ) j µ j1 1 C i1 F j1 U j + i+j=r+s i1+j1=i+t ∇ j r ∇ j1 t λ j (-µ) j1 1 B i1 G j1 U j + i+j=r+s i1+j1=i+t ∇ j r ∇ j1 i λ j µ j1 1 C i1 G j1 U j
Next we expand P λ,µ (A, F, U ) from the right to the left. From (6.4), we have;

1 A r • 1 B s C t = i+j=s+t i1+j1=i+r ∇ j t (-µG) j ∇ j1 i (-λU ) j1 1 A i1 (6.19) + i+j=s+t i1+j1=i+r ∇ j t (-µG) j ∇ j1 r (λU ) j1 1 B i1 + i+j=s+t i1+j1=i+r ∇ j s (µG) j ∇ j1 i (-µF ) j1 1 A i1 + i+j=s+t i1+j1=i+r ∇ j s (µG) j ∇ j1 r (µF ) j1 1 C i1 .
Here

∇ j t (-µG) j ∇ j1 i (-λU ) j1 1 A i1 = ∇ j t ∇ j1 i (-µ) j (-λ) j1 1 A i1 G j U j1 , ∇ j t (-µG) j ∇ j1 r (λU ) j1 1 B i1 = ∇ j t ∇ j1 r (-µ) j λ j1 1 B i1 G j U j1 and ∇ j s (µG) j ∇ j1 i (-µF ) j1 1 A i1 = (-1) j ∇ j s ∇ j1 i (-µ) j+j1 i2+j2=j+j1 ∇ j2 j1 (G -F ) j2 G i2 + ∇ j2 j (F -G) j2 F i2 1 A i1 = (-1) j ∇ j s ∇ j1 i (-µ) j+j1 i2+j2=j+j1 ∇ j2 j1 (λ U ) j2 G i2 + ∇ j2 j (-λ U ) j2 F i2 1 A i1 = (-1) j ∇ j s ∇ j1 i (-µ) j+j1 i2+j2=j+j1 ∇ j2 j1 (λ ) j2 1 A i1 G i2 U j2 + (-1) j ∇ j s ∇ j1 i (-µ) j+j1 i2+j2=j+j1 ∇ j2 j (-λ ) j2 1 A i1 F i2 U j2 , ∇ j s (µG) j ∇ j1 r (µF ) j1 1 C i1 = ∇ j s ∇ j1 r µ j+j1 i2+j2=j+j1 ∇ j2 j1 (G -F ) j2 G i2 + ∇ j2 j (F -G) j2 F i2 1 C i1 = ∇ j s ∇ j1 r µ j+j1 i2+j2=j+j1 ∇ j2 j1 (λ U ) j2 G i2 + ∇ j2 j (-λ U ) j2 F i2 1 C i1 = ∇ j s ∇ j1 r µ j+j1 i2+j2=j+j1 ∇ j2 j1 (λ ) j2 1 C i1 G i2 U j2 + ∇ j s ∇ j1 r µ j+j1 i2+j2=j+j1 ∇ j2 j (-λ ) j2 1 C i1 F i2 U j2 . For each (a, b, c) ∈ N 2 , we have b = a + λu, c = a + µf with λ, µ ∈ F × q and f, u ∈ A + such that d > deg f > deg u. Set g = f + λ u where λ = -λ µ . Replacing A = a, F = f, U = u, one deduces from (6.18) that (a,b,c)∈N2 1 a r b s • 1 c t = a,f,u∈A+ d=deg a>deg f >deg u λ,µ∈F × q 1 a r (a + λu) s • 1 (a + µf ) t = i+j=r+s i1+j1=i+t δ j ∇ j s δ j2 ∇ j1 t a,f,u∈A+ d=deg a>deg f >deg u 1 a i1 f j1 u j + i+j=r+s i1+j1=i+t δ j ∇ j s δ j1 ∇ j1 i c,f,u∈A+ d=deg c>deg f >deg u 1 c i1 f j1 u j + i+j=r+s i1+j1=i+t δ j ∇ j r δ j1 ∇ j1 t b,g,u∈A+ d=deg b>deg g>deg u 1 b i1 g j1 u j + i+j=r+s i1+j1=i+t δ j ∇ j r δ j1 ∇ j1 i c,g,u∈A+ d=deg c>deg g>deg u 1 c i1 g j1 u j = i+j=r+s i1+j1=i+t δ j ∇ j s δ j2 ∇ j1 t S d (i 1 , j 1 , j) + i+j=r+s i1+j1=i+t δ j ∇ j s δ j1 ∇ j1 i S d (i 1 , j 1 , j) + i+j=r+s i1+j1=i+t δ j ∇ j r δ j1 ∇ j1 t S d (i 1 , j 1 , j) + i+j=r+s i1+j1=i+t δ j ∇ j r δ j1 ∇ j1 i S d (i 1 , j 1 , j) = i+j=r+s i1+j1=i+t ∆ j r,s ∆ j1 i,t S d (i 1 , j 1 , j).
Similarly, one deduces from (6.19) that

(a,b,c)∈N2 1 a r • 1 b s c t = a,f,u∈A+ d=deg a>deg f >deg u λ,µ∈F × q 1 a r • 1 (a + λu) s (a + µf ) t = i+j=s+t i1+j1=i+r δ j ∇ j t δ j1 ∇ j1 i a,g,u∈A+ d=deg a>deg g>deg u 1 a i1 g j u j1 + i+j=s+t i1+j1=i+r δ j ∇ j t δ j1 ∇ j1 r b,g,u∈A+ d=deg b>deg g>deg u 1 b i1 g j u j1 + i+j=s+t i1+j1=i+r δ j+j1 (-1) j ∇ j s ∇ j1 i i2+j2=j+j1 δ j2 ∇ j2 j1 a,g,u∈A+ d=deg a>deg g>deg u 1 a i1 g i2 u j2 + i+j=s+t i1+j1=i+r δ j+j1 (-1) j ∇ j s ∇ j1 i i2+j2=j+j1 δ j2 ∇ j2 j a,f,u∈A+ d=deg a>deg f >deg u 1 a i1 f i2 u j2 + i+j=s+t i1+j1=i+r δ j+j1 ∇ j s ∇ j1 r i2+j2=j+j1 δ j2 ∇ j2 j1 c,g,u∈A+ d=deg c>deg g>deg u 1 c i1 g i2 u j2 + i+j=s+t i1+j1=i+r δ j+j1 ∇ j s ∇ j1 r i2+j2=j+j1 δ j2 ∇ j2 j c,f,u∈A+ d=deg c>deg f >deg u 1 c i1 f i2 u j2 = i+j=s+t i1+j1=i+r δ j ∇ j t δ j1 ∇ j1 i S d (i 1 , j, j 1 ) + i+j=s+t i1+j1=i+r δ j ∇ j t δ j1 ∇ j1 r S d (i 1 , j, j 1 ) + i+j=s+t i1+j1=i+r δ j+j1 (-1) j ∇ j s ∇ j1 i i2+j2=j+j1 δ j2 ∇ j2 j1 S d (i 1 , i 2 , j 2 ) + i+j=s+t i1+j1=i+r δ j+j1 (-1) j ∇ j s ∇ j1 i i2+j2=j+j1 δ j2 ∇ j2 j S d (i 1 , i 2 , j 2 ) + i+j=s+t i1+j1=i+r δ j+j1 ∇ j s ∇ j1 r i2+j2=j+j1 δ j2 ∇ j2 j1 S d (i 1 , i 2 , j 2 ) + i+j=s+t i1+j1=i+r δ j+j1 ∇ j s ∇ j1 r i2+j2=j+j1 δ j2 ∇ j2 j S d (i 1 , i 2 , j 2 ) = i+j=s+t i1+j1=i+r δ j ∇ j t ∆ j1 i,r S d (i 1 , j, j 1 ) + i+j=s+t i1+j1=i+r δ j+j1 (-1) j ∇ j s ∇ j1 i i2+j2=j+j1 ∆ j2 j,j1 S d (i 1 , i 2 , j 2 ) + i+j=s+t i1+j1=i+r δ j+j1 ∇ j s ∇ j1 r i2+j2=j+j1 ∆ j2 j,j1 S d (i 1 , i 2 , j 2 ).
Since the partial fraction decomposition of P λ,µ (A, F, U ) obtained from the process is unique, it follows that the above expansions of

(a,b,c)∈N2 1 a r b s • 1 c t and (a,b,c)∈N2 1 a r • 1 b s c t
yield the same expression in terms of power sums.

Case 3: (a, b, c) ranges over all tuples in N 3 .

For λ, µ ∈ F × q , consider the rational function

P λ,µ (A, F, U ) = 1 A r (A + λF ) s (A + λF + µU ) t . Set B = A + λF, C = A + λF + µU and G = F + µ U where µ = µ
λ , so that C -B = µU and C -A = λG. From the same process as in the the case of N 1 , we expand P λ,µ (A, F, U ) in two ways. First, we expand P λ,µ (A, F, U ) from the left to the right. From (6.3), we have;

1 A r B s • 1 C t = i+j=r+s i1+j1=i+t ∇ j s (-λF ) j ∇ j1 t (-λG) j1 1 A i1 (6.20) + i+j=r+s i1+j1=i+t ∇ j s (-λF ) j ∇ j1 i (λG) j1 1 C i1 + i+j=r+s i1+j1=i+t ∇ j r (λF ) j ∇ j1 t (-µU ) j1 1 B i1 + i+j=r+s i1+j1=i+t ∇ j r (λF ) j ∇ j1 i (µU ) j1 1 C i1 .
Here,

∇ j s (-λF ) j ∇ j1 t (-λG) j1 1 A i1 = ∇ j s ∇ j1 t (-λ) j+j1 i2+j2=j+j1 ∇ j2 j1 (F -G) j2 F i2 + ∇ j2 j (G -F ) j2 G i2 1 A i1 = ∇ j s ∇ j1 t (-λ) j+j1 i2+j2=j+j1 ∇ j2 j1 (-µ U ) j2 F i2 + ∇ j2 j (µ U ) j2 G i2 1 A i1 = ∇ j s ∇ j1 t (-λ) j+j1 i2+j2=j+j1 ∇ j2 j1 (-µ ) j2 1 A i1 F i2 U j2 + ∇ j s ∇ j1 t (-λ) j+j1 i2+j2=j+j1 ∇ j2 j (µ ) j2 1 A i1 G i2 U j2 , ∇ j s (-λF ) j ∇ j1 i (λG) j1 1 C i1 = (-1) j ∇ j s ∇ j1 i λ j+j1 i2+j2=j+j1 ∇ j2 j1 (F -G) j2 F i2 + ∇ j2 j (G -F ) j2 G i2 1 C i1 = (-1) j ∇ j s ∇ j1 i λ j+j1 i2+j2=j+j1 ∇ j2 j1 (-µ U ) j2 F i2 + ∇ j2 j (µ U ) j2 G i2 1 C i1 = (-1) j ∇ j s ∇ j1 i λ j+j1 i2+j2=j+j1 ∇ j2 j1 (-µ ) j2 1 C i1 F i2 U j2 + (-1) j ∇ j s ∇ j1 i λ j+j1 i2+j2=j+j1 ∇ j2 j (µ ) j2 1 C i1 G i2 U j2 . and ∇ j r (λF ) j ∇ j1 t (-µU ) j1 1 B i1 = ∇ j r ∇ j1 t (λ) j (-µ) j1 1 B i1 F j U j1 , ∇ j r (λF ) j ∇ j1 i (µU ) j1 1 C i1 = ∇ j r ∇ j1 i λ j µ j1 1 C i1 F j U j1 .
Next we expand P λ,µ (A, F, U ) from the right to the left. From (6.4), we have

1 A r • 1 B s C t = i+j=s+t i1+j1=i+r ∇ j t (-µU ) j ∇ j1 i (-λF ) j1 1 A i1 (6.21) + i+j=s+t i1+j1=i+r ∇ j t (-µU ) j ∇ j1 r (λF ) j1 1 B i1 + i+j=s+t i1+j1=i+r ∇ j s (µU ) j ∇ j1 i (-λG) j1 1 A i1 + i+j=s+t i1+j1=i+r ∇ j s (µU ) j ∇ j1 r (λG) j1 1 C i1 = i+j=s+t i1+j1=i+r ∇ j t ∇ j1 i (-µ) j (-λ) j1 1 A i1 F j1 U j + i+j=s+t i1+j1=i+r ∇ j t ∇ j1 r (-µ) j λ j1 1 B i1 F j1 U j + i+j=s+t i1+j1=i+r ∇ j s ∇ j1 i µ j (-λ) j1 1 A i1 G j1 U j + i+j=s+t i1+j1=i+r ∇ j s ∇ j1 r µ j λ j1 1 C i1 G j1 U j . For each (a, b, c) ∈ N 3 , we have b = a + λf, c = a + λf + µu with λ, µ ∈ F × q and f, u ∈ A + such that d > deg f > deg u. Set g = f + µ u where µ = µ λ . Replacing A = a, F = f, U = u, one deduces from (6.20) that (a,b,c)∈N3 1 a r b s • 1 c t = a,f,u∈A+ d=deg a>deg f >deg u λ,µ∈F × q 1 a r (a + λf ) s • 1 (a + λf + µu) t = i+j=r+s i1+j1=i+t δ j+j1 ∇ j s ∇ j1 t i2+j2=j+j1 δ j2 ∇ j2 j1 a,f,u∈A+ d=deg a>deg f >deg u 1 a i1 f i2 u j2 + i+j=r+s i1+j1=i+t δ j+j1 ∇ j s ∇ j1 t i2+j2=j+j1 δ j2 ∇ j2 j a,g,u∈A+ d=deg a>deg g>deg u 1 a i1 g i2 u j2 + i+j=r+s i1+j1=i+t δ j+j1 (-1) j ∇ j s ∇ j1 i i2+j2=j+j1 δ j2 ∇ j2 j1 c,f,u∈A+ d=deg c>deg f >deg u 1 c i1 f i2 u j2 + i+j=r+s i1+j1=i+t δ j+j1 (-1) j ∇ j s ∇ j1 i i2+j2=j+j1 δ j2 ∇ j2 j c,g,u∈A+ d=deg c>deg g>deg u 1 c i1 g i2 u j2 + i+j=r+s i1+j1=i+t δ j ∇ j r δ j1 ∇ j1 t b,f,u∈A+ d=deg b>deg f >deg u 1 b i1 f j u j1 + i+j=r+s i1+j1=i+t δ j ∇ j r δ j1 ∇ j1 i c,f,u∈A+ d=deg c>deg f >deg u 1 c i1 f j u j1 = i+j=r+s i1+j1=i+t δ j+j1 ∇ j s ∇ j1 t i2+j2=j+j1 δ j2 ∇ j2 j1 S d (i 1 , i 2 , j 2 ) + i+j=r+s i1+j1=i+t δ j+j1 ∇ j s ∇ j1 t i2+j2=j+j1 δ j2 ∇ j2 j S d (i 1 , i 2 , j 2 ) + i+j=r+s i1+j1=i+t δ j+j1 (-1) j ∇ j s ∇ j1 i i2+j2=j+j1 δ j2 ∇ j2 j1 S d (i 1 , i 2 , j 2 ) + i+j=r+s i1+j1=i+t δ j+j1 (-1) j ∇ j s ∇ j1 i i2+j2=j+j1 δ j2 ∇ j2 j S d (i 1 , i 2 , j 2 ) + i+j=r+s i1+j1=i+t δ j ∇ j r δ j1 ∇ j1 t S d (i 1 , j, j 1 ) + i+j=r+s i1+j1=i+t δ j ∇ j r δ j1 ∇ j1 i S d (i 1 , j, j 1 ) = i+j=r+s i1+j1=i+t δ j+j1 ∇ j s ∇ j1 t i2+j2=j+j1 ∆ j2 j,j1 S d (i 1 , i 2 , j 2 ) + i+j=r+s i1+j1=i+t δ j+j1 (-1) j ∇ j s ∇ j1 i i2+j2=j+j1 ∆ j2 j,j1 S d (i 1 , i 2 , j 2 ) + i+j=r+s i1+j1=i+t δ j ∇ j r ∆ j1 i,t S d (i 1 , j, j 1 ).
Similarly, one deduces from (6.21) that

(a,b,c)∈N3 1 a r • 1 b s c t = a,f,u∈A+ d=deg a>deg f >deg u λ,µ∈F × q 1 a r • 1 (a + λf ) s (a + λf + µu) t = i+j=s+t i1+j1=i+r δ j ∇ j t δ j1 ∇ j1 i a,f,u∈A+ d=deg a>deg f >deg u 1 a i1 f j1 u j + i+j=s+t i1+j1=i+r δ j ∇ j t δ j1 ∇ j1 r b,f,u∈A+ d=deg b>deg f >deg u 1 b i1 f j1 u j + i+j=s+t i1+j1=i+r δ j ∇ j s δ j1 ∇ j1 i a,g,u∈A+ d=deg a>deg g>deg u 1 a i1 g j1 u j + i+j=s+t i1+j1=i+r δ j ∇ j s δ j1 ∇ j1 r c,g,u∈A+ d=deg c>deg g>deg u 1 c i1 g j1 u j = i+j=s+t i1+j1=i+r δ j ∇ j t δ j1 ∇ j1 i S d (i 1 , j 1 , j) + i+j=s+t i1+j1=i+r δ j ∇ j t δ j1 ∇ j1 r S d (i 1 , j 1 , j) + i+j=s+t i1+j1=i+r δ j ∇ j s δ j1 ∇ j1 i S d (i 1 , j 1 , j) + i+j=s+t i1+j1=i+r δ j ∇ j s δ j1 ∇ j1 r S d (i 1 , j 1 , j) = i+j=s+t i1+j1=i+r ∆ j s,t ∆ j1 i,r S d (i 1 , j 1 , j).
Since the partial fraction decomposition of P λ,µ (A, F, U ) obtained from the process is unique, it follows that the above expansions of

(a,b,c)∈N3 1 a r b s • 1 c t and (a,b,c)∈N3 1 a r • 1 b s c t
yield the same expression in terms of power sums.

Case 4: (a, b, c) ranges over all tuples in N 4 .

For λ, µ, η ∈ F × q such that λ = µ, consider the rational function

P λ,µ,η (A, F, U ) = 1 A r (A + λF ) s (A + µF + ηU ) t . Set B = A + λF, C = A + µF + ηU, G = F + η U where η = η
µ and H = F + η U where η = η µ-λ , so that C -A = µG and C -B = (µ-λ)H. It should be remarked that η = η since λ = 0, From the same process as in the the case of N 1 , we expand P λ,µ,η (A, F, U ) in two ways. First, we expand P λ,µ,η (A, F, U ) from the left to the right. From (6.3), we have

1 A r B s • 1 C t = i+j=r+s i1+j1=i+t ∇ j s (-λF ) j ∇ j1 t (-µG) j1 1 A i1 (6.22) + i+j=r+s i1+j1=i+t ∇ j s (-λF ) j ∇ j1 i (µG) j1 1 C i1 + i+j=r+s i1+j1=i+t ∇ j r (λF ) j ∇ j1 t [(λ -µ)H] j1 1 B i1 + i+j=r+s i1+j1=i+t ∇ j r (λF ) j ∇ j1 i [(µ -λ)H] j1 1 C i1 . Here ∇ j s (-λF ) j ∇ j1 t (-µG) j1 1 A i1 = ∇ j s ∇ j1 t (-λ) j (-µ) j1 i2+j2=j+j1 ∇ j2 j1 (F -G) j2 F i2 + ∇ j2 j (G -F ) j2 G i2 1 A i1 = ∇ j s ∇ j1 t (-λ) j (-µ) j1 i2+j2=j+j1 ∇ j2 j1 (-η U ) j2 F i2 + ∇ j2 j (η U ) j2 G i2 1 A i1 = ∇ j s ∇ j1 t (-λ) j (-µ) j1 i2+j2=j+j1 ∇ j2 j1 (-η ) j2 1 A i1 F i2 U j2 + ∇ j s ∇ j1 t (-λ) j (-µ) j1 i2+j2=j+j1 ∇ j2 j (η ) j2 1 A i1 G i2 U j2 , ∇ j s (-λF ) j ∇ j1 i (µG) j1 1 C i1 = (-1) j ∇ j s ∇ j1 i λ j µ j1 i2+j2=j+j1 ∇ j2 j1 (F -G) j2 F i2 + ∇ j2 j (G -F ) j2 G i2 1 C i1 = (-1) j ∇ j s ∇ j1 i λ j µ j1 i2+j2=j+j1 ∇ j2 j1 (-η U ) j2 F i2 + ∇ j2 j (η U ) j2 G i2 1 C i1 = (-1) j ∇ j s ∇ j1 i λ j µ j1 i2+j2=j+j1 ∇ j2 j1 (-η ) j2 1 C i1 F i2 U j2 + (-1) j ∇ j s ∇ j1 i λ j µ j1 i2+j2=j+j1 ∇ j2 j (η ) j2 1 C i1 G i2 U j2 , ∇ j r (λF ) j ∇ j1 t [(λ -µ)H] j1 1 B i1 = ∇ j r ∇ j1 t λ j (λ -µ) j1 i2+j2=j+j1 ∇ j2 j1 (F -H) j2 F i2 + ∇ j2 j (H -F ) j2 H i2 1 B i1 = ∇ j r ∇ j1 t λ j (λ -µ) j1 i2+j2=j+j1 ∇ j2 j1 (-η U ) j2 F i2 + ∇ j2 j (η U ) j2 G i2 1 B i1 = ∇ j r ∇ j1 t λ j (λ -µ) j1 i2+j2=j+j1 ∇ j2 j1 (-η ) j2 1 B i1 F i2 U j2 + ∇ j r ∇ j1 t λ j (λ -µ) j1 i2+j2=j+j1 ∇ j2 j (η ) j2 1 B i1 G i2 U j2 , ∇ j r (λF ) j ∇ j1 i [(µ -λ)H] j1 1 C i1 = (-1) j ∇ j r ∇ j1 i (-λ) j (µ -λ) j1 i2+j2=j+j1 ∇ j2 j1 (F -H) j2 F i2 + ∇ j2 j (H -F ) j2 H i2 1 C i1 = (-1) j ∇ j r ∇ j1 i (-λ) j (µ -λ) j1 i2+j2=j+j1 ∇ j2 j1 (-η U ) j2 F i2 + ∇ j2 j (η U ) j2 G i2 1 C i1 = (-1) j ∇ j r ∇ j1 i (-λ) j (µ -λ) j1 i2+j2=j+j1 ∇ j2 j1 (-η ) j2 1 C i1 F i2 U j2 + (-1) j ∇ j r ∇ j1 i (-λ) j (µ -λ) j1 i2+j2=j+j1 ∇ j2 j (η ) j2 1 C i1 G i2 U j2 .
Next we expand P λ,µ,η (A, F, U ) from the right to the left. From (6.4), we have;

1 A r • 1 B s C t = i+j=s+t i1+j1=i+r ∇ j t [(λ -µ)H] j ∇ j1 i (-λF ) j1 1 A i1 (6.23) + i+j=s+t i1+j1=i+r ∇ j t [(λ -µ)H] j ∇ j1 r (λF ) j1 1 B i1 + i+j=s+t i1+j1=i+r ∇ j s [(µ -λ)H] j ∇ j1 i (-µG) j1 1 A i1 + i+j=s+t i1+j1=i+r ∇ j s [(µ -λ)H] j ∇ j1 r (µG) j1 1 C i1 .
Here

∇ j t [(λ -µ)H] j ∇ j1 i (-λF ) j1 1 A i1 = (-1) j ∇ j t ∇ j1 i (µ -λ) j (-λ) j1 i2+j2=j+j1 ∇ j2 j1 (H -F ) j2 H i2 + ∇ j2 j (F -H) j2 F i2 1 A i1 = (-1) j ∇ j t ∇ j1 i (µ -λ) j (-λ) j1 i2+j2=j+j1 ∇ j2 j1 (η U ) j2 H i2 + ∇ j2 j (-η U ) j2 F i2 1 A i1 = (-1) j ∇ j t ∇ j1 i (µ -λ) j (-λ) j1 i2+j2=j+j1 ∇ j2 j1 (η ) j2 1 A i1 H i2 U j2 + (-1) j ∇ j t ∇ j1 i (µ -λ) j (-λ) j1 i2+j2=j+j1 ∇ j2 j (-η ) j2 1 A i1 F i2 U j2 , ∇ j t [(λ -µ)H] j ∇ j1 r (λF ) j1 1 B i1 = ∇ j t ∇ j1 r (λ -µ) j λ j1 i2+j2=j+j1 ∇ j2 j1 (H -F ) j2 H i2 + ∇ j2 j (F -H) j2 F i2 1 B i1 = ∇ j t ∇ j1 r (λ -µ) j λ j1 i2+j2=j+j1 ∇ j2 j1 (η U ) j2 H i2 + ∇ j2 j (-η U ) j2 F i2 1 B i1 = ∇ j t ∇ j1 r (λ -µ) j λ j1 i2+j2=j+j1 ∇ j2 j1 (η ) j2 1 B i1 H i2 U j2 + ∇ j t ∇ j1 r (λ -µ) j λ j1 i2+j2=j+j1 ∇ j2 j (-η ) j2 1 B i1 F i2 U j2 , ∇ j s [(µ -λ)H] j ∇ j1 i (-µG) j1 1 A i1 = (-1) j ∇ j s ∇ j1 i (λ -µ) j (-µ) j1 i2+j2=j+j1 ∇ j2 j1 (H -G) j2 H i2 + ∇ j2 j (G -H) j2 G i2 1 A i1 = (-1) j ∇ j s ∇ j1 i (λ -µ) j (-µ) j1 i2+j2=j+j1 ∇ j2 j1 [(η -η )U ] j2 H i2 + ∇ j2 j [(η -η )U ] j2 G i2 1 A i1 = (-1) j ∇ j s ∇ j1 i (λ -µ) j (-µ) j1 i2+j2=j+j1 ∇ j2 j1 (η -η ) j2 1 A i1 H i2 U j2 + (-1) j ∇ j s ∇ j1 i (λ -µ) j (-µ) j1 i2+j2=j+j1 ∇ j2 j (η -η ) j2 1 A i1 G i2 U j2 , ∇ j s [(µ -λ)H] j ∇ j1 r (µG) j1 1 C i1 = ∇ j s ∇ j1 r (µ -λ) j µ j1 i2+j2=j+j1 ∇ j2 j1 (H -G) j2 H i2 + ∇ j2 j (G -H) j2 G i2 1 C i1 = ∇ j s ∇ j1 r (µ -λ) j µ j1 i2+j2=j+j1 ∇ j2 j1 [(η -η )U ] j2 H i2 + ∇ j2 j [(η -η )U ] j2 G i2 1 C i1 = ∇ j s ∇ j1 r (µ -λ) j µ j1 i2+j2=j+j1 ∇ j2 j1 (η -η ) j2 1 C i1 H i2 U j2 + ∇ j s ∇ j1 r (µ -λ) j µ j1 i2+j2=j+j1 ∇ j2 j (η -η ) j2 1 C i1 G i2 U j2 . For each (a, b, c) ∈ N 4 , we have b = a + λf, c = a + µf + ηu with λ, µ, η ∈ F × q such that λ = µ and f, u ∈ A + such that d > deg f > deg u. Set g = f + η u where η = η µ and h = f + η u where η = η µ-λ . Replacing A = a, F = f, U = u, one deduces from (6.22) that (a,b,c)∈N4 1 a r b s • 1 c t = a,f,u∈A+ d=deg a>deg f >deg u λ,µ,η∈F × q λ =µ 1 a r (a + λf ) s • 1 (a + µf + ηu) t = i+j=r+s i1+j1=i+t δ j,j1 ∇ j s ∇ j1 t i2+j2=j+j1 δ j2 ∇ j2 j1 a,f,u∈A+ d=deg a>deg f >deg u 1 a i1 f i2 u j2 + i+j=r+s i1+j1=i+t δ j,j1 ∇ j s ∇ j1 t i2+j2=j+j1 δ j2 ∇ j2 j a,g,u∈A+ d=deg a>deg g>deg u 1 a i1 g i2 u j2 + i+j=r+s i1+j1=i+t δ j,j1 (-1) j ∇ j s ∇ j1 i i2+j2=j+j1 δ j2 ∇ j2 j1 c,f,u∈A+ d=deg c>deg f >deg u 1 c i1 f i2 u j2 + i+j=r+s i1+j1=i+t δ j,j1 (-1) j ∇ j s ∇ j1 i i2+j2=j+j1 δ j2 ∇ j2 j c,g,u∈A+ d=deg c>deg g>deg u 1 c i1 g i2 u j2 + i+j=r+s i1+j1=i+t δ j,j1 ∇ j r ∇ j1 t i2+j2=j+j1 δ j2 ∇ j2 j1 b,f,u∈A+ d=deg b>deg f >deg u 1 b i1 f i2 u j2 + i+j=r+s i1+j1=i+t δ j,j1 ∇ j r ∇ j1 t i2+j2=j+j1 δ j2 ∇ j2 j1 ∇ j2 j b,g,u∈A+ d=deg b>deg g>deg u 1 b i1 g i2 u j2 + i+j=r+s i1+j1=i+t δ j,j1 (-1) j ∇ j r ∇ j1 i i2+j2=j+j1 δ j2 ∇ j2 j1 c,f,u∈A+ d=deg c>deg f >deg u 1 c i1 f i2 u j2 + i+j=r+s i1+j1=i+t δ j,j1 (-1) j ∇ j r ∇ j1 i i2+j2=j+j1 δ j2 ∇ j2 j c,g,u∈A+ d=deg c>deg g>deg u 1 c i1 g i2 u j2 = i+j=r+s i1+j1=i+t δ j,j1 ∇ j s ∇ j1 t i2+j2=j+j1 δ j2 ∇ j2 j1 S d (i 1 , i 2 , j 2 ) + i+j=r+s i1+j1=i+t δ j,j1 ∇ j s ∇ j1 t i2+j2=j+j1 δ j2 ∇ j2 j S d (i 1 , i 2 , j 2 ) + i+j=r+s i1+j1=i+t δ j,j1 (-1) j ∇ j s ∇ j1 i i2+j2=j+j1 δ j2 ∇ j2 j1 S d (i 1 , i 2 , j 2 ) + i+j=r+s i1+j1=i+t δ j,j1 (-1) j ∇ j s ∇ j1 i i2+j2=j+j1 δ j2 ∇ j2 j S d (i 1 , i 2 , j 2 ) + i+j=r+s i1+j1=i+t δ j,j1 ∇ j r ∇ j1 t i2+j2=j+j1 δ j2 ∇ j2 j1 S d (i 1 , i 2 , j 2 ) + i+j=r+s i1+j1=i+t δ j,j1 ∇ j r ∇ j1 t i2+j2=j+j1 δ j2 ∇ j2 j1 ∇ j2 j S d (i 1 , i 2 , j 2 ) + i+j=r+s i1+j1=i+t δ j,j1 (-1) j ∇ j r ∇ j1 i i2+j2=j+j1 δ j2 ∇ j2 j1 S d (i 1 , i 2 , j 2 ) + i+j=r+s i1+j1=i+t δ j,j1 (-1) j ∇ j r ∇ j1 i i2+j2=j+j1 δ j2 ∇ j2 j S d (i 1 , i 2 , j 2 ) = i+j=r+s i1+j1=i+t δ j,j1 ∇ j s ∇ j1 t i2+j2=j+j1 ∆ j2 j,j1 S d (i 1 , i 2 , j 2 ) + i+j=r+s i1+j1=i+t δ j,j1 (-1) j ∇ j s ∇ j1 i i2+j2=j+j1 ∆ j2 j,j1 S d (i 1 , i 2 , j 2 ) + i+j=r+s i1+j1=i+t δ j,j1 ∇ j r ∇ j1 t i2+j2=j+j1 ∆ j2 j,j1 S d (i 1 , i 2 , j 2 ) + i+j=r+s i1+j1=i+t δ j,j1 (-1) j ∇ j r ∇ j1 i i2+j2=j+j1 ∆ j2 j,j1 S d (i 1 , i 2 , j 2 ).
Similarly, one deduces from (6.23) that

(a,b,c)∈N4 1 a r • 1 b s c t = a,f,u∈A+ d=deg a>deg f >deg u λ,µ,η∈F × q λ =µ 1 a r • 1 (a + λf ) s (a + µf + ηu) t = i+j=s+t i1+j1=i+r δ j,j1 (-1) j ∇ j t ∇ j1 i i2+j2=j+j1 δ j2 ∇ j2 j1 a,h,u∈A+ d=deg a>deg h>deg u 1 a i1 h i2 u j2 + i+j=s+t i1+j1=i+r δ j,j1 (-1) j ∇ j t ∇ j1 i i2+j2=j+j1 δ j2 ∇ j2 j a,f,u∈A+ d=deg a>deg f >deg u 1 a i1 f i2 u j2 + i+j=s+t i1+j1=i+r δ j,j1 ∇ j t ∇ j1 r i2+j2=j+j1 δ j2 ∇ j2 j1 b,h,u∈A+ d=deg b>deg h>deg u 1 b i1 h i2 u j2 + i+j=s+t i1+j1=i+r δ j,j1 ∇ j t ∇ j1 r i2+j2=j+j1 δ j2 ∇ j2 j b,f,u∈A+ d=deg b>deg f >deg u 1 b i1 f i2 u j2 + i+j=s+t i1+j1=i+r δ j,j1 (-1) j ∇ j s ∇ j1 i i2+j2=j+j1 δ j2 ∇ j2 j1 a,h,u∈A+ d=deg a>deg h>deg u 1 a i1 h i2 u j2 + i+j=s+t i1+j1=i+r δ j,j1 (-1) j ∇ j s ∇ j1 i i2+j2=j+j1 δ j2 ∇ j2 j a,g,u∈A+ d=deg a>deg g>deg u 1 a i1 g i2 u j2 + i+j=s+t i1+j1=i+r δ j,j1 ∇ j s ∇ j1 r i2+j2=j+j1 δ j2 ∇ j2 j1 c,h,u∈A+ d=deg c>deg h>deg u 1 c i1 h i2 u j2 + i+j=s+t i1+j1=i+r δ j,j1 ∇ j s ∇ j1 r i2+j2=j+j1 δ j2 ∇ j2 j c,g,u∈A+ d=deg c>deg g>deg u 1 c i1 g i2 u j2 = i+j=s+t i1+j1=i+r δ j,j1 (-1) j ∇ j t ∇ j1 i i2+j2=j+j1 δ j2 ∇ j2 j1 S d (i 1 , i 2 , j 2 ) + i+j=s+t i1+j1=i+r δ j,j1 (-1) j ∇ j t ∇ j1 i i2+j2=j+j1 δ j2 ∇ j2 j S d (i 1 , i 2 , j 2 ) + i+j=s+t i1+j1=i+r δ j,j1 ∇ j t ∇ j1 r i2+j2=j+j1 δ j2 ∇ j2 j1 S d (i 1 , i 2 , j 2 ) + i+j=s+t i1+j1=i+r δ j,j1 ∇ j t ∇ j1 r i2+j2=j+j1 δ j2 ∇ j2 j S d (i 1 , i 2 , j 2 ) + i+j=s+t i1+j1=i+r δ j,j1 (-1) j ∇ j s ∇ j1 i i2+j2=j+j1 δ j2 ∇ j2 j1 S d (i 1 , i 2 , j 2 ) + i+j=s+t i1+j1=i+r δ j,j1 (-1) j ∇ j s ∇ j1 i i2+j2=j+j1 δ j2 ∇ j2 j S d (i 1 , i 2 , j 2 ) + i+j=s+t i1+j1=i+r δ j,j1 ∇ j s ∇ j1 r i2+j2=j+j1 δ j2 ∇ j2 j1 S d (i 1 , i 2 , j 2 ) + i+j=s+t i1+j1=i+r δ j,j1 ∇ j s ∇ j1 r i2+j2=j+j1 δ j2 ∇ j2 j S d (i 1 , i 2 , j 2 ) = i+j=s+t i1+j1=i+r δ j,j1 (-1) j ∇ j t ∇ j1 i i2+j2=j+j1 ∆ j2 j,j1 S d (i 1 , i 2 , j 2 ) + i+j=s+t i1+j1=i+r δ j,j1 ∇ j t ∇ j1 r i2+j2=j+j1 ∆ j2 j,j1 S d (i 1 , i 2 , j 2 ) + i+j=s+t i1+j1=i+r δ j,j1 (-1) j ∇ j s ∇ j1 i i2+j2=j+j1 ∆ j2 j,j1 S d (i 1 , i 2 , j 2 ) + i+j=s+t i1+j1=i+r δ j,j1 ∇ j s ∇ j1 r i2+j2=j+j1 ∆ j2 j,j1 S d (i 1 , i 2 , j 2 ).
Since the partial fraction decomposition of P λ,µ,η (A, F, U ) obtained from the process is unique, it follows that the above expansions of

(a,b,c)∈N4 1 a r b s • 1 c t and (a,b,c)∈N4 1 a r • 1 b s c t
yield the same expression in terms of power sums.

Using Formulas (6.5), (6.6) and (6.7), one verifies easily that

(a,b,c)∈N1 1 a r b s • 1 c t + (a,b,c)∈N2 1 a r b s • 1 c t + (a,b,c)∈N3 1 a r b s • 1 c t + (a,b,c)∈N4 1 a r b s • 1 c t = i+j=r+s ∆ j r,s i1+j1=i+t ∆ j1 i,t S d (i 1 , j 1 , j) + S d (i 1 , j, j 1 ) + i2+j2=j+j1 ∆ j2 j,j1 S d (i 1 , i 2 , j 2 ) ,
which is the sum of the terms of depth 3 in the expression of (S d (r)S d (s))S d (t).

Similarly, one verifies easily that

(a,b,c)∈N1 1 a r • 1 b s c t + (a,b,c)∈N2 1 a r • 1 b s c t + (a,b,c)∈N3 1 a r • 1 b s c t + (a,b,c)∈N4 1 a r • 1 b s c t = i+j=s+t ∆ j s,t i1+j1=i+r 
∆ j1 i,r S d (i 1 , j 1 , j) + S d (i 1 , j, j 1 ) + i2+j2=j+j1 ∆ j2 j,j1 S d (i 1 , i 2 , j 2 ) ,
which is the sum of the terms of depth 3 in the expression of S d (r)(S d (s)S d (t)). This completes the proof.

6.3. Expansions for S <d of depth one.

For two positive integers r, s and for all d ∈ N, we first recall the following formula: (6.24)

S <d (r)S <d (s) = i<d S i (r)S i (s) + S <d (r, s) + S <d (s, r).

Let r, s, t be positive integers. In this section, we give the expansions of (S <d (r)S <d (s))S <d (t) and S <d (r)(S <d (s)S <d (t)) by using Formula (6.24).

6.3.1. We expand (S <d (r)S <d (s))S <d (t) as follows. We have;

(S <d (r)S <d (s))S <d (t) = i<d S i (r)S i (s) + S <d (r, s) + S <d (s, r) S <d (t) = i<d S i (r)S i (s)S <d (t) + S <d (r, s)S <d (t) + S <d (s, r)S <d (t)

= i<d S i (r)S i (s) i<d S i (t) + i<d S i (r, s) i<d S i (t) + i<d S i (s, r) i<d S i (t) = i<d (S i (r)S i (s))S i (t) + i<d (S i (r)S i (s))S <i (t) + i<d S i (t) j<i S j (r)S j (s) + i<d S i (r, s)S i (t) + i<d S i (r, s)S <i (t) + i<d S i (t)S <i (r, s) + i<d S i (s, r)S i (t) + i<d S i (s, r)S <i (t) + i<d S i (t)S <i (s, r) = i<d (S i (r)S i (s))S i (t) + i<d (S i (r)S i (s))S <i (t) + i<d S i (r, s)S i (t) + i<d S i (r, s)S <i (t) + i<d S i (s, r)S i (t) + i<d S i (s, r)S <i (t) + i<d S i (t)
j<i S j (r)S j (s) + S <i (r, s) + S <i (s, r) . 

= i<d S i (r) i<d S i (s)S i (t) + i<d S i (r) i<d S i (s, t) + i<d S i (r) i<d S i (t, s) = i<d S i (r)(S i (s)S i (t)) + i<d S i (r) j<i S j (s)S j (t) + i<d (S i (s)S i (t))S <i (r) + i<d S i (r)S i (s, t) + i<d S i (r)S <i (s, t) + i<d S i (s, t)S <i (r) + i<d S i (r)S i (t, s) + i<d S i (r)S <i (t, s) + i<d S i (t, s)S <i (r) = i<d S i (r)(S i (s)S i (t)) + i<d (S i (s)S i (t))S <i (r) + i<d S i (r)S i (s, t) + i<d S i (s, t)S <i (r) + i<d S i (r)S i (t, s) + i<d S i (t, s)S <i (r) + i<d S i (r)
j<i S j (s)S j (t) + S <i (s, t) + S <i (t, s) .

6.4.

Associativity for S <d of depth one. Theorem 6.6. Let r, s, t be positive integers. For all d ∈ N, the expansions using Chen's formula and Formula (6.24) of (S <d (r)S <d (s))S <d (t) and S <d (r)(S <d (s)S <d (t)) yield the same expression in terms of S <d .

Proof. To prove the desired associativity, we compare the expansions of (S <d (r)S <d (s))S <d (t) and S <d (r)(S <d (s)S <d (t)) in Section 6.3. From Theorem 6.5, it is obvious that the expansions of i<d (S i (r)S i (s))S i (t) and

i<d S i (r)(S i (s)S i (t))
yield the same expression in terms of S <d . From Formula (6.24), one verifies easily that the expansions of This proves the theorem.

i<d S i (t) j<i S j (r)S j (s) + S <i (r, s) + S <i (s,
6.5. Expansions of arbitrary depth.

We now extend our results for the case of arbitrary depth. Let a = (a 1 , . . . , a m ) and b = (b 1 , . . . , b n ) be two positive tuples. For simplicity, we set a -= (a 2 , . . . , a m ) and b -= (b 2 , . . . , b n ). For all d ∈ N, we recall the following formulas (See [START_REF] Dac | On Zagier-Hoffman's conjectures in positive characteristic[END_REF]): 

S d (a)S d (b) = (S d (a 1 )S d (b 1 ))(S <d (a -)S <d (b -)) (6.25) = S d (a 1 + b 1 )(S <d (a -)S <d (b -)) + i+j=a1+b1 ∆ j a1,b1 S d (i)[S <d (j)(S <d (a -)S <d (b -))],
= S d (a 1 + b 1 )(S <d (a -)S <d (b -))S d (c) + i+j=a1+b1 ∆ j a1,b1 S d (i)[S <d (j)(S <d (a -)S <d (b -))]S d (c) = S d (a 1 + b 1 )S d (c 1 )[(S <d (a -)S <d (b -))S <d (c -)] + i+j=a1+b1 ∆ j a1,b1 (S d (i)S d (c 1 ))[S <d (j)(S <d (a -)S <d (b -))]S <d (c -).
6.5.2. We expand S d (a)(S d (b)S d (c)) as follows. We have;

S d (a)(S d (b)S d (c)) (6.29) = S d (a) S d (b 1 + c 1 )(S <d (b -)S <d (c -)) + i+j=b1+c1 ∆ j b1,c1 S d (i)[S <d (j)(S <d (b -)S <d (c -))] = S d (a)S d (b 1 + c 1 )(S <d (b -)S <d (c -)) + S d (a) i+j=b1+c1 ∆ j b1,c1 S d (i)[S <d (j)(S <d (b -)S <d (c -))] = (S d (a 1 )S d (b 1 + c 1 ))[S <d (a -)(S <d (b -)S <d (c -))] + i+j=b1+c1 ∆ j b1,c1 (S d (a 1 )S d (i))S <d (a -)[S <d (j)(S <d (b -)S <d (c -))].
We next give the expansions of (S <d (a)S <d (b))S <d (c) and S <d (a)(S <d (b)S <d (c)) by using Formula (6.27). 6.5.3. We expand (S <d (a)S <d (b))S <d (c) as follows. We have; 

(S <d (a)S <d (b))S <d (c) (6.30) = i<d S i (a)S i (b) + i<d S i (a)S <i (b) + i<d S i (b)S <i (a) S <d (c) = i<d S i (a)S i (b)S <d (c) + i<d S i (a)S <i (b)S <d (c) + i<d S i (b)S <i (a)S <d (c) = i<d S i (a)S i (b) i<d S i (c) + i<d S i (a)S <i (b) i<d S i (c) + i<d S i (b)S <i (a) i<d S i (c) = i<d (S i (a)S i (b))S i (c) + i<d (S i (a)S i (b))S <i (c) + i<d S i (c) j<i S j (a)S j (b) + i<d (S i (a)S <i (b))S i (c) + i<d (S i (a)S <i (b))S <i (c) + i<d S i (c) j<i S j (a)S <j (b) + i<d (S i (b)S <i (a))S i (c) + i<d (S i (b)S <i (a))S <i (c) + i<d S i (c)
(6.31) = S <d (a) i<d S i (b)S i (c) + i<d S i (b)S <i (c) + i<d S i (c)S <i (b) = S <d (a) i<d S i (b)S i (c) + S <d (a) i<d S i (b)S <i (c) + S <d (a) i<d S i (c)S <i (b) = i<d S i (a) i<d S i (b)S i (c) + i<d S i (a) i<d S i (b)S <i (c) + i<d S i (a) i<d S i (c)S <i (b) = i<d S i (a)(S i (b)S i (c)) + i<d S i (a) j<i S j (b)S j (c) + i<d (S i (b)S i (c))S <i (a) + i<d S i (a)(S i (b)S <i (c)) + i<d S i (a) j<i S j (b)S <j (c) + i<d (S i (b)S <i (c))S <i (a) + i<d S i (a)(S i (c)S <i (b)) + i<d S i (a) j<i S j (c)S <j (b) + i<d (S i (c)S <i (b))S <i (a) = i<d S i (a)(S i (b)S i (c)) + i<d (S i (b)S i (c))S <i (a) + i<d S i (a)(S i (b)S <i (c)) + i<d (S i (b)S <i (c))S <i (a) + i<d S i (a)(S i (c)S <i (b)) + i<d (S i (c)S <i (b))S <i (a) + i<d S i (a) j<i S j (b)S j (c) + j<i S j (b)S <j (c) + j<i S j (c)S <j (b) .
6.6. Associativity of arbitrary depth. Theorem 6.7. Let a, b, c be positive tuples.

(1) For all d ∈ N, the expansions using (6.25), (6.26), ( 6 In order to prove Part (1), we apply the induction hypothesis on Expansions (6.28) and (6.29). We deduce that the expansion of (S d (a)S d (b))S d (c) yields the same expression in terms of power sums as that of

S d (a 1 + b 1 ) + i+j=a1+b1 ∆ j a1,b1 S d (i, j) S d (c 1 ) [(S <d (a -)S <d (b -))S <d (c -)] = [(S d (a 1 )S d (b 1 ))S d (c 1 )][(S <d (a -)S <d (b -))S <d (c -)],
and the expansion of S d (a)(S d (b)S d (c)) yields the same expression in terms of power sums as that of

S d (a 1 ) S d (b 1 + c 1 ) + i+j=b1+c1 ∆ j b1,c1 S d (i, j) [S <d (a -)(S <d (b -)S <d (c -))] = [S d (a 1 )(S d (b 1 )S d (c 1 ))][S <d (a -)(S <d (b -)S <d (c -))].
Using Theorem 6. In order to prove Part (2), we compare Expansions (6.30) and (6.31). From Part (1), it is obvious that the expansions of yield the same expression in terms of S <d . Note that from Formulas (6.25) and (6.26), we have;

(S i (a)S i (b))S <i (c) = (S i (a 1 )S i (b 1 ))[(S <i (a -)S <i (b -))S <i (c)]
and

S i (a)(S i (b)S <i (c)) = (S i (a 1 )S i (b 1 ))[S <i (a -)(S <i (b -)S <i (c))].
One then deduces from the induction hypothesis that the expansions of 

= x a+b (a -¡ b -) + i+j=a+b ∆ j a,b x i (x j ¡ (a -¡ b -)) c = x a+b (a -¡ b -) c + i+j=a+b ∆ j a,b x i (x j ¡ (a -¡ b -)) c = (x a+b x c ) ((a -¡ b -) ¡ c -) + i+j=a+b ∆ j a,b (x i x c ) [(x j ¡ (a -¡ b -)) ¡ c -].
For all i, j ∈ N with i + j = a + b, it follows from the induction hypothesis that

(x i x c ) [(x j ¡ (a -¡ b -)) ¡ c -] = (x i x c ) [x j ¡ ((a -¡ b -) ¡ c -)] = x i+c + i1+j1=i+c ∆ j1 i,c x i1 x j1 [x j ¡ ((a -¡ b -) ¡ c -)] = x i+c [x j ¡ ((a -¡ b -) ¡ c -)] + i1+j1=i+c ∆ j1 i,c x i1 x j1 [x j ¡ ((a -¡ b -) ¡ c -)] = x i+c [x j ¡ ((a -¡ b -) ¡ c -)] + i1+j1=i+c ∆ j1 i,c x i1 [(x j1 ¡ x j ) ¡ ((a -¡ b -) ¡ c -)] = x i+c x j ((a -¡ b -) ¡ c -) + i1+j1=i+c ∆ j1 i,c x i1 (x j1 ¡ x j ) ((a -¡ b -) ¡ c -) = x i+c x j + i1+j1=i+c ∆ j1 i,c x i1 (x j1 ¡ x j ) ((a -¡ b -) ¡ c -) = (x i x j x c ) ((a -¡ b -) ¡ c -). Thus (a b) c = (x a+b x c ) ((a -¡ b -) ¡ c -) + i+j=a+b ∆ j a,b (x i x j x c ) ((a -¡ b -) ¡ c -) = (x a+b x c ) + i+j=a+b ∆ j a,b (x i x j x c ) ((a -¡ b -) ¡ c -) = ((x a x b ) x c ) ((a -¡ b -) ¡ c -).
On the other hand, from Proposition 5.3 and the above arguments, we deduce that

a (b c) = (b c) a = ((x b x c ) x a ) ((b -¡ c -) ¡ a -) = (x a (x b x c )) (a -¡ (b -¡ c -)).
It is straightforward from Theorem 6.5 that (x a x b ) x c = x a (x b x c ). Moreover, it follows from the induction hypothesis that (a We now compare the above expansions. We have showed that (a b) c = a (b c). On the other hand, we have; We have

-¡ b -) ¡ c -= a -¡ (b -¡ c -).
c (a ¡ b) = x c (c -¡ (a ¡ b)) and (c b) a = x c (c -¡ b) a = x c ((c -¡ b) ¡ a).
(a b) c = x a (a -¡ b) c = (x a x c ) ((a -¡ b) ¡ c -)
and

a (c b) = a x c (c -¡ b) = (x a x c ) (a -¡ (c -¡ b)).
From the induction hypothesis and commutativity of shuffle product, one deduces that (a b) c = a (c b).

We have

(b a) c = x b (b -¡ a) c = x b ((b -¡ a) ¡ c) and (b c) a = x b (b -¡ c) a = x b ((b -¡ c) ¡ a).
From the induction hypothesis and commutativity of shuffle product, one deduces that (b a) c = (b c) a.

It follows from the induction hypothesis that As a direct consequence of Proposition 5.3 and Proposition 6.8, we obtain the following result. Theorem 6.9. The spaces (C, ) and (C, ¡) are commutative F q -algebras. In particular, Conjecture 3.2.2 of [START_REF] Shi | Multiple zeta values over Fq[END_REF] holds.

(a b) c = x a+b (a -¡ b -) + i+j=a+b ∆ j a,b x i (x j ¡ (a -¡ b -)) c = x a+b (a -¡ b -) c + i+j=a+b ∆ j a,b x i (x j ¡ (a -¡ b -)) c = x a+b ((a -¡ b -) ¡ c) + i+j=a+b ∆ j a,b x i [(x j ¡ (a -¡ b -)) ¡ c] = x a+b ((a -¡ b -) ¡ c) + i+j=a+b ∆ j a,b x i [x j ¡ ((a -¡ b -) ¡ c)] = x a+b ((a -¡ b -) ¡ c) + i+j=a+b ∆ j a,b x i x j ((a -¡ b -) ¡ c) = x a+b + i+j=a+b ∆ j a,b x i x j ((a -¡ b -) ¡ c) = (x a x b ) ((a -¡ b -) ¡ c) and a (b c) = a x b (b -¡ c) = (x a x b ) (a -¡ (b -¡ c)).
The following proposition summarizes several properties of different products , and ¡ that will be useful in the sequel. (

) a ¡ b = b ¡ a = a b + b a + a b. (4) (a ¡ b) ¡ c = a ¡ (b ¡ c). 3 
If we assume further that a, b, c are nonempty words, then

(1) (a b) c = (a c) b = a (b ¡ c). (2) (a b) c = a (b c) = (a c) b.

Shuffle Hopf algebra in positive characteristic

We first equip the shuffle algebra with a coproduct ∆ and a counit map. The main theorem of this section states that these give a Hopf algebra structure of the shuffle algebra (see Theorem 7.11).

Throughout this section we continue with the notation of the previous section.

Coproduct.

We first introduce the coproduct

∆ : C → C ⊗ C.
We will define it on Σ by induction on weight and extend by F q -linearity to C. We put

∆(1) := 1 ⊗ 1, ∆(x 1 ) := 1 ⊗ x 1 + x 1 ⊗ 1.
Let w ∈ N and we suppose that we have defined ∆(v) for all words v of weight w(v) < w. We now give a formula for ∆(u) for all words u with w(u) = w. For such a word u with depth(u) > 1, we put u = x u v with w(v) < w. Since x u and v are both of weight less than w, we have already defined

∆(x u ) := 1 ⊗ x u + a u ⊗ b u , ∆(v) := a v ⊗ b v .
Then we set

∆(u) := 1 ⊗ u + (a u a v ) ⊗ (b u ¡ b v ).
Our last task is to define ∆(x w ). We know that

x 1 ¡ x w-1 = x w + x 1 x w-1 + x w-1 x 1 + 0<j<w ∆ j 1,w-1 x w-j x j
where all the words x w-j x j have weight w and depth 2 and all ∆ j 1,w-1 belong to F q . Therefore, we set (7.1)

∆(x w ) := ∆(x 1 ) ¡∆(x w-1 ) -∆(x 1 x w-1 ) -∆(x w-1 x 1 ) - 0<j<w ∆ j 1,w-1 ∆(x w-j x j ).
We note that this definition of coproduct is different from that given as in Shi's thesis (see [47, §3.2.3]).

Lemma 7.1. For all words u, we have

∆(u) = 1 ⊗ u + a u ⊗ b u
where a u = 1.

Proof. The proof is by induction on the weight w = w(u). For w = 0 and w = 1 Lemma 7.1 immediately holds as

∆(1) := 1 ⊗ 1, ∆(x 1 ) := 1 ⊗ x 1 + x 1 ⊗ 1.
Let w ∈ N with w ≥ 2. We suppose that for all words u with w(u) < w, we have

∆(u) = 1 ⊗ u + a u ⊗ b u
where a u = 1.

We have to prove that the statement holds for all words u with w(u) = w. In fact, we first consider a word u with w(u) = w and depth(u) > 1. We put u = x u v with depth(v) ≥ 1. By the induction hypothesis, we write

∆(x u ) = 1 ⊗ x u + a u ⊗ b u where a u = 1. If we put ∆(x v ) = a v ⊗ b v , then we know that ∆(u) := 1 ⊗ u + (a u a v ) ⊗ (b u ¡ b v ).
Since a u = 1, a u a v = 1. Thus Lemma 7.1 holds for u.

To conclude, it suffices to prove that Lemma 7.1 holds for x w . By the induction hypothesis, we deduce that

∆(x 1 ) ¡ ∆(x w-1 ) = 1 ⊗ (x 1 ¡ x w-1 ) + a ⊗ b, a = 1,
and for all 0 < j < w,

∆(x w-j x j ) = 1 ⊗ x w-j x j + a j ⊗ b j , a j = 1.
Thus by (7.1),

∆(x w ) = ∆(x 1 ) ¡ ∆(x w-1 ) -∆(x 1 x w-1 ) -∆(x w-1 x 1 ) - 0<j<w ∆ j j,w-j ∆(x w-j x j ) = 1 ⊗ (x 1 ¡ x w-1 ) + a ⊗ b -1 ⊗ x 1 x w-1 + a w-1 ⊗ b w-1 -1 ⊗ x w-1 x 1 + a 1 ⊗ b 1 - 0<j<w ∆ j j,w-j 1 ⊗ x w-j x j + a j ⊗ b j = 1 ⊗   x 1 ¡ x w-1 -x 1 x w-1 -x w-1 x 1 - 0<j<w ∆ j j,w-j x w-j x j   + a ⊗ b - a w-1 ⊗ b w-1 - a 1 ⊗ b 1 - 0<j<w ∆ j j,w-j a j ⊗ b j = 1 ⊗ x w + a ⊗ b - a w-1 ⊗ b w-1 - a 1 ⊗ b 1 - 0<j<w ∆ j j,w-j a j ⊗ b j .
The proof is finished.

Compatibility of the coproduct.

In this section we prove the compatibility of the coproduct ∆ given as in the previous section. The rest of this section is devoted to a proof of Theorem 7.2. The proof is by induction on the total weight w = w(a) + w(b).

For w = 0 and w = 1 we see that Theorem The proof will be divided into three steps.

7.2.1.

Step 1. We first prove the following proposition.

Proposition 7.3. For all words x u u, x v ∈ Σ with u, v ∈ N, depth(u) ≥ 1 and w(x u u) + w(x v ) = w, we have

∆(x u u ¡ x v ) = ∆(x u u) ¡ ∆(x v ).
Proof. By definition of the product ¡ and Lemma 5.4, we write as

x u u ¡ x v = x v (x u u) + (x u u) x v + (x u u) x v (7.2) = x v x u u + x u (u ¡ x v ) + (x u x v ) u = x v x u u + x u (u ¡ x v ) + x u+v u + 0<j<u+v ∆ j u,v x u+v-j (x j ¡ u).
where the coefficients ∆ j u,v belong to F q . Therefore, we get

∆(x u u ¡ x v ) -∆(x u u) ¡ ∆(x v ) (7.3) = ∆(x v x u u) + ∆(x u (u ¡ x v )) + ∆(x u+v u) + 0<j<u+v ∆ j u,v ∆(x u+v-j (x j ¡ u)) -∆(x u u) ¡ ∆(x v ).
We now analyze each term of the RHS of the above expression. To do so we put

∆(u) = 1 ⊗ u + a u ⊗ b u ,
and for all j ∈ N, we simply put

∆(x j ) = 1 ⊗ x j + a j ⊗ b j .
In particular,

∆(x u ) = 1 ⊗ x u + a u ⊗ b u , ∆(x v ) = 1 ⊗ x v + a v ⊗ b v .
The first term ∆(x v x u u).

From the definition of the coproduct ∆ we deduce

(7.4) ∆(x u u) = 1 ⊗ x u u + a u ⊗ (b u ¡ u) + (a u a u ) ⊗ (b u ¡ b u ). Thus ∆(x v x u u) = 1 ⊗ x v x u u + a v ⊗ ((x u u) ¡ b v ) + (a v a u ) ⊗ (b u ¡ u ¡ b v ) (7.5) + (a v (a u a u )) ⊗ (b u ¡ b u ¡ b v ). The second term ∆(x u (u ¡ x v )).
Since w(u) + w(x v ) < w, the induction hypothesis implies

∆(u ¡ x v ) = ∆(u) ¡ ∆(x v ) = 1 ⊗ u + a u ⊗ b u ¡ 1 ⊗ x v + a v ⊗ b v = 1 ⊗ (u ¡ x v ) + a u ⊗ (b u ¡ x v ) + a v ⊗ (u ¡ b v ) + (a u ¡ a v ) ⊗ (b u ¡ b v ). It follows that ∆(x u (u ¡ x v )) = 1 ⊗ (x u (u ¡ x v )) + a u ⊗ (b u ¡ u ¡ x v ) (7.6) + (a u a u ) ⊗ (b u ¡ b u ¡ x v ) + (a u a v ) ⊗ (b u ¡ u ¡ b v ) + (a u (a u ¡ a v )) ⊗ (b u ¡ b u ¡ b v ).

The third term ∆(x u+v u).

By definition,

∆(x u+v u) = 1 ⊗ (x u+v u) + a u+v ⊗ (b u+v ¡ u) + (a u+v a u ) ⊗ (b u+v ¡ b u ). (7.7)
The fourth terms ∆(x u+v-j (x j ¡ u)) for all 0 < j < u + v.

As w(x j ) + w(u) < w, by the induction hypothesis,

∆(x j ¡ u) = ∆(x j ) ¡ ∆(u) = 1 ⊗ x j + a j ⊗ b j ¡ 1 ⊗ u + a u ⊗ b u = 1 ⊗ (x j ¡ u) + a j ⊗ (b j ¡ u) + a u ⊗ (x j ¡ b u ) + (a j ¡ a u ) ⊗ (b j ¡ b u ).
We then get;

∆(x u+v-j (x j ¡ u)) = 1 ⊗ (x u+v-j (x j ¡ u)) + a u+v-j ⊗ (b u+v-j ¡ x j ¡ u) (7.8) + (a u+v-j a j ) ⊗ (b u+v-j ¡ b j ¡ u) + (a u+v-j a u ) ⊗ (b u+v-j ¡ x j ¡ b u ) + (a u+v-j (a j ¡ a u )) ⊗ (b u+v-j ¡ b j ¡ b u ). The last term ∆(x u u) ¡ ∆(x v ).
Recall that ∆(x u u) is given by (7.4). Thus,

∆(x u u) ¡ ∆(x v ) (7.9) = 1 ⊗ x u u + a u ⊗ (b u ¡ u) + (a u a u ) ⊗ (b u ¡ b u ) ¡ 1 ⊗ x v + a v ⊗ b v = 1 ⊗ ((x u u) ¡ x v ) + a v ⊗ (b v ¡ (x u u)) + a u ⊗ (b u ¡ u ¡ x v ) + (a u ¡ a v ) ⊗ (b u ¡ b v ¡ u) + (a u a u ) ⊗ (b u ¡ b u ¡ x v ) + ((a u a u ) ¡ a v ) ⊗ (b u ¡ b u ¡ b v ).
Plugging the equations (7.5), (7.6), (7.7), (7.8), (7.9) into (7.3) yields

∆(x u u ¡ x v ) -∆(x u u) ¡ ∆(x v ) = S 0 -S 1 -S 2 + S 3 + S 4 .
Here the sums S i with 0 ≤ i ≤ 4 are given as follows:

S 0 = 1 ⊗ x v x u u + 1 ⊗ (x u (u ¡ x v )) + 1 ⊗ (x u+v u) + 0<j<u+v ∆ j u,v 1 ⊗ (x u+v-j (x j ¡ u)) -1 ⊗ ((x u u) ¡ x v ). S 1 = (a u ¡ a v ) ⊗ (b u ¡ b v ¡ u) -(a u a v ) ⊗ (b u ¡ b v ¡ u) - (a v a u ) ⊗ (b u ¡ b v ¡ u). S 2 = ((a u a u ) ¡ a v ) ⊗ (b u ¡ b u ¡ b v ) -(a u (a u ¡ a v )) ⊗ (b u ¡ b u ¡ b v ) - (a v (a u a u )) ⊗ (b u ¡ b u ¡ b v ). S 3 = a u+v ⊗ (b u+v ¡ u) + 0<j<u+v ∆ j u,v a u+v-j ⊗ (b u+v-j ¡ x j ¡ u) + 0<j<u+v ∆ j u,v (a u+v-j a j ) ⊗ (b u+v-j ¡ b j ¡ u). S 4 = (a u+v a u ) ⊗ (b u+v ¡ b u ) + 0<j<u+v ∆ j u,v (a u+v-j a u ) ⊗ (b u+v-j ¡ x j ¡ b u ) + 0<j<u+v ∆ j u,v (a u+v-j (a j ¡ a u )) ⊗ (b u+v-j ¡ b j ¡ b u ).
We claim that (1) S 0 = 0.

(2) S 1 -S 3 = 0.

(3) S 2 -S 4 = 0.

We now prove the previous claim. For Part (1), we want to show that S 0 = 0. In fact, it follows immediately from (7.2), e.g.,

x v x u u + x u (u ¡ x v ) + x u+v u + 0<j<u+v ∆ j u,v x u+v-j (x j ¡ u) -(x u u) ¡ x v = 0.
For Part (2), we will show that

S 1 = S 3 = (a u a v ) ⊗ (b u ¡ b v ¡ u).
In fact, we note that

S 1 = (a u ¡ a v ) ⊗ (b u ¡ b v ¡ u) -(a u a v ) ⊗ (b u ¡ b v ¡ u) - (a v a u ) ⊗ (b u ¡ b v ¡ u) = (a u ¡ a v -a u a v -a v a u ) ⊗ (b u ¡ b v ¡ u) = (a u a v ) ⊗ (b u ¡ b v ¡ u).
Here the last equality follows from Lemma 5.4, Part [START_REF] Anderson | Determination of the algebraic relations among special Γ-values in positive characteristic[END_REF].

Next, since w(x u ) + w(x v ) < w, by the induction hypothesis we know that (7.10)

∆(x u ¡ x v ) = ∆(x u ) ¡ ∆(x v )
The LHS equals

∆(x u ¡ x v ) = ∆(x u x v ) + ∆(x v x u ) + ∆(x u+v ) + 0<j<u+v ∆ j u,v ∆(x u+v-j x j ) = 1 ⊗ x u x v + a u ⊗ (b u ¡ x v ) + (a u a v ) ⊗ (b u ¡ b v ) + 1 ⊗ x v x u + a v ⊗ (x u ¡ b v ) + (a v a u ) ⊗ (b u ¡ b v ) + 1 ⊗ x u+v + a u+v ⊗ b u+v + 0<j<u+v ∆ j u,v 1 ⊗ x u+v-j x j + 0<j<u+v ∆ j u,v a u+v-j ⊗ (b u+v-j ¡ x j ) + 0<j<u+v ∆ j u,v
(a u+v-j a j ) ⊗ (b u+v-j ¡ b j ).

We see that

∆(x u ) ¡ ∆(x v ) = 1 ⊗ x u + a u ⊗ b u ¡ 1 ⊗ x v + a v ⊗ b v = 1 ⊗ (x u ¡ x v ) + a u ⊗ (b u ¡ x v ) + a v ⊗ (x u ¡ b v ) + (a u ¡ a v ) ⊗ (b u ¡ b v ).
Replacing these equalities into (7.10) gets

(a u a v ) ⊗ (b u ¡ b v ) + (a v a u ) ⊗ (b u ¡ b v ) + a u+v ⊗ b u+v + 0<j<u+v ∆ j u,v a u+v-j ⊗ (b u+v-j ¡ x j ) + 0<j<u+v ∆ j u,v (a u+v-j a j ) ⊗ (b u+v-j ¡ b j ) = (a u ¡ a v ) ⊗ (b u ¡ b v ).
Thus we deduce

a u+v ⊗ b u+v + 0<j<u+v ∆ j u,v a u+v-j ⊗ (b u+v-j ¡ x j ) (7.11) + 0<j<u+v ∆ j u,v (a u+v-j a j ) ⊗ (b u+v-j ¡ b j ) = (a u ¡ a v -a u a v -a v a u ) ⊗ (b u ¡ b v ) = (a u a v ) ⊗ (b u ¡ b v ).
As a direct consequence of (7.11), we obtain

S 3 = a u+v ⊗ (b u+v ¡ u) + 0<j<u+v ∆ j u,v a u+v-j ⊗ (b u+v-j ¡ x j ¡ u) + 0<j<u+v ∆ j u,v (a u+v-j a j ) ⊗ (b u+v-j ¡ b j ¡ u). = (a u a v ) ⊗ (b u ¡ b v ¡ u)
as desired. We conclude that S 1 = S 3 as claimed.

For Part (3), we will show that

S 2 = S 4 = ((a u a u ) a v ) ⊗ (b u ¡ b u ¡ b v ).
In fact, to prove the equality for S 2 , we note that

(a u a u ) ¡ a v = (a u a u ) a v + a v (a u a u ) + (a u a u ) a v = a u (a u ¡ a v ) + a v (a u a u ) + (a u a u ) a v .
The first equality follows from Lemma 5.4 and the second one follows from Proposition 6.10, Part 5. We then obtain

S 2 = ((a u a u ) ¡ a v ) ⊗ (b u ¡ b u ¡ b v ) -(a u (a u ¡ a v )) ⊗ (b u ¡ b u ¡ b v ) - (a v (a u a u )) ⊗ (b u ¡ b u ¡ b v ) = ((a u a u ) ¡ a v -a u (a u ¡ a v ) -a v (a u a u )) ⊗ (b u ¡ b u ¡ b v ) = ((a u a u ) a v ) ⊗ (b u ¡ b u ¡ b v ).
We now consider the term S 4 . We have

S 4 = (a u+v a u ) ⊗ (b u+v ¡ b u ) + 0<j<u+v ∆ j u,v (a u+v-j a u ) ⊗ (b u+v-j ¡ x j ¡ b u ) + 0<j<u+v ∆ j u,v (a u+v-j (a j ¡ a u )) ⊗ (b u+v-j ¡ b j ¡ b u ) = (a u+v a u ) ⊗ (b u+v ¡ b u ) + 0<j<u+v ∆ j u,v (a u+v-j a u ) ⊗ (b u+v-j ¡ x j ¡ b u ) + 0<j<u+v ∆ j u,v ((a u+v-j a j ) a u ) ⊗ (b u+v-j ¡ b j ¡ b u ) = ((a u a v ) a u ) ⊗ (b u ¡ b v ¡ b u ) = ((a u a u ) a v ) ⊗ (b u ¡ b u ¡ b v ).
Here the second and fourth equalities follow from Proposition 6.10, Part 5 and 6.

The third one is a direct consequence of (7.11). Thus we have proved that S 2 = S 4 as claimed.

To conclude, we see immediately that

∆(x u u ¡ x v ) -∆(x u u) ¡ ∆(x v ) = S 0 -S 1 -S 2 + S 3 + S 4 = 0.
The proof of Proposition 7.3 is finished.

7.2.2.

Step 2. Next we generalize Proposition 7.3 for words of arbitrary depth.

Proposition 7.4. We work with the above assumption. Then for all words x u u, x v ∈ Σ with u, v ∈ N, depth(u) ≥ 1, depth(v) ≥ 1 and w(x u u) + w(x v v) = w, we have

∆(x u u ¡ x v v) = ∆(x u u) ¡ ∆(x v v).
Proof. We follow the same strategy as that of the proof of Proposition 7.3 but the proof is much more involved and complicated.

By the definition of the product ¡ and Lemma 5.4, we obtain

x u u ¡ x v v (7.12) = (x u u) (x v v) + (x v v) (x u u) + (x u u) (x v v) = x v (x u u ¡ v) + x u (u ¡ (x v v)) + (x u x v ) (u ¡ v) = x v (x u u ¡ v) + x u (u ¡ (x v v)) + x u+v (u ¡ v) + 0<j<u+v ∆ j u,v x u+v-j (x j ¡ u ¡ v),
where the coefficients ∆ j u,v belong to F q . Therefore, we get

∆(x u u ¡ x v v) -∆(x u u) ¡ ∆(x v v) (7.13) = ∆(x v (x u u ¡ v)) + ∆(x u (u ¡ (x v v)) + ∆(x u+v (u ¡ v)) + 0<j<u+v ∆ j u,v ∆(x u+v-j (x j ¡ u ¡ v)) -∆(x u u) ¡ ∆(x v v).
We now analyze each term of the RHS of the above expression. To do so we put

∆(u) = 1 ⊗ u + a u ⊗ b u , ∆(v) = 1 ⊗ v + a v ⊗ b v ,
and for all j ∈ N, we simply put

∆(x j ) = 1 ⊗ x j + a j ⊗ b j .
In particular,

∆(x u ) = 1 ⊗ x u + a u ⊗ b u , ∆(x v ) = 1 ⊗ x v + a v ⊗ b v . The first term ∆(x v (x u u ¡ v)).
Recall that ∆(x u u) is given as in (7.4). As w(x u u) + w(v) < w, we obtain

∆(x u u ¡ v) = ∆(x u u) ¡ ∆(v) = 1 ⊗ ((x u u) ¡ v) + a u ⊗ (b u ¡ u ¡ v) + a v ⊗ ((x u u) ¡ b v ) + (a u a u ) ⊗ (b u ¡ b u ¡ v) + (a u ¡ a v ) ⊗ (b u ¡ u ¡ b v ) + ((a u a u ) ¡ a v ) ⊗ (b u ¡ b u ¡ b v ). Thus ∆(x v (x u u ¡ v)) = 1 ⊗ x v (x u u ¡ x v ) + a v ⊗ (b v ¡ (x u u) ¡ v) (7.14) + (a v a u ) ⊗ (b u ¡ b v ¡ u ¡ v) + (a v (a u a u )) ⊗ (b u ¡ b v ¡ b u ¡ v) + (a v a v ) ⊗ (b v ¡ (x u u) ¡ b v ) + (a v (a u ¡ a v )) ⊗ (b u ¡ b v ¡ u ¡ b v ) + (a v ((a u a u ) ¡ a v )) ⊗ (b u ¡ b v ¡ b u ¡ b v ). The second term ∆(x u (u ¡ (x v v)).
Similarly, we get

∆(x u (u ¡ (x v v)) = 1 ⊗ x u (u ¡ x v v) + a u ⊗ (b u ¡ u ¡ (x v v)) (7.15) + ((a u a v ) ⊗ (b u ¡ b v ¡ u ¡ v) + (a u (a v a v )) ⊗ (b u ¡ b v ¡ u ¡ b v ) + (a u a u ) ⊗ (b u ¡ b u ¡ (x v v)) + (a u (a u ¡ a v )) ⊗ (b u ¡ b u ¡ b v ¡ v) + (a u (a u ¡ (a v a v )) ⊗ (b u ¡ b v ¡ b u ¡ b v ). The third term ∆(x u+v (u ¡ v)). We put ∆(u ¡ v) = 1 ⊗ (u ¡ v) + a u¡v ⊗ b u¡v .
As w(u) + w(v) < w, the induction hypothesis implies that

∆(u ¡ v) = ∆(u) ¡ ∆(v) = 1 ⊗ u + a u ⊗ b u ¡ 1 ⊗ v + a v ⊗ b v . Thus 1 ⊗ (u ¡ v) + a u¡v ⊗ b u¡v = 1 ⊗ u + a u ⊗ b u ¡ 1 ⊗ v + a v ⊗ b v = 1 ⊗ (u ¡ v) + a u ⊗ (b u ¡ v) + a v ⊗ (u ¡ b v ) + (a u ¡ a v ) ⊗ (b u ¡ b v ), which implies (7.16) a u¡v ⊗b u¡v = a u ⊗(b u ¡v)+ a v ⊗(u¡b v )+ (a u ¡a v )⊗(b u ¡b v ).
Finally, we have

∆(x u+v (u ¡ v)) = 1 ⊗ (x u+v (u ¡ v)) + a u+v ⊗ (b u+v ¡ u ¡ v) (7.17) + (a u+v a u¡v ) ⊗ (b u+v ¡ b u¡v ). The fourth terms ∆(x u+v-j (x j ¡ u ¡ v)) for all 0 < j < u + v.
As w(x j ) + w(u ¡ v) < w, by the induction hypothesis, we get

∆(x j ¡ u ¡ v) = ∆(x j ) ¡ ∆(u ¡ v) = 1 ⊗ x j + a j ⊗ b j ¡ 1 ⊗ (u ¡ v) + a u¡v ⊗ b u¡v = 1 ⊗ (x j ¡ u ¡ v) + a j ⊗ (b j ¡ u ¡ v) + a u¡v ⊗ (x j ¡ b u¡v ) + (a j ¡ a u¡v ) ⊗ (b j ¡ b u¡v ).
We then get ∆(x u+v-j (x j ¡ u ¡ v))

(7.18) = 1 ⊗ (x u+v-j (x j ¡ u ¡ v)) + a u+v-j ⊗ (b u+v-j ¡ x j ¡ u ¡ v) + (a u+v-j a j ) ⊗ (b u+v-j ¡ b j ¡ u ¡ v) + (a u+v-j a u¡v ) ⊗ (b u+v-j ¡ x j ¡ b u¡v ) + (a u+v-j (a j ¡ a u¡v )) ⊗ (b u+v-j ¡ b j ¡ b u¡v ). The last term ∆(x u u) ¡ ∆(x v v).
Recall that ∆(x u u) is given by (7.4). Similarly,

∆(x v v) = 1 ⊗ x v v + a v ⊗ (b v ¡ v) + (a v a v ) ⊗ (b v ¡ b v ). Thus ∆(x u u) ¡ ∆(x v v) (7.19) = 1 ⊗ x u u + a u ⊗ (b u ¡ u) + (a u a u ) ⊗ (b u ¡ b u ) ¡ 1 ⊗ x v v + a v ⊗ (b v ¡ v) + (a v a v ) ⊗ (b v ¡ b v ) = 1 ⊗ (x u u ¡ x v v) + a v ⊗ ((x u u) ¡ b v ¡ v) + (a v a v ) ⊗ ((x u u) ¡ b v ¡ b v ) + a u ⊗ (b u ¡ u ¡ (x v v)) + (a u ¡ a v ) ⊗ (b u ¡ b v ¡ u ¡ v) + (a u ¡ (a v a v )) ⊗ (b u ¡ u ¡ b v ¡ b v ) + (a u a u ) ⊗ (b u ¡ b u ¡ (x v v)) + ((a u a u ) ¡ a v ) ⊗ (b u ¡ b u ¡ b v ¡ v) + ((a u a u ) ¡ (a v a v )) ⊗ (b u ¡ b u ¡ b v ¡ b v ).
Plugging the equations (7.14), (7.15), (7.17), (7.18), (7.19) into (7.13) yields

∆(x u u ¡ x v v) -∆(x u u) ¡ ∆(x v v) = S 0 -S 1 -S 2 -S u -S v + S 3 + S 4 .
Here the sums S i with 0 ≤ i ≤ 4 and S u , S v are given as follows:

S 0 = 1 ⊗ x v (x u u ¡ v) + 1 ⊗ x u (u ¡ (x v v)) + 1 ⊗ x u+v (u ¡ v) + 0<j<u+v ∆ j u,v 1 ⊗ x u+v-j (x j ¡ u ¡ v) -1 ⊗ ((x u u) ¡ (x v v)). S 1 = (a u ¡ a v ) ⊗ (b u ¡ b v ¡ u ¡ v) -(a u a v ) ⊗ (b u ¡ b v ¡ u ¡ v) - (a v a u ) ⊗ (b u ¡ b v ¡ u ¡ v). S 2 = ((a u a u ) ¡ (a v a v )) ⊗ (b u ¡ b u ¡ b v ¡ b v ) - (a u (a u ¡ (a v a v ))) ⊗ (b u ¡ b u ¡ b v ¡ b v ) - (a v ((a u a u ) ¡ a v ) ⊗ (b u ¡ b u ¡ b v ¡ b v ). S 3 = a u+v ⊗ (b u+v ¡ u ¡ v) + 0<j<u+v ∆ j u,v a u+v-j ⊗ (b u+v-j ¡ x j ¡ u ¡ v) + 0<j<u+v ∆ j u,v (a u+v-j a j ) ⊗ (b u+v-j ¡ b j ¡ u ¡ v). S 4 = (a u+v a u¡v ) ⊗ (b u+v ¡ b u¡v ) + 0<j<u+v ∆ j u,v (a u+v-j a u¡v ) ⊗ (b u+v-j ¡ x j ¡ b u¡v ) + 0<j<u+v ∆ j u,v (a u+v-j (a j ¡ a u¡v )) ⊗ (b u+v-j ¡ b j ¡ b u¡v ),
and

S u = (a u ¡ (a v a v )) ⊗ (b u ¡ b v ¡ u ¡ b v ) -(a u (a v a v )) ⊗ (b u ¡ b v ¡ u ¡ b v ) - (a v (a u ¡ a v )) ⊗ (b u ¡ b v ¡ u ¡ b v ), S v = ((a u a u ) ¡ a v ) ⊗ (b u ¡ b v ¡ b u ¡ v) -(a u (a u ¡ a v )) ⊗ (b u ¡ b v ¡ b u ¡ v) - (a v (a u a u )) ⊗ (b u ¡ b v ¡ b u ¡ v).
We claim that (1) S 0 = 0.

(2) S 1 -S 3 = 0.

(3) S 2 + S u + S v -S 4 = 0.

We now prove the previous claim. For Part (1), we want to show that S 0 = 0. In fact, it follows immediately from (7.12).

For Part (2), we will show that

S 1 = S 3 = (a u a v ) ⊗ (b u ¡ b v ¡ u ¡ v).
In fact, Lemma 5.4 implies

S 1 = (a u ¡ a v ) ⊗ (b u ¡ b v ¡ u ¡ v) -(a u a v ) ⊗ (b u ¡ b v ¡ u ¡ v) - (a v a u ) ⊗ (b u ¡ b v ¡ u ¡ v) = (a u ¡ a v -a u a v -a v a u ) ⊗ (b u ¡ b v ¡ u ¡ v) = (a u a v ) ⊗ (b u ¡ b v ¡ u ¡ v).
Recall that by (7.11),

a u+v ⊗ b u+v + 0<j<u+v ∆ j u,v a u+v-j ⊗ (b u+v-j ¡ x j ) + 0<j<u+v ∆ j u,v (a u+v-j a j ) ⊗ (b u+v-j ¡ b j ) = (a u a v ) ⊗ (b u ¡ b v ).
As a direct consequence, we obtain

S 3 = a u+v ⊗ (b u+v ¡ u ¡ v) + 0<j<u+v ∆ j u,v a u+v-j ⊗ (b u+v-j ¡ x j ¡ u ¡ v) + 0<j<u+v ∆ j u,v (a u+v-j a j ) ⊗ (b u+v-j ¡ b j ¡ u ¡ v). = (a u a v ) ⊗ (b u ¡ b v ¡ u ¡ v)
as desired. We conclude that S 1 = S 3 as claimed.

For Part (3), we will show that

S 2 + S u + S v = S 4 = ((a u a v ) a u¡v ) ⊗ (b u ¡ b v ¡ b u¡v ).
In fact, we have

S 2 = ((a u a u ) ¡ (a v a v )) ⊗ (b u ¡ b u ¡ b v ¡ b v ) - (a u (a u ¡ (a v a v ))) ⊗ (b u ¡ b u ¡ b v ¡ b v ) - (a v ((a u a u ) ¡ a v ) ⊗ (b u ¡ b u ¡ b v ¡ b v ) = ((a u a u ) ¡ (a v a v ) -a u (a u ¡ (a v a v )) -a v ((a u a u ) ¡ a v )) ⊗ (b u ¡ b u ¡ b v ¡ b v ) = ((a u a u ) (a v a v )) ⊗ (b u ¡ b u ¡ b v ¡ b v ).
Here the last equality follows from Lemma 5.4 and Proposition 6.10. More precisely,

(a u a u ) ¡ (a v a v ) = (a u a u ) (a v a v ) + (a v a v ) (a u a u ) + (a u a u ) (a v a v ) = a u (a u ¡ (a v a v )) + a v ((a u a u ) ¡ a v )) + (a u a u ) (a v a v ).
By Lemma 5.4 and Proposition 6.10 again,

S u = (a u ¡ (a v a v )) ⊗ (b u ¡ b v ¡ u ¡ b v ) -(a u (a v a v )) ⊗ (b u ¡ b v ¡ u ¡ b v ) - (a v (a u ¡ a v )) ⊗ (b u ¡ b v ¡ u ¡ b v ) = (a u ¡ (a v a v ) -a u (a v a v ) -a v (a u ¡ a v )) ⊗ (b u ¡ b v ¡ u ¡ b v ) = (a u (a v a v )) ⊗ (b u ¡ b v ¡ u ¡ b v ),
and

S v = ((a u a u ) ¡ a v ) ⊗ (b u ¡ b v ¡ b u ¡ v) -(a u (a u ¡ a v )) ⊗ (b u ¡ b v ¡ b u ¡ v) - (a v (a u a u )) ⊗ (b u ¡ b v ¡ b u ¡ v) = ((a u a u ) a v ) ⊗ (b u ¡ b v ¡ b u ¡ v).
Combining the previous formulas for S 2 , S u , S v with (7.16) yields

S 2 + S u + S v = ((a u a v ) a u¡v ) ⊗ (b u ¡ b v ¡ b u¡v ).
We now consider the term S 4 . We have

S 4 = (a u+v a u¡v ) ⊗ (b u+v ¡ b u¡v ) + 0<j<u+v ∆ j u,v (a u+v-j a u¡v ) ⊗ (b u+v-j ¡ x j ¡ b u¡v ) + 0<j<u+v ∆ j u,v (a u+v-j (a j ¡ a u¡v )) ⊗ (b u+v-j ¡ b j ¡ b u¡v ) = (a u+v a u¡v ) ⊗ (b u+v ¡ b u¡v ) + 0<j<u+v ∆ j u,v (a u+v-j a u¡v ) ⊗ (b u+v-j ¡ x j ¡ b u¡v ) + 0<j<u+v ∆ j u,v ((a u+v-j a j ) a u¡v ) ⊗ (b u+v-j ¡ b j ¡ b u¡v ) = ((a u a v ) a u¡v ) ⊗ (b u ¡ b v ¡ b u¡v ).
Here the second equality follows from Proposition 6.10. The third one is a direct consequence of (7.11). We then have proved that S 2 + S u + S v = S 4 as claimed.

To conclude, we see immediately that

∆(x u u ¡ x v v) -∆(x u u) ¡ ∆(x v v) = S 0 -S 1 -S 2 -S u -S v + S 3 + S 4 = S 0 -(S 1 -S 3 ) -(S 2 + S u + S v -S 4 ) = 0.
The proof of Proposition 7.4 is finished.

7.2.3.

Step 3. By Propositions 7.3 and 7.4, for all words u, v such that depth(u) + depth(v) > 2 and w(u) + w(v) = w, we have proved

∆(u ¡ v) = ∆(u) ¡ ∆(v).
To finish the proof of Theorem 7.2 we prove the remaining case where both u and v have depth 1.

Proposition 7.5. Let u, v ∈ N such that u + v = w. Then ∆(x u ¡ x v ) = ∆(x u ) ¡ ∆(x v ).
Proof. By the definition of the coproduct ∆, for all n ∈ N,

(7.20) ∆(x 1 ¡ x n ) = ∆(x 1 ) ¡ ∆(x n ).
It follows that Proposition 7.5 holds if either u = 1 or v = 1. We now suppose that u, v ≥ 2. We claim that (7.21)

∆(x 1 ¡ x u-1 ¡ x v ) = ∆(x 1 ) ¡ ∆(x u-1 ) ¡ ∆(x v ).
In fact, we write

x u-1 ¡ x v = x u+v-1 + x u-1 x v + x v x u-1 + 0<j<u+v-1 ∆ j u-1,v x u+v-1-j x j . Thus ∆(x 1 ¡ x u-1 ¡ x v ) = ∆(x 1 ¡ (x u-1 ¡ x v )) = ∆   x 1 ¡   x u+v-1 + x u-1 x v + x v x u-1 + 0<j<u+v-1 ∆ j u-1,v x u+v-1-j x j     = ∆(x 1 ¡ x u+v-1 ) + ∆(x 1 ¡ x u-1 x v ) + ∆(x 1 ¡ x v x u-1 ) + 0<j<u+v-1 ∆ j u-1,v ∆(x 1 ¡ x u+v-1-j x j ) = ∆(x 1 ) ¡ ∆(x u+v-1 ) + ∆(x 1 ) ¡ ∆(x u-1 x v ) + ∆(x 1 ) ¡ ∆(x v x u-1 ) + 0<j<u+v-1 ∆ j u-1,v ∆(x 1 ) ¡ ∆(x u+v-1-j x j ).
Here the last equality follows from (7.20) and Proposition 7.3. It implies

∆(x 1 ¡ x u-1 ¡ x v ) = ∆(x 1 ) ¡ ∆(x u+v-1 ) + ∆(x 1 ) ¡ ∆(x u-1 x v ) + ∆(x 1 ) ¡ ∆(x v x u-1 ) + 0<j<u+v-1 ∆ j u-1,v ∆(x 1 ) ¡ ∆(x u+v-1-j x j ) = ∆(x 1 ) ¡ ∆   x u+v-1 + x u-1 x v + x v x u-1 + 0<j<u+v-1 ∆ j u-1,v x u+v-1-j x j   = ∆(x 1 ) ¡ ∆(x u-1 ¡ x v ). As u + v -1 = w -1 < w, ∆(x u-1 ¡ x v ) = ∆(x u-1 ) ¡ ∆(x v ), which implies the claim.
Now we express both sides of (7.21) by a different way. First, the LHS of (7.21) equals

∆(x 1 ¡ x u-1 ¡ x v ) = ∆((x 1 ¡ x u-1 ) ¡ x v ) = ∆     x u + x 1 x u-1 + x u-1 x 1 + 0<j<u ∆ j 1,u-1 x u-j x j   ¡ x v   = ∆(x u ¡ x v ) + ∆(x 1 x u-1 ¡ x v ) + ∆(x u-1 x 1 ¡ x v ) + 0<j<u ∆ j 1,u-1 ∆(x u-j x j ¡ x v ) = ∆(x u ¡ x v ) + ∆(x 1 x u-1 ) ¡ ∆(x v ) + ∆(x u-1 x 1 ) ¡ ∆(x v ) + 0<j<u ∆ j 1,u-1 ∆(x u-j x j ) ¡ ∆(x v ).
The last equality holds by Proposition 7.3.

Next, as ∆(x 1 ) ¡ ∆(x u-1 ) = ∆(x 1 ¡ x u-1 ), the RHS of (7.21) equals

∆(x 1 ) ¡ ∆(x u-1 ) ¡ ∆(x v ) = (∆(x 1 ) ¡ ∆(x u-1 )) ¡ ∆(x v ) = ∆(x 1 ¡ x u-1 ) ¡ ∆(x v ) = ∆   x u + x 1 x u-1 + x u-1 x 1 + 0<j<u ∆ j 1,u-1 x u-j x j   ¡ ∆(x v ) = ∆(x u ) ¡ ∆(x v ) + ∆(x 1 x u-1 ) ¡ ∆(x v ) + ∆(x u-1 x 1 ) ¡ ∆(x v ) + 0<j<u ∆ j 1,u-1 ∆(x u-j x j ) ¡ ∆(x v ).
Putting all together, we deduce

∆(x u ¡ x v ) = ∆(x u ) ¡ ∆(x v )
as desired.

Coassociativity of the coproduct.

In this section we prove the coassociativity of the coproduct ∆.

Theorem 7.6. Let u ∈ Σ . Then we have

(Id ⊗∆)∆(u) = (∆ ⊗ Id)∆(u).
The rest of this section is devoted to a proof of Theorem 7.6. The proof is by induction on the total weight w = w(a) + w(b).

For w = 0 and w = 1 we see that Theorem 7.6 holds. Let w ∈ N with w ≥ 2 and we suppose that for all u ∈ Σ such that w(u) < w, we have

(Id ⊗∆)∆(u) = (∆ ⊗ Id)∆(u).
We now show that for all u ∈ Σ with w(u) = w,

(Id ⊗∆)∆(u) = (∆ ⊗ Id)∆(u).
The proof will be divided into several steps.

7.3.1.

Step 1. We first prove the following proposition. Proposition 7.7. For all words u, v ∈ Σ with w(u) + w(v) = w, we have

(Id ⊗∆)∆(u ¡ v) = (∆ ⊗ Id)∆(u ¡ v).
Proof. We see that if u = 1 or v = 1, then the proposition holds. We can suppose that u = 1 and v = 1. If we write

∆(u) = a u ⊗ b u , ∆(v) = a v ⊗ b v ,
then by the compatibility, we get

(Id ⊗∆)∆(u ¡ v) = (Id ⊗∆)(∆(u) ¡ ∆(v)) = (Id ⊗∆) (a u ¡ a v ) ⊗ (b u ¡ b v ) = (a u ¡ a v ) ⊗ ∆(b u ¡ b v ) = (a u ¡ a v ) ⊗ (∆(b u ) ¡ ∆(b v )) = a u ⊗ ∆(b u ) ¡ a v ⊗ ∆(b v ) = (Id ⊗∆)∆(u) ¡ (Id ⊗∆)∆(v).
Similarly, we get

(∆ ⊗ Id)∆(u ¡ v) = (∆ ⊗ Id)(∆(u) ¡ ∆(v)) = (∆ ⊗ Id)∆(u) ¡ (∆ ⊗ Id)∆(v).
Since w(u) < w and w(v) < w, the induction hypothesis implies

(Id ⊗∆)∆(u) = (∆ ⊗ Id)∆(u), (Id ⊗∆)∆(v) = (∆ ⊗ Id)∆(v).
Putting all together, we deduce

(Id ⊗∆)∆(u ¡ v) = (Id ⊗∆)∆(u) ¡ (Id ⊗∆)∆(v) = (∆ ⊗ Id)∆(u) ¡ (∆ ⊗ Id)∆(v) = (∆ ⊗ Id)∆(u ¡ v).
The proof is finished.

7.3.2.

Step 2. We define the operator for tensors as follows:

a 1 ⊗ b 1 a 2 ⊗ b 2 : = (a 1 a 2 ) ⊗ (b 1 ¡ b 2 ), a 1 ⊗ b 1 ⊗ c 1 a 2 ⊗ b 2 ⊗ c 2 : = (a 1 a 2 ) ⊗ (b 1 ¡ b 2 ) ⊗ (c 1 ¡ c 2 ).
We prove the following lemma which will be useful in the sequel.

Lemma 7.8. Let u, v ∈ Σ with u = 1. Then (∆(u) -1 ⊗ u) ∆(v) = ∆(u v) -1 ⊗ (u v).
Proof. Suppose that depth(u) = 1, says u = x u . Then u v = x u v and we have to show that (∆(

x u ) -1 ⊗ x u ) ∆(v) = ∆(x u v) -1 ⊗ (x u v). We write ∆(x u ) = 1 ⊗ x u + a u ⊗ b u , ∆(v) = a v ⊗ b v . Recall that ∆(x u v) = 1 ⊗ (x u v) + (a u a v ) ⊗ (b u ¡ b v ). Thus ∆(x u v) -1 ⊗ (x u v) = (a u a v ) ⊗ (b u ¡ b v ) = (∆(u) -1 ⊗ u) ∆(v)
as desired.

We now suppose that depth(u) > 1. We write u = x u u . Thus

u v = x u (u ¡ v)
and we have to show that

(∆(x u u ) -1 ⊗ x u u ) ∆(v) = ∆(x u (u ¡ v)) -1 ⊗ x u (u ¡ v).
We put

∆(x u ) = 1 ⊗ x u + a u ⊗ b u , ∆(u ) = a u ⊗ b u , ∆(v) = a v ⊗ b v .
It follows that

(7.22) ∆(x u u ) -1 ⊗ x u u = (a u a u ) ⊗ (b u ¡ b u ).
By Theorem 7.2, we have

∆(u ¡ v) = ∆(u ) ¡ ∆(v) = (a u ¡ a v ) ⊗ (b u ¡ b v ). Thus ∆(x u (u ¡ v)) -1 ⊗ x u (u ¡ v) = (a u (a u ¡ a v )) ⊗ (b u ¡ b u ¡ b v ) = ((a u a u ) a v )) ⊗ (b u ¡ b u ¡ b v ) = (∆(x u u ) -1 ⊗ x u u ) ∆(v).
The second equality holds by Proposition 6.10 and the last one follows from (7.22). We finish the proof.

Next we prove the following proposition.

Proposition 7.9. For all words x u u ∈ Σ with u ∈ N, depth(u) ≥ 1 and w(x u u) = w, we have

(Id ⊗∆)∆(x u u) = (∆ ⊗ Id)∆(x u u).
Proof. We put

∆(x u ) = 1 ⊗ x u + a u ⊗ b u , ∆(u) = a u ⊗ b u .
In particular, ∆(

x u u) = 1 ⊗ x u u + (a u a u ) ⊗ (b u ¡ b u ).
It follows that

(Id ⊗∆)∆(x u u) = (Id ⊗∆) 1 ⊗ x u u + (a u a u ) ⊗ (b u ¡ b u ) = 1 ⊗ ∆(x u u) + (a u a u ) ⊗ ∆(b u ¡ b u ) = 1 ⊗ ∆(x u u) + (a u a u ) ⊗ (∆(b u ) ¡ ∆(b u )).
The last equality follows from the compatibility proved in Theorem 7.2. Next, we have

(∆ ⊗ Id)∆(x u u) = (∆ ⊗ Id) 1 ⊗ x u u + (a u a u ) ⊗ (b u ¡ b u ) = 1 ⊗ 1 ⊗ x u u + ∆(a u a u ) ⊗ (b u ¡ b u ).
Thus we have to show that

1 ⊗ ∆(x u u) + (a u a u ) ⊗ (∆(b u ) ¡ ∆(b u )) (7.23) = 1 ⊗ 1 ⊗ x u u + ∆(a u a u ) ⊗ (b u ¡ b u ).
As w(x u ) < w, the induction hypothesis implies

(Id ⊗∆)∆(x u ) = (∆ ⊗ Id)∆(x u ).
We write down the expressions of both sides. The LHS equals

(Id ⊗∆)∆(x u ) = (Id ⊗∆) 1 ⊗ x u + a u ⊗ b u = 1 ⊗ ∆(x u ) + a u ⊗ ∆(b u ),
and the RHS equals

(∆ ⊗ Id)∆(x u ) = (∆ ⊗ Id) 1 ⊗ x u + a u ⊗ b u = 1 ⊗ 1 ⊗ x u + ∆(a u ) ⊗ b u .
As (Id ⊗∆)∆(x u ) = (∆ ⊗ Id)∆(x u ), we get;

1 ⊗ ∆(x u ) + a u ⊗ ∆(b u ) = 1 ⊗ 1 ⊗ x u + ∆(a u ) ⊗ b u .
We use Lemma 7.1 and cancel the terms of the form 1 ⊗ a ⊗ b on both sides to get (7.24)

a u ⊗ ∆(b u ) = (∆(a u ) -1 ⊗ a u ) ⊗ b u .
Recall that ∆(u) = a u ⊗b u . By similar calculations, the equality

(Id ⊗∆)∆(u) = (∆ ⊗ Id)∆(u) implies (7.25) a u ⊗ ∆(b u ) = ∆(a u ) ⊗ b u .
Combining (7.24) and (7.25) yields

a u ⊗ ∆(b u ) a u ⊗ ∆(b u ) = (∆(a u ) -1 ⊗ a u ) ⊗ b u ∆(a u ) ⊗ b u .
It follows that

(a u a u ) ⊗ (∆(b u ) ¡ ∆(b u )) = ((∆(a u ) -1 ⊗ a u ) ∆(a u )) ⊗ (b u ¡ b u ) = (∆(a u a u ) -1 ⊗ (a u a u )) ⊗ (b u ¡ b u ) = ∆(a u a u ) ⊗ (b u ¡ b u ) -1 ⊗ (a u a u ) ⊗ (b u ¡ b u ).
The second equality holds by Lemma 7.8. As a consequence, the equality (7.23) follows immediately from the equality

∆(x u u) = 1 ⊗ x u u + (a u a u ) ⊗ (b u ¡ b u ). 7.3.3.
Step 3. By Proposition 7.9, for all words u such that depth(u) > 1 and w(u) = w, we have proved

(Id ⊗∆)∆(u) = (∆ ⊗ Id)∆(u).
To finish the proof of Theorem 7.6 we prove the remaining case where u = x w .

Proposition 7.10. We have

(Id ⊗∆)∆(x w ) = (∆ ⊗ Id)∆(x w ).
Proof. By Proposition 7.7,

(Id ⊗∆)∆(x 1 ¡ x w-1 ) = (Id ⊗∆)∆(x 1 ¡ x w-1 ).
Now we express both sides of the above equality by using

x 1 ¡ x w-1 = x w + x 1 x w-1 + x w-1 x 1 + 0<j<w ∆ j 1,w-1 x w-j x j .
First, the LHS equals

(Id ⊗∆)∆(x 1 ¡ x w-1 ) = (Id ⊗∆)∆   x w + x 1 x w-1 + x w-1 x 1 + 0<j<w ∆ j 1,w-1 x w-j x j   = (Id ⊗∆)∆(x w ) + (Id ⊗∆)∆(x 1 x w-1 ) + (Id ⊗∆)∆(x w-1 x 1 ) + 0<j<w ∆ j 1,w-1 (Id ⊗∆)∆(x w-j x j ),
and the RHS equals

(∆ ⊗ Id)∆(x 1 ¡ x w-1 ) = (∆ ⊗ Id)∆   x w + x 1 x w-1 + x w-1 x 1 + 0<j<w ∆ j 1,w-1 x w-j x j   = (∆ ⊗ Id)∆(x w ) + (∆ ⊗ Id)∆(x 1 x w-1 ) + (∆ ⊗ Id)∆(x w-1 x 1 ) + 0<j<w ∆ j 1,w-1 (∆ ⊗ Id)∆(x w-j x j ).
Putting all together and using Propositions 7.7 and 7.9, we deduce that We also note that the Hopf shuffle algebra is of finite type (see Definition 2.5).

(Id ⊗∆)∆(x w ) = (∆ ⊗ Id)∆(x w ).

Numerical verification.

We end this section by presenting some numerical experiments for the shuffle algebra in positive characteristic. We mention that these calculations have been crucial for us during this project.

We have written codes which can calculate the operations on C and verified Proposition 6.8, Theorem 7.6 and Theorem 7.2 in numerous cases as below, "extending" the verification which were done in [47, §3.2.3] The machine used for the computation is MacBook Pro (15-inch, 2018), with 2.6 GHz 6-core Intel Core i7 CPU and 16GB of memory.

Associativity: For q = 2, 3, 4, 5, 7, (S d (a)S d (b)) S d (c) = S d (a) (S d (b)S d (c))
for all depth 1 tuples a, b, c with weight < q 3 .

• The running time for each of the cases when q = 2, 3, 4, 5, 7 are less than 1 second, 16 seconds, 170 seconds, 107 minutes, and 118 hours, respectively. Coassociativity: Coassociativity holds for some initial cases. Precisely, the coassociativity for depth one word x n for 1 ≤ n < a q and all words with weight < w q were verified within execution time t q and t q seconds respectively, for following q's: q 2 3 5 7 (a q , t q ) (33, 362) (62, 432) (122, 335) (182, 362) (w q , t q ) (15, 2038) [START_REF] Chen | On shuffle of double zeta values over Fq[t][END_REF]386) [START_REF] Deligne | Groupes fondamentaux motiviques de Tate mixte[END_REF]578) [START_REF] Deligne | Groupes fondamentaux motiviques de Tate mixte[END_REF]236) q 8 9 11 13 (a q , t q ) (300, 222) (302, 183) (300, 191) (382, 283) (w q , t q ) (18, 207) [START_REF] Deligne | Groupes fondamentaux motiviques de Tate mixte[END_REF]199) [START_REF] Deligne | Groupes fondamentaux motiviques de Tate mixte[END_REF]199) [START_REF] Deligne | Groupes fondamentaux motiviques de Tate mixte[END_REF]218) Compatibility: Compatibility holds for some initial cases. Precisely, we verified that ∆(w 1 ¡w 2 ) = ∆(w 1 )∆(w 2 ) holds for all words w 1 , w 2 ∈ Σ with weight(w 1 ) + weight w 2 ≤ 12 within t q seconds of execution time respectively, where t 2 = 1965, t 3 = 1414, t 4 = 450, t 5 = 825, t 7 = 800, t 8 = 365, t 9 = 506, t 11 = 793, t 13 = 789. Further, when q = 9, we verified for all words w 1 , w 2 ∈ Σ with weight(w 1 ) + weight(w 2 ) ≤ 13 within 2450 seconds of execution time.

Coproduct of depth one

This section aims to prove Shi's conjecture on a Hopf algebra structure of the shuffle algebra (see Theorem 8.9). To do so we study coproduct for words of depth one and deduce that the coproduct ∆ coincides with that introduced by Shi (see Proposition 8.8). Explicit formulas for coproduct of such words are given in many cases in §8.5 and the Appendix A.

Bracket operators.

In the next section we will give a formula for ∆(x n ) for all n ∈ N (see Prop 8.6). To do so, we need some preparatory results. Lemma 8.1. Let n be a natural number. We have (1) for all j < n,

∆ j 1,n = 1 if (q -1) | j 0 otherwise.
(

) ∆ n 1,n = 0. 2 
Proof. The result is straightforward from the definition of ∆ j 1,n .

Remark 8.2. It follows from Lemma 8.1 that for all j, n, m ∈ N with j < n < m, we may identify ∆ j 1,n = ∆ j 1,m .

We recall that Σ is the set of all words over Σ = {x n } n∈N . Let a = x i1 • • • x ir be a non-empty word in Σ . We define the bracket operator by the following formula:

(8.1) [a] := (-1) r ∆ i1 1,w(a)+1 • • • ∆ ir 1,w(a)+1 x i1 ¡ • • • ¡ x ir .
As a matter of convention, we also agree that [1] = 1. The following lemmas will be useful. 

¡ [c] = (-1) r+s ∆ i1 1,w(b)+1 • • • ∆ ir 1,w(b)+1 ∆ j1 1,w(c)+1 • • • ∆ js 1,w(c)+1 (x i1 ¡ • • • ¡ x ir ) ¡ (x j1 ¡ • • • ¡ x js ) = (-1) r+s ∆ i1 1,w(bc)+1 • • • ∆ ir 1,w(bc)+1 ∆ j1 1,w(bc)+1 • • • ∆ js 1,w(bc)+1 x i1 ¡ • • • ¡ x ir ¡ x j1 ¡ • • • ¡ x js = [bc].
This proves the lemma.

Lemma 8.4. Let a be a word in Σ . If (q -1) w(a), then [a] = 0.

Proof. We may assume that a = x i1 • • • x ir , so that w(a

) = i 1 + • • • + i r . If (q -1)
w(a), then there exists an index i k for 1 ≤ k ≤ r such that (q -1) i k . It follows from Lemma 8.1 that ∆ i k 1,w(a)+1 = 0, and hence [a] = 0. This proves the lemma.

For the convenience of computation, we introduce the following result.

Lemma 8.5. Let u and v be two non-empty words in Σ . Suppose that

∆(u) = 1 ⊗ u + u (1) ⊗ u (2) , ∆(v) = 1 ⊗ v + v (1) ⊗ v (2) . Then ∆(u v) = 1 ⊗ (u v) + (u (1) v (1) ) ⊗ (u (2) ¡ v (2) ).
Proof. From the compatibility, we have

∆(u ¡ v) = ∆(u) ¡ ∆(v) = 1 ⊗ (u ¡ v) + u (1) ⊗ (u (2) ¡ v) + v (1) ⊗ (u ¡ v (2) ) + (u (1) ¡ v (1) ) ⊗ (u (2) ¡ v (2)
).

On the other hand, it follows from Lemma 7.8 that

∆(u v) = 1 ⊗ (u v) + u (1) ⊗ (u (2) ¡ v) + (u (1) v (1) ) ⊗ (u (2) ¡ v (2) ), ∆(v u) = 1 ⊗ (v u) + v (1) ⊗ (u ¡ v (2) ) + (v (1) u (1) ) ⊗ (u (2) ¡ v (2) ). Thus ∆(u v) = ∆(u ¡ v -u v -v u) = ∆(u ¡ v) -∆(u v) -∆(v u) = 1 ⊗ (u ¡ v -u v -v u) + (u (1) ¡ v (1) -u (1) v (1) -v (1) u (1) ) ⊗ (u (2) ¡ v (2) ) = 1 ⊗ (u v) + (u (1) v (1) ) ⊗ (u (2) ¡ v (2) ).
This proves the lemma.

8.2.

A formula for the coproduct of depth one.

The first result of this section reads as follows.

Proposition 8.6. For all n ∈ N, we have

∆(x n ) = 1 ⊗ x n + r∈N,a∈ Σ r+w(a)=n r + depth(a) -2 depth(a) x r ⊗ [a].
Here we recall that [a] is given as in (8.1).

The rest of this section is devoted to a proof of Proposition 8.6. We proceed the proof by induction on n. For n = 1, we have

∆(x 1 ) = 1 ⊗ x 1 + -1 0 x 1 ⊗ [1] = 1 ⊗ x 1 + x 1 ⊗ 1,
which proves the base step. We assume that Proposition 8.6 holds for all n ≤ m with m ∈ N and m ≥ 1. We need to show that Proposition 8.6 holds for n = m + 1. Indeed, from the induction hypothesis, we have

∆(x m ) = 1 ⊗ x m + r∈N,a∈ Σ r+w(a)=m r + depth(a) -2 depth(a) x r ⊗ [a],
hence it follows from Lemma 8.5 that

∆(x 1 x m ) = 1 ⊗ (x 1 x m ) + r∈N,a∈ Σ r+w(a)=m r + depth(a) -2 depth(a) (x 1 x r ) ⊗ [a] (8.2) = 1 ⊗ x m+1 + i+j=m+1 ∆ j 1,m 1 ⊗ x j x j + r∈N,a∈ Σ r+w(a)=m r + depth(a) -2 depth(a) x r+1 ⊗ [a] + r∈N,a∈ Σ r+w(a)=m r + depth(a) -2 depth(a) h+k=r+1 ∆ k 1,r x h x k ⊗ [a].
On the other hand, we have

(8.3) ∆(x 1 x m ) = ∆(x m+1 + i+j=m+1 ∆ j 1,m x i x j ) = ∆(x m+1 ) + i+j=m+1 ∆ j 1,m ∆(x i x j ).
From the induction hypothesis, it follows that for all i, j ∈ N such that i+j = m+1,

∆(x i ) = 1 ⊗ x i + s∈N,b∈ Σ s+w(b)=i s + depth(b) -2 depth(b) x s ⊗ [b], ∆(x j ) = 1 ⊗ x j + t∈N,c∈ Σ t+w(c)=j t + depth(c) -2 depth(c) x t ⊗ [c], hence ∆(x i x j ) = 1 ⊗ x i x j + s∈N,b∈ Σ s+w(b)=i s + depth(b) -2 depth(b) x s ⊗ ([b] ¡ x j ) (8.4) + s,t∈N;b,c∈ Σ s+w(b)=i t+w(c)=j s + depth(b) -2 depth(b) t + depth(c) -2 depth(c) x s x t ⊗ ([b] ¡ [c]).
From (8.2), (8.3) and (8.4), we have

∆(x m+1 ) = ∆(x 1 x m ) - i+j=m+1 ∆ j 1,m ∆(x i x j ) = 1 ⊗ x m+1 + S 1 + S 2 ,
where

S 1 = r∈N,a∈ Σ r+w(a)=m r + depth(a) -2 depth(a) x r+1 ⊗ [a] - i+j=m+1 ∆ j 1,m s∈N,b∈ Σ s+w(b)=i s + depth(b) -2 depth(b) x s ⊗ ([b] ¡ x j ), S 2 = r∈N,a∈ Σ r+w(a)=m r + depth(a) -2 depth(a) h+k=r+1 ∆ k 1,r x h x k ⊗ [a] - i+j=m+1 ∆ j 1,m s,t∈N;b,c∈ Σ s+w(b)=i t+w(c)=j s + depth(b) -2 depth(b) t + depth(c) -2 depth(c) x s x t ⊗ ([b] ¡ [c]).
We next compute the sums S 1 and S 2 as follows.

8.2.1. The sum S 1 . We first note that if j < m then it follows from Remark 8.2 and Lemma 8.3 that (-∆ j

1,m )([b] ¡ x j ) = [b] ¡ [x j ] = [bx j ].
Thus we have

S 1 = r∈N,a∈ Σ r+w(a)=m r + depth(a) -2 depth(a) x r+1 ⊗ [a] - i+j=m+1 ∆ j 1,m s∈N,b∈ Σ s+w(b)=i s + depth(b) -2 depth(b) x s ⊗ ([b] ¡ x j ) = m+1 r=2 a∈ Σ r+w(a)=m+1 r -1 + depth(a) -2 depth(a) x r ⊗ [a] + m s=1 j∈N,b∈ Σ s+w(b)+j=m+1 s + depth(b) -2 depth(b) x s ⊗ (-∆ j 1,m )([b] ¡ x j ) = m -2 0 x m+1 ⊗ [1] + m r=2 a∈ Σ r+w(a)=m+1 r -1 + depth(a) -2 depth(a) x r ⊗ [a] + m s=2 j∈N,b∈ Σ s+w(b)+j=m+1 s + depth(b) -2 depth(b) x s ⊗ (-∆ j 1,m )([b] ¡ x j ) + j∈N,b∈ Σ w(b)+j=m depth(b) -1 depth(b) x 1 ⊗ (-∆ j 1,m )([b] ¡ x j ) = x m+1 ⊗ 1 + m r=2 a∈ Σ r+w(a)=m+1 r + depth(a) -3 depth(a) x r ⊗ [a] + m s=2 j∈N,b∈ Σ s+w(b)+j=m+1 s + depth(b) -2 depth(b) x s ⊗ [bx j ] + j∈N,b∈ Σ w(b)+j=m depth(b) -1 depth(b) x 1 ⊗ (-∆ j 1,m )([b] ¡ x j ) = x m+1 ⊗ 1 + m r=2 a∈ Σ r+w(a)=m+1 r + depth(a) -3 depth(a) + r + depth(a) -3 depth(a) -1 x r ⊗ [a] + j∈N,b∈ Σ w(b)+j=m depth(b) -1 depth(b) x 1 ⊗ (-∆ j 1,m )([b] ¡ x j ) = x m+1 ⊗ 1 + m r=2 a∈ Σ r+w(a)=m+1 r + depth(a) -2 depth(a) x r ⊗ [a] + j∈N,b∈ Σ w(b)+j=m depth(b) -1 depth(b) x 1 ⊗ (-∆ j 1,m )([b] ¡ x j ).
We claim that for all j ∈ N and for all b ∈ Σ with j + w(b) = m,

(8.5) depth(b) -1 depth(b) x 1 ⊗ (-∆ j 1,m )([b] ¡ x j ) = 0.
Indeed, if j = m, then it follows from Lemma 8.1 that ∆ m 1,m = 0, hence (8.5) holds.

If j < m, then w(b) ≥ 1, i.e., depth(b) ≥ 1, hence depth(b)-1 depth(b)
= 0, showing that (8.5) holds. This proves the claim. As a consequence, one may identify

j∈N,b∈ Σ w(b)+j=m depth(b) -1 depth(b) x 1 ⊗(-∆ j 1,m )([b]¡x j ) = a∈ Σ w(a)=m depth(a) -1 depth(a) x 1 ⊗[a] = 0.
Thus

S 1 = x m+1 ⊗ [1] + m r=2 a∈ Σ r+w(a)=m+1 r + depth(a) -2 depth(a) x r ⊗ [a] + a∈ Σ w(a)=m depth(a) -1 depth(a) x 1 ⊗ [a] = m+1 r=1 a∈ Σ r+w(a)=m+1 r + depth(a) -2 depth(a) x r ⊗ [a] = r∈N,a∈ Σ r+w(a)=m+1 r + depth(a) -2 depth(a) x r ⊗ [a].
8.2.2. The sum S 2 . We claim that S 2 = 0. The following lemma will be useful.

Lemma 8.7. For positive integers h, k, l, we have;

i,j≥0 i+j=l h + i i k + j j = h + k + l + 1 l .
Proof. For all m, n ∈ N, we have

m r=0 n + r r = n + m + 1 m .
We now proceed the proof by induction on k. The base step k = 0 follows from the above identity. We assume that Lemma 8.7 holds for k ≥ 0. We need to show that Lemma 8.7 holds for k +1. From the previous identity and the induction hypothesis, we have i,j≥0 i+j=l h + i i

(k + 1) + j j = i,j≥0 i+j=l h + i i k + j + 1 j = i,j≥0 i+j=l h + i i j r=0 k + r r = l s=0 i,r≥0 i+r=s h + i i k + r r = l s=0 h + k + s + 1 s = h + k + l + 2 l .
This proves the lemma.

It follows from Lemma 8.3 that [b] ¡ [c] = [bc], hence S 2 = r∈N,a∈ Σ r+w(a)=m r + depth(a) -2 depth(a) h+k=r+1 ∆ k 1,r x h x k ⊗ [a] - i+j=m+1 ∆ j 1,m s,t∈N;b,c∈ Σ s+w(b)=i t+w(c)=j s + depth(b) -2 depth(b) t + depth(c) -2 depth(c) x s x t ⊗ [bc] = h,k∈N,a∈ Σ h+k+w(a)=m+1 h + k -1 + depth(a) -2 depth(a) ∆ k 1,h+k-1 x h x k ⊗ [a] - s,t∈N;b,c∈ Σ s+t+w(b)+w(c)=m+1 s + depth(b) -2 depth(b) t + depth(c) -2 depth(c) ∆ t+w(c) 1,m x s x t ⊗ [bc] = h,k∈N,a∈ Σ h+k+w(a)=m+1 h + k + depth(a) -3 depth(a) ∆ k 1,h+k-1 - b,c∈ Σ bc=a h + depth(b) -2 depth(b) k + depth(c) -2 depth(c) ∆ k+w(c) 1,m x h x k ⊗ [a]
We will prove that for all h, k ∈ N and for all a ∈ Σ with h + k + w(a) = m + 1, (

) h + k + depth(a) -3 depth(a) ∆ k 1,h+k-1 - b,c∈ Σ bc=a h + depth(b) -2 depth(b) k + depth(c) -2 depth(c) ∆ k+w(c) 1,m x h x k ⊗[a] = 0. 8.6 
If this is the case then S 2 = 0. We divide into three cases:

Case 1: h = 1. The LHS of (8.6) equals k + depth(a) -2 depth(a) ∆ k 1,k - b,c∈ Σ bc=a depth(b) -1 depth(b) k + depth(c) -2 depth(c) ∆ k+w(c) 1,m x 1 x k ⊗[a]. It follows from Lemma 8.1 that ∆ k 1,k = 0. Moreover, if b = 1, then depth(b) ≥ 1, hence depth(b)-1 depth(b) = 0. If b = 1, then c = a hence k + w(c) = k + w(a) = m, showing that ∆ k+w(c) 1,m = ∆ m 1,m = 0. So (8.6) holds in this case. Case 2: h ≥ 2, k = 1. The LHS of (8.6) equals h + depth(a) -2 depth(a) ∆ 1 1,h - b,c∈ Σ bc=a h + depth(b) -2 depth(b) depth(c) -1 depth(c) ∆ 1+w(c) 1,m x h x 1 ⊗[a]. Since 1 < h ≤ m, it follows from Remark 8.2 that ∆ 1 1,h = ∆ 1 1,m . Moreover, if c = 1, then depth(c) ≥ 1, hence depth(c)-1 depth(c) = 0. Then the LHS of (8.6) equals h + depth(a) -2 depth(a) ∆ 1 1,m - h + depth(a) -2 depth(a) -1 0 ∆ 1 1,m x h x 1 ⊗ [a] = 0.
So (8.6) holds in this case.

Case 3: h ≥ 2, k ≥ 2 Since k < h + k -1 ≤ m, it follows from Remark 8.2 that ∆ k 1,h+k-1 = ∆ k 1,m . Moreover, we claim that (8.7) ∆ k+w(c) 1,m x h x k ⊗ [a] = ∆ k 1,m x h x k ⊗ [a]. Indeed, note that k + w(c) < m. If (q -1) | w(c), then it follows from Lemma 8.1 that ∆ k+w(c) 1,m = ∆ k
1,m , hence (8.7) holds. If (q -1) w(c), then it follows from Lemma 8.4 that [c] = 0, hence [a] = 0, showing that (8.7) holds. Thus the LHS of (8.6) becomes

h + k + depth(a) -3 depth(a) - b,c∈ Σ bc=a h + depth(b) -2 depth(b) k + depth(c) -2 depth(c) ∆ k 1,m x h x k ⊗[a].
It follows from Lemma 8.7 that

h + k + depth(a) -3 depth(a) = b,c∈ Σ bc=a h + depth(b) -2 depth(b) k + depth(c) -2 depth(c) ,
hence (8.6) holds in this case.

From the above computations, we conclude that

∆(x m+1 ) = 1⊗x m+1 +S 1 +S 2 = 1⊗x m+1 + r∈N,a∈ Σ r+w(a)=m+1 r + depth(a) -2 depth(a) x r ⊗[a].
This proves Proposition 8.6.

8.3.

Comparison with Shi's coproduct.

In [START_REF] Shi | Multiple zeta values over Fq[END_REF], Shi defined another coproduct

∆ 1 : C → C ⊗ C.
using the concatenation rather than on recursive steps for words with depth > 1.

More precisely, we define it on Σ by induction on weight and extend by F q -linearity to C. First, we set

∆ 1 (1) := 1 ⊗ 1, ∆ 1 (x 1 ) := 1 ⊗ x 1 + x 1 ⊗ 1.
Let w ∈ N and we suppose that we have defined ∆ 1 (v) for all words v of weight w(v) < w. We now give a formula for ∆ 1 (u) for all words u with w(u) = w. For such a word u with depth(u) > 1, we put u = x u v with w(v) < w. Since x u and v are both of weight less than w, we have already defined

∆ 1 (x u ) := 1 ⊗ x u + a u ⊗ b u , ∆ 1 (v) := a v ⊗ b v .
Then we set

∆ 1 (u) := 1 ⊗ u + (a u a v ) ⊗ (b u ¡ b v ).
Our last task is to define ∆ 1 (x w ). We know that

x 1 ¡ x w-1 = x w + x 1 x w-1 + x w-1 x 1 + 0<j<w ∆ j 1,w-1 x w-j x j
where all the words x w-j x j have weight w and depth 2 and all ∆ j 1,w-1 belong to F q . Therefore, we set

∆ 1 (x w ) := ∆ 1 (x 1 )¡∆ 1 (x w-1 )-∆ 1 (x 1 x w-1 )-∆ 1 (x w-1 x 1 )- 0<j<w ∆ j 1,w-1 ∆ 1 (x w-j x j ).
As an application of Proposition 8.6, we prove: Proposition 8.8. For all words u ∈ Σ , we have

∆(u) = ∆ 1 (u).
Proof. The proof is by induction on the weight w. We have to show that for all words u of weight w,

∆(u) = ∆ 1 (u).
We denote this claim by H w .

For w = 0 and w = 1, we are done as ∆(1) = ∆ 1 (1) = 1 ⊗ 1 and ∆(x 1 ) = ∆ 1 (x 1 ) = 1 ⊗ x 1 + x 1 ⊗ 1. Suppose that for all words u with w(u) < w, we have ∆(u) = ∆ 1 (u). We will show that the claim H w holds.

Let u be a word of weight w. Suppose that the depth of u is at least 2. Then we put u = x u v with w(v) < w. By induction, we know that ∆

(v) = ∆ 1 (v). If ∆(x u ) = a u ⊗ b u , then Proposition 8.6 implies that depth(a n ) ≤ 1. Thus ∆(u) = ∆ 1 (u).
To conclude, we have to check the claim for u = x w . By induction, for all i < w,

∆(x i ) = ∆ 1 (x i ). It follows that ∆(x w ) = ∆(x 1 ) ¡ ∆(x w-1 ) -∆(x 1 x w-1 ) -∆(x w-1 x 1 ) - 0<j<w ∆ j 1,w-1 ∆(x w-j x j ) = ∆ 1 (x 1 ) ¡ ∆ 1 (x w-1 ) -∆ 1 (x 1 x w-1 ) -∆ 1 (x w-1 x 1 ) - 0<j<w ∆ j 1,w-1 ∆ 1 (x w-j x j ) = ∆ 1 (x w ).
Thus we have proved H w . The proposition follows.

In particular, we get Theorem 8.9. Conjecture 3.2.11 in [START_REF] Shi | Multiple zeta values over Fq[END_REF] holds.

Auxiliary results.

In this section we prove some auxiliary results that will be useful in the sequel. We define

x s1 x s2 . . . x sr q := x qs1 x qs2 . . . x qsr , (u ⊗ v) q := (u q) ⊗ (v q)

for u, v ∈ Σ , and extend it to be F p -linear. We define 1 q = 1 when 1 is the empty word. We recall the Lucas's theorem [START_REF] Granville | Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers[END_REF]:

a 0 + a 1 p + a 2 p 2 + • • • + a k p k b 0 + b 1 p + b 2 p 2 + • • • + b k p k ≡ a 0 b 0 a 1 b 1 a 2 b 2 . . . a k b k (mod p),
where p is a prime and 0 ≤ a i , b i < p.

Lemma 8.10. The following modular equations hold.

(

) i-1 a-1 ≡ 0 (mod p) when q i, q | a. ∆ i a,b ≡ 0 (mod p) follows when q | a, b. (2) pj-1 pa-1 ≡ j-1 a-1 (mod p) and ∆ pj pa,pb ≡ ∆ j a,b (mod p) for 0 < j < a + b. 1 
Proof. Let q = p k . To prove (1), let i = Aq + B with A, B ∈ N, 0 < B < q. We write

i -1 = Aq + (B -1) = (β 0 + β 1 p + • • • + β k-1 p k-1 ) + r s=k α s p s , and 
a -1 = (p -1) + (p -1)p + • • • + (p -1)p k-1 + r s=k α s p s with 0 ≤ α s , α s , β s < p. By Lucas's theorem, i -1 a -1 ≡ β 0 p -1 β 1 p -1 • • • β k-1 p -1 • α 1 α 1 α 2 α 2 • • • ≡ 0 (mod p),
since at least one of β s < p -1. (Note that B < q.) For (2), pj-1 pa-1 ≡ j-1 a-1 (mod p) is verified by similar routine calculations with Lucas's theorem. Lemma 8.11. For all words u, v ∈ C, we have

(u ¡ v) q = (u q) ¡ (v q). Equivalently, if u ¡ v = a i , then (u q) ¡ (v q) = (a i q).
Proof. Let u = x u , v = x v be depth one words. We have

x u ¡ x v = x u+v + x u + x v + 0<i<u+v ∆ i u,v x u+v-i x i , x qu ¡ x qv = x q(u+v) + x qu + x qv + 0<i<q (u+v) 
∆ i qu,qv x q(u+v)-i x i .

By Lemma 8.10, 0<i<q

∆ i qu,qv x q(u+v)-i x i = q|i, 0<i<q (u+v) 
∆ i qu,qv x q(u+v)-i x i = 0<j<u+v ∆ qj qu,qv x q(u+v-j) x qj = 0<j<u+v ∆ qj u,v x q(u+v-j) x qj . (u+v) 
Thus the lemma is proved for depth 1 words u, v. By the induction on depth(u) + depth(v), we can conclude the general result.

We recall that ∆(1) = 1⊗1, ∆(x 1 ) = 1⊗x 1 +x 1 ⊗1 by definition, and ∆(u) ∈ C⊗C is defined for other all words u. Proposition 8.12. For all integers 1 ≤ n ≤ q,

(8.8) ∆(x n ) = 1 ⊗ x n + x n ⊗ 1.
Proof. (8.8) holds when n = 1. Let 2 ≤ n ≤ q, and assume (8.8) holds for 1, 2, . . . , n -1. Then,

x 1 ¡ x n-1 = x 1 x n-1 + x n-1 x 1 + x n + q-1|j 0<j<n ∆ j 1,n-1 x n-j x j .
The term here is empty sum for n < q, and when n = q, j = q -1 term is the only possible index. ∆ q-1 1,q-1 = q-2 q-2 + (-1) q q-2 q-2 vanishes for all q, so

x 1 ¡ x n-1 = x 1 x n-1 + x n-1 x 1 + x n , that is, ∆(x 1 )∆(x n-1 ) = ∆(x 1 x n-1 ) + ∆(x n-1 x 1 ) + ∆(x n ).
By calculation and the induction hypothesis, we have

∆(x 1 )∆(x n-1 ) = (1 ⊗ x 1 + x 1 ⊗ 1)(1 ⊗ x n-1 + x n-1 ⊗ 1) = 1 ⊗ (x 1 ¡ x n-1 ) + x n-1 ⊗ x 1 + x 1 ⊗ x n-1 + (x 1 ¡ x n-1 ) ⊗ 1, ∆(x 1 x n-1 ) = e ⊗ x 1 x n-1 + x 1 ⊗ x n-1 + x 1 x n-1 ⊗ 1, ∆(x n-1 x 1 ) = 1 ⊗ x n-1 x 1 + x n-1 ⊗ x 1 + x n-1 x 1 ⊗ 1 Recall x 1 ¡ x n-1 = x 1 x n-1 + x n-1 x 1 + x n to have ∆(x n ) = 1 ⊗ x n + x n ⊗ 1.
Proposition 8.13. For all n ∈ N, we have

∆(x qn ) = ∆(x n ) q
for all n ∈ N. This can be stated as follows: letting

∆(x n ) = e ⊗ x n + a n ⊗ b n we get ∆(x qn ) = e ⊗ x qn + i (a n q) ⊗ (b n q).
Proof. The statement holds for n = 1 by Proposition 8.12.

Assume that the statement holds for all n ≤ w. Say ∆(x w ) = 1⊗x w + a w ⊗b w . Since

x w ¡ x 1 = x w+1 + x w x 1 + x 1 x w + 0<j<w+1 ∆ j 1,w x w+1-j x j , ∆(x w x 1 ) = 1 ⊗ x w x 1 + (a w x 1 ) ⊗ b w + a w ⊗ (b w ¡ x 1 ), ∆(x 1 x w ) = 1 ⊗ x 1 x w + x 1 ⊗ x w + (x 1 a w ) ⊗ b w , we have ∆(x w+1 ) = 1 ⊗ (x 1 ¡ x w ) + x 1 ⊗ x w + a w ⊗ (b w ¡ x 1 ) + (a w ¡ x 1 ) ⊗ b w -1 ⊗ x w x 1 - (a w x 1 ) ⊗ b w - a w ⊗ (b w ¡ x 1 ) -1 ⊗ x 1 x w -x 1 ⊗ x w - (x 1 a w ) ⊗ b w - 0<j<w+1 ∆ j 1,w ∆(x w+1-j x j )
By the induction hypothesis, ∆(x qw ) = 1 ⊗ x qw + (a w q) ⊗ (b w q). Note that ∆(x q ) = 1 ⊗ x q + x q ⊗ 1 by Proposition 8.12 and since we proved the compatibility for ∆,

x qw ¡ x q = x q(w+1) + x qw x q + x q x qw + 0<j<q(w+1) ∆ j q,qw x qw+q-j x j , ∆(x qw x q ) = 1 ⊗ x qw x q + ((a w q) x q ) ⊗ (b w q) + (a w q) ⊗ ((b w q) ¡ x q ), ∆(x q x qw ) = 1 ⊗ x q x qw + x q ⊗ x qw + (x q (a w q)) ⊗ (b w q), we have ∆(x qw+q ) = 1 ⊗ (x q ¡ x qw ) + x q ⊗ x qw + (a w q) ⊗ ((b w q) ¡ x q ) + ((a w q) ¡ x q ) ⊗ (b w q) -1 ⊗ x qw x q - ((a w q) x q ) ⊗ (b w q) - (a w q) ⊗ ((b w q) ¡ x q ) -1 ⊗ x q x qw -x q ⊗ x qw - (x q (a w q)) ⊗ (b w q) Lemma 8.17. Let 1 ≤ A, B ≤ q -1 with A + B ≤ q. Then
x Aq ¡ x B(q-1) = x Aq+B(q-1) + x B(q-1) x Aq .

Proof. Let n = Aq + B(q -1) = (A + B)(q -1) + A. Since 1 < A ≤ q -1,

x Aq ¡ x B(q-1) = x n + x Aq x B(q-1) + x B(q-1) x Aq + S 1 + S 2
where

S 1 = (-1) A-1 A+B i=1 i(q -1) -1 Aq -1 x n-i(q-1) x i(q-1) , S 2 = - A+B i=1 i(q -1) -1 B(q -1) -1
x n-i(q-1) x i(q-1) .

From Lemma 8.10, i(q-1) Aq vanishes only when q | i, which is possible only when A + B = q. In this case, the only nonzero summand is

(-1) A-1 q(q -1) -1 Aq -1 ≡ (-1) A-1 q -2 A -1 ≡ A (mod p),
thus S 1 = 0, (A + B < q) Ax n-q(q-1) x q(q-1) . (A + B = q) For S 2 , when i < q, (i -1)q + q -i -1 (B -1)q + (q -B -1)

≡ i -1 B -1 q -i -1 q -B -1 , (mod p)
is nonzero only when i = B. Thus, if A + B ≤ q -1, S 2 = -x Aq x B(q-1) . When A + B = q, the coefficient for the summand corresponding to i = q is (q -2)q + (q -1) (B -1)q + (q -B -1)

≡ q -2 B -1 q -1 q -B -1 ≡ -B (mod p),
so S 2 = -x Aq x B(q-1) , (A + B < q) -x Aq x B(q-1) + Bx n-q(q-1) x q(q-1) , (A + B = q) which yields

S 1 + S 2 = -x Aq x B(q-1)
in any case. Thus we have

x Aq ¡ x B(q-1) = x Aq+B(q-1) + x B(q-1) x Aq as we desired.

Proposition 8.18. When q + 1 ≤ n ≤ q 2 , with some 1 ≤ k < q such that kq + 1 ≤ n ≤ (k + 1)q, we have;

∆(x n ) = 1 ⊗ x n + x n ⊗ 1 -nx n-q+1 ⊗ x q-1 + n(n + 1) 2 x n-2q+2 ⊗ x 2q-2 -. . . + (-1) k n + k -1 k x n-kq+k ⊗ x kq-k = 1 ⊗ x n + x n ⊗ 1 + k i=1 (-1) i n -1 + i i x n-i(q-1) ⊗ x i(q-1) .
Proof. Note that q | n and (q -1) | n cases are already treated above. Note that Lemma 8.14 coincides with the statement as follows: when n = r(q -1) with 2 ≤ r ≤ q, then (-1) i rq -r -

1 + i i = (-1) i (r -1)q + (q -r -1 + i) i ≡ (-1) i r -1 0 q -r -1 + i i = (-1) i i! • (q -(r -i + 1))(q -(r -i + 2)) . . . 1 (q -(r + 1))(q -(r + 2)) . . . 1 ≡ (-1) i i! • (-1) q-(r-i+1)+(q-r-1) ((r -i + 1) -q)((r -i + 2) -q) . . . ((q -1) -q) ((r + 1) -q)((r + 2) -q) . . . ((q -1) -q) = r! i!(r -i)! = r i (mod p),
by Lucas's theorem and calculations. This kind of calculation will be used often. We show the k = 1 case for the initial step. The statement for k = 1 is for q + 1 ≤ n ≤ 2q, but it also holds for n = q, since -qx 1 x q-1 term vanishes over F p . Based on this initial case, we let q + 1 ≤ n < 2q, and assume that the statement holds for all q, q + 1, . . . , n -1. Then,

x 1 ¡ x n-1 = x 1 x n-1 + x n-1 x 1 + x n + q-1|j j<n ∆ j 1,n-1 x n-j x j .
Note that j = q -1 yields a summand. There is another summand for j = 2q -2 only when n = 2q -1. Since q + 1 ≤ n, ∆ q-1 1,n-1 = 1. Also since ∆ 2q-2 1,(2q-1)-1 = 1 + (-1) 2q-1 = 0,we have

x 1 ¡ x n-1 = x 1 x n-1 + x n-1 x 1 + x n + x n-q+1 x q-1 , thus ∆(x 1 ) ¡ ∆(x n-1 ) = ∆(x 1 x n-1 ) + ∆(x n-1 x 1 ) + ∆(x n-q+1 x q-1 ) + ∆(x n ),
and a routine calculation with the induction hypothesis yields the result. We divide the remaining cases into two subcases:

when n = kq + b = k(q -1) + (k + b) with 1 ≤ k, b ≤ q -1, (1) 2 ≤ k + b < q -1 and (2) q ≤ k + b. Define a temporal function ∆ to be ∆ (u) = ∆(u) -1 ⊗ u -u ⊗ 1.
(1) Assume that the statement holds for all kq + b with k + b < q -1 and k < κ, for some κ ≥ 2. Let b ∈ N with κ + b < q -1, and let n = κq + b. We have

x κq ¡ x b = x κq+b + x κq x b + x b x κq + κ i=1 ∆ i(q-1) κq,b x n-i(q-1) x i(q-1) , ∆(x κq ) = 1 ⊗ x κq + x κq ⊗ 1, ∆(x b ) = 1 ⊗ x b + x b ⊗ 1, ∆(x κq x b ) = 1 ⊗ x κq x b + x κq ⊗ x b + x κq x b ⊗ 1, ∆(x b x κq ) = 1 ⊗ x b x κq + x b ⊗ x κq + x b x κq ⊗ 1, so ∆(x κq ¡ x b ) = ∆(x κq+b ) + 1 ⊗ x κq x b + x κq ⊗ x b + x κq x b ⊗ 1 + 1 ⊗ x b x κq + x b ⊗ x κq + x b x κq ⊗ 1 + κ i=1 ∆ i(q-1) κq,b ∆(x n-i(q-1) x i(q-1) ) = x κq ⊗ x b + x b ⊗ x κq + 1 ⊗ x κq+b + 1 ⊗ x κq x b + 1 ⊗ x b x κq + κ i=1 ∆ i(q-1)
κq,b 1 ⊗ x n-i(q-1) x i(q-1)

+ x κq+b ⊗ 1 + x κq x b ⊗ 1 + x b x κq ⊗ 1 + κ i=1 ∆ i(q-1) κq,b x n-i(q-1) x i(q-1) ⊗ 1, thus ∆(x κq+b ) = 1 ⊗ x κq+b + x κq+b ⊗ 1 - κ i=1 ∆ i(q-1)
κq,b ∆ (x n-i(q-1) x i(q-1) ), for 1 ≤ i ≤ κ, i(q -1) < κq. Also since b < q, Lucas's theorem and some calculations yield iq-i-1 b-1

≡ q-1-i b-1 ≡ (-1) b-1 b+i-1 b-1 (mod p), so ∆(x κq+b ) = 1 ⊗ x κq+b + x κq+b ⊗ 1 - κ i=1 b + i -1 b -1 ∆ (x n-i(q-1) x i(q-1) ). (8.10) 
Let a i = n-i(q-1) = (κ-i)q+(b+i) and b i = i(q-1). Note that b+i ≤ b+κ < q-1, so by induction hypothesis we have

∆(x ai ) = 1 ⊗ x ai + x ai ⊗ 1 + κ-i j=1 (-1) j b + i + j -1 j
x ai-j(q-1) ⊗ x j(q-1) ,

∆(x bi ) = 1 ⊗ x bi + x bi ⊗ 1 + i-1 s=1 i s x s(q-1) ⊗ x (i-s)(q-1) , ∆(x ai x bi ) = 1 ⊗ x ai x bi + x ai ⊗ x bi + x ai x bi ⊗ 1 + i-1 s=1 i s x ai x s(q-1) ⊗ x (i-s)(q-1) + κ-i j=1 (-1) j b + i + j -1 j x ai-j(q-1) ⊗ x j(q-1) ¡ x bi + κ-i j=1 (-1) j b + i + j -1 j x ai-j(q-1) x bi ⊗ x j(q-1) + κ-i j=1 i-1 s=1 (-1) j b + i + j -1 j i s
x ai-j(q-1) x s(q-1) ⊗ x j(q-1) ¡ x (i-s)(q-1)

= 1 ⊗ x ai x bi + x ai ⊗ x bi + x ai x bi ⊗ 1 + i-1 s=1 i s x ai x s(q-1) ⊗ x (i-s)(q-1) + κ-i j=1 (-1) j b + i + j -1 j x ai-j(q-1) ⊗ x (i+j)(q-1) + κ-i j=1 (-1) j b + i + j -1 j
x ai-j(q-1) x bi ⊗ x j(q-1)

+ κ-i j=1 i-1 s=1 (-1) j b + i + j -1 j i s x ai-j(q-1) x s(q-1) ⊗ x (i+j-s)(q-1)
by (8.9). By manipulating indices combining sums,

∆ (x ai x bi ) = x ai ⊗ x bi + i-1 s=1 i s x ai x (i-s)(q-1) ⊗ x s(q-1) + + κ j=i+1 (-1) j-i b + j -1 j -i x ai+(i-j)(q-1) ⊗ x j(q-1) + κ-i j=1 ∞ s=0 1 [0,i) (s)(-1) j b + i + j -1 j i s x ai-j(q-1) x (i-s)(q-1) ⊗ x (j+s)(q-1)
where 1 [0,i) (s) = 1 when 0 ≤ s < i, otherwise 0. So recalling the previous calculation (8.10),

∆ (x κq+b ) = - κ i=1 b + i -1 b -1 ∆ (x ai x bi ) = S 1 + S 2 + S 3 ,
where

S 1 = - κ i=1 b + i -1 b -1 x ai ⊗ x bi , S 2 = - κ i=2 (-1) i i-1 j=1 (-1) j b + j -1 b -1 b + i -1 i -j x ai ⊗ x bi , S 3 = - κ i=1 κ-i j=0 ∞ s=0 1 [0,i) (s)(-1) j b + i -1 b -1 b + i + j -1 j i s x ai-bj x bi-s ⊗ x bj+s
We show that S 1 + S 2 yields the desired equation, and S 3 vanishes. One can see that

sum for i = 1 in S 1 is -bx n-q+1 ⊗ x q-1 .
For the remaining terms in S 1 + S 2 , we can prove

- b + i -1 b -1 -(-1) i i-1 j=1 (-1) j b + j -1 b -1 b + i -1 i -j = (-1) i b + i -1 i for i ≥ 2 and 1 ≤ b < q from the equation b + j -1 b -1 b + i -1 i -j = i j b + i -1 b -1
and the binomial equation i-1 j=1 (-1) j i j = -1 -(-1) i . Thus it is enough to show that S 3 = 0. We manipulate indices as u = j + s, and then v = i + j, to have

-S 3 = ∞ u=0 κ i=1 κ-i j=0 1 [0,i) (u -j)(-1) j b + i -1 b -1 b + i + j -1 j i u -j x ai-bj x bi+j-u ⊗ x bu = κ u=1 κ v=1 v i=1 1 [0,i) (u -v + i)(-1) v-i b + i -1 b -1 b + v -1 v -i i v -u x ai-bv-i x bv-u ⊗ x bu .
The coefficient for

x ai-(v-i)(q-1) x (v-u)(q-1) ⊗ x u(q-1) of -S 3 vanishes when u ≥ v due to 1 [0,i) (u -v + i) = 0 factor. Otherwise, it is v i=1 1 [0,i) (u -v + i)(-1) v-i b + i -1 b -1 b + v -1 v -i i v -u = v i=v-u (-1) v-i b + i -1 b -1 b + v -1 v -i i v -u = u i=0 (-1) u-i b + i + v -u -1 b -1 b + v -1 u -i i + v -u v -u = (-1) u (b + v -1)! u!(b -1)!(v -u)! u i=0 (-1) i u! i!(u -i)! = 0.
Thus we are done.

(2) Let n = κq + b, and suppose that q -1 < κ + b. We have that n = κq + b = (κ + 1)(q -1) + (κ + b -q + 1) with 0 < κ + b -q + 1 < q. We exclude the n = q 2 -1 case, i.e. κ = b = q -1 case, since it is already treated earlier, so that 0 < κ + b -q + 1 ≤ q -2.

Let A = κ + b -q + 1, B = q -b. Then n = Aq + B(q -1), 1 ≤ A ≤ q -2, 1 ≤ B ≤ q -1, and A + B = κ + 1. What we need to prove turns out to be (8.11) ∆(

x n ) = 1 ⊗ x n + x n ⊗ 1 + B i=1 B i x n-i(q-1) ⊗ x i(q-1)
in terms of A and B, by Lucas's theorem and direct calculations. From Lemma 8.17,

x Aq ¡ x B(q-1) = x n + x B(q-1) x Aq for all A, B with A + B = κ + 1 ≤ q.

Now we can show that ∆(x Aq ¡ x B(q-1)

) = ∆(x Aq ) ¡ ∆(x B(q-1) ). From ∆(x B(q-1) ) = 1 ⊗ x B(q-1) + x B(q-1) ⊗ 1 + B-1 j=1 B j x j(q-1) ⊗ x (B-j)(q-1) , ∆(x Aq ) = 1 ⊗ x Aq + x Aq ⊗ 1, we have ∆(x B(q-1) x Aq ) = 1 ⊗ x B(q-1) x Aq + x B(q-1) ⊗ x Aq + x B(q-1) x Aq ⊗ 1 + B-1 j=1 B j
x j(q-1) ⊗ x Aq ¡ x (B-j)(q-1) + B-1 j=1 B j x j(q-1) x Aq ⊗ x (B-j)(q-1)

= 1 ⊗ x B(q-1) x Aq + x B(q-1) ⊗ x Aq + x B(q-1) x Aq ⊗ 1 + B-1 j=1 B j x j(q-1) ⊗ x Aq+(B-j)(q-1) + x (B-j)(q-1) x Aq

+ B-1 j=1 B j x j(q-1) x Aq ⊗ x (B-j)(q-1) , thus ∆(x Aq ¡ x B(q-1) ) = ∆(n) + 1 ⊗ x B(q-1) x Aq + x B(q-1) ⊗ x Aq + x B(q-1) x Aq ⊗ 1 + B-1 j=1 B j x j(q-1) ⊗ x Aq+(B-j)(q-1) + x (B-j)(q-1) x Aq + B-1 j=1 B j x j(q-1) x Aq ⊗ x (B-j)(q-1) = ∆(x Aq ) ¡ ∆(x B(q-1) ) = x Aq ⊗ x B(q-1) + x Aq ¡ B(q-1) ⊗1 + B-1 j=1 B j
x Aq ¡ x j(q-1) ⊗ x (B-j)(q-1)

+ 1 ⊗ x B(q-1) ¡ x Aq + x B(q-1) ⊗ x Aq + B-1 j=1 B j
x j(q-1) ⊗ x (B-j)(q-1) ¡ x Aq , so routine calculation yields

∆(x n ) = 1 ⊗ x n + x n ⊗ 1 + x Aq ⊗ x B(q-1) + B-1 j=1 B j
x n-(B-j)(q-1) ⊗ x (B-j)(q-1)

= 1 ⊗ x n + x n ⊗ 1 + B j=1 B j
x n-j(q-1) ⊗ x j(q-1) , which is (8.11), thus we are done.

We mention that some explicit formulas for ∆(x n ) with n > q 2 can be found in the appendix (see Appendix A).

Stuffle Hopf algebra and stuffle map in positive characteristic

In this section we define the stuffle algebra and the stuffle map in positive characteristic. The stuffle algebra is easy to define. However, to define the stuffle map we make use of a deep connection between the K-vector space spanned by the MZV's in positive characteristic and that spanned by the multiple polylogarithms in positive characteristic proved in [START_REF] Im | Zagier-Hoffman's conjectures in positive characteristic[END_REF][START_REF] Dac | On Zagier-Hoffman's conjectures in positive characteristic[END_REF] (see Theorem 9.4). 9.1. The stuffle algebra in positive characteristic.

We recall that the composition space C is introduced in §4.2. We define the stuffle product in the same way as that of (h 1 , * ) as given in §3. Proof. The proof follows the same line as that of (h 1 , * ) (see §3.3). 9.2. Hopf algebra structure.

We now define a coproduct ∆ * : C ⊗ C → C and a counit : Here by convention we define empty sums to be 0 and empty products to be 1. In particular, Si <d of the empty tuple is equal to 1.

C → F q by ∆ * (u) =
Then we define the Carlitz multiple polygarithm (CMPL for short) as follows

Li(s) = d≥0 Si d (s) = d1>•••>dn≥0 1 s1 d1 . . . sn dn ∈ K ∞ .
We agree also that Li(∅) = 1. We call depth(s) = n the depth, w(s) = s 1 + • • • + s n the weight of Li(s).

Lemma 9.3. For all s as above such that s i ≤ q for all i, we have

S d (s) = Si d (s) for all d ∈ Z.
Therefore, ζ A (s) = Li(s). 

1 . Introduction 1 . 1 .

 111 Classical multiple zeta values.

ζ(n 1

 1 , . . . , n r ) = 0<k1<•••<kr 1 k n1 1 . . . k nr rDate: January 13, 2023.

1

 1 

Conjecture 1 . 3 (

 13 Zagier's conjecture). We define a Fibonacci-like sequence of integers d k as follows. Letting d 0 = 1, d 1 = 0 and d 2 = 1 we define d k = d k-2 + d k-3 for k ≥ 3. Then for k ∈ N we have

10 ]

 10 Carlitz introduced the Carlitz zeta values ζ A (n) for n ∈ N given by ζ A (n) := a∈A+ 1 a n ∈ K ∞ which are analogues of classical special zeta values in the function field setting. For any tuple of positive integers s = (s 1 , . . . , s r ) ∈ N r , Thakur [50] defined the characteristic p multiple zeta value (MZV for short) ζ A (s) or ζ A (s 1 , . . . , s r ) by ζ A (s) := 1 a s1 1 . . . a sr r ∈ K ∞

  for any words a, b ∈ Σ , Here the coefficients ∆ i a,b are given by

1. 3 . 4 .

 34 Comparison with Shi's construction.

  arrows in the second diagram and the third diagram are canonical isomorphisms. Definition 2.4. A Hopf algebra over k is a bialgebra (H, m, u, ∆, ) over k together with a k-linear map S : H → H called antipode such that the following diagram is commutative:

Proposition 5 . 3 .

 53 The diamond product and the shuffle product are commutative. Proof. Let a, b ∈ Σ be two arbitrary words. It is suffices to show that (5.2) a b = b a and a ¡ b = b ¡ a.

Proposition 6 . 4 .of 1 a r b s • 1 c t and 1 a r • 1 b

 641 Let r, s, t be positive integers. The expansions using Corollary 6.3 s c t yield the same expression in terms of power sums, where (a, b, c) ranges over all tuples in the sets M

6. 2 . 3 .

 23 Depth 2 terms: proof of Proposition 6.4, Part 2.

S

  d (a)S <d (b) = S <d (b)S d (a) = S d (a 1 )(S <d (a -)S <d (b)), (6.26) S <d (a)S <d (b) = i<d S i (a)S i (b) + i<d S i (a)S <i (b) + i<d S i (b)S <i (a). (6.27) Let a, b, c be positive tuples. We first give the expansions of (S d (a)S d (b))S d (c) and S d (a)(S d (b)S d (c)) by using Formula (6.25). 6.5.1. We expand (S d (a)S d (b))S d (c) as follows. We have; (S d (a)S d (b))S d (c) (6.28) = S d (a 1 + b 1 )(S <d (a -)S <d (b -)) + i+j=a1+b1 ∆ j a1,b1 S d (i)[S <d (j)(S <d (a -)S <d (b -))] S d (c)

  j<i S j (b)S <j (a) = i<d (S i (a)S i (b))S i (c) + i<d (S i (a)S i (b))S <i (c) + i<d (S i (a)S <i (b))S i (c) + i<d (S i (a)S <i (b))S <i (c) + i<d (S i (b)S <i (a))S i (c) + i<d (S i (b)S <i (a))S <i (c) + i<d S i (c) j<i S j (a)S j (b) + j<i S j (a)S <j (b) + j<i S j (b)S <j (a) . 6.5.4. We expand S <d (a)(S <d (b)S <d (c)) as follows. We have; S <d (a)(S <d (b)S <d (c))

2 )

 2 .27) of (S d (a)S d (b))S d (c) and S d (a)(S d (b)S d (c)) yield the same expression in terms of power sums. (For all d ∈ N, the expansions using (6.25), (6.26), (6.27) of (S <d (a)S <d (b))S <d (c) and S <d (a)(S <d (b)S <d (c)) yield the same expression in terms of S <d . Proof. We proceed the proof by induction on depth(a) + depth(b) + depth(c). The base step depth(a)+depth(b)+depth(c) = 3, i.e., depth(a) = depth(b) = depth(c) = 1 of Theorem 6.7 follows from Theorem 6.5 and Theorem 6.6. Assume that Theorem 6.7 holds when depth(a) + depth(b) + depth(c) < n with n ∈ N and n ≥ 4. We need to show that Theorem 6.7 holds when depth(a) + depth(b) + depth(c) = n.

  5 and the induction hypothesis again, we conclude that expansions of (S d (a)S d (b))S d (c) and S d (a)(S d (b)S d (c)) yield the same expression in terms of power sums.

  i<d (S i (a)S i (b))S i (c) and i<d S i (a)(S i (b)S i (c)) yield the same expression in terms of S <d .Note that from Formulas (6.26) and (6.27), we have;S i (c) j<i S j (a)S j (b) + j<i S j (a)S <j (b) + j<i S j (b)S <j (a) = S i (c)(S <i (b)S <i (a)) = S i (c 1 )[S <i (c -)(S <i (b)S <i (a))]and(S i (c)S <i (b))S <i (a) = S i (c 1 )[(S <i (c -)S <i (b))S <i (a)].One then deduces from the induction hypothesis that the expansions of i<d S i (c) j<i S j (a)S j (b) + j<i S j (a)S <j (b) + j<i S j (b)S <j (a) and i<d (S i (c)S <i (b))S <i (a) yield the same expression in terms of S <d . Similarly, one verifies easily that the expansions of i<d (S i (a)S <i (b))S <i (c) and i<d S i (a) j<i S j (b)S j (c) + j<i S j (b)S <j (c) + j<i S j (c)S <j (b)

i<d( 6 . 7 .Proposition 6 . 8 .

 6768 S i (a)S i (b))S <i (c) and i<d S i (a)(S i (b)S <i (c)) yield the same expression in terms of S <d . Similarly, one verifies easily that the expansions of i<d (S i (a)S <i (b))S i (c), i<d (S i (b)S <i (a))S i (c), i<d (S i (b)S <i (a))S <i (c) yield respectively the same expressions in terms of S <d as those of i<d S i (a)(S i (c)S <i (b)), i<d (S i (b)S i (c))S <i (a), i<d (S i (b)S <i (c))S <i (a).From the above arguments, we conclude that the expansions of (S <d (a)S <d (b))S <d (c) and S <d (a)(S <d (b)S <d (c)) yield the same expression in terms of S <d . This completes the proof. Associativity of the shuffle algebra. The diamond product and the shuffle product are associative.Proof. Let a, b, c ∈ Σ be arbitrary words. It is suffices to show that (6.32)(a b) c = a (b c) and (a ¡ b) ¡ c = a ¡ (b ¡ c).We proceed the proof by induction on depth(a) + depth(b) + depth(c). If one of a, b or c is empty word, then (6.32) holds trivially. We assume that (6.32) holds when depth(a) + depth(b) + depth(c) < n with n ∈ N and n ≥ 3. We need to show that (6.32) holds when depth(a) + depth(b) + depth(c) = n.We first show that (a b) c = a (b c). From Lemma 5.4, we have (a b) c

  We thus conclude that (a b) c = a (b c).We next show that (a ¡ b) ¡ c = a ¡ (b ¡ c). From Lemma 5.4, we have; (a ¡ b) ¡ c = (a b + b a + a b) ¡ c = (a b) ¡ c + (b a) ¡ c + (a b) ¡ c = ((a b) c + c (a b) + (a b) c) + ((b a) c + c (b a) + (b a) c) + ((a b) c + c (a b) + (a b) c) = (a b) c + (a b) c + (b a) c + (b a) c + (a b) c + (c (a b) + c (b a) + c (a b)) + (a b) c = (a b) c + (a b) c + (b a) c + (b a) c + (a b) c + c (a ¡ b) + (a b) c and a ¡ (b ¡ c) = a ¡ (b c + c b + b c) = a ¡ (b c) + a ¡ (c b) + a ¡ (b c) = (a (b c) + (b c) a + a (b c)) + (a (c b) + (c b) a + a (c b)) + (a (b c) + (b c) a + a (b c)) = (b c) a + a (b c) + (c b) a + a (c b) + (b c) a + (a (b c) + a (c b) + a (b c)) + a (b c) = (b c) a + a (b c) + (c b) a + a (c b) + (b c) a + a (b ¡ c) + a (b c).

From

  the induction hypothesis and commutativity of shuffle product, one deduces that c (a ¡ b) = (c b) a. Similarly, one deduces that (a b) c = a (b ¡ c).

From

  the induction hypothesis, one deduces that (a b) c = a (b c). Similarly, one deduces that (b a) c = (b c) a.From the above arguments, we conclude that (a ¡ b) ¡ c = a ¡ (b ¡ c). This completes the proof.

Proposition 6 . 10 .

 610 Let a, b, c ∈ Σ be arbitrary words. Then we have (1) a b = b a. (2) (a b) c = a (b c).

Theorem 7 . 2 .

 72 Let a, b ∈ Σ . Then we have ∆(a ¡ b) = ∆(a) ¡ ∆(b).

  7.2 holds. Let w ∈ N with w ≥ 2 and we suppose that for all a, b ∈ Σ such that w(a) + w(b) < w, we have ∆(a ¡ b) = ∆(a) ¡ ∆(b). We now show that for all a, b ∈ Σ such that w(a) + w(b) = w, we have ∆(a ¡ b) = ∆(a) ¡ ∆(b).

7. 4 .

 4 Hopf algebra structure. The counit : C → F q is defined as follows: (1) = 1 and (u) = 0 otherwise. By induction on weight, we can check that ∆ preserves the grading. So (C, ¡,u,∆, ) is a connected graded bialgebra. By Proposition 2.6, we get Theorem 7.11. The connected graded bialgebra (C, ¡,u,∆, ) is a connected graded Hopf algebra over F q .

Lemma 8 . 3 .

 83 Let b and c be two words in Σ . Then we have [b] ¡ [c] = [bc], where bc is the concatenation product of b and c. Proof. The result holds trivially if b = 1 or c = 1. We thus assume that b = x i1 • • • x ir and c = x j1 • • • x js . Then it follows from the definition of the bracket operator and Remark 8.2 that [b]

3 .Proposition 9 . 1 .

 391 More precisely, * : C × C -→ C by setting 1 * a = a * 1 = a and a * b = x a (a - * b) + x b (a * b -) + x a+b (a - * b -)for any words a, b ∈ Σ . We call * the stuffle product. With the above notation, (C, * ) is a commutative F q -algebra.

Theorem 9 . 2 . 9 . 3 .i=0

 9293 ab=u a ⊗ b and for any words u ∈ Σ , (u) = 1 if u = 1, 0 otherwise. By Theorem 3.1, we get: The stuffle algebra (C, * , u, ∆ * , ) is a connected graded Hopf algebra of finite type over F q . The stuffle map in positive characteristic. We put 0 := 1 and d := d i=1 (θ -θ q i ) for all d ∈ N. Letting s = (s 1 , . . . , s n ) ∈ N n , for d ∈ Z, we define analogues of power sums by Si d (s) = Si i (s), Si d (s) = Si d (s 1 ) Si <d (s -) = Si d (s 1 ) Si <d (s 2 , . . . , s n ).

  + x 12 ⊗ x 4 x 6 + 2x 14 ⊗ x 2 x 6 + x 14 ⊗ x 8 + x 16 ⊗ x 6 + x 18 ⊗ x 4 + 2x 20 ⊗ x 2 + x 22 ⊗ 1 ∆(x 23 ) = 1 ⊗ x 23 + x 9 ⊗ x 14 + x 15 ⊗ x 2 x 6 + 2x 15 ⊗ x 8 + x 17 ⊗ x 6 + x 21 ⊗ x 2 + x 23 ⊗ 1 ∆(x 24 ) = 1 ⊗ x 24 + x 18 ⊗ x 6 + x 24 ⊗ 1 ∆(x 25 ) = 1 ⊗ x 25 + x 9 ⊗ x 16 + x 15 ⊗ x 2 x 8 + 2x 15 ⊗ x 4 x 6 + 2x 15 ⊗ x 10 + 2x 17 ⊗ x 8 + x 21 ⊗ x 4 + 2x 23 ⊗ x 2 + x 25 ⊗ 1 ∆(x 26 ) = 1 ⊗ x 26 + x 18 ⊗ x 8 + x 24 ⊗ x 2 + x 26 ⊗ 1 ∆(x 27 ) = 1 ⊗ x 27 + x 27 ⊗ 1 ∆(x 28 ) = 1 ⊗ x 28 + 2x 2 ⊗ x 2 x 6 x 18 + x 4 ⊗ x 6 x 18 + x 6 ⊗ x 2 x 20 + x 6 ⊗ x 4 x 18 + 2x 6 ⊗ x 6 x 16 + 2x 6 ⊗ x 8 x 14 + 2x 6 ⊗ x 10 x 12 + x 8 ⊗ x 2 x 18 + 2x 8 ⊗ x 6 x 14 + x 8 ⊗ x 8 x 12 + 2x 8 ⊗ x 12 x 8 + x 8 ⊗ x 14 x 6 + 2x 10 ⊗ x 18 + x 12 ⊗ x 2 x 14 + x 12 ⊗ x 4 x 12 + 2x 14 ⊗ x 2 x 12 + x 14 ⊗ x 6 x 8 + 2x 14 ⊗ x 8 x 6 + x 16 ⊗ x 12 + x 18 ⊗ x 10 + x 20 ⊗ x 2 x 6 + 2x 22 ⊗ x 6 + x 24 ⊗ x 4 + 2x 26 ⊗ x 2 + x 28 ⊗ 1 ∆(x 29 ) = 1 ⊗ x 29 + x 3 ⊗ x 2 x 6 x 18 + x 5 ⊗ x 6 x 18 + 2x 9 ⊗ x 2 x 18 + x 9 ⊗ x 6 x 14 + 2x 9 ⊗ x 8 x 12 + x 9 ⊗ x 12 x 8 + 2x 9 ⊗ x 14 x 6 + 2x 11 ⊗ x 18 + x 15 ⊗ x 2 x 12 + 2x 15 ⊗ x 6 x 8 + x 15 ⊗ x 8 x 6 + x 17 ⊗ x 12 + 2x 21 ⊗ x 2 x 6 + 2x 23 ⊗ x 6 + x 27 ⊗ x 2 + x 29 ⊗ 1 ∆(x 30 ) = 1 ⊗ x 30 + x 6 ⊗ x 6 x 18 + 2x 12 ⊗ x 18 + x 18 ⊗ x 12 + 2x 24 ⊗ x 6 + x 30 ⊗ 1 ∆(x 31 ) = 1 ⊗ x 31 + x 3 ⊗ x 2 x 8 x 18 + 2x 3 ⊗ x 4 x 6 x 18 + x 5 ⊗ x 2 x 6 x 18 + 2x 5 ⊗ x 8 x 18 + 2x 7 ⊗ x 6 x 18 + 2x 9 ⊗ x 4 x 18 + 2x 9 ⊗ x 6 x 16 + x 9 ⊗ x 8 x 14 + 2x 9 ⊗ x 14 x 8 + x 9 ⊗ x 16 x 6 + x 11 ⊗ x 2 x 18 + 2x 11 ⊗ x 6 x 14 + x 11 ⊗ x 8 x 12 + 2x 11 ⊗ x 12 x 8 + x 11 ⊗ x 14 x 6 + x 11 ⊗ x 20 + 2x 13 ⊗ x 18 + x 15 ⊗ x 2 x 14 + 2x 15 ⊗ x 4 x 12 + x 15 ⊗ x 8 x 8 + 2x 15 ⊗ x 10 x 6 + 2x 17 ⊗ x 14 + 2x 21 ⊗ x 2 x 8 + x 21 ⊗ x 4 x 6 + 2x 23 ⊗ x 2 x 6 + x 23 ⊗ x 8 + x 25 ⊗ x 6 + x 27 ⊗ x 4 + 2x 29 ⊗ x 2 + x 31 ⊗ 1 ∆(x 32 ) = 1 ⊗ x 32 + 2x 6 ⊗ x 2 x 6 x 18 + x 6 ⊗ x 8 x 18 + 2x 8 ⊗ x 6 x 18 + 2x 12 ⊗ x 2 x 18 + x 12 ⊗ x 6 x 14 + 2x 12 ⊗ x 8 x 12 + x 12 ⊗ x 12 x 8 + 2x 12 ⊗ x 14 x 6 + 2x 12 ⊗ x 20 + 2x 14 ⊗ x 18 + x 18 ⊗ x 14 + x 24 ⊗ x 2 x 6 + 2x 24 ⊗ x 8 + x 26 ⊗ x 6 + x 30 ⊗ x 2 + x 32 ⊗ 1 ∆(x 33 ) = 1 ⊗ x 33 + 2x 9 ⊗ x 6 x 18 + 2x 15 ⊗ x 18 + x 27 ⊗ x 6 + x 33 ⊗ 1 ∆(x 34 ) = 1 ⊗ x 34 + 2x 6 ⊗ x 2 x 8 x 18 + x 6 ⊗ x 2 x 26 + x 6 ⊗ x 4 x 6 x 18 + x 6 ⊗ x 4 x 24 + x 6 ⊗ x 10 x 18 + x 8 ⊗ x 8 x 18 + 2x 12 ⊗ x 4 x 18 + 2x 12 ⊗ x 6 x 16 + x 12 ⊗ x 8 x 14 + 2x 12 ⊗ x 14 x 8 + x 12 ⊗ x 16 x 6 + 2x 12 ⊗ x 22 + x 14 ⊗ x 2 x 18 + 2x 14 ⊗ x 6 x 14 + x 14 ⊗ x 8 x 12 + 2x 14 ⊗ x 12 x 8 + x 14 ⊗ x 14 x 6 + x 14 ⊗ x 20 + 2x 16 ⊗ x 18 + x 18 ⊗ x 16 + x 24 ⊗ x 2 x 8 + 2x 24 ⊗ x 4 x 6 + 2x 24 ⊗ x 10 + 2x 26 ⊗ x 8 + x 30 ⊗ x 4 + 2x 32 ⊗ x 2 + x 34 ⊗ 1 ∆(x 35 ) = 1 ⊗ x 35 + 2x 9 ⊗ x 8 x 18 + 2x 15 ⊗ x 2 x 18 + x 15 ⊗ x 6 x 14 + 2x 15 ⊗ x 8 x 12 + x 15 ⊗ x 12 x 8 + 2x 15 ⊗ x 14 x 6 + 2x 15 ⊗ x 20 + 2x 17 ⊗ x 18 + x 27 ⊗ x 8 + x 33 ⊗ x 2 + x 35 ⊗ 1 ∆(x 36 ) = 1 ⊗ x 36 + 2x 18 ⊗ x 18 + x 36 ⊗ 1 A.2. The case q = 5. (x 26 ) = 1 ⊗ x 26 + x 2 ⊗ x 4 x 20 + 4x 6 ⊗ x 20 + x 10 ⊗ x 16 + 4x 14 ⊗ x 12 + x 18 ⊗ x 8 + 4x 22 ⊗ x 4 + x 26 ⊗ 1 ∆(x 27 ) = 1 ⊗ x 27 + 2x 3 ⊗ x 4 x 20 + 4x 7 ⊗ x 20 + x 15 ⊗ x 12 + 3x 19 ⊗ x 8 + 3x 23 ⊗ x 4 + x 27 ⊗ 1 ∆(x 28 ) = 1 ⊗ x 28 + 3x 4 ⊗ x 4 x 20 + 4x 8 ⊗ x 20 + x 20 ⊗ x 8 + 2x 24 ⊗ x 4 + x 28 ⊗ 1 ∆(x 29 ) = 1 ⊗ x 29 + 4x 5 ⊗ x 4 x 20 + 4x 9 ⊗ x 20 + x 25 ⊗ x 4 + x 29 ⊗ 1 ∆(x 30 ) = 1 ⊗ x 30 + 4x 10 ⊗ x 20 + x 30 ⊗ 1 ∆(x 31 ) = 1 ⊗ x 31 + 2x 3 ⊗ x 4 x 24 + 3x 3 ⊗ x 8 x 20 + 2x 7 ⊗ x 4 x 20 + x 7 ⊗ x 24 + 3x 11 ⊗ x 20 + x 15 ⊗ x 16 + 4x 19 ⊗ x 12 + x 23 ⊗ x 8 + 4x 27 ⊗ x 4 + x 31 ⊗ 1 ∆(x 32 ) = 1 ⊗ x 32 + x 4 ⊗ x 4 x 24 + 4x 4 ⊗ x 8 x 20 + 4x 8 ⊗ x 4 x 20 + 2x 8 ⊗ x 24 + 3x 12 ⊗ x 20 + x 20 ⊗ x 12 + 3x 24 ⊗ x 8 + 3x 28 ⊗ x 4 + x 32 ⊗ 1 ∆(x 33 ) = 1 ⊗ x 33 + 2x 5 ⊗ x 4 x 24 + 3x 5 ⊗ x 8 x 20 + x 9 ⊗ x 4 x 20 + 3x 9 ⊗ x 24 + 3x 13 ⊗ x 20 + x 25 ⊗ x 8 + 2x 29 ⊗ x 4 + x 33 ⊗ 1 ∆(x 34 ) = 1 ⊗ x 34 + 3x 10 ⊗ x 4 x 20 + 4x 10 ⊗ x 24 + 3x 14 ⊗ x 20 + x 30 ⊗ x 4 + x 34 ⊗ 1 ∆(x 35 ) = 1 ⊗ x 35 + 3x 15 ⊗ x 20 + x 35 ⊗ 1 ∆(x 36 ) = 1 ⊗ x 36 + 2x 4 ⊗ x 8 x 24 + 3x 4 ⊗ x 12 x 20 + 4x 8 ⊗ x 4 x 24 + x 8 ⊗ x 8 x 20 + 4x 8 ⊗ x 28 + 3x 12 ⊗ x 4 x 20 + 2x 12 ⊗ x 24 + 2x 16 ⊗ x 20 + x 20 ⊗ x 16 + 4x 24 ⊗ x 12 + x 28 ⊗ x 8 + 4x 32 ⊗ x 4 + x 36 ⊗ 1 ∆(x 37 ) = 1 ⊗ x 37 + 3x 5 ⊗ x 8 x 24 + 2x 5 ⊗ x 12 x 20 + 2x 9 ⊗ x 4 x 24 + 3x 9 ⊗ x 8 x 20 + 2x 9 ⊗ x 28 + x 13 ⊗ x 4 x 20+ 4x 13 ⊗ x 24 + 2x 17 ⊗ x 20 + x 25 ⊗ x 12 + 3x 29 ⊗ x 8 + 3x 33 ⊗ x 4 + x 37 ⊗ 1 ∆(x 38 ) = 1 ⊗ x 38 + 4x 10 ⊗ x 4 x 24 + x 10 ⊗ x 8 x 20 + 4x 10 ⊗ x 28 + 4x 14 ⊗ x 4 x 20 + x 14 ⊗ x 24 + 2x 18 ⊗ x 20 + x 30 ⊗ x 8 + 2x 34 ⊗ x 4 + x 38 ⊗ 1 ∆(x 39 ) = 1 ⊗ x 39 + 2x 15 ⊗ x 4 x 20 + 3x 15 ⊗ x 24 + 2x 19 ⊗ x 20 + x 35 ⊗ x 4 + x 39 ⊗ 1 ∆(x 40 ) = 1 ⊗ x 40 + 2x 20 ⊗ x 20 + x 40 ⊗ 1 ∆(x 41 ) = 1 ⊗ x 41 + 4x 5 ⊗ x 12 x 24 + x 5 ⊗ x 16 x 20 + 4x 9 ⊗ x 8 x 24 + x 9 ⊗ x 12 x 20 + x 9 ⊗ x 32 + x 13 ⊗ x 4 x 24 + 4x 13 ⊗ x 8 x 20 + 3x 13 ⊗ x 28 + 4x 17 ⊗ x 4 x 20 + 3x 17 ⊗ x 24 + x 21 ⊗ x 20 + x 25 ⊗ x 16 + 4x 29 ⊗ x 12 + x 33 ⊗ x 8 + 4x 37 ⊗ x 4 + x 41 ⊗ 1 ∆(x 42 ) = 1 ⊗ x 42 + x 10 ⊗ x 8 x 24 + 4x 10 ⊗ x 12 x 20 + 4x 10 ⊗ x 32 + 3x 14 ⊗ x 4 x 24 + 2x 14 ⊗ x 8 x 20 + 4x 14 ⊗ x 28 + 3x 18 ⊗ x 4 x 20 + x 18 ⊗ x 24 + x 22 ⊗ x 20 + x 30 ⊗ x 12 + 3x 34 ⊗ x 8 + 3x 38 ⊗ x 4 + x 42 ⊗ 1 ∆(x 43 ) = 1 ⊗ x 43 + x 15 ⊗ x 4 x 24 + 4x 15 ⊗ x 8 x 20 + 3x 15 ⊗ x 28 + 2x 19 ⊗ x 4 x 20 + 4x 19 ⊗ x 24 + x 23 ⊗ x 20 + x 35 ⊗ x 8 + 2x 39 ⊗ x 4 + x 43 ⊗ 1 ∆(x 44 ) = 1 ⊗ x 44 + x 20 ⊗ x 4 x 20 + 2x 20 ⊗ x 24 + x 24 ⊗ x 20 + x 40 ⊗ x 4 + x 44 ⊗ 1 ∆(x 45 ) = 1 ⊗ x 45 + x 25 ⊗ x 20 + x 45 ⊗ 1 ∆(x 46 ) = 1 ⊗ x 46 + 3x10 ⊗ x 12 x 24 + 2x 10 ⊗ x 16 x 20 + 4x 10 ⊗ x 36 + x 14 ⊗ x 8 x 24 + 4x 14 ⊗ x 12 x 20 + 2x 14 ⊗ x 32 + 3x 18 ⊗ x 4 x 24 + 2x 18 ⊗ x 8 x 20 + 2x 18 ⊗ x 28 + 4x 22 ⊗ x 24 + x 30 ⊗ x 16 + 4x 34 ⊗ x 12 + x 38 ⊗ x 8 + 4x 42 ⊗ x 4 + x 46 ⊗ 1 ∆(x 47 ) = 1 ⊗ x 47 + 4x 15 ⊗ x 8 x 24 + x 15 ⊗ x 12 x 20 + 3x 15 ⊗ x 32 + 4x 19 ⊗ x 4 x 24 + x 19 ⊗ x 8 x 20 + x 19 ⊗ x 28 + 3x 23 ⊗ x 24 + x 35 ⊗ x 12 + 3x 39 ⊗ x 8 + 3x 43⊗ x 4 + x 47 ⊗ 1 ∆(x 48 ) = 1 ⊗ x 48 + 3x 20 ⊗ x 4 x 24 + 2x 20 ⊗ x 8 x 20 + 2x 20 ⊗ x 28 + 2x 24 ⊗ x 24 + x 40 ⊗ x 8 2x 44 ⊗ x 4 + x 48 ⊗ 1 ∆(x 49 ) = 1 ⊗ x 49 + x 25 ⊗ x 24 + x 45 ⊗ x 4 + x 49 ⊗ 1 ∆(x 50 ) = 1 ⊗ x 50 + x 50 ⊗ 1 ∆(x 51 ) = 1 ⊗ x 51 + 3x 3 ⊗ x 4 x 44 + x 3 ⊗ x 8 x 40 + 4x 7 ⊗ x 4 x 40 + x 7 ⊗ x 20 x 24 + 4x7 ⊗ x 24 x 20 + x 11 ⊗ x 40 + 2x 15 ⊗ x 12 x 24 + 3x 15 ⊗ x 16 x 20 + 3x 15 ⊗ x 36 + 3x 19 ⊗ x 8 x 24 + 2x 19 ⊗ x 12 x 20 + 3x 19 ⊗ x 32 + x 23 ⊗ x 28 + x 27 ⊗ x 4 x 20 + 4x 31 ⊗ x 20 + x 35 ⊗ x 16 + 4x 39 ⊗ x 12+ x 43 ⊗ x 8 + 4x 47 ⊗ x 4 + x 51 ⊗ 1 ∆(x 52 ) = 1 ⊗ x 52 + 4x 4 ⊗ x 4 x 44 + 3x 4 ⊗ x 8 x 40 + 3x 8 ⊗ x 4 x 40 + 2x 8 ⊗ x 20 x 24 + 3x 8 ⊗ x 24 x 20 + x 12 ⊗ x 40 + 2x 20 ⊗ x 8 x 24 + 3x 20 ⊗ x 12 x 20 + 2x 20 ⊗ x 32 + 3x 24 ⊗ x 28 + 2x 28 ⊗ x 4 x 20 + 4x 32 ⊗ x 20 + x 40 ⊗ x 12 + 3x 44 ⊗ x 8 + 3x 48 ⊗ x 4 + x 52 ⊗ 1 ∆(x 53 ) = 1 ⊗ x 53 + 3x 5 ⊗ x 4 x 44 + x 5 ⊗ x 8 x 40 + 2x 9 ⊗ x 4 x 40 + 3x 9 ⊗ x 20 x 24 + 2x 9 ⊗ x 24 x 20 + x 13 ⊗ x 40 + x 25 ⊗ x 28 + 3x 29 ⊗ x 4 x 20 + 4x 33 ⊗ x 20 + x 45 ⊗ x 8 + 2x 49 ⊗ x 4 + x 53 ⊗ 1 ∆(x 54 ) = 1 ⊗ x 54 + x 10 ⊗ x 4 x 40 + 4x 10 ⊗ x 20 x 24 + x 10 ⊗ x 24 x 20 + x 14 ⊗ x 40 + 4x 30 ⊗ x 4 x 20 + 4x 34 ⊗ x 20 + x 50 ⊗ x 4 + x 54 ⊗ 1 ∆(x 55 ) = 1 ⊗ x 55 + x 15 ⊗ x 40 + 4x 35 ⊗ x 20 + x 55 ⊗ 1 ∆(x 56 ) = 1 ⊗ x 56 + 2x 4 ⊗ x 4 x 48 + x 4 ⊗ x 8 x 44 + 2x4 ⊗ x 12 x 40 + 2x 8 ⊗ x 4 x 44 + 3x 8 ⊗ x 24 x 24 + 2x 8 ⊗ x 28 x 20 + 2x 12 ⊗ x 4 x 40 + 3x 12 ⊗ x 20 x 24 + 2x 12 ⊗ x 24 x 20 + 4x 12 ⊗ x 44 + 3x 16 ⊗ x 40 + x 20 ⊗ x 12 x 24 + 4x 20 ⊗ x 16 x 20 + 2x 20 ⊗ x 36 + 4x 24 ⊗ x 32 + 2x 28 ⊗ x 4 x 24 + 3x 28 ⊗ x 8 x 20 + 2x 32 ⊗ x 4 x 20 + x 32 ⊗ x 24 + 3x 36 ⊗ x 20 + x 40 ⊗ x 16 + 4x 44 ⊗ x 12 + x 48 ⊗ x 8 + 4x 52 ⊗ x 4 + x 56 ⊗ 1 ∆(x 57 ) = 1 ⊗ x 57 + 3x 5 ⊗ x 4 x 48 + 4x 5 ⊗ x 8 x 44 + 3x 5 ⊗ x 12 x 40 + x 9 ⊗ x 4 x 44 + 4x 9 ⊗ x 24 x 24 + x 9 ⊗ x 28 x 20 + 4x 13 ⊗ x 4 x 40 + x 13 ⊗ x 20 x 24 + 4x 13 ⊗ x 24 x 20 + 3x 13 ⊗ x 44 + 3x 17 ⊗ x 40 + x 25 ⊗ x 32 + x 29 ⊗ x 4 x 24 + 4x 29 ⊗ x 8 x 20 + 4x 33 ⊗ x 4 x 20 + 2x 33 ⊗ x 24 + 3x 37 ⊗ x 20 + x 45 ⊗ x 12 + 3x 49 ⊗ x 8 + 3x 53 ⊗ x 4 + x 57 ⊗ 1 ∆(x 58 ) = 1 ⊗ x 58 + 2x 10 ⊗ x 4 x 44 + 3x 10 ⊗ x 24 x 24 + 2x 10 ⊗ x 28 x 20 + x 14 ⊗ x 4 x 40 + 4x 14 ⊗ x 20 x 24 + x 14 ⊗ x 24 x 20 + 2x 14 ⊗ x 44 + 3x 18 ⊗ x 40 + 2x 30 ⊗ x 4 x 24 + 3x 30 ⊗ x 8 x 20 + x 34 ⊗ x 4 x 20 + 3x 34 ⊗ x 24 + 3x 38 ⊗ x 20 + x 50 ⊗ x 8 + 2x 54 ⊗ x 4 + x 58 ⊗ 1 ∆(x 59 ) = 1 ⊗ x 59 + 3x 15 ⊗ x 4 x 40 + 2x 15 ⊗ x 20 x 24 + 3x 15 ⊗ x 24 x 20 + x 15 ⊗ x 44 + 3x 19 ⊗ x 40 + 3x 35 ⊗ x 4 x 20 + 4x 35 ⊗ x 24 + 3x 39 ⊗ x 20 + x 55 ⊗ x 4 + x 59 ⊗ 1 ∆(x 60 ) = 1 ⊗ x 60 + 3x 20 ⊗ x 40 + 3x 40 ⊗ x 20 + x 60 ⊗ 1 ∆(x 61 ) = 1 ⊗ x 61 + x 5 ⊗ x 8 x 48 + 3x 5 ⊗ x 12 x 44 + x 5 ⊗ x 16 x 40 + x 9 ⊗ x 4 x 48 + x 9 ⊗ x 8 x 44 + 3x 9 ⊗ x 12 x 40 + 3x 9 ⊗ x 28 x 24 + 2x 9 ⊗ x 32 x 20 + 2x 13 ⊗ x 4 x 44 + 2x 13 ⊗ x 8 x 40 + 4x 13 ⊗ x 24 x 24 + x 13 ⊗ x 28 x 20 + x 13 ⊗ x 48 + 4x 17 ⊗ x 4 x 40 + x 17 ⊗ x 20 x 24 + 4x 17 ⊗ x 24 x 20 + 2x 17 ⊗ x 44 + x 21 ⊗ x 40 + x 25 ⊗ x 36 + 2x 29 ⊗ x 8 x 24 + 3x 29 ⊗ x 12 x 20 + 4x 33 ⊗ x 4 x 24 + x 33 ⊗ x 8 x 20 + 4x 33 ⊗ x 28 + 3x 37 ⊗ x 4 x 20 + 2x 37 ⊗ x 24 + 2x 41 ⊗ x 20 + x 45 ⊗ x 16 + 4x 49 ⊗ x 12 + x 53 ⊗ x 8 + 4x 57 ⊗ x 4 + x 61 ⊗ 1 ∆(x 62 ) = 1 ⊗ x 62 + 4x 10 ⊗ x 4 x 48 + 4x 10 ⊗ x 8 x 44 + 2x 10 ⊗ x 12 x 40 + 2x 10 ⊗ x 28 x 24 + 3x 10 ⊗ x 32 x 20 + x 14 ⊗ x 4 x 44 + x 14 ⊗ x 8 x 40 + 2x 14 ⊗ x 24 x 24 + 3x 14 ⊗ x 28 x 20 + 3x 14 ⊗ x 48 + 3x 18 ⊗ x 4 x 40 + 2x 18 ⊗ x 20 x 24 + 3x 18 ⊗ x 24 x 20 + 4x 18 ⊗ x 44 + x 22 ⊗ x 40 + 3x 30 ⊗ x 8 x 24 + 2x 30 ⊗ x 12 x 20 + 2x 34 ⊗ x 4 x 24 + 3x 34 ⊗ x 8 x 20 + 2x 34 ⊗ x 28 + x 38 ⊗ x 4 x 20 + 4x 38 ⊗ x 24 + 2x 42 ⊗ x 20 + x 50 ⊗ x 12 + 3x 54 ⊗ x 8 + 3x 58 ⊗ x 4 + x 62 ⊗ 1 ∆(x 63 ) = 1 ⊗ x 63 + 2x 15 ⊗ x 4 x 44 + 2x 15 ⊗ x 8 x 40 + 4x 15 ⊗ x 24 x 24 + x 15 ⊗ x 28 x 20 + x 15 ⊗ x 48 + 2x 19 ⊗ x 4 x 40 + 3x 19 ⊗ x 20 x 24 + 2x 19 ⊗ x 24 x 20 + x 19 ⊗ x 44 + x 23 ⊗ x 40 + 4x 35 ⊗ x 4 x 24 + x 35 ⊗ x 8 x 20 + 4x 35 ⊗ x 28 + 4x 39 ⊗ x 4 x 20 + x 39 ⊗ x 24 + 2x 43 ⊗ x 20 + x 55 ⊗ x 8 + 2x 59 ⊗ x 4 + x 63 ⊗ 1 ∆(x 64 ) = 1 ⊗ x 64 + x 20 ⊗ x 4 x 40 + 4x 20 ⊗ x 20 x 24 + x 20 ⊗ x 24 x 20 + 3x 20 ⊗ x 44 + x 24 ⊗ x 40 + 2x 40 ⊗ x 4 x 20 + 3x 40 ⊗ x 24 + 2x 44 ⊗ x 20 + x 60 ⊗ x 4 + x 64 ⊗ 1 ∆(x 65 ) = 1 ⊗ x 65 + x 25 ⊗ x 40 + 2x 45 ⊗ x 20 + x 65 ⊗ 1 ∆(x 66 ) = 1 ⊗ x 66 + 3x 10 ⊗ x 8 x 48 + 2x 10 ⊗ x 16 x 40 + x 10 ⊗ x 32 x 24 + 4x 10 ⊗ x 36 x 20 + 2x 14 ⊗ x 4 x 48 + 3x 14 ⊗ x 12 x 40 + 4x 14 ⊗ x 28 x 24 + x 14 ⊗ x 32 x 20 + 4x 14 ⊗ x 52 + 3x 18 ⊗ x 4 x 44 + 2x 18 ⊗ x 8 x 40 + 3x 18 ⊗ x 24 x 24 + 2x 18 ⊗ x 28 x 20 + 3x 18 ⊗ x 48 + 4x 22 ⊗ x 44 + 4x 30 ⊗ x 12 x 24 + x 30 ⊗ x 16 x 20 + 4x 34 ⊗ x 8 x 24 + x 34 ⊗ x 12 x 20 + x 34 ⊗ x 32 + x 38 ⊗ x 4 x 24 + 4x 38 ⊗ x 8 x 20 + 3x 38 ⊗ x 28 + 4x 42 ⊗ x 4 x 20 + 3x 42 ⊗ x 24 + x 46 ⊗ x 20 + x 50 ⊗ x 16 + 4x 54 ⊗ x 12 + x 58 ⊗ x 8 + 4x 62 ⊗ x 4 + x 66 ⊗ 1 ∆(x 67 ) = 1 ⊗ x 67 + 3x 15 ⊗ x 4 x 48 + 2x 15 ⊗ x 12 x 40 + x 15 ⊗ x 28 x 24 + 4x 15 ⊗ x 32 x 20 + x 15 ⊗ x 52 + 4x 19 ⊗ x 4 x 44 + x 19 ⊗ x 8 x 40 + 4x 19 ⊗ x 24 x 24 + x 19 ⊗ x 28 x 20 + 4x 19 ⊗ x 48 + 3x 23 ⊗ x 44 + x 35 ⊗ x 8 x 24 + 4x 35 ⊗ x 12 x 20 + 4x 35 ⊗ x 32 + 3x 39 ⊗ x 4 x 24 + 2x 39 ⊗ x 8 x 20 + 4x 39 ⊗ x 28 + 3x 43 ⊗ x 4 x 20 + x 43 ⊗ x 24 + x 47 ⊗ x 20 + x 55 ⊗ x 12 + 3x 59 ⊗ x 8 + 3x 63 ⊗ x 4 + x 67 ⊗ 1 ∆(x 68 ) = 1 ⊗ x 68 + 3x 20 ⊗ x 4 x 44 + 2x 20 ⊗ x 8 x 40 + 3x 20 ⊗ x 24 x 24 + 2x 20 ⊗ x 28 x 20 + 3x 20 ⊗ x 48 + 2x 24 ⊗ x 44 + x 40 ⊗ x 4 x 24 + 4x 40 ⊗ x 8 x 20 + 3x 40 ⊗ x 28 + 2x 44 ⊗ x 4 x 20 + 4x 44 ⊗ x 24 + x 48 ⊗ x 20 + x 60 ⊗ x 8 + 2x 64 ⊗ x 4 + x 68 ⊗ 1 ∆(x 69 ) = 1 ⊗ x 69 + x 25 ⊗ x 44 + x 45 ⊗ x 4 x 20 + 2x 45 ⊗ x 24 + x 49 ⊗ x 20 + x 65 ⊗ x 4 + x 69 ⊗ 1 ∆(x 70 ) = 1 ⊗ x 70 + x 50 ⊗ x 20 + x 70 ⊗ 1 ∆(x 71 ) = 1 ⊗ x 71 + x 15 ⊗ x 8 x 48 + x 15 ⊗ x 12 x 44 + 3x 15 ⊗ x 16 x 40 + 3x 15 ⊗ x 32 x 24 + 2x 15 ⊗ x 36 x 20 + x 15 ⊗ x 56 + 3x 19 ⊗ x 8 x 44 + 2x 19 ⊗ x 12 x 40 + 3x 19 ⊗ x 28 x 24 + 2x 19 ⊗ x 32 x 20 + 2x 19 ⊗ x 52 + x 23 ⊗ x 48 + 3x 35 ⊗ x 12 x 24 + 2x 35 ⊗ x 16 x 20 + 4x 35 ⊗ x 36 + x 39 ⊗ x 8 x 24 + 4x 39 ⊗ x 12 x 20 + 2x 39 ⊗ x 32 + 3x 43 ⊗ x 4 x 24 + 2x 43 ⊗ x 8 x 20 + 2x 43 ⊗ x 28 + 4x 47 ⊗ x 24 + x 55 ⊗ x 16 + 4x 59 ⊗ x 12 + x 63 ⊗ x 8 + 4x 67 ⊗ x 4 + x 71 ⊗ 1 ∆(x 72 ) = 1 ⊗ x 72 + 2x 20 ⊗ x 8 x 44 + 3x 20 ⊗ x 12 x 40 + 2x 20 ⊗ x 28 x 24 + 3x 20 ⊗ x 32 x 20 + 3x 20 ⊗ x 52 + 3x 24 ⊗ x 48 + 4x 40 ⊗ x 8 x 24 + x 40 ⊗ x 12 x 20 + 3x 40 ⊗ x 32 + 4x 44 ⊗ x 4 x 24 + x 44 ⊗ x 8 x 20 + x 44 ⊗ x 28 + 3x 48 ⊗ x 24 + x 60 ⊗ x 12 + 3x 64 ⊗ x 8 + 3x 68 ⊗ x 4 + x 72 ⊗ 1 ∆(x 73 ) = 1 ⊗ x 73 + x 25 ⊗ x 48 + 3x 45 ⊗ x 4 x 24 + 2x 45 ⊗ x 8 x 20 + 2x 45 ⊗ x 28 + 2x 49 ⊗ x 24+ x 65 ⊗ x 8 + 2x 69 ⊗ x 4 + x 73 ⊗ 1 ∆(x 74 ) = 1 ⊗ x 74 + x 50 ⊗ x 24 + x 70 ⊗ x 4 + x 74 ⊗ 1 ∆(x 75 ) = 1 ⊗ x 75 + x 75 ⊗ 1 ∆(x 76 ) = 1 ⊗ x 76 + 3x 4 ⊗ x 4 x 68 + 2x 4 ⊗ x 8 x 64 + x 4 ⊗ x 12 x 60 + 4x 8 ⊗ x 4 x 64 + 3x 8 ⊗ x 8 x 60 + 4x 8 ⊗ x 20 x 48 + 2x 8 ⊗ x 24 x 44 + 4x 8 ⊗ x 28 x 40 + x 12 ⊗ x 4 x 60 + 4x 12 ⊗ x 20 x 44 + x 12 ⊗ x 24 x 40 + 4x 12 ⊗ x 40 x 24 + x 12 ⊗ x 44 x 20 + 4x 16 ⊗ x 60 + x 20 ⊗ x 12 x 44 + 4x 20 ⊗ x 16 x 40 + x 20 ⊗ x 32 x 24 + 4x 20 ⊗ x 36 x 20 + 3x 20 ⊗ x 56 + 4x 24 ⊗ x 52 + 3x 28 ⊗ x 4 x 44 + x 28 ⊗ x 8 x 40 + 4x 32 ⊗ x 4 x 40 + x 32 ⊗ x 20 x 24 + 4x 32 ⊗ x 24 x 20 + x 36 ⊗ x 40 + 2x 40 ⊗ x 12 x 24 + 3x 40 ⊗ x 16 x 20 + 3x 40 ⊗ x 36 + 3x 44 ⊗ x 8 x 24 + 2x 44 ⊗ x 12 x 20 + 3x 44 ⊗ x 32 + x 48 ⊗ x 28 + x 52 ⊗ x 4 x 20 + 4x 56 ⊗ x 20 + x 60 ⊗ x 16 + 4x 64 ⊗ x 12 + x 68 ⊗ x 8 + 4x 72 ⊗ x 4 + x 76 ⊗ 1 ∆(x 77 ) = 1 ⊗ x 77 + 2x 5 ⊗ x 4 x 68 + 3x 5 ⊗ x 8 x 64 + 4x 5 ⊗ x 12 x 60 + 2x 9 ⊗ x 4 x 64 + 4x 9 ⊗ x 8 x 60 + 2x 9 ⊗ x 20 x 48 + x 9 ⊗ x 24 x 44 + 2x 9 ⊗ x 28 x 40 + 2x 13 ⊗ x 4 x 60 + 3x 13 ⊗ x 20 x 44 + 2x 13 ⊗ x 24 x 40 + 3x 13 ⊗ x 40 x 24 + 2x 13 ⊗ x 44 x 20 + 4x 17 ⊗ x 60 + x 25 ⊗ x 52 + 4x 29 ⊗ x 4 x 44 + 3x 29 ⊗ x 8 x 40 + 3x 33 ⊗ x 4 x 40 + 2x 33 ⊗ x 20 x 24 + 3x 33 ⊗ x 24 x 20 + x 37 ⊗ x 40 + 2x 45 ⊗ x 8 x 24 + 3x 45 ⊗ x 12 x 20 + 2x 45 ⊗ x 32 + 3x 49 ⊗ x 28 + 2x 53 ⊗ x 4 x 20 + 4x 57 ⊗ x 20 + x 65 ⊗ x 12 + 3x 69 ⊗ x 8 + 3x 73 ⊗ x 4 + x 77 ⊗ 1 ∆(x 78 ) = 1 ⊗ x 78 + 4x10 ⊗ x 4 x 64 + 3x 10 ⊗ x 8 x 60 + 4x 10 ⊗ x 20 x 48 + 2x 10 ⊗ x 24 x 44 + 4x 10 ⊗ x 28 x 40 + 3x 14 ⊗ x 4 x 60 + 2x 14 ⊗ x 20 x 44 + 3x 14 ⊗ x 24 x 40 + 2x 14 ⊗ x 40 x 24 + 3x 14 ⊗ x 44 x 20 + 4x 18 ⊗ x 60 + 3x 30 ⊗ x 4 x 44 + x 30 ⊗ x 8 x 40 + 2x 34 ⊗ x 4 x 40 + 3x 34 ⊗ x 20 x 24 + 2x 34 ⊗ x 24 x 20 + x 38 ⊗ x 40 + x 50 ⊗ x 28 + 3x 54 ⊗ x 4 x 20 + 4x 58 ⊗ x 20 + x 70 ⊗ x 8 + 2x 74 ⊗ x 4 + x 78 ⊗ 1 ∆(x 79 ) = 1 ⊗ x 79 + 4x 15 ⊗ x 4 x 60 + x 15 ⊗ x 20 x 44 + 4x 15 ⊗ x 24 x 40 + x 15 ⊗ x 40 x 24 + 4x 15 ⊗ x 44 x 20 + 4x 19 ⊗ x 60 + x 35 ⊗ x 4 x 40 + 4x 35 ⊗ x 20 x 24 + x 35 ⊗ x 24 x 20 + x 39 ⊗ x 40 + 4x 55 ⊗ x 4 x 20+ 4x 59 ⊗ x 20 + x 75 ⊗ x 4 + x 79 ⊗ 1 ∆(x 80 ) = 1 ⊗ x 80 + 4x 20 ⊗ x 60 + x 40 ⊗ x 40 + 4x 60 ⊗ x 20 + x 80 ⊗ 1 ∆(x 81 ) = 1 ⊗ x 81 + 4x 5 ⊗ x 4 x 72 + 3x 5 ⊗ x 8 x 68 + 2x 5 ⊗ x 12 x 64 + x 5 ⊗ x 16 x 60 + 3x 9 ⊗ x 4 x 68 + x 9 ⊗ x 8 x 64 + 3x 9 ⊗ x 24 x 48 + 4x 9 ⊗ x 28 x 44 + 3x 9 ⊗ x 32 x 40 + 3x 13 ⊗ x 4 x 64 + x 13 ⊗ x 20 x 48 + 4x 13 ⊗ x 28 x 40 + 2x 13 ⊗ x 44 x 24 + 3x 13 ⊗ x 48 x 20 + 4x 17 ⊗ x 4 x 60 + x 17 ⊗ x 20 x 44 + 4x 17 ⊗ x 24 x 40 + x 17 ⊗ x 40 x 24 + 4x 17 ⊗ x 44 x 20 + x 17 ⊗ x 64 + x 21 ⊗ x 60 + x 25 ⊗ x 56 + 2x 29 ⊗ x 4 x 48 + x 29 ⊗ x 8 x 44 + 2x 29 ⊗ x 12 x 40 + 2x 33 ⊗ x 4 x 44 + 3x 33 ⊗ x 24 x 24 + 2x 33 ⊗ x 28 x 20 + 2x 37 ⊗ x 4 x 40 + 3x 37 ⊗ x 20 x 24 + 2x 37 ⊗ x 24 x 20 + 4x 37 ⊗ x 44 + 3x 41 ⊗ x 40 + x 45 ⊗ x 12 x 24 + 4x 45 ⊗ x 16 x 20 + 2x 45 ⊗ x 36 + 4x 49 ⊗ x 32 + 2x 53 ⊗ x 4 x 24 + 3x 53 ⊗ x 8 x 20 + 2x 57 ⊗ x 4 x 20 + x 57 ⊗ x 24 + 3x 61 ⊗ x 20 + x 65 ⊗ x 16 + 4x 69 ⊗ x 12 + x 73 ⊗ x 8 + 4x 77 ⊗ x 4 + x 81 ⊗ 1 ∆(x 82 ) = 1 ⊗ x 82 + 2x 10 ⊗ x 4 x 68 + 4x10 ⊗ x 8 x 64 + 2x 10 ⊗ x 24 x 48 + x 10 ⊗ x 28 x 44 + 2x 10 ⊗ x 32 x 40 + 4x 14 ⊗ x 4 x 64 + 3x 14 ⊗ x 20 x 48 + 2x 14 ⊗ x 28 x 40 + x 14 ⊗ x 44 x 24 + 4x 14 ⊗ x 48 x 20 + 3x 18 ⊗ x 4 x 60 + 2x 18 ⊗ x 20 x 44 + 3x 18 ⊗ x 24 x 40 + 2x 18 ⊗ x 40 x 24 + 3x 18 ⊗ x 44 x 20 + 2x 18 ⊗ x 64 + x 22 ⊗ x 60 + 3x 30 ⊗ x 4 x 48 + 4x 30 ⊗ x 8 x 44 + 3x 30 ⊗ x 12 x 40 + x 34 ⊗ x 4 x 44 + 4x 34 ⊗ x 24 x 24 + x 34 ⊗ x 28 x 20 + 4x 38 ⊗ x 4 x 40 + x 38 ⊗ x 20 x 24 + 4x 38 ⊗ x 24 x 20 + 3x 38 ⊗ x 44 + 3x 42 ⊗ x 40 + x 50 ⊗ x 32+ x 54 ⊗ x 4 x 24 + 4x 54 ⊗ x 8 x 20 + 4x 58 ⊗ x 4 x 20 + 2x 58 ⊗ x 24 + 3x 62 ⊗ x 20 + x 70 ⊗ x 12 + 3x 74 ⊗ x 8 + 3x 78 ⊗ x 4 + x 82 ⊗ 1 ∆(x 83 ) = 1 ⊗ x 83 + 3x 15 ⊗ x 4 x 64 + x 15 ⊗ x 20 x 48 + 4x 15 ⊗ x 28 x 40 + 2x 15 ⊗ x 44 x 24 + 3x 15 ⊗ x 48 x 20 ∆(x 93 ) = 1 ⊗ x 93 + x 25 ⊗ x 68 + 3x 45 ⊗ x 4 x 44 + 2x 45 ⊗ x 8 x 40 + 3x 45 ⊗ x 24 x 24 + 2x 45 ⊗ x 28 x 20 + 3x 45 ⊗ x 48 + 2x 49 ⊗ x 44 + x 65 ⊗ x 4 x 24 + 4x 65 ⊗ x 8 x 20 + 3x 65 ⊗ x 28 + 2x 69 ⊗ x 4 x 20 + 4x 69 ⊗ x 24 + x 73 ⊗ x 20 + x 85 ⊗ x 8 + 2x 89 ⊗ x 4 + x 93 ⊗ 1 ∆(x 94 ) = 1 ⊗ x 94 + x 50 ⊗ x 44 + x 70 ⊗ x 4 x 20 + 2x 70 ⊗ x 24 + x 74 ⊗ x 20 + x 90 ⊗ x 4 + x 94 ⊗ 1 ∆(x 95 ) = 1 ⊗ x 95 + x 75 ⊗ x 20 + x 95 ⊗ 1 ∆(x 96 ) = 1 ⊗ x 96 + x 20 ⊗ x 12 x 64 + 4x20 ⊗ x 16 x 60 + x 20 ⊗ x 32 x 44 + 4x 20 ⊗ x 36 x 40 + x 20 ⊗ x 52 x 24 + 4x 20 ⊗ x 56 x 20 + 4x 20 ⊗ x 76 + 4x 24 ⊗ x 72 + x 40 ⊗ x 8 x 48 + x 40 ⊗ x 12 x 44 + 3x 40 ⊗ x 16 x 40 + 3x 40 ⊗ x 32 x 24 + 2x 40 ⊗ x 36 x 20 + x 40 ⊗ x 56 + 3x 44 ⊗ x 8 x 44 + 2x 44 ⊗ x 12 x 40 + 3x 44 ⊗ x 28 x 24 + 2x 44 ⊗ x 32 x 20 + 2x 44 ⊗ x 52 + x 48 ⊗ x 48 + 3x 60 ⊗ x 12 x 24 + 2x 60 ⊗ x 16 x 20 + 4x 60 ⊗ x 36 + x 64 ⊗ x 8 x 24 + 4x 64 ⊗ x 12 x 20 + 2x 64 ⊗ x 32 + 3x 68 ⊗ x 4 x 24 + 2x 68 ⊗ x 8 x 20 + 2x 68 ⊗ x 28 + 4x 72 ⊗ x 24 + x 80 ⊗ x 16 + 4x 84 ⊗ x 12 + x 88 ⊗ x 8 + 4x 92 ⊗ x 4 + x 96 ⊗ 1 ∆(x 97 ) = 1 ⊗ x 97 + x 25 ⊗ x 72 + 2x 45 ⊗ x 8 x 44 + 3x 45 ⊗ x 12 x 40 + 2x 45 ⊗ x 28 x 24 + 3x 45 ⊗ x 32 x 20 + 3x 45 ⊗ x 52 + 3x 49 ⊗ x 48 + 4x 65 ⊗ x 8 x 24 + x 65 ⊗ x 12 x 20 + 3x 65 ⊗ x 32 + 4x 69 ⊗ x 4 x 24+ x 69 ⊗ x 8 x 20 + x 69 ⊗ x 28 + 3x 73 ⊗ x 24 + x 85 ⊗ x 12 + 3x 89 ⊗ x 8 + 3x 93 ⊗ x 4 + x 97 ⊗ 1 ∆(x 98 ) = 1 ⊗ x 98 + x 50 ⊗ x 48 + 3x 70 ⊗ x 4 x 24 + 2x 70 ⊗ x 8 x 20 + 2x 70 ⊗ x 28 + 2x 74 ⊗ x 24 + x 90 ⊗ x 8 + 2x 94 ⊗ x 4 + x 98 ⊗ 1 ∆(x 99 ) = 1 ⊗ x 99 + x 75 ⊗ x 24 + x 95 ⊗ x 4 + x 99 ⊗ 1 ⊗ x 101 + x 5 ⊗ x 4 x 92 + x 5 ⊗ x 8 x 88 + x 5 ⊗ x 12 x 84 + x 5 ⊗ x 16 x 80 + x 9 ⊗ x 4 x 88 + 4x 9 ⊗ x 8 x 84 + 2x 9 ⊗ x 12 x 80 + x 9 ⊗ x 20 x 72 + 2x 9 ⊗ x 24 x 68 + 3x 9 ⊗ x 28 x 64 + 4x 9 ⊗ x 32 x 60 + 4x 13 ⊗ x 4 x 84 + 3x13 ⊗ x 8 x 80 + 2x 13 ⊗ x 20 x 68 + x 13 ⊗ x 24 x 64 + 2x 13 ⊗ x 28 x 60 + x 13 ⊗ x 40 x 48 + 3x 13 ⊗ x 44 x 44 + x 13 ⊗ x 48 x 40 + 4x 17 ⊗ x 4 x 80 + x 17 ⊗ x 20 x 64 + 4x 17 ⊗ x 24 x 60 + x 17 ⊗ x 40 x 44 + 4x 17 ⊗ x 44 x 40 + x 17 ⊗ x 60 x 24 + 4x 17 ⊗ x 64 x 20 + x 21 ⊗ x 80 + x 25 ⊗ x 76 + 3x 29 ⊗ x 4 x 68 + 2x 29 ⊗ x 8 x 64 + x 29 ⊗ x 12 x 60 + 4x 33 ⊗ x 4 x 64 + 3x 33 ⊗ x 8 x 60 + 4x 33 ⊗ x 20 x 48 + 2x 33 ⊗ x 24 x 44 + 4x 33 ⊗ x 28 x 40 + x 37 ⊗ x 4 x 60 + 4x 37 ⊗ x 20 x 44 + x 37 ⊗ x 24 x 40 + 4x 37 ⊗ x 40 x 24 + x 37 ⊗ x 44 x 20 + 4x 41 ⊗ x 60 + x 45 ⊗ x 12 x 44 + 4x 45 ⊗ x 16 x 40 + x 45 ⊗ x 32 x 24 + 4x 45 ⊗ x 36 x 20 + 3x 45 ⊗ x 56 + 4x 49 ⊗ x 52 + 3x 53 ⊗ x 4 x 44 + x 53 ⊗ x 8 x 40 + 4x 57 ⊗ x 4 x 40 + x 57 ⊗ x 20 x 24 + 4x 57 ⊗ x 24 x 20 + x 61 ⊗ x 40 + 2x 65 ⊗ x 12 x 24 + 3x 65 ⊗ x 16 x 20 + 3x 65 ⊗ x 36 + 3x 69 ⊗ x 8 x 24 + 2x 69 ⊗ x 12 x 20 + 3x 69 ⊗ x 32 + x 73 ⊗ x 28 + x 77 ⊗ x 4 x 20 + 4x 81 ⊗ x 20 + x 85 ⊗ x 16 + 4x 89 ⊗ x 12 + x 93 ⊗ x 8 + 4x 97 ⊗ x 4 + x 101 ⊗ 1 ∆(x 102 ) = 1 ⊗ x 102 + 4x 10 ⊗ x 4 x 88 + x 10 ⊗ x 8 x 84 + 3x 10 ⊗ x 12 x 80 + 4x 10 ⊗ x 20 x 72 + 3x 10 ⊗ x 24 x 68 + 2x 10 ⊗ x 28 x 64 + x 10 ⊗ x 32 x 60 + 2x 14 ⊗ x 4 x 84 + 4x 14 ⊗ x 8 x 80 + x 14 ⊗ x 20 x 68 + 3x 14 ⊗ x 24 x 64 + x 14 ⊗ x 28 x 60 + 3x 14 ⊗ x 40 x 48 + 4x 14 ⊗ x 44 x 44 + 3x 14 ⊗ x 48 x 40 + 3x 18 ⊗ x 4 x 80 + 2x 18 ⊗ x 20 x 64 + 3x 18 ⊗ x 24 x 60 + 2x 18 ⊗ x 40 x 44 + 3x 18 ⊗ x 44 x 40 + 2x 18 ⊗ x 60 x 24 + 3x 18 ⊗ x 64 x 20 + x 22 ⊗ x 80 + 2x 30 ⊗ x 4 x 68 + 3x 30 ⊗ x 8 x 64 + 4x 30 ⊗ x 12 x 60 + 2x 34 ⊗ x 4 x 64 + 4x 34 ⊗ x 8 x 60 + 2x 34 ⊗ x 20 x 48 + x 34 ⊗ x 24 x 44 + 2x 34 ⊗ x 28 x 40 + 2x 38 ⊗ x 4 x 60 + 3x 38 ⊗ x 20 x 44 + 2x 38 ⊗ x 24 x 40 + 3x 38 ⊗ x 40 x 24 + 2x 38 ⊗ x 44 x 20 + 4x 42 ⊗ x 60 + x 50 ⊗ x 52 + 4x 54 ⊗ x 4 x 44 + 3x 54 ⊗ x 8 x 40 + 3x 58 ⊗ x 4 x 40 + 2x 58 ⊗ x 20 x 24 + 3x 58 ⊗ x 24 x 20 + x 62 ⊗ x 40 + 2x 70 ⊗ x 8 x 24 + 3x 70 ⊗ x 12 x 20 + 2x 70 ⊗ x 32 + 3x 74 ⊗ x 28 + 2x 78 ⊗ x 4 x 20 + 4x 82 ⊗ x 20 + x 90 ⊗ x 12 + 3x 94 ⊗ x 8 + 3x 98 ⊗ x 4 + x 102 ⊗ 1 ∆(x 103 ) = 1 ⊗ x 103 + 4x 15 ⊗ x 4 x 84 + 3x 15 ⊗ x 8 x 80 + 2x 15 ⊗ x 20 x 68 + x 15 ⊗ x 24 x 64 + 2x 15 ⊗ x 28 x 60 + x 15 ⊗ x 40 x 48 + 3x 15 ⊗ x 44 x 44 + x 15 ⊗ x 48 x 40 + 2x 19 ⊗ x 4 x 80 + 3x 19 ⊗ x 20 x 64 + 2x 19 ⊗ x 24 x 60 + 3x 19 ⊗ x 40 x 44 + 2x 19 ⊗ x 44 x 40 + 3x 19 ⊗ x 60 x 24 + 2x 19 ⊗ x 64 x 20 + x 23 ⊗ x 80 + 4x 35 ⊗ x 4 x 64 + 3x 35 ⊗ x 8 x 60 + 4x 35 ⊗ x 20 x 48 + 2x 35 ⊗ x 24 x 44 + 4x 35 ⊗ x 28 x 40 + 3x 39 ⊗ x 4 x 60 + 2x 39 ⊗ x 20 x 44 + 3x 39 ⊗ x 24 x 40 + 2x 39 ⊗ x 40 x 24 + 3x 39 ⊗ x 44 x 20 + 4x 43 ⊗ x 60 + 3x 55 ⊗ x 4 x 44 + x 55 ⊗ x 8 x 40 + 2x 59 ⊗ x 4 x 40 + 3x 59 ⊗ x 20 x 24 + 2x 59 ⊗ x 24 x 20 + x 63 ⊗ x 40 + x 75 ⊗ x 28 + 3x 79 ⊗ x 4 x 20 + 4x 83 ⊗ x 20 + x 95 ⊗ x 8 + 2x 99 ⊗ x 4 + x 103 ⊗ 1 ∆(x 104 ) = 1 ⊗ x 104 + x 20 ⊗ x 4 x 80 + 4x 20 ⊗ x 20 x 64 + x 20 ⊗ x 24 x 60 + 4x 20 ⊗ x 40 x 44 + x 20 ⊗ x 44 x 40 + 4x 20 ⊗ x 60 x 24 + x 20 ⊗ x 64 x 20 + x 24 ⊗ x 80 + 4x 40 ⊗ x 4 x 60 + x 40 ⊗ x 20 x 44 + 4x 40 ⊗ x 24 x 40 + x 40 ⊗ x 40 x 24 + 4x 40 ⊗ x 44 x 20 + 4x 44 ⊗ x 60 + x 60 ⊗ x 4 x 40 + 4x 60 ⊗ x 20 x 24 + x 60 ⊗ x 24 x 20 + x 64 ⊗ x 40 + 4x 80 ⊗ x 4 x 20 + 4x 84 ⊗ x 20 + x 100 ⊗ x 4 + x 104 ⊗ 1 ∆(x 105 ) = 1 ⊗ x 105 + x 25 ⊗ x 80 + 4x 45 ⊗ x 60 + x 65 ⊗ x 40 + 4x 85 ⊗ x 20 + x 105 ⊗ 1 ∆(x 106 ) = 1 ⊗ x 106 + 3x 10 ⊗ x 4 x 92 + x 10 ⊗ x 8 x 88 + 4x 10 ⊗ x 12 x 84 + 2x 10 ⊗ x 16 x 80 + x 10 ⊗ x 24 x 72 + 2x 10 ⊗ x 28 x 68 + 3x 10 ⊗ x 32 x 64 + 4x 10 ⊗ x 36 x 60 + x 14 ⊗ x 4 x 88 + 3x 14 ⊗ x 8 x 84 + x 14 ⊗ x 12 x 80 + 4x 14 ⊗ x 24 x 68 + 2x 14 ⊗ x 28 x 64 + 4x 14 ⊗ x 32 x 60 + 2x 14 ⊗ x 44 x 48 + x 14 ⊗ x 48 x 44 + 2x 14 ⊗ x 52 x 40 + 3x 18 ⊗ x 4 x 84 + 2x 18 ⊗ x 8 x 80 + 3x 18 ⊗ x 24 x 64 + 2x 18 ⊗ x 28 x 60 + 3x 18 ⊗ x 44 x 44 + 2x 18 ⊗ x 48 x 40 + 3x 18 ⊗ x 64 x 24 + 2x 18 ⊗ x 68 x 20 + 4x 22 ⊗ x 84 + 4x 30 ⊗ x 4 x 72 + 3x 30 ⊗ x 8 x 68 + 2x 30 ⊗ x 12 x 64 + x 30 ⊗ x 16 x 60 + 3x 34 ⊗ x 4 x 68 + x 34 ⊗ x 8 x 64 + 3x 34 ⊗ x 24 x 48 + 4x 34 ⊗ x 28 x 44 + 3x 34 ⊗ x 32 x 40 + 3x 38 ⊗ x 4 x 64 + x 38 ⊗ x 20 x 48 + 4x 38 ⊗ x 28 x 40 + 2x 38 ⊗ x 44 x 24 + 3x 38 ⊗ x 48 x 20 + 4x 42 ⊗ x 4 x 60 + x 42 ⊗ x 20 x 44 + 4x 42 ⊗ x 24 x 40 + x 42 ⊗ x 40 x 24 + 4x 42 ⊗ x 44 x 20 + x 42 ⊗ x 64 + x 46 ⊗ x 60 + x 50 ⊗ x 56 + 2x 54 ⊗ x 4 x 48 + x 54 ⊗ x 8 x 44 + 2x 54 ⊗ x 12 x 40 + 2x 58 ⊗ x 4 x 44 + 3x 58 ⊗ x 24 x 24 + 2x 58 ⊗ x 28 x 20 + 2x 62 ⊗ x 4 x 40 + 3x 62 ⊗ x 20 x 24 + 2x 62 ⊗ x 24 x 20 + 4x 62 ⊗ x 44 + 3x 66 ⊗ x 40 + x 70 ⊗ x 12 x 24 + 4x 70 ⊗ x 16 x 20 + 2x 70 ⊗ x 36 + 4x 74 ⊗ x 32 + 2x 78 ⊗ x 4 x 24 + 3x 78 ⊗ x 8 x 20 + 2x 82 ⊗ x 4 x 20 + x 82 ⊗ x 24 + 3x 86 ⊗ x 20 + x 90 ⊗ x 16 + 4x 94 ⊗ x 12 + x 98 ⊗ x 8 + 4x 102 ⊗ x 4 + x 106 ⊗ 1 ∆(x 107 ) = 1 ⊗ x 107 + 4x 15 ⊗ x 4 x 88 + 2x 15 ⊗ x 8 x 84 + 4x 15 ⊗ x 12 x 80 + x 15 ⊗ x 24 x 68 + 3x 15 ⊗ x 28 x 64 + x 15 ⊗ x 32 x 60 + 3x 15 ⊗ x 44 x 48 + 4x 15 ⊗ x 48 x 44 + 3x 15 ⊗ x 52 x 40 + 4x 19 ⊗ x 4 x 84 + x 19 ⊗ x 8 x 80 + 4x 19 ⊗ x 24 x 64 + x 19 ⊗ x 28 x 60 + 4x 19 ⊗ x 44 x 44 + x 19 ⊗ x 48 x 40 + 4x 19 ⊗ x 64 x 24 + x 19 ⊗ x 68 x 20 + 3x 23 ⊗ x 84 + 2x 35 ⊗ x 4 x 68 + 4x 35 ⊗ x 8 x 64 + 2x 35 ⊗ x 24 x 48 + x 35 ⊗ x 28 x 44 + 2x 35 ⊗ x 32 x 40 + 4x 39 ⊗ x 4 x 64 + 3x 39 ⊗ x 20 x 48 + 2x 39 ⊗ x 28 x 40 + x 39 ⊗ x 44 x 24 + 4x 39 ⊗ x 48 x 20 + 3x 43 ⊗ x 4 x 60 + 2x 43 ⊗ x 20 x 44 + 3x 43 ⊗ x 24 x 40 + 2x 43 ⊗ x 40 x 24 + 3x 43 ⊗ x 44 x 20 + 2x 43 ⊗ x 64 + x 47 ⊗ x 60 + 3x 55 ⊗ x 4 x 48 + 4x 55 ⊗ x 8 x 44 + 3x 55 ⊗ x 12 x 40 + x 59 ⊗ x 4 x 44 + 4x 59 ⊗ x 24 x 24 + x 59 ⊗ x 28 x 20 + 4x 63 ⊗ x 4 x 40 + x 63 ⊗ x 20 x 24 + 4x 63 ⊗ x 24 x 20 + 3x 63 ⊗ x 44 + 3x 67 ⊗ x 40 + x 75 ⊗ x 32 + x 79 ⊗ x 4 x 24 + 4x 79 ⊗ x 8 x 20 + 4x 83 ⊗ x 4 x 20 + 2x 83 ⊗ x 24 + 3x 87 ⊗ x 20 + x 95 ⊗ x 12 + 3x 99 ⊗ x 8 + 3x 103 ⊗ x 4 + x 107 ⊗ 1 ∆(x 108 ) = 1 ⊗ x 108 + 3x 20 ⊗ x 4 x 84 + 2x 20 ⊗ x 8 x 80 + 3x 20 ⊗ x 24 x 64 + 2x 20 ⊗ x 28 x 60 + 3x 20 ⊗ x 44 x 44 + 2x 20 ⊗ x 48 x 40 + 3x 20 ⊗ x 64 x 24 + 2x 20 ⊗ x 68 x 20 + 2x 24 ⊗ x 84 + 3x 40 ⊗ x 4 x 64 + x 40 ⊗ x 20 x 48 + 4x 40 ⊗ x 28 x 40 + 2x 40 ⊗ x 44 x 24 + 3x 40 ⊗ x 48 x 20 + 2x 44 ⊗ x 4 x 60 + 3x 44 ⊗ x 20 x 44 + 2x 44 ⊗ x 24 x 40 + 3x 44 ⊗ x 40 x 24 + 2x 44 ⊗ x 44 x 20 + 3x 44 ⊗ x 64 + x 48 ⊗ x 60 + 2x 60 ⊗ x 4 x 44 + 3x 60 ⊗ x 24 x 24 + 2x 60 ⊗ x 28 x 20 + x 64 ⊗ x 4 x 40 + 4x 64 ⊗ x 20 x 24 + x 64 ⊗ x 24 x 20 + 2x 64 ⊗ x 44 + 3x 68 ⊗ x 40 + 2x 80 ⊗ x 4 x 24 + 3x 80 ⊗ x 8 x 20 + x 84 ⊗ x 4 x 20 + 3x 84 ⊗ x 24 + 3x 88 ⊗ x 20 + x 100 ⊗ x 8 + 2x 104 ⊗ x 4 + x 108 ⊗ 1 ∆(x 109 ) = 1 ⊗ x 109 + x 25 ⊗ x 84 + x 45 ⊗ x 4 x 60 + 4x 45 ⊗ x 20 x 44 + x 45 ⊗ x 24 x 40 + 4x 45 ⊗ x 40 x 24 + x 45 ⊗ x 44 x 20 + 4x 45 ⊗ x 64 + x 49 ⊗ x 60 + 3x 65 ⊗ x 4 x 40 + 2x 65 ⊗ x 20 x 24 + 3x 65 ⊗ x 24 x 20 + x 65 ⊗ x 44 + 3x 69 ⊗ x 40 + 3x 85 ⊗ x 4 x 20 + 4x 85 ⊗ x 24 + 3x 89 ⊗ x 20 + x 105 ⊗ x 4 + x 109 ⊗ 1 ∆(x 110 ) = 1 ⊗ x 110 + x 50 ⊗ x 60 + 3x 70 ⊗ x 40 + 3x 90 ⊗ x 20 + x 110 ⊗ 1 ∆(x 111 ) = 1 ⊗ x 111 + 3x 15 ⊗ x 8 x 88 + 4x 15 ⊗ x 12 x 84 + 3x 15 ⊗ x 16 x 80 + 2x 15 ⊗ x 28 x 68 + x 15 ⊗ x 32 x 64 + 2x 15 ⊗ x 36 x 60 + x 15 ⊗ x 48 x 48 + 3x 15 ⊗ x 52 x 44 + x 15 ⊗ x 56 x 40 + 3x 19 ⊗ x 8 x 84 + 2x 19 ⊗ x 12 x 80 + 3x 19 ⊗ x 28 x 64 + 2x 19 ⊗ x 32 x 60 + 3x 19 ⊗ x 48 x 44 + 2x 19 ⊗ x 52 x 40 + 3x 19 ⊗ x 68 x 24 + 2x 19 ⊗ x 72 x 20 + x 23 ⊗ x 88 + x 35 ⊗ x 4 x 72 + 2x 35 ⊗ x 12 x 64 + 2x 35 ⊗ x 16 x 60 + 4x 35 ⊗ x 28 x 48 + 2x 35 ⊗ x 32 x 44 + 4x 35 ⊗ x 36 x 40 + 4x 39 ⊗ x 4 x 68 + 4x 39 ⊗ x 8 x 64 + 2x 39 ⊗ x 12 x 60 + 2x 39 ⊗ x 24 x 48 + 3x 39 ⊗ x 28 x 44 + 2x 39 ⊗ x 48 x 24 + 3x 39 ⊗ x 52 x 20 + 3x 43 ⊗ x 4 x 64 + 2x 43 ⊗ x 8 x 60 + 3x 43 ⊗ x 24 x 44 + 2x 43 ⊗ x 28 x 40 + 3x 43 ⊗ x 44 x 24 + 2x 43 ⊗ x 48 x 20 + 4x 43 ⊗ x 68 + 4x 47 ⊗ x 64 + x 55 ⊗ x 8 x 48 + 3x 55 ⊗ x 12 x 44 + x 55 ⊗ x 16 x 40 + x 59 ⊗ x 4 x 48 + x 59 ⊗ x 8 x 44 + 3x 59 ⊗ x 12 x 40 + 3x 59 ⊗ x 28 x 24 + 2x 59 ⊗ x 32 x 20 + 2x 63 ⊗ x 4 x 44 + 2x 63 ⊗ x 8 x 40 + 4x 63 ⊗ x 24 x 24 + x 63 ⊗ x 28 x 20 + x 63 ⊗ x 48 + 4x 67 ⊗ x 4 x 40 + x 67 ⊗ x 20 x 24 + 4x 67 ⊗ x 24 x 20 + 2x 67 ⊗ x 44 + x 71 ⊗ x 40 + x 75 ⊗ x 36 + 2x 79 ⊗ x 8 x 24 + 3x 79 ⊗ x 12 x 20 + 4x 83 ⊗ x 4 x 24 + x 83 ⊗ x 8 x 20 + 4x 83 ⊗ x 28 + 3x 87 ⊗ x 4 x 20 + 2x 87 ⊗ x 24 + 2x 91 ⊗ x 20 + x 95 ⊗ x 16 + 4x 99 ⊗ x 12 + x 103 ⊗ x 8 + 4x 107 ⊗ x 4 + x 111 ⊗ 1 ∆(x 112 ) = 1 ⊗ x 112 + 2x 20 ⊗ x 8 x 84 + 3x 20 ⊗ x 12 x 80 + 2x 20 ⊗ x 28 x 64 + 3x 20 ⊗ x 32 x 60 + 2x 20 ⊗ x 48 x 44 + 3x 20 ⊗ x 52 x 40 + 2x 20 ⊗ x 68 x 24 + 3x 20 ⊗ x 72 x 20 + 3x 24 ⊗ x 88 + x 40 ⊗ x 4 x 68 + x 40 ⊗ x 8 x 64 + 3x 40 ⊗ x 12 x 60 + 3x 40 ⊗ x 24 x 48 + 2x 40 ⊗ x 28 x 44 + 3x 40 ⊗ x 48 x 24 + 2x 40 ⊗ x 52 x 20 + 4x 44 ⊗ x 4 x 64 + x 44 ⊗ x 8 x 60 + 4x 44 ⊗ x 24 x 44 + x 44 ⊗ x 28 x 40 + 4x 44 ⊗ x 44 x 24 + x 44 ⊗ x 48 x 20 + 2x 44 ⊗ x 68 + 3x 48 ⊗ x 64 + 4x 60 ⊗ x 4 x 48 + 4x 60 ⊗ x 8 x 44 + 2x 60 ⊗ x 12 x 40 + 2x 60 ⊗ x 28 x 24 + 3x 60 ⊗ x 32 x 20 + x 64 ⊗ x 4 x 44 + x 64 ⊗ x 8 x 40 + 2x 64 ⊗ x 24 x 24 + 3x 64 ⊗ x 28 x 20 + 3x 64 ⊗ x 48 + 3x 68 ⊗ x 4 x 40 + 2x 68 ⊗ x 20 x 24 + 3x 68 ⊗ x 24 x 20 + 4x 68 ⊗ x 44 + x 72 ⊗ x 40 + 3x 80 ⊗ x 8 x 24 + 2x 80 ⊗ x 12 x 20 + 2x 84 ⊗ x 4 x 24 + 3x 84 ⊗ x 8 x 20 + 2x 84 ⊗ x 28 + x 88 ⊗ x 4 x 20 + 4x 88 ⊗ x 24 + 2x 92 ⊗ x 20 + x 100 ⊗ x 12 + 3x 104 ⊗ x 8 + 3x 108 ⊗ x 4 + x 112 ⊗ 1 ∆(x 113 ) = 1 ⊗ x 113 + x 25 ⊗ x 88 + 3x 45 ⊗ x 4 x 64 + 2x 45 ⊗ x 8 x 60 + 3x 45 ⊗ x 24 x 44 + 2x 45 ⊗ x 28 x 40 + 3x 45 ⊗ x 44 x 24 + 2x 45 ⊗ x 48 x 20 + 4x 45 ⊗ x 68 + 2x 49 ⊗ x 64 + 2x 65 ⊗ x 4 x 44 + 2x 65 ⊗ x 8 x 40 + 4x 65 ⊗ x 24 x 24 + x 65 ⊗ x 28 x 20 + x 65 ⊗ x 48 + 2x 69 ⊗ x 4 x 40 + 3x 69 ⊗ x 20 x 24 + 2x 69 ⊗ x 24 x 20 + x 69 ⊗ x 44 + x 73 ⊗ x 40 + 4x 85 ⊗ x 4 x 24 + x 85 ⊗ x 8 x 20 + 4x 85 ⊗ x 28 + 4x 89 ⊗ x 4 x 20+ x 89 ⊗ x 24 + 2x 93 ⊗ x 20 + x 105 ⊗ x 8 + 2x 109 ⊗ x 4 + x 113 ⊗ 1 ∆(x 114 ) = 1 ⊗ x 114 + x 50 ⊗ x 64 + x 70 ⊗ x 4 x 40 + 4x 70 ⊗ x 20 x 24 + x 70 ⊗ x 24 x 20 + 3x 70 ⊗ x 44 + x 74 ⊗ x 40 + 2x 90 ⊗ x 4 x 20 + 3x 90 ⊗ x 24 + 2x 94 ⊗ x 20 + x 110 ⊗ x 4 + x 114 ⊗ 1 ∆(x 115 ) = 1 ⊗ x 115 + x 75 ⊗ x 40 + 2x 95 ⊗ x 20 + x 115 ⊗ 1 ∆(x 116 ) = 1 ⊗ x 116 + x 20 ⊗x 12 x 84 + 4x 20 ⊗ x 16 x 80 + x 20 ⊗ x 32 x 64 + 4x 20 ⊗ x 36 x 60 + x 20 ⊗ x 52 x 44 + 4x 20 ⊗ x 56 x 40 + x 20 ⊗ x 72 x 24 + 4x 20 ⊗ x 76 x 20 + 4x 24 ⊗ x 92 + 2x 40 ⊗ x 8 x 68 + 3x 40 ⊗ x 16 x 60 + x 40 ⊗ x 28 x 48 + 2x 40 ⊗ x 32 x 44 + 2x 40 ⊗ x 36 x 40 + 4x 40 ⊗ x 52 x 24 + x 40 ⊗ x 56 x 20 + 3x 44 ⊗ x 8 x 64 + 2x 44 ⊗ x 12 x 60 + 3x 44 ⊗ x 28 x 44 + 2x 44 ⊗ x 32 x 40 + 3x 44 ⊗ x 48 x 24 + 2x 44 ⊗ x 52 x 20 + x 44 ⊗ x 72 + x 48 ⊗ x 68 + 3x 60 ⊗ x 8 x 48 + 2x 60 ⊗ x 16 x 40 + x 60 ⊗ x 32 x 24 + 4x 60 ⊗ x 36 x 20 + 2x 64 ⊗ x 4 x 48 + 3x 64 ⊗ x 12 x 40 + 4x 64 ⊗ x 28 x 24 + x 64 ⊗ x 32 x 20 + 4x 64 ⊗ x 52 + 3x 68 ⊗ x 4 x 44 + 2x 68 ⊗ x 8 x 40 + 3x 68 ⊗ x 24 x 24 + 2x 68 ⊗ x 28 x 20 + 3x 68 ⊗ x 48 + 4x 72 ⊗ x 44 + 4x 80 ⊗ x 12 x 24 + x 80 ⊗ x 16 x 20 + 4x 84 ⊗ x 8 x 24 + x 84 ⊗ x 12 x 20 + x 84 ⊗ x 32 + x 88 ⊗ x 4 x 24 + 4x 88 ⊗ x 8 x 20 + 3x 88 ⊗ x 28 + 4x 92 ⊗ x 4 x 20 + 3x 92 ⊗ x 24 + x 96 ⊗ x 20 + x 100 ⊗ x 16 + 4x 104 ⊗ x 12 + x 108 ⊗ x 8 + 4x 112 ⊗ x 4 + x 116 ⊗ 1 ∆(x 117 ) = 1 ⊗ x 117 + x 25 ⊗ x 92 + 2x 45 ⊗ x 8 x 64 + 3x 45 ⊗ x 12 x 60 + 2x 45 ⊗ x 28 x 44 + 3x 45 ⊗ x 32 x 40 + 2x 45 ⊗ x 48 x 24 + 3x 45 ⊗ x 52 x 20 + 4x 45 ⊗ x 72 + 3x 49 ⊗ x 68 + 3x 65 ⊗ x 4 x 48 + 2x 65 ⊗ x 12 x 40 + x 65 ⊗ x 28 x 24 + 4x 65 ⊗ x 32 x 20 + x 65 ⊗ x 52 + 4x 69 ⊗ x 4 x 44 + x 69 ⊗ x 8 x 40 + 4x 69 ⊗ x 24 x 24 + x 69 ⊗ x 28 x 20 + 4x 69 ⊗ x 48 + 3x 73 ⊗ x 44 + x 85 ⊗ x 8 x 24 + 4x 85 ⊗ x 12 x 20 + 4x 85 ⊗ x 32 + 3x 89 ⊗ x 4 x 24 + 2x 89 ⊗ x 8 x 20 + 4x 89 ⊗ x 28 + 3x 93 ⊗ x 4 x 20 + x 93 ⊗ x 24 + x 97 ⊗ x 20 + x 105 ⊗ x 12 + 3x 109 ⊗ x 8 + 3x 113 ⊗ x 4 + x 117 ⊗ 1 ∆(x 118 ) = 1 ⊗ x 118 + x 50 ⊗ x 68 + 3x 70 ⊗ x 4 x 44 + 2x 70 ⊗ x 8 x 40 + 3x 70 ⊗ x 24 x 24 + 2x 70 ⊗ x 28 x 20 + 3x 70 ⊗ x 48 + 2x 74 ⊗ x 44 + x 90 ⊗ x 4 x 24 + 4x 90 ⊗ x 8 x 20 + 3x 90 ⊗ x 28 + 2x 94 ⊗ x 4 x 20+ 4x 94 ⊗ x 24 + x 98 ⊗ x 20 + x 110 ⊗ x 8 + 2x 114 ⊗ x 4 + x 118 ⊗ 1 ∆(x 119 ) = 1 ⊗ x 119 + x 75 ⊗ x 44 + x 95 ⊗ x 4 x 20 + 2x 95 ⊗ x 24 + x 99 ⊗ x 20 + x 115 ⊗ x 4 + x 119 ⊗ 1 ∆(x 120 ) = 1 ⊗ x 120 + x 100 ⊗ x 20 + x 120 ⊗ 1 ∆(x 121 ) = 1 ⊗ x 121 + x 25 ⊗x 96 + x 45 ⊗ x 12 x 64 + 4x 45 ⊗ x 16 x 60 + x 45 ⊗ x 32 x 44 + 4x 45 ⊗ x 36 x 40 + x 45 ⊗ x 52 x 24 + 4x 45 ⊗ x 56 x 20 + 4x 45 ⊗ x 76 + 4x 49 ⊗ x 72 + x 65 ⊗ x 8 x 48 + x 65 ⊗ x 12 x 44 + 3x 65 ⊗ x 16 x 40 + 3x 65 ⊗ x 32 x 24 + 2x 65 ⊗ x 36 x 20 + x 65 ⊗ x 56 + 3x 69 ⊗ x 8 x 44 + 2x 69 ⊗ x 12 x 40 + 3x 69 ⊗ x 28 x 24 + 2x 69 ⊗ x 32 x 20 + 2x 69 ⊗ x 52 + x 73 ⊗ x 48 + 3x 85 ⊗ x 12 x 24 + 2x 85 ⊗ x 16 x 20 + 4x 85 ⊗ x 36 + x 89 ⊗ x 8 x 24 + 4x 89 ⊗ x 12 x 20 + 2x 89 ⊗ x 32 + 3x 93 ⊗ x 4 x 24 + 2x 93 ⊗ x 8 x 20 + 2x 93 ⊗ x 28 + 4x 97 ⊗ x 24 + x 105 ⊗ x 16 + 4x 109 ⊗ x 12 + x 113 ⊗ x 8 + 4x 117 ⊗ x 4 + x 121 ⊗ 1 ∆(x 122 ) = 1 ⊗ x 122 + x 50 ⊗ x 72 + 2x 70 ⊗ x 8 x 44 + 3x 70 ⊗ x 12 x 40 + 2x 70 ⊗ x 28 x 24 + 3x 70 ⊗ x 32 x 20 + 3x 70 ⊗ x 52 + 3x 74 ⊗ x 48 + 4x 90 ⊗ x 8 x 24 + x 90 ⊗ x 12 x 20 + 3x 90 ⊗ x 32 + 4x 94 ⊗ x 4 x 24 + x 94 ⊗ x 8 x 20 + x 94 ⊗ x 28 + 3x 98 ⊗ x 24 + x 110 ⊗ x 12 + 3x 114 ⊗ x 8 + 3x 118 ⊗ x 4 + x 122 ⊗ 1 ∆(x 123 ) = 1 ⊗ x 123 + x 75 ⊗ x 48 + 3x 95 ⊗ x 4 x 24 + 2x 95 ⊗ x 8 x 20 + 2x 95 ⊗ x 28 + 2x 99 ⊗ x 24+ x 115 ⊗ x 8 + 2x 119 ⊗ x 4 + x 123 ⊗ 1 ∆(x 124 ) = 1 ⊗ x 124 + x 100 ⊗ x 24 + x 120 ⊗ x 4 + x 124 ⊗ 1 ∆(x 125 ) = 1 ⊗ x 125 + x 125 ⊗ 1 ∆(x 126 ) = 1 ⊗ x 126 + 4x 2 ⊗x 4 x 20 x 100 + x 6 ⊗ x 20 x 100 + x 10 ⊗ x 4 x 112 + x 10 ⊗ x 8 x 108 + x 10 ⊗ x 12 x 104 + x 10 ⊗ x 16 x 100 + 4x 10 ⊗ x 20 x 96 + 4x 10 ⊗ x 24 x 92 + 4x 10 ⊗ x 28 x 88 + 4x 10 ⊗ x 32 x 84 + 4x 10 ⊗ x 36 x 80 + 3x 14 ⊗ x 4 x 108 + 2x 14 ⊗ x 8 x 104 + x 14 ⊗ x 12 x 100 + 2x 14 ⊗ x 20 x 92 + 4x 14 ⊗ x 24 x 88 + x 14 ⊗ x 28 x 84 + 3x 14 ⊗ x 32 x 80 + 4x 14 ⊗ x 40 x 72 + 3x 14 ⊗ x 44 x 68 + 2x 14 ⊗ x 48 x 64 + x 14 ⊗ x 52 x 60 + 3x 18 ⊗ x 4 x 104 + x 18 ⊗ x 8 x 100 + 2x 18 ⊗ x 20 x 88 + x 18 ⊗ x 24 x 84 + 2x 18 ⊗ x 28 x 80 + 3x 18 ⊗ x 40 x 68 + 4x 18 ⊗ x 44 x 64 + 3x 18 ⊗ x 48 x 60 + 4x 18 ⊗ x 60 x 48 + 2x 18 ⊗ x 64 x 44 + 4x 18 ⊗ x 68 x 40 + x 22 ⊗ x 4 x 100 + 4x 22 ⊗ x 20 x 84 + x 22 ⊗ x 24 x 80 + 4x 22 ⊗ x 40 x 64 + x 22 ⊗ x 44 x 60 + 4x 22 ⊗ x 60 x 44 + x 22 ⊗ x 64 x 40 + 4x 22 ⊗ x 80 x 24 + x 22 ⊗ x 84 x 20 + 4x 26 ⊗ x 100 + x 30 ⊗ x 4 x 92 + x 30 ⊗ x 8 x 88 + x 30 ⊗ x 12 x 84 + x 30 ⊗ x 16 x 80 + x 34 ⊗ x 4 x 88 + 4x 34 ⊗ x 8 x 84 + 2x 34 ⊗ x 12 x 80 + x 34 ⊗ x 20 x 72 + 2x 34 ⊗ x 24 x 68 + 3x 34 ⊗ x 28 x 64 + 4x 34 ⊗ x 32 x 60 + 4x 38 ⊗ x 4 x 84 + 3x 38 ⊗ x 8 x 80 + 2x 38 ⊗ x 20 x 68 + x 38 ⊗ x 24 x 64 + 2x 38 ⊗ x 28 x 60 + x 38 ⊗ x 40 x 48 + 3x 38 ⊗ x 44 x 44 + x 38 ⊗ x 48 x 40 + 4x 42 ⊗ x 4 x 80 + x 42 ⊗ x 20 x 64 + 4x 42 ⊗ x 24 x 60 + x 42 ⊗ x 40 x 44 + 4x 42 ⊗ x 44 x 40 + x 42 ⊗ x 60 x 24 + 4x 42 ⊗ x 64 x 20 + x 46 ⊗ x 80 + x 50 ⊗ x 76 + 3x 54 ⊗ x 4 x 68 + 2x 54 ⊗ x 8 x 64 + x 54 ⊗ x 12 x 60 + 4x 58 ⊗ x 4 x 64 + 3x 58 ⊗ x 8 x 60 + 4x 58 ⊗ x 20 x 48 + 2x 58 ⊗ x 24 x 44 + 4x 58 ⊗ x 28 x 40 + x 62 ⊗ x 4 x 60 + 4x 62 ⊗ x 20 x 44 + x 62 ⊗ x 24 x 40 + 4x 62 ⊗ x 40 x 24 + x 62 ⊗ x 44 x 20 + 4x 66 ⊗ x 60 + x 70 ⊗ x 12 x 44 + 4x 70 ⊗ x 16 x 40 + x 70 ⊗ x 32 x 24 + 4x 70 ⊗ x 36 x 20 + 3x 70 ⊗ x 56 + 4x 74 ⊗ x 52 + 3x 78 ⊗ x 4 x 44 + x 78 ⊗ x 8 x 40 + 4x 82 ⊗ x 4 x 40 + x 82 ⊗ x 20 x 24 + 4x 82 ⊗ x 24 x 20 + x 86 ⊗ x 40 + 2x 90 ⊗ x 12 x 24 + 3x 90 ⊗ x 16 x 20 + 3x 90 ⊗ x 36 + 3x 94 ⊗ x 8 x 24 + 2x 94 ⊗ x 12 x 20 + 3x 94 ⊗ x 32 + x 98 ⊗ x 28 + x 102 ⊗ x 4 x 20 + 4x 106 ⊗ x 20 + x 110 ⊗ x 16 + 4x 114 ⊗ x 12 + x 118 ⊗ x 8 + 4x 122 ⊗ x 4 + x 126 ⊗ 1 ∆(x 127 ) = 1 ⊗ x 127 + 3x 3 ⊗ x 4 x 20 x 100 + x 7 ⊗ x 20 x 100 + 2x 15 ⊗ x 4 x 108 + 3x 15 ⊗ x 8 x 104 + 4x 15 ⊗ x 12 x 100 + 3x 15 ⊗ x 20 x 92 + x 15 ⊗ x 24 x 88 + 4x 15 ⊗ x 28 x 84 + 2x 15 ⊗ x 32 x 80 + x 15 ⊗ x 40 x 72 + 2x 15 ⊗ x 44 x 68 + 3x 15 ⊗ x 48 x 64 + 4x 15 ⊗ x 52 x 60 + 4x 19 ⊗ x 4 x 104 + 3x 19 ⊗ x 8 x 100 + x 19 ⊗ x 20 x 88 + 3x 19 ⊗ x 24 x 84 + x 19 ⊗ x 28 x 80 + 4x 19 ⊗ x 40 x 68 + 2x 19 ⊗ x 44 x 64 + 4x 19 ⊗ x 48 x 60 + 2x 19 ⊗ x 60 x 48 + x 19 ⊗ x 64 x 44 + 2x 19 ⊗ x 68 x 40 + 2x 23 ⊗ x 4 x 100 + 3x 23 ⊗ x 20 x 84 + 2x 23 ⊗ x 24 x 80 + 3x 23 ⊗ x 40 x 64 + 2x 23 ⊗ x 44 x 60 + 3x 23 ⊗ x 60 x 44 + 2x 23 ⊗ x 64 x 40 + 3x 23 ⊗ x 80 x 24 + 2x 23 ⊗ x 84 x 20 + 4x 27 ⊗ x 100 + 4x 35 ⊗ x 4 x 88 + x 35 ⊗ x 8 x 84 + 3x 35 ⊗ x 12 x 80 + 4x 35 ⊗ x 20 x 72 + 3x 35 ⊗ x 24 x 68 + 2x 35 ⊗ x 28 x 64 + x 35 ⊗ x 32 x 60 + 2x 39 ⊗ x 4 x 84 + 4x 39 ⊗ x 8 x 80 + x 39 ⊗ x 20 x 68 + 3x 39 ⊗ x 24 x 64 + x 39 ⊗ x 28 x 60 + 3x 39 ⊗ x 40 x 48 + 4x 39 ⊗ x 44 x 44 + 3x 39 ⊗ x 48 x 40 + 3x 43 ⊗ x 4 x 80 + 2x 43 ⊗ x 20 x 64 + 3x 43 ⊗ x 24 x 60 + 2x 43 ⊗ x 40 x 44 + 3x 43 ⊗ x 44 x 40 + 2x 43 ⊗ x 60 x 24 + 3x 43 ⊗ x 64 x 20 + x 47 ⊗ x 80 + 2x 55 ⊗ x 4 x 68 + 3x 55 ⊗ x 8 x 64 + 4x 55 ⊗ x 12 x 60 + 2x 59 ⊗ x 4 x 64 + 4x 59 ⊗ x 8 x 60 + 2x 59 ⊗ x 20 x 48 + x 59 ⊗ x 24 x 44 + 2x 59 ⊗ x 28 x 40 + 2x 63 ⊗ x 4 x 60 + 3x 63 ⊗ x 20 x 44 + 2x 63 ⊗ x 24 x 40 + 3x 63 ⊗ x 40 x 24 + 2x 63 ⊗ x 44 x 20 + 4x 67 ⊗ x 60 + x 75 ⊗ x 52 + 4x 79 ⊗ x 4 x 44 + 3x 79 ⊗ x 8 x 40 + 3x 83 ⊗ x 4 x 40 + 2x 83 ⊗ x 20 x 24 + 3x 83 ⊗ x 24 x 20 + x 87 ⊗ x 40 + 2x 95 ⊗ x 8 x 24 + 3x 95 ⊗ x 12 x 20 + 2x 95 ⊗ x 32 + 3x 99 ⊗ x 28 + 2x 103 ⊗ x 4 x 20 + 4x 107 ⊗ x 20 + x 115 ⊗ x 12 + 3x 119 ⊗ x 8 + 3x 123 ⊗ x 4 + x 127 ⊗ 1 ∆(x 128 ) = 1 ⊗ x 128 + 2x 4 ⊗ x 4 x 20 x 100 + x 8 ⊗ x 20 x 100 + 3x 20 ⊗ x 4 x 104 + x 20 ⊗ x 8 x 100 + 2x 20 ⊗ x 20 x 88 + x 20 ⊗ x 24 x 84 + 2x 20 ⊗ x 28 x 80 + 3x 20 ⊗ x 40 x 68 + 4x 20 ⊗ x 44 x 64 + 3x 20 ⊗ x 48 x 60 + 4x 20 ⊗ x 60 x 48 + 2x 20 ⊗ x 64 x 44 + 4x 20 ⊗ x 68 x 40 + 3x 24 ⊗ x 4 x 100 + 2x 24 ⊗ x 20 x 84 + 3x 24 ⊗ x 24 x 80 + 2x 24 f ⊗ x 40 x 64 + 3x 24 ⊗ x 44 x 60 + 2x 24 ⊗ x 60 x 44 + 3x 24 ⊗ x 64 x 40 + 2x 24 ⊗ x 80 x 24 + 3x 24 ⊗ x 84 x 20 + 4x 28 ⊗ x 100 + 4x 40 ⊗ x 4 x 84 + 3x 40 ⊗ x 8 x 80 + 2x 40 ⊗ x 20 x 68 + x 40 ⊗ x 24 x 64 + 2x 40 ⊗ x 28 x 60 + x 40 ⊗ x 40 x 48 + 3x 40 ⊗ x 44 x 44 + x 40 ⊗ x 48 x 40 + 2x 44 ⊗ x 4 x 80 + 3x 44 ⊗ x 20 x 64 + 2x 44 ⊗ x 24 x 60 + 3x 44 ⊗ x 40 x 44 + 2x 44 ⊗ x 44 x 40 + 3x 44 ⊗ x 60 x 24 + 2x 44 ⊗ x 64 x 20 + x 48 ⊗ x 80 + 4x 60 ⊗ x 4 x 64 + 3x 60 ⊗ x 8 x 60 + 4x 60 ⊗ x 20 x 48 + 2x 60 ⊗ x 24 x 44 + 4x 60 ⊗ x 28 x 40 + 3x 64 ⊗ x 4 x 60 + 2x 64 ⊗ x 20 x 44 + 3x 64 ⊗ x 24 x 40 + 2x 64 ⊗ x 40 x 24 + 3x 64 ⊗ x 44 x 20 + 4x 68 ⊗ x 60 + 3x 80 ⊗ x 4 x 44 + x 80 ⊗ x 8 x 40 + 2x 84 ⊗ x 4 x 40 + 3x 84 ⊗ x 20 x 24 + 2x 84 ⊗ x 24 x 20 + x 88 ⊗ x 40 + x 100 ⊗ x 28 + 3x 104 ⊗ x 4 x 20 + 4x 108 ⊗ x 20+ x 120 ⊗ x 8 + 2x 124 ⊗ x 4 + x 128 ⊗ 1 ∆(x 129 ) = 1 ⊗ x 129 + x 5 ⊗ x 4 x 20 x 100 + x 9 ⊗ x 20 x 100 + 4x 25 ⊗ x 4 x 100 + x 25 ⊗ x 20 x 84 + 4x25 ⊗ x 24 x 80 + x 25 ⊗ x 40 x 64 + 4x 25 ⊗ x 44 x 60 + x 25 ⊗ x 60 x 44 + 4x 25 ⊗ x 64 x 40 + x 25 ⊗ x 80 x 24 + 4x 25 ⊗ x 84 x 20 + 4x 29 ⊗ x 100 + x 45 ⊗ x 4 x 80 + 4x 45 ⊗ x 20 x 64 + x 45 ⊗ x 24 x 60 + 4x 45 ⊗ x 40 x 44 + x 45 ⊗ x 44 x 40 + 4x 45 ⊗ x 60 x 24 + x 45 ⊗ x 64 x 20 + x 49 ⊗ x 80 + 4x 65 ⊗ x 4 x 60 + x 65 ⊗ x 20 x 44 + 4x 65 ⊗ x 24 x 40 + x 65 ⊗ x 40 x 24 + 4x 65 ⊗ x 44 x 20 + 4x 69 ⊗ x 60 + x 85 ⊗ x 4 x 40 + 4x 85 ⊗ x 20 x 24 + x 85 ⊗ x 24 x 20+ x 89 ⊗ x 40 + 4x 105 ⊗ x 4 x 20 + 4x 109 ⊗ x 20 + x 125 ⊗ x 4 + x 129 ⊗ 1 ∆(x 130 ) = 1 ⊗ x 130 + x 10 ⊗ x 20 x 100 + 4x 30 ⊗ x 100 + x 50 ⊗ x 80 + 4x 70 ⊗ x 60 + x 90 ⊗ x 40 + 4x 110 ⊗ x 20 + x 130 ⊗ 1 ∆(x 131 ) = 1 ⊗ x 131 + 3x 3 ⊗ x 4 x 24 x 100 + 2x 3 ⊗ x 8 x 20 x 100 + 3x 7 ⊗ x 4 x 20 x 100 + 4x7 ⊗ x 24 x 100 + 2x 11 ⊗ x 20 x 100 + 4x 15 ⊗ x 8 x 108 + 3x 15 ⊗ x 12 x 104 + 2x 15 ⊗ x 16 x 100 + 4x 15 ⊗ x 20 x 96 + x 15 ⊗ x 24 x 92 + 3x 15 ⊗ x 28 x 88 + 2x 15 ⊗ x 36 x 80 + 4x 15 ⊗ x 44 x 72 + 3x 15 ⊗ x 48 x 68 + 2x 15 ⊗ x 52 x 64 + x 15 ⊗ x 56 x 60 + 3x 19 ⊗ x 8 x 104 + 3x 19 ⊗ x 12 x 100 + 2x 19 ⊗ x 20 x 92 + 3x 19 ⊗ x 24 x 88 + 3x 19 ⊗ x 28 x 84 + 2x 19 ⊗ x 32 x 80 + 4x 19 ⊗ x 40 x 72 + 4x 19 ⊗ x 44 x 68 + 2x 19 ⊗ x 52 x 60 + 3x 19 ⊗ x 64 x 48 + 4x 19 ⊗ x 68 x 44 + 3x 19 ⊗ x 72 x 40 + 4x 23 ⊗ x 8 x 100 + 2x 23 ⊗ x 20 x 88 + 3x 23 ⊗ x 24 x 84 + 3x 23 ⊗ x 40 x 68 + x 23 ⊗ x 44 x 64 + x 23 ⊗ x 48 x 60 + 4x 23 ⊗ x 60 x 48 + 4x 23 ⊗ x 64 x 44 + 2x 23 ⊗ x 68 x 40 + 2x 23 ⊗ x 84 x 24 + 3x 23 ⊗ x 88 x 20 + x 27 ⊗ x 4 x 100 + 4x 27 ⊗ x 20 x 84 + x 27 ⊗ x 24 x 80 + 4x 27 ⊗ x 40 x 64 + x 27 ⊗ x 44 x 60 + 4x 27 ⊗ x 60 x 44 + x 27 ⊗ x 64 x 40 + 4x 27 ⊗ x 80 x 24 + x 27 ⊗ x 84 x 20 + x 27 ⊗ x 104 + 4x 31 ⊗ x 100 + 3x 35 ⊗ x 4 x 92 + x 35 ⊗ x 8 x 88 + 4x 35 ⊗ x 12 x 84 + 2x 35 ⊗ x 16 x 80 + x 35 ⊗ x 24 x 72 + 2x 35 ⊗ x 28 x 68 + 3x 35 ⊗ x 32 x 64 + 4x 35 ⊗ x 36 x 60 + x 39 ⊗ x 4 x 88 + 3x 39 ⊗ x 8 x 84 + x 39 ⊗ x 12 x 80 + 4x 39 ⊗ x 24 x 68 + 2x 39 ⊗ x 28 x 64 + 4x 39 ⊗ x 32 x 60 + 2x 39 ⊗ x 44 x 48 + x 39 ⊗ x 48 x 44 + 2x 39 ⊗ x 52 x 40 + 3x 43 ⊗ x 4 x 84 + 2x 43 ⊗ x 8 x 80 + 3x 43 ⊗ x 24 x 64 + 2x 43 ⊗ x 28 x 60 + 3x 43 ⊗ x 44 x 44 + 2x 43 ⊗ x 48 x 40 + 3x 43 ⊗ x 64 x 24 + 2x 43 ⊗ x 68 x 20 + 4x 47 ⊗ x 84 + 4x 55 ⊗ x 4 x 72 + 3x 55 ⊗ x 8 x 68 + 2x 55 ⊗ x 12 x 64 + x 55 ⊗ x 16 x 60 + 3x 59 ⊗ x 4 x 68 + x 59 ⊗ x 8 x 64 + 3x 59 ⊗ x 24 x 48 + 4x 59 ⊗ x 28 x 44 + 3x 59 ⊗ x 32 x 40 + 3x 63 ⊗ x 4 x 64 + x 63 ⊗ x 20 x 48 + 4x 63 ⊗ x 28 x 40 + 2x 63 ⊗ x 44 x 24 + 3x 63 ⊗ x 48 x 20 + 4x 67 ⊗ x 4 x 60 + x 67 ⊗ x 20 x 44 + 4x 67 ⊗ x 24 x 40 + x 67 ⊗ x 40 x 24 + 4x 67 ⊗ x 44 x 20 + x 67 ⊗ x 64 + x 71 ⊗ x 60 + x 75 ⊗ x 56 + 2x 79 ⊗ x 4 x 48 + x 79 ⊗ x 8 x 44 + 2x 79 ⊗ x 12 x 40 + 2x 83 ⊗ x 4 x 44 + 3x 83 ⊗ x 24 x 24 + 2x 83 ⊗ x 28 x 20 + 2x 87 ⊗ x 4 x 40 + 3x 87 ⊗ x 20 x 24 + 2x 87 ⊗ x 24 x 20 + 4x 87 ⊗ x 44 + 3x 91 ⊗ x 40 + x 95 ⊗ x 12 x 24 + 4x 95 ⊗ x 16 x 20 + 2x 95 ⊗ x 36 + 4x 99 ⊗ x 32 + 2x 103 ⊗ x 4 x 24 + 3x 103 ⊗ x 8 x 20 + 2x 107 ⊗ x 4 x 20 + x 107 ⊗ x 24 + 3x 111 ⊗ x 20 + x 115 ⊗ x 16 + 4x 119 ⊗ x 12 + x 123 ⊗ x 8 + 4x 127 ⊗ x 4 + x 131 ⊗ 1 ∆(x 132 ) = 1 ⊗ x 133 + 3x 5 ⊗ x 4 x 24 x 100 + 2x 5 ⊗ x 8 x 20 x 100 + 4x 9 ⊗ x 4 x 20 x 100 + 2x 9 ⊗ x 24 x 100 + 2x 13 ⊗ x 20 x 100 + 4x 25 ⊗ x 8 x 100 + 2x 25 ⊗ x 20 x 88 + 3x 25 ⊗ x 24 x 84 + 3x 25 ⊗ x 40 x 68 + x 25 ⊗ x 44 x 64 + x 25 ⊗ x 48 x 60 + 4x 25 ⊗ x 60 x 48 + 4x 25 ⊗ x 64 x 44 + 2x 25 ⊗ x 68 x 40 + 2x 25 ⊗ x 84 x 24 + 3x 25 ⊗ x 88 x 20 + 3x 29 ⊗ x 4 x 100 + 2x 29 ⊗ x 20 x 84 + 3x 29 ⊗ x 24 x 80 + 2x 29 ⊗ x 40 x 64 + 3x 29 ⊗ x 44 x 60 + 2x 29 ⊗ x 60 x 44 + 3x 29 ⊗ x 64 x 40 + 2x 29 ⊗ x 80 x 24 + 3x 29 ⊗ x 84 x 20 + 3x 29 ⊗ x 104 + 4x 33 ⊗ x 100 + 3x 45 ⊗ x 4 x 84 + 2x 45 ⊗ x 8 x 80 + 3x 45 ⊗ x 24 x 64 + 2x 45 ⊗ x 28 x 60 + 3x 45 ⊗ x 44 x 44 + 2x 45 ⊗ x 48 x 40 + 3x 45 ⊗ x 64 x 24 + 2x 45 ⊗ x 68 x 20 + 2x 49 ⊗ x 84 + 3x 65 ⊗ x 4 x 64 + x 65 ⊗ x 20 x 48 + 4x 65 ⊗ x 28 x 40 + 2x 65 ⊗ x 44 x 24 + 3x 65 ⊗ x 48 x 20 + 2x 69 ⊗ x 4 x 60 + 3x 69 ⊗ x 20 x 44 + 2x 69 ⊗ x 24 x 40 + 3x 69 ⊗ x 40 x 24 + 2x 69 ⊗ x 44 x 20 + 3x 69 ⊗ x 64 + x 73 ⊗ x 60 + 2x 85 ⊗ x 4 x 44 + 3x 85 ⊗ x 24 x 24 + 2x 85 ⊗ x 28 x 20 + x 89 ⊗ x 4 x 40 + 4x 89 ⊗ x 20 x 24 + x 89 ⊗ x 24 x 20 + 2x 89 ⊗ x 44 + 3x 93 ⊗ x 40 + 2x 105 ⊗ x 4 x 24 + 3x 105 ⊗ x 8 x 20 + x 109 ⊗ x 4 x 20 + 3x 109 ⊗ x 24 + 3x 113 ⊗ x 20 + x 125 ⊗ x 8 + 2x 129 ⊗ x 4 + x 133 ⊗ 1 ∆(x 133 ) = 1 ⊗ x 134 + 2x 10 ⊗ x 4 x 20 x 100 + x 10 ⊗ x 24 x 100 + 2x 14 ⊗ x 20 x 100 + 4x 30 ⊗ x 4 x 100 + x 30 ⊗ x 20 x 84 + 4x 30 ⊗ x 24 x 80 + x 30 ⊗ x 40 x 64 + 4x 30 ⊗ x 44 x 60 + x 30 ⊗ x 60 x 44 + 4x 30 ⊗ x 64 x 40 + x 30 ⊗ x 80 x 24 + 4x 30 ⊗ x 84 x 20 + 4x 30 ⊗ x 104 + 4x 34 ⊗ x 100 + x 50 ⊗ x 84 + x 70 ⊗ x 4 x 60 + 4x 70 ⊗ x 20 x 44 + x 70 ⊗ x 24 x 40 + 4x 70 ⊗ x 40 x 24 + x 70 ⊗ x 44 x 20 + 4x 70 ⊗ x 64 + x 74 ⊗ x 60 + 3x 90 ⊗ x 4 x 40 + 2x 90 ⊗ x 20 x 24 + 3x 90 ⊗ x 24 x 20 + x 90 ⊗ x 44 + 3x 94 ⊗ x 40 + 3x 110 ⊗ x 4 x 20 + 4x 110 ⊗ x 24 + 3x 114 ⊗ x 20 + x 130 ⊗ x 4 + x 134 ⊗ 1 ∆(x 134 ) = 1 ⊗ x 135 + 2x 15 ⊗ x 20 x 100 + 4x 35 ⊗ x 100 + x 75 ⊗ x 60 + 3x 95 ⊗ x 40 + 3x 115 ⊗ x 20 + x 135 ⊗ 1 ∆(x 135 ) = 1 ⊗ x 136 + 3x 4 ⊗ x 8 x 24 x 100 + 2x 4 ⊗ x 12 x 20 x 100 + x 8 ⊗ x 4 x 24 x 100 + 3x 8 ⊗ x 4 x 124 + 4x 8 ⊗ x 8 x 20 x 100 + x 8 ⊗ x 8 x 120 + x 8 ⊗ x 28 x 100 + 2x 12 ⊗ x 4 x 20 x 100 + 3x 12 ⊗ x 24 x 100 + 3x 16 ⊗ x 20 x 100 + x 20 ⊗ x 12 x 104 + 3x 20 ⊗ x 16 x 100 + 4x 20 ⊗ x 20 x 96 + x 20 ⊗ x 24 x 92 + x 20 ⊗ x 32 x 84 + 4x 20 ⊗ x 36 x 80 + 4x 20 ⊗ x 44 x 72 + x 20 ⊗ x 48 x 68 + x 20 ⊗ x 52 x 64 + 4x 20 ⊗ x 56 x 60 + 4x 20 ⊗ x 68 x 48 + 2x 20 ⊗ x 72 x 44 + 4x 20 ⊗ x 76 x 40 + x 24 ⊗ x 12 x 100 + 2x 24 ⊗ x 20 x 92 + 3x 24 ⊗ x 24 x 88 + 4x 24 ⊗ x 40 x 72 + 4x 24 ⊗ x 44 x 68 + 2x 24 ⊗ x 48 x 64 + 3x 24 ⊗ x 64 x 48 + x 24 ⊗ x 68 x 44 + x 24 ⊗ x 72 x 40 + 2x 24 ⊗ x 88 x 24 + 3x 24 ⊗ x 92 x 20 + 4x 28 ⊗ x 8 x 100 + 2x 28 ⊗ x 20 x 88 + 3x 28 ⊗ x 24 x 84 + 3x 28 ⊗ x 40 x 68 + x 28 ⊗ x 44 x 64 + x 28 ⊗ x 48 x 60 + 4x 28 ⊗ x 60 x 48 + 4x 28 ⊗ x 64 x 44 + 2x 28 ⊗ x 68 x 40 + 2x 28 ⊗ x 84 x 24 + 3x 28 ⊗ x 88 x 20 + 4x 28 ⊗ x 108 + x 32 ⊗ x 4 x 100 + 4x 32 ⊗ x 20 x 84 + x 32 ⊗ x 24 x 80 + 4x 32 ⊗ x 40 x 64 + x 32 ⊗ x 44 x 60 + 4x 32 ⊗ x 60 x 44 + x 32 ⊗ x 64 x 40 + 4x 32 ⊗ x 80 x 24 + x 32 ⊗ x 84 x 20 + x 32 ⊗ x 104 + 4x 36 ⊗ x 100 + 3x 40 ⊗ x 8 x 88 + 4x 40 ⊗ x 12 x 84 + 3x 40 ⊗ x 16 x 80 + 2x 40 ⊗ x 28 x 68 + x 40 ⊗ x 32 x 64 + 2x 40 ⊗ x 36 x 60 + x 40 ⊗ x 48 x 48 + 3x 40 ⊗ x 52 x 44 + x 40 ⊗ x 56 x 40 + 3x 44 ⊗ x 8 x 84 + 2x 44 ⊗ x 12 x 80 + 3x 44 ⊗ x 28 x 64 + 2x 44 ⊗ x 32 x 60 + 3x 44 ⊗ x 48 x 44 + 2x 44 ⊗ x 52 x 40 + 3x 44 ⊗ x 68 x 24 + 2x 44 ⊗ x 72 x 20 + x 48 ⊗ x 88 + x 60 ⊗ x 4 x 72 + 2x 60 ⊗ x 12 x 64 + 2x 60 ⊗ x 16 x 60 + 4x 60 ⊗ x 28 x 48 + 2x 60 ⊗ x 32 x 44 + 4x 60 ⊗ x 36 x 40 + 4x 64 ⊗ x 4 x 68 + 4x 64 ⊗ x 8 x 64 + 2x 64 ⊗ x 12 x 60 + 2x 64 ⊗ x 24 x 48 + 3x 64 ⊗ x 28 x 44 + 2x 64 ⊗ x 48 x 24 + 3x 64 ⊗ x 52 x 20 + 3x 68 ⊗ x 4 x 64 + 2x 68 ⊗ x 8 x 60 + 3x 68 ⊗ x 24 x 44 + 2x 68 ⊗ x 28 x 40 + 3x 68 ⊗ x 44 x 24 + 2x 68 ⊗ x 48 x 20 + 4x 68 ⊗ x 68 + 4x 72 ⊗ x 64 + x 80 ⊗ x 8 x 48 + 3x 80 ⊗ x 12 x 44 + x 80 ⊗ x 16 x 40 + x 84 ⊗ x 4 x 48 + x 84 ⊗ x 8 x 44 + 3x 84 ⊗ x 12 x 40 + 3x 84 ⊗ x 28 x 24 + 2x 84 ⊗ x 32 x 20 + 2x 88 ⊗ x 4 x 44 + 2x 88 ⊗ x 8 x 40 + 4x 88 ⊗ x 24 x 24 + x 88 ⊗ x 28 x 20 + x 88 ⊗ x 48 + 4x 92 ⊗ x 4 x 40 + x 92 ⊗ x 20 x 24 + 4x 92 ⊗ x 24 x 20 + 2x 92 ⊗ x 44 + x 96 ⊗ x 40 + x 100 ⊗ x 36 + 2x 104 ⊗ x 8 x 24 + 3x 104 ⊗ x 12 x 20 + 4x 108 ⊗ x 4 x 24 + x 108 ⊗ x 8 x 20 + 4x 108 ⊗ x 28 + 3x 112 ⊗ x 4 x 20 + 2x 112 ⊗ x 24 + 2x 116 ⊗ x 20 + x 120 ⊗ x 16 + 4x 124 ⊗ x 12 + x 128 ⊗ x 8 + 4x 132 ⊗ x 4 + x 136 ⊗ 1 ∆(x 136 ) = 1 ⊗ x 137 + 2x 5 ⊗ x 8 x 24 x 100 + 3x 5 ⊗ x 12 x 20 x 100 + 3x 9 ⊗ x 4 x 24 x 100 + 4x 9 ⊗ x 4 x 124 + 2x 9 ⊗ x 8 x 20 x 100 + 3x 9 ⊗ x 8 x 120 + 3x 9 ⊗ x 28 x 100 + 4x 13 ⊗ x 4 x 20 x 100 + x 13 ⊗ x 24 x 100 + 3x 17 ⊗ x 20 x 100 + 4x 25 ⊗ x 12 x 100 + 3x 25 ⊗ x 20 x 92 + 2x 25 ⊗ x 24 x 88 + x 25 ⊗ x 40 x 72 + x 25 ⊗ x 44 x 68 + 3x 25 ⊗ x 48 x 64 + 2x 25 ⊗ x 64 x 48 + 4x 25 ⊗ x 68 x 44 + 4x 25 ⊗ x 72 x 40 + 3x 25 ⊗ x 88 x 24 + 2x 25 ⊗ x 92 x 20 + 2x 29 ⊗ x 8 x 100 + x 29 ⊗ x 20 x 88 + 4x 29 ⊗ x 24 x 84 + 4x 29 ⊗ x 40 x 68 + 3x 29 ⊗ x 44 x 64 + 3x 29 ⊗ x 48 x 60 + 2x 29 ⊗ x 60 x 48 + 2x 29 ⊗ x 64 x 44 + x 29 ⊗ x 68 x 40 + x 29 ⊗ x 84 x 24 + 4x 29 ⊗ x 88 x 20 + 2x 29 ⊗ x 108 + 2x 33 ⊗ x 4 x 100 + 3x 33 ⊗ x 20 x 84 + 2x 33 ⊗ x 24 x 80 + 3x 33 ⊗ x 40 x 64 + 2x 33 ⊗ x 44 x 60 + 3x 33 ⊗ x 60 x 44 + 2x 33 ⊗ x 64 x 40 + 3x 33 ⊗ x 80 x 24 + 2x 33 ⊗ x 84 x 20 + 2x 33 ⊗ x 104 + 4x 37 ⊗ x 100 + 2x 45 ⊗ x 8 x 84 + 3x 45 ⊗ x 12 x 80 + 2x 45 ⊗ x 28 x 64 + 3x 45 ⊗ x 32 x 60 + 2x 45 ⊗ x 48 x 44 + 3x 45 ⊗ x 52 x 40 + 2x 45 ⊗ x 68 x 24 + 3x 45 ⊗ x 72 x 20 + 3x 49 ⊗ x 88 + x 65 ⊗ x 4 x 68 + x 65 ⊗ x 8 x 64 + 3x 65 ⊗ x 12 x 60 + 3x 65 ⊗ x 24 x 48 + 2x 65 ⊗ x 28 x 44 + 3x 65 ⊗ x 48 x 24 + 2x 65 ⊗ x 52 x 20 + 4x 69 ⊗ x 4 x 64 + x 69 ⊗ x 8 x 60 + 4x 69 ⊗ x 24 x 44 + x 69 ⊗ x 28 x 40 + 4x 69 ⊗ x 44 x 24 + x 69 ⊗ x 48 x 20 + 2x 69 ⊗ x 68 + 3x 73 ⊗ x 64 + 4x 85 ⊗ x 4 x 48 + 4x 85 ⊗ x 8 x 44 + 2x 85 ⊗ x 12 x 40 + 2x 85 ⊗ x 28 x 24 + 3x 85 ⊗ x 32 x 20 + x 89 ⊗ x 4 x 44 + x 89 ⊗ x 8 x 40 + 2x 89 ⊗ x 24 x 24 + 3x 89 ⊗ x 28 x 20 + 3x 89 ⊗ x 48 + 3x 93 ⊗ x 4 x 40 + 2x 93 ⊗ x 20 x 24 + 3x 93 ⊗ x 24 x 20 + 4x 93 ⊗ x 44 + x 97 ⊗ x 40 + 3x 105 ⊗ x 8 x 24 + 2x 105 ⊗ x 12 x 20 + 2x 109 ⊗ x 4 x 24 + 3x 109 ⊗ x 8 x 20 + 2x 109 ⊗ x 28 + x 113 ⊗ x 4 x 20 + 4x 113 ⊗ x 24 + 2x 117 ⊗ x 20 + x 125 ⊗ x 12 + 3x 129 ⊗ x 8 + 3x 133 ⊗ x 4 + x 137 ⊗ 1 ∆(x 137 ) = 1 ⊗ x 138 + x 10 ⊗ x 4 x 24 x 100 + 3x 10 ⊗ x 4 x 124 + 4x 10 ⊗ x 8 x 20 x 100 + x 10 ⊗ x 8 x 120 + x 10 ⊗ x 28 x 100 + x 14 ⊗ x 4 x 20 x 100 + 4x 14 ⊗ x 24 x 100 + 3x 18 ⊗ x 20 x 100 + 4x 30 ⊗ x 8 x 100 + 2x 30 ⊗ x 20 x 88 + 3x 30 ⊗ x 24 x 84 + 3x 30 ⊗ x 40 x 68 + x 30 ⊗ x 44 x 64 + x 30 ⊗ x 48 x 60 + 4x 30 ⊗ x 60 x 48 + 4x 30 ⊗ x 64 x 44 + 2x 30 ⊗ x 68 x 40 + 2x 30 ⊗ x 84 x 24 + 3x 30 ⊗ x 88 x 20 + 4x 30 ⊗ x 108 + 3x 34 ⊗ x 4 x 100 + 2x 34 ⊗ x 20 x 84 + 3x 34 ⊗ x 24 x 80 + 2x 34 ⊗ x 40 x 64 + 3x 34 ⊗ x 44 x 60 + 2x 34 ⊗ x 60 x 44 + 3x 34 ⊗ x 64 x 40 + 2x 34 ⊗ x 80 x 24 + 3x 34 ⊗ x 84 x 20 + 3x 34 ⊗ x 104 + 4x 38 ⊗ x 100 + x 50 ⊗ x 88 + 3x 70 ⊗ x 4 x 64 + 2x 70 ⊗ x 8 x 60 + 3x 70 ⊗ x 24 x 44 + 2x 70 ⊗ x 28 x 40 + 3x 70 ⊗ x 44 x 24 + 2x 70 ⊗ x 48 x 20 + 4x 70 ⊗ x 68 + 2x 74 ⊗ x 64 + 2x 90 ⊗ x 4 x 44 + 2x 90 ⊗ x 8 x 40 + 4x 90 ⊗ x 24 x 24 + x 90 ⊗ x 28 x 20 + x 90 ⊗ x 48 + 2x 94 ⊗ x 4 x 40 + 3x 94 ⊗ x 20 x 24 + 2x 94 ⊗ x 24 x 20 + x 94 ⊗ x 44 + x 98 ⊗ x 40 + 4x 110 ⊗ x 4 x 24 + x 110 ⊗ x 8 x 20 + 4x 110 ⊗ x 28 + 4x 114 ⊗ x 4 x 20 + x 114 ⊗ x 24 + 2x 118 ⊗ x 20 + x 130 ⊗ x 8 + 2x 134 ⊗ x 4 + x 138 ⊗ 1 ∆(x 138 ) = 1 ⊗ x 139 + 3x 15 ⊗ x 4 x 20 x 100 + 2x 15 ⊗ x 24 x 100 + 3x 19 ⊗ x 20 x 100 + 4x 35 ⊗ x 4 x 100 + x 35 ⊗ x 20 x 84 + 4x 35 ⊗ x 24 x 80 + x 35 ⊗ x 40 x 64 + 4x 35 ⊗ x 44 x 60 + x 35 ⊗ x 60 x 44 + 4x 35 ⊗ x 64 x 40 + x 35 ⊗ x 80 x 24 + 4x 35 ⊗ x 84 x 20 + 4x 35 ⊗ x 104 + 4x 39 ⊗ x 100 + x 75 ⊗ x 64 + x 95 ⊗ x 4 x 40 + 4x 95 ⊗ x 20 x 24 + x 95 ⊗ x 24 x 20 + 3x 95 ⊗ x 44 + x 99 ⊗ x 40 + 2x 115 ⊗ x 4 x 20 + 3x 115 ⊗ x 24 + 2x 119 ⊗ x 20 + x 135 ⊗ x 4 + x 139 ⊗ 1 ∆(x 139 ) = 1 ⊗ x 140 + 3x 20 ⊗ x 20 x 100 + 4x 40 ⊗ x 100 + x 100 ⊗ x 40 + 2x 120 ⊗ x 20 + x 140 ⊗ 1 ∆(x 140 ) = 1 ⊗ x 141 + x 5 ⊗ x 12 x 24 x 100 + 4x 5 ⊗ x 16 x 20 x 100 + x 9 ⊗ x 8 x 24 x 100 + 3x 9 ⊗ x 8 x 124 + 4x 9 ⊗ x 12 x 20 x 100 + 3x 9 ⊗ x 12 x 120 + 4x 9 ⊗ x 32 x 100 + 4x 13 ⊗ x 4 x 24 x 100 + x 13 ⊗ x 4 x 124 + x 13 ⊗ x 8 x 20 x 100 + 2x 13 ⊗ x 8 x 120 + 2x 13 ⊗ x 28 x 100 + x 17 ⊗ x 4 x 20 x 100 + 2x 17 ⊗ x 24 x 100 + 4x 21 ⊗ x 20 x 100 + 4x 25 ⊗ x 16 x 100 + 4x 25 ⊗ x 20 x 96 + x 25 ⊗ x 24 x 92 + 4x 25 ⊗ x 44 x 72 + x 25 ⊗ x 48 x 68 + 4x 25 ⊗ x 68 x 48 + x 25 ⊗ x 72 x 44 + 4x 25 ⊗ x 92 x 24 + x 25 ⊗ x 96 x 20 + x 29 ⊗ x 12 x 100 + 2x 29 ⊗ x 20 x 92 + 3x 29 ⊗ x 24 x 88 + 4x 29 ⊗ x 40 x 72 + 4x 29 ⊗ x 44 x 68 + 2x 29 ⊗ x 48 x 64 + 3x 29 ⊗ x 64 x 48 + x 29 ⊗ x 68 x 44 + x 29 ⊗ x 72 x 40 + 2x 29 ⊗ x 88 x 24 + 3x 29 ⊗ x 92 x 20 + x 29 ⊗ x 112 + 4x 33 ⊗ x 8 x 100 + 2x 33 ⊗ x 20 x 88 + 3x 33 ⊗ x 24 x 84 + 3x 33 ⊗ x 40 x 68 + x 33 ⊗ x 44 x 64 + x 33 ⊗ x 48 x 60 + 4x 33 ⊗ x 60 x 48 + 4x 33 ⊗ x 64 x 44 + 2x 33 ⊗ x 68 x 40 + 2x 33 ⊗ x 84 x 24 + 3x 33 ⊗ x 88 x 20 + 4x 33 ⊗ x 108 + x 37 ⊗ x 4 x 100 + 4x 37 ⊗ x 20 x 84 + x 37 ⊗ x 24 x 80 + 4x 37 ⊗ x 40 x 64 + x 37 ⊗ x 44 x 60 + 4x 37 ⊗ x 60 x 44 + x 37 ⊗ x 64 x 40 + 4x 37 ⊗ x 80 x 24 + x 37 ⊗ x 84 x 20 + x 37 ⊗ x 104 + 4x 41 ⊗ x 100 + x 45 ⊗ x 12 x 84 + 4x 45 ⊗ x 16 x 80 + x 45 ⊗ x 32 x 64 + 4x 45 ⊗ x 36 x 60 + x 45 ⊗ x 52 x 44 + 4x 45 ⊗ x 56 x 40 + x 45 ⊗ x 72 x 24 + 4x 45 ⊗ x 76 x 20 + 4x 49 ⊗ x 92 + 2x 65 ⊗ x 8 x 68 + 3x 65 ⊗ x 16 x 60 + x 65 ⊗ x 28 x 48 + 2x 65 ⊗ x 32 x 44 + 2x 65 ⊗ x 36 x 40 + 4x 65 ⊗ x 52 x 24 + x 65 ⊗ x 56 x 20 + 3x 69 ⊗ x 8 x 64 + 2x 69 ⊗ x 12 x 60 + 3x 69 ⊗ x 28 x 44 + 2x 69 ⊗ x 32 x 40 + 3x 69 ⊗ x 48 x 24 + 2x 69 ⊗ x 52 x 20 + x 69 ⊗ x 72 + x 73 ⊗ x 68 + 3x 85 ⊗ x 8 x 48 + 2x 85 ⊗ x 16 x 40 + x 85 ⊗ x 32 x 24 + 4x 85 ⊗ x 36 x 20 + 2x 89 ⊗ x 4 x 48 + 3x 89 ⊗ x 12 x 40 + 4x 89 ⊗ x 28 x 24 + x 89 ⊗ x 32 x 20 + 4x 89 ⊗ x 52 + 3x 93 ⊗ x 4 x 44 + 2x 93 ⊗ x 8 x 40 + 3x 93 ⊗ x 24 x 24 + 2x 93 ⊗ x 28 x 20 + 3x 93 ⊗ x 48 + 4x 97 ⊗ x 44 + 4x 105 ⊗ x 12 x 24 + x 105 ⊗ x 16 x 20 + 4x 109 ⊗ x 8 x 24 + x 109 ⊗ x 12 x 20 + x 109 ⊗ x 32 + x 113 ⊗ x 4 x 24 + 4x 113 ⊗ x 8 x 20 + 3x 113 ⊗ x 28 + 4x 117 ⊗ x 4 x 20 + 3x 117 ⊗ x 24 + x 121 ⊗ x 20 + x 125 ⊗ x 16 + 4x 129 ⊗ x 12 + x 133 ⊗ x 8 + 4x 137 ⊗ x 4 + x 141 ⊗ 1 ∆(x 141 ) = 1 ⊗ x 142 + 4x 10 ⊗ x 8 x 24 x 100 + 2x 10 ⊗ x 8 x 124 + x 10 ⊗ x 12 x 20 x 100 + 2x 10 ⊗ x 12 x 120 + x 10 ⊗ x 32 x 100 + 2x 14 ⊗ x 4 x 24 x 100 + 3x 14 ⊗ x 4 x 124 + 3x 14 ⊗ x 8 x 20 x 100 + x 14 ⊗ x 8 x 120 + x 14 ⊗ x 28 x 100 + 2x 18 ⊗ x 4 x 20 x 100 + 4x 18 ⊗ x 24 x 100 + 4x 22 ⊗ x 20 x 100 + 4x 30 ⊗ x 12 x 100 + 3x 30 ⊗ x 20 x 92 + 2x 30 ⊗ x 24 x 88 + x 30 ⊗ x 40 x 72 + x 30 ⊗ x 44 x 68 + 3x 30 ⊗ x 48 x 64 + 2x 30 ⊗ x 64 x 48 + 4x 30 ⊗ x 68 x 44 + 4x 30 ⊗ x 72 x 40 + 3x 30 ⊗ x 88 x 24 + 2x 30 ⊗ x 92 x 20 + 4x 30 ⊗ x 112 + 2x 34 ⊗ x 8 x 100 + x 34 ⊗ x 20 x 88 + 4x 34 ⊗ x 24 x 84 + 4x 34 ⊗ x 40 x 68 + 3x 34 ⊗ x 44 x 64 + 3x 34 ⊗ x 48 x 60 + 2x 34 ⊗ x 60 x 48 + 2x 34 ⊗ x 64 x 44 + x 34 ⊗ x 68 x 40 + x 34 ⊗ x 84 x 24 + 4x 34 ⊗ x 88 x 20 + 2x 34 ⊗ x 108 + 2x 38 ⊗ x 4 x 100 + 3x 38 ⊗ x 20 x 84 + 2x 38 ⊗ x 24 x 80 + 3x 38 ⊗ x 40 x 64 + 2x 38 ⊗ x 44 x 60 + 3x 38 ⊗ x 60 x 44 + 2x 38 ⊗ x 64 x 40 + 3x 38 ⊗ x 80 x 24 + 2x 38 ⊗ x 84 x 20 + 2x 38 ⊗ x 104 + 4x 42 ⊗ x 100 + x 50 ⊗ x 92 + 2x 70 ⊗ x 8 x 64 + 3x 70 ⊗ x 12 x 60 + 2x 70 ⊗ x 28 x 44 + 3x 70 ⊗ x 32 x 40 + 2x 70 ⊗ x 48 x 24 + 3x 70 ⊗ x 52 x 20 + 4x 70 ⊗ x 72 + 3x 74 ⊗ x 68 + 3x 90 ⊗ x 4 x 48 + 2x 90 ⊗ x 12 x 40

∆∆(x 100 ) = 1 ⊗ x 100 + x 100 ⊗ 1 ∆(x 101 ) = 1

-0<j<q(w+1) ∆ j q,qw ∆(x qw+q-j x j ).

With Lemma 8.11, we are done if ∆((x w+1-i x i ) q) = ∆(x w+1-i x i ) q for i ≤ w, which can be shown by applying the induction hypothesis.

8.5. Explicit formula for ∆(x n ) with 1 ≤ n ≤ q 2 . In this section we give an explicit formula for ∆(x n ) with 1 ≤ n ≤ q 2 . It could be obtained as an application of Proposition 8.6. We will give below another way to do calculations.

For 1 ≤ n ≤ q, an explicit formula for ∆(x n ) is given in Proposition 8.12:

We note that a direct consequence of Propositions 8.12 and 8.13 implies ∆(x aq r ) = 1 ⊗ x aq r + x aq r ⊗ 1 for all 1 ≤ a < q. By Theorem 7.2, we have an algorithm to calculate ∆(x n ):

• Write n = n 0 + n 1 q + • • • + n r q r , with 0 ≤ n i < q. Then ∆(x niq i ) = 1 ⊗ x niq i + x niq i ⊗ 1 by Proposition 8.12. • Use compatibility result to calculate ∆(x n ), by calculating ∆(x n0 )¡∆(x n1q )¡

Lemma 8.14. For 2 ≤ k ≤ q, we have ∆(x k(q-1) ) = 1 ⊗ x k(q-1) + x k(q-1) ⊗ 1 + k-1 i=1 k i

x i(q-1) ⊗ x (k-i)(q-1) .

Proof. The lemma follows from Lemma 8.15 and the compatibility equation (see Theorem 7.2)

∆(x (k-1)(q-1) ¡ x q-1 ) = ∆(x (k-1)(q-1) ) ¡ ∆(x q-1 ).

Lemma 8. [START_REF] Deligne | Le groupe fondamental unipotent motivique de Gm -µ N , pour N = 2, 3, 4, 6 ou 8[END_REF]. For all a, b ∈ N with a + b ≤ q, we have (8.9)

x a(q-1) ¡ x b(q-1) = x q-1 ¡ • • • ¡ x q-1 a+b = x (a+b)(q-1) .

Proof. It suffices to prove the following claim: for 2 ≤ k ≤ q, we have x (k-1)(q-1) ¡

x q-1 = x k(q-1) . In fact, with Lucas's theorem, one can verify that ∆ k(q-1)

q-1,k(q-1) = -2 when k = 1, and ∆ q-1 q-1,k(q-1) ≡ ∆ k(q-1) q-1,k(q-1) ≡ -1 (mod p) and ∆ i(q-1) q-1,k(q-1) ≡ 0 (mod p) when k > 1. Thus the claim follows from the definition of ¡.

Remark 8.16. Note that the Lemma 8.14 does not answer for ∆(x q 2 -1 ). By similar calculation for x q(q-1) ¡ x q-1 , all lines except ∆ q(q-1) q-1,q(q-1) = 0 are parallel, which yields

x q(q-1) ¡ x q-1 = x q 2 -1 + x q-1 x q(q-1) .

Similar calculation gives

Combining the above lemma and some extensions of results in [START_REF] Dac | On Zagier-Hoffman's conjectures in positive characteristic[END_REF] we get a deep connection between the K-vector space spanned by the MZV's in positive characteristic and that spanned by the multiple polylogarithms in positive characteristic.

Theorem 9.4. The K-vector space Z w of MZV's of weight w and the K-vector space L w of CMPL's of weight w are the same.

Proof. See [START_REF] Im | Zagier-Hoffman's conjectures in positive characteristic[END_REF]Theorem 4.3].

For all d ∈ Z, we define two F q -linear maps

which map the empty word to the element 1 ∈ K ∞ , and map any word x s1 . . . x sn to Si <d (s 1 , . . . , s n ) and Li(s 1 , . . . , s n ), respectively. We have the following result: Proof. We leave the proof to the reader.

Combining Theorem 9.4 and Proposition 9.5 yields the K-linear map

which sends a word a ∈ C to Li(a), is a homomorphism of K-algebras, and is called the stuffle map in positive characteristic.

Appendix A. Numerical experiments

In this appendix we write down some explicit formulas for ∆(x n ) for q 2 < n ≤ q 3 + q 2 and q = 3, 5.

A.1. The case q = 3.