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Abstract—Viscous, surging flow fronts are encountered in
many applications in geophysics such as debris-, mud- and lava-
flows. Few applications of the SPH method for low Reynolds,
viscous flows have been rigorously validated against experimental
data. In this paper, the validation of the DualSPHysics software
against well documented experimental data of a laminar viscous
flow front is studied. Modelling viscous Newtonian flow fronts
requires the use of accurate boundary conditions, including no-
slip at the wall. A convergence study analyzes the performance
of the software using both bulk behaviour and front shape and
detailed velocity fields along the flow. Overall, the use of the
DualSPHysics solver is validated for such flows. Macroscopic
dynamics and internal dynamics are well reproduced.

I. INTRODUCTION

Viscous flow fronts, i.e., sudden transition from dry con-
ditions to near uniform flow depth, are encountered in many
applications in geophysics such as debris-, mud- and lava-
flows. The precise understanding and modelling of the be-
haviour of such flow fronts is of interest for instance in the
study of impact forces and the design of hazard mitigation
measures. These highly non-uniform free-surface flows are
difficult to model at front scale by classical mesh-based
methods, notably due to their complex free-surface requiring
remeshing which results in high computational cost. Initiatives
to numerically model mud-flow fronts have been either based
on depth-averaged schemes [7] which perform satisfyingly in
replicating the bulk behaviour of the flow (e.g. area covered
by flow spreading), but do not provide information on the
internal dynamics, or, using Lagrangian methods [8], [9] which
are a viable alternative on modelling flow fronts dynamics.
Initial works using SPH for very viscous fluids, that are
eventually non-Newtonian, are promising but lack a detailed
validation against experimental campaigns. Indeed, validating
SPH models against high quality experimental data for mud-
like behaviour opens up the road to applications for better
capturing the internal dynamics of these complex flows that
are very difficult to measure experimentally and cannot be
studied internally at prototype scale due to their destructive
nature. Ultimately, it will allow to tailor more efficient and
resistant hazard mitigation measures. An SPH solver such
as DualSPHysics [2] has many advantages for geophysical
applications due to explicit free-surface capturing, coupling

with granular and discrete models, as well as being a highly
optimised solver using GPU parallelisation techniques.

This work studies the predictions of DualSPHysics for
such types of mud-flows. Validation is done against accurate
measurements of the internal dynamics of flow front using data
from Freydier et al. [6]. Newtonian flows are studied using
the classical DualSPHysics code and the modified dynamic
boundary condition (mDBC) to ensure no-slip condition.

II. SPH MODELLING METHOD

A. Governing Equations

Herein we use the continuity and Navier-Stokes equation for
a weakly-compressible fluid which, in their Lagrangian form,
can be written as:

Dρ

Dt
=− ρ∇ · u

Du

Dt
=
1

ρ
∇P +

1

ρ
∇ · τ + g

(1a)

(1b)

where ρ is the density, u is the velocity, P is the pressure,
τ is the viscous stress tensor, g represents body forces, and
D
Dt stands for the material derivative. To close this system of
equation, an equation of state is used to compute the pressure
P :

P =
c20ρ0
γ

((
ρ

ρ0

)γ

− 1

)
(2)

where c0 is the numerical speed of sound, γ = 7 and ρ0 is the
reference density. In the SPH scheme, the discrete governing
equations read:
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(3c)

where subscripts a and b refer to the interpolating and neigh-
bouring particles respectively , ri is the positional vector of
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particle i and r ij = rj − ri , Vi the volume occupied by the
particle, mi is the mass assigned to the numerical particle,
Wij is the smoothing kernel, η = 0.01h with h the smoothing
length, Di is a density diffusion term (see Section II-E) and
ν0 the dynamic viscosity of the fluid.

The smoothing kernel used is the quintic Wendland kernel
[12]:

W (r, h) = αD

(
1− 1

2

r

h

)4 (
2
r

h
+ 1

)
for 0 <

r

h
< 2 (4)

where αD depends on the dimension of the model: α2D =
7
4πh

2 and α3D = 21
16πh

3

B. Time-stepping

The time scheme used is the symplectic position Verlet
scheme which reads [2]:
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∆t

2
vna
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dva
dt

n
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(5a)

(5b)

(5c)

(5d)

and the density evolution follows:
ρn+1/2
a =ρna +
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2

dρa
dt
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with ϵn+1/2
a = −

(
dρa
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/ρ

n+1/2
a

)
∆t

The actual time-step is variable to allow for optimal descrip-
tion of the fluid while ensuring sensible computational time.
The time-step is thus taken as follows:

dt = CCFL min(dt1, dt2, dt3)

dt1 = min
a

√
h

||dvdt ||a,max

dt2 =
h

cs +maxb
∣∣hv ab·r ab

r2ab+η2
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dt3 =

h2

ν0

(7a)

(7b)

(7c)

(7d)

in which, dt1 accounts for the CFL condition, dt2 accounts
for both CFL condition and the numerical viscosity and dt3
accounts for the physical viscosity.

C. Wall Boundary condition

Due to the nature of the flow studied in this work, a no-
slip condition must be imposed at the boundaries. To ensure
it, modified Dynamic Boundary Condition (mDBC) [3] is
used. No-slip condition is implemented as a correction on the
velocity of fluid particles close to the boundary.

D. Shifting

Due to the nature of SPH, particles in the flow cannot
maintain a relatively homogeneous distribution. Voids tend to
form leading to high risks of numerical instability. In order to
counteract these effects inherent to the SPH method, a shifting
algorithm is used. This is particularly important for highly
viscous dominated flows.

At each time step, the particles are shifted in order to
maintain a more uniform particle distribution. The distance
by which the particles are shifted is dependent on the con-
centration of particles Ci inside the kernel influence for each
particle i, as well as, the velocity of the particle, as follows
[10], [11]:

δra = −Ah||u||adt∇Ca (8)

where A is a shifting coefficient tuned by user (the value A =
−2 is recommended in Dominguez et al. [2]).

E. Density diffusion term

In Eq. (3a), the term hc0Da corresponds to the density
diffusion term. This reduces density fluctuations, and thus
oscillations in the pressure field. Indeed Eq. (2) is very stiff and
with the natural disordering of SPH particles, small amplitude
– high frequency oscillations are created in the pressure
and density fields. In this work the density diffusion term
introduced by Fourtakas et al. [4] is used:

Da =δϕ
∑
b

ψab · ∇aWab
mb

ρb

ψab =2(ρTab − ρHab)
x ab

||x ab||2

(9a)

(9b)

with ρTab the total density, ρHab = ρ0

(
γ

√
PH

ab+1

c20ρ0/γ
− 1

)
the

hydrostatic component of the density and δϕ a diffusion
coefficient controlling the magnitude of this diffusion term.

III. EXPERIMENTAL CONTEXT

A. Physical properties of the flow

The flows studied in this work are highly viscous, laminar
flow fronts. Their highly non-uniform free-surface make their
study very difficult using classical FEM methods, and thus
SPH is a natural candidate to perform accurately for such
flows.

The focus of this work is on a viscous laminar flow front
with Reynolds number close to the creeping flow limits (Re ≈
0.1). These flow front are assumed to be composed of a non-
uniform front followed by a uniform zone, where the free
surface elevation zmax becomes steady longitudinally ∂xzmax =
0.

At the lowest order, the flow pressure can be assumed as :

p = ρg cos θ(zmax − z) (10)

which gives the following force balance :

ρg sin θ − ∂xp+ ∂zτxz = 0 (11)
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TABLE I: Characteristics of the experiment, density ρ [kg ·
m−3], viscosity µ [Pa · s], slope angle θ [°], conveyor belt
velocity ub [mm · s−1], Reynolds number Re [–]

exp. ID ρ µ θ ub Re
150506 1383 5.6 15.3 75 0.34

Fig. 1: Flow front modelled in DualSPHysics, three different
positions are studied precisely to be compared to the experi-
mental data

which, integrated along z gives:

τxz = µ
∂ux
∂z

= ρg sin θ(1− cot θ∂xzmax)(zmax − z) (12)

giving the following velocity profile and average velocity in
the uniform zone, with α = ρg sin θ

µ (1− cot θ∂xzmax):
ux(z) = α(zmax −

1

2
z)z

ūx =
α

3
z2max, unif

(13a)

(13b)

B. Selected experimental setup

The setup chosen for this validation is the experimental
work by Freydier [5]. The characteristics of the experiments
used as referenced are shown in Table I. The experimental
setup is composed a conveyor belt tilted to a chosen angle,
transparent side-walls, and a wall upstream the conveyor belt
forcing a flow front to form steadily. This setup is thoroughly
described in [1], [6]. Fluids used are transparent mixtures
of glucose and water allowing to measure accurate velocity
fields and free surface profiles. Freydier [5] showed that these
flows have a viscosity independent from strain and strain-rate,
varying with concentration of glucose in the mixture. They are
also highly influenced by drying [5], leading to uncertainties
on the measured viscosity in a rheometer.

Velocimetry using STV technique (see Freydier [5]), and
high definition, high velocity cameras at different location of
the flow allows for a full description of both the free surface
shape and the velocity fields within the flow.

C. Numerical setup

The numerical setup reproduces the experimental setup as a
2D flow front (Fig. 1). The 2D assumption is possible thanks to
the tests operated by Freydier [5]. Volume of the experiment
has been respected and the flow height is initialized at the
theoretical height of the uniform zone (from Eq. 13b).

The conveyor belt starts a backwards motion in a periodic
domain after a short resting time, using a ramp to reach the
velocity of the experiment in order to avoid any instabilities
caused by the sudden infinite acceleration of an instantaneous
motion.

TABLE II: Numerical parameters of the convergence study

dp (m) 0.001 0.0005 0.00025
Ch (−) 1 1.3 1.5 1.8 2.2

The initial particle spacing allows for the flow front to have
at least 15 particles in depth.

A full convergence study is made, including convergence in
both dp the particle spacing distance and Ch the smoothing
coefficient applied in the simulation according to Table II.

The validation of the behaviour of the flow will be regarded
as the accuracy to represent : the bulk flow behaviour as per (i)
the velocity of the flow front, (ii) the free-surface elevation in
the uniform zone and (iii) the free-surface shape, but also the
internal kinetic of the flow through (iv) the velocity profiles at
3 different locations in the flow front (Fig. 1) and as provided
by Freydier et al. [6].

IV. RESULTS

A. Data processing

The numerical model is run for a sufficient period of time,
ensuring steady state to be reached. For each error calculation,
the results are averaged over a few seconds to obtain more
representative data.

For all results, heights and lengths are normalized by hn, the
theoretical flow height in the uniform zone so that h∗ = h/hn
and x∗ = x/hn. This theoretical flow height is derived from
Eq. 13b and is taken as hn = 18.6 mm. The velocities are
normalized by the average velocities, i.e., by the velocity of the
conveyor belt ub so that u∗ = u/ub. It is important to note that
due to the numerical setup, the flow front is immobile in the
eye of the observer. For more clarity, the reference frame is put
back in the Eulerian framework so that unumerical = usim + ub
where usim is the raw results from the simulation.

B. Macro-dynamics of the flow

The primary interest of the validation is the macro behaviour
of the flow. Looking at the front velocity error gives us the
performance of DualSPHysics on modelling such flows at the
surge scale. The error (i) on the velocity of the flow front is
characterized as:

ζf =
|u∗f,numerical − u∗b |

u∗b
(14)

where u∗f,numerical is the normalized velocity provided by the
numerical model averaged over one second, taken as the
derivative of the location of the toe of the front.

This error is expected to be null as the velocity u∗b is set to
the theoretical value of the flow front velocity.

In Fig. 2, ζf is plotted for three different dp values and
four different Ch values. For the finest resolution, the error
on the velocity of the front and thus location of this front
becomes less than 1% for three smoothing coefficients which
is acceptable for mud-flows behavior, considering the uncer-
tainty on field and experimental measurements with which
our future simulations will be compared. Overall, convergence
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Fig. 2: Error on the flow front velocity as defined in Eq. 14,
dp in m

of the model is shown on this figure and highest smoothing
coefficients render better results.

In the uniform zone (upstream from the front), the height of
the flow should reach the theoretical value, for which ∂xz = 0.
In this zone (taken as x∗ > 9), the error (ii) on the free surface
elevation is:

ζh =
|h∗u,numerical − h∗n|

h∗n
(15)

where h∗u,numerical is the normalized height in the uniform zone.
In Fig. 3, ζh is plotted for numerical convergence. It is

shown that the numerical solution converges and the error is
diminished to only 5% of the theoretical value, which is largely
acceptable for the applications this project is intended for.

Free surface profile is also of interest to be accurately re-
produced for geophysical applications. Access to experimental
accurate measurements of the free surface shape from the toe
of the front to the uniform zone, as provided by Freydier
in [5] is rare. To characterize globally the performance of
DualSPHysics in reproducing the shape of the flow front, a
root mean squared error on the free surface elevation (iii) is
computed as follows:

ζfs =

√√√√∑
x

(
zmax, Freydier(x)− zmax, num(x)

)2
Nx

(16)

where Nx is the number of points on the front shape
measurements provided by Freydier [5].

In Fig. 4, ζfs is plotted against different resolution
schemes. Overall convergence is achieved, and errors be-
come insignificant particularly for (Ch, dp) ∈ [(1.8, 0.25 ·
10−3), (2.2, 0.25 · 10−3)]. Note the stong influence of the

Fig. 3: Error on the free surface elevation in the uniform zone
as defined in Eq. 15, dp in m

Fig. 4: Root mean squared error on the surface shape for
different resolutions and smoothing coefficient as defined in
Eq. 16, dp in m

smoothing coefficient on the error value: this is a reminder
that Ch drives not only the numerical computation but the free-
surface detection too. In applications where the free surface is
very variable, and is the focus of the study, the value of the
smoothing coefficient must be thoroughly investigated.
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Fig. 5: Velocity profile convergence for Ch = 1.8 at three
different locations in the front : x∗f = 0.76 and x∗f = 1.5 being
close to the front tip, where ∂xz is significant, and x∗f = 9.7
in the uniform zone, dp in m

C. Internal dynamics of the flows

Not using depth-averaged methods also enable to study
precisely how accurately the model reproduce the velocity
profiles which will drive the impact load for instance. The
velocity profiles are studied at three different locations shown
in Fig. 1. The abscissas are defined relatively to the toe of the
front.

In Fig. 5, the velocity profiles for Ch = 1.8 are plotted for
each location and resolution. The overall behaviour of the flow
is well reproduced for all resolutions. Profiles are well within
the error bars of the experimental data. Discrepancies on the
height of the flow for x∗f = 0.76 are due to the experimental
measurements : close to the free-surface, access to the velocity
of the flow, especially near the free surface, becomes difficult,
as stated by Freydier in [5] making measurements in this
section of the flow less accurate.

Even near the front, the shape of the velocity profile is
accurately reproducing the dynamics, and allows to access to
precise velocity mapping, which is rarely available experimen-
tally, and not available using classical depth-averaged models.

A global criterion to characterize the convergence, for each
of the location j is needed. A global root mean squared error
of the velocity field (ii) is thus defined:

ζu,j =

√√√√∑
z

(u∗j,Freydier(z)− u∗j,num(z))
2

Nz,j
(17)

where Nz,j is the number of points in the vertical direction.

Fig. 6: Root mean squared error as defined in Eq. 17 on the
velocity profiles at three different locations in the front: x∗f =
0.76 and x∗f = 1.5 being close to the front tip (i.e., where
∂xz ̸= 0), and x∗f = 9.7 in the uniform zone (i.e., where
∂xz ≈ 0), dp in m

In Fig. 6, ζu,j for each (dp, Ch) is plotted. Convergence
is shown for each smoothing coefficient. The convergence is
similar regardless of the choice of a smoothing coefficient Ch,
and overall, the error becomes smaller than 5% when using the
finest resolution which is acceptable considering the precision
of the experimental measurements.

V. DISCUSSION

The accuracy of the results at different points in the flow
show promising results in terms of possible applications,
especially close to the toe of the front. Precise knowledge
about the flow front characteristics is of major interest for
applications on mud-flow behaviour as well as debris flow
modeling.

A. Acceptability of the residual errors

The residual errors presented above could be further in-
vestigated using finer resolutions. Although this is of interest
for theoretical convergence studies, this work is intended as an
application project. The cost over benefit ratio of studying finer
schemes becomes significantly less interesting in resolutions
that are finer than ones presented in Table I. The knowledge
on experimental data and data uncertainty for such mud-flows
and debris flows in the field leads us to consider acceptable
this error and consider it as an uncertainty of the numerical
method in further applications.
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(a) Skillen et al. [11] (b) Lind et al. [10]

Fig. 7: Comparison of the particle spatial distribution for the
two shifting methods for dp = 0.25 · 10−3 m and Ch = 1.8

Fig. 8: Comparison of ζu for the shifting methods at three
different positions in the front : x∗f = 0.76 and x∗f = 1.5 being
close to the front tip, where ∂xh is significant, and x∗f = 9.7
in the uniform zone, dp in m

B. Shifting method

Although convergence is confirmed for the numerical
model, ζh stays above 5% for the computed cases. Finer
resolutions are investigated in the frame of convergence but
on Fig 7(a), the particle spatial distribution at a given time
step is shown. One can note that the particle distribution with
this simulation forms layers near the front, distributing the
particles along lines, eventually leading to instabilities in the
pressure profile. In addition, there is a layer of particles at the
bottom of the flow where a vertical ordering of the particles
can be seen. This leads to the hypothesis that the formulation
of shifting by Skillen at al. [11] already implemented in the
release version of DualSPHysics is not the optimal formulation
for this application. Indeed, the non-uniform nature of this
flow, coupled with the strong no-slip condition at the bottom
of the channel leads to large differences in velocity magnitude

Fig. 9: Comparison of ζf for the shifting methods, dp in m

Fig. 10: Comparison of ζh for the shifting methods, dp in m

within the flow, especially having zones where the velocity is
almost null. A shifting method proportional to the velocity
magnitude then leads to a very uneven shifting in the flow,
and thus to such patterns in the velocity profile.

As an alternative, the shifting formulation by Lind et al.
[10] is used:

δra = −Al

2
h2dt∇Ca (18)

In this method, particles within Ch · h of the detected free
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surface are not shifted. On Fig. 7(b), the particle distribution
at the front for the shifting method of Lind et al [10] is
shown. It is much smoother and less ordered near the free
surface as expected. On Fig. 9 and 10, comparison of the
different shifting methods for Ch = 1.8 is plotted against the
flow front velocity and the uniform flow depth, respectively.
The shifting method by Lind et al. [10] performs better,
impacting positively the bulk behavior of the flow. On the
other hand, Fig 8 shows that the shifting method marginally
affects the performance of the velocity profile error ζu, while
still ensuring satisfactory results.

In essence, this study demonstrates that this alternative
method shows better results comparatively and these prelim-
inary results show that a reflection on the shifting method is
of major importance for such applications with very viscous,
though surging flows, where velocities are null locally, and
velocity gradient highly varies across the flow.

VI. CONCLUSION

In this work, we validated the results of DualSPHysics
against accurate flow measurement of very viscous flows
having a surging behaviour, i.e., steep free surface profiles.
Overall, the global behavior of the front, as well as the
dynamics of the flow, are well reproduced by the Dual-
SPHysics solver. We additionally show that another shifting
method than the classical one implemented in the release
version of DualSPHysics is better suited, probably due to
the peculiarities of these flows, notably their locally very
low velocities. Applications of the DualSPHysics solver in
mud-flows opens up a lot of possibilities for prototype-scale
modeling to study e.g., impact forces and interaction with
structures. The advantages of the DualSPHysics software,
including its highly parallelized implementation, its growing
community and the many coupling currently in place make it
a good candidate for more application in the field of debris
flow and mud-flow investigations.
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