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Abstract. We introduce the method ADAMONT v1.0 to ad-
just and disaggregate daily climate projections from a re-
gional climate model (RCM) using an observational dataset
at hourly time resolution. The method uses a refined quan-
tile mapping approach for statistical adjustment and an anal-
ogous method for sub-daily disaggregation. The method ul-
timately produces adjusted hourly time series of temper-
ature, precipitation, wind speed, humidity, and short- and
longwave radiation, which can in turn be used to force any
energy balance land surface model. While the method is
generic and can be employed for any appropriate observa-
tion time series, here we focus on the description and eval-
uation of the method in the French mountainous regions.
The observational dataset used here is the SAFRAN mete-
orological reanalysis, which covers the entire French Alps
split into 23 massifs, within which meteorological conditions
are provided for several 300 m elevation bands. In order to
evaluate the skills of the method itself, it is applied to the
ALADIN-Climate v5 RCM using the ERA-Interim reanal-
ysis as boundary conditions, for the time period from 1980
to 2010. Results of the ADAMONT method are compared
to the SAFRAN reanalysis itself. Various evaluation crite-
ria are used for temperature and precipitation but also snow
depth, which is computed by the SURFEX/ISBA-Crocus
model using the meteorological driving data from either the
adjusted RCM data or the SAFRAN reanalysis itself. The
evaluation addresses in particular the time transferability of
the method (using various learning/application time periods),
the impact of the RCM grid point selection procedure for
each massif/altitude band configuration, and the intervari-
able consistency of the adjusted meteorological data gener-
ated by the method. Results show that the performance of

the method is satisfactory, with similar or even better evalua-
tion metrics than alternative methods. However, results for
air temperature are generally better than for precipitation.
Results in terms of snow depth are satisfactory, which can
be viewed as indicating a reasonably good intervariable con-
sistency of the meteorological data produced by the method.
In terms of temporal transferability (evaluated over time pe-
riods of 15 years only), results depend on the learning pe-
riod. In terms of RCM grid point selection technique, the
use of a complex RCM grid points selection technique, tak-
ing into account horizontal but also altitudinal proximity
to SAFRAN massif centre points/altitude couples, generally
degrades evaluation metrics for high altitudes compared to
a simpler grid point selection method based on horizontal
distance.

1 Introduction

Projections of future climate change in terms of meteorolog-
ical conditions and their impacts are requested for many sci-
entific and societal applications (IPCC, 2013, 2014a, b, c).
For a given socio-economic or greenhouse-gas concentration
scenario, these projections generally concern future tempera-
ture and precipitation, and associated extreme events, and are
usually generated using the outputs of global climate mod-
els (GCMs) and regional climate models (RCMs). However,
GCMs and RCMs suffer from biases compared to local ob-
servations (Christensen et al., 2008; Rauscher et al., 2010;
Kotlarski et al., 2014). Raw climate projections must there-
fore be adjusted (Déqué, 2007; ThemeBl et al., 2011; Gobiet
et al., 2015; Maraun, 2016) before they can be used as such

Published by Copernicus Publications on behalf of the European Geosciences Union.



4258

(meteorological conditions) or in order to drive specific im-
pact models. Various downscaling and adjustment methods
have been developed (Maraun et al., 2010; Teutschbein and
Seibert, 2012, 2013). They all require an observation dataset
which (i) meets the data requirements of the application and
(ii) is sufficiently long and reliable to be used to infer the
relationships between the observations and the raw climate
projections during the observation time period. Several ap-
proaches, such as the analog method, search for relationships
between observed large-scale predictors (generally from re-
analyses) and observed local-scale predictands (Vrac et al.,
2007a; Dayon et al., 2015). In contrast, model output statis-
tics approaches calibrate model outputs against observations,
with various levels of complexity, such as scaling methods
(linear scaling, local intensity scaling, variance scaling, etc.),
delta-change methods (e.g. Abegg et al., 2007; Hantel and
Hirtl-Wielke, 2007; Schmucki et al., 2014) and distribution
mapping methods (e.g. Boe et al., 2007; Déqué, 2007; Go-
biet et al., 2015; Olsson et al., 2015). The latter include
quantile mapping, which is considered as an efficient and
easy to implement adjustment method (ThemeBl et al., 2011;
Teutschbein and Seibert, 2012; Maurer and Pierce, 2014; Go-
biet et al., 2015). The main advantage of this method is that
it adjusts deviations in the shape of the distribution, and is
thus able to adjust deviations not only for the mean but also
for the entire probability distribution function (PDF) (The-
meBl et al., 2011). Moreover, the adjustment is not strictly
restricted to the range of observed values in the reference
period, which is the case for example for methods based on
analog weather patterns (e.g. Déqué, 2007; Themefl et al.,
2011; Rousselot et al., 2012; Dayon et al., 2015), provided
that values based on the lowermost and uppermost quantiles
are handled appropriately (Gobiet et al., 2015). It can thus
be used for evaluation of climate extremes or projections at
the end of the 21st century, as long as the probability asso-
ciated with these events is robustly estimated from a long
enough sample. The main limits of quantile mapping are the
assumption of time-invariant model deviation to observations
on which it is based and the fact that the temporal properties
of the model are not adjusted. If the model has a chrono-
logical behaviour which differs from the observations (too
chaotic or too persistent), this will not be adjusted (Déqué,
2007). Moreover, quantile mapping does not guarantee the
spatial and intervariable consistency, in contrast to e.g. the
analog method. Furthermore, the performance level of quan-
tile mapping methods is sensitive to the observation dataset
used and the detailed characteristics of their implementation,
which requires specific attention.

Climate projections in mountainous regions, which are
motivated by a broad range of geophysical, environmental
and societally relevant scientific challenges (Martin et al.,
1994; Beniston, 1997; Jomelli et al., 2009; Castebrunet et al.,
2014; Piazza et al., 2014; Schmucki et al., 2014; Lafaysse
et al., 2014; Boulangeat et al., 2014; Thuiller et al., 2014;
Castebrunet et al., 2014; Francois et al., 2015; Spandre et al.,
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2016) are particularly sensitive to the quality of the adjust-
ment method. Indeed, RCM resolutions typically between
10 and 50 km are not sufficient to capture the fine-scale pro-
cesses and thresholds at play. Resolving altitude dependen-
cies is critical, especially for snow-related issues (because
of the temperature dependency of the snow-rain transition).
Furthermore, not only temperature and precipitation act on
the snowpack but also a broader range of meteorological
conditions and their diurnal variations. As a consequence,
considering only adjusted daily temperature and precipita-
tion would miss some of the non-linear responses of the
snowpack. Such phenomena cannot be addressed using delta-
change methods, which by definition apply fixed changes
to an observed time series, conserving its statistical persis-
tence properties and seasonality (e.g. Abegg et al., 2007;
Hantel and Hirtl-Wielke, 2007; Schmucki et al., 2014; Marty
et al., 2017) although those could evolve significantly under
changed climate conditions.

Here we introduce the ADAMONT v1.0 method to ad-
just climate model projections in order to provide hourly-
adjusted meteorological conditions for past and future con-
ditions based on climate model output and observational
datasets. Although it could be applied for GCM output, it
was primarily designed to process RCM output. Indeed, raw
regional climate projection data are increasingly made avail-
able, e.g. the World Climate Research Program (WCRP)
Coordinated Regional Downscaling Experiment (CORDEX;
Giorgi et al., 2009), whose aim is to improve and distribute
regional climate modelling worldwide. Its European branch,
EURO-CORDEX (Jacob et al., 2014), gathers regional cli-
mate simulations over Europe from 30 different modelling
groups at 50km (EUR-44) and 12.5km (EUR-11) resolu-
tions. On the observation side, the use of surface meteoro-
logical reanalysis is a powerful alternative to station obser-
vation data to provide the necessary observational dataset
(Berg et al., 2015). Indeed, the process by which such reanal-
yses are generated addresses the time and space variations
in the meteorological conditions, and by design they consist
of gap-free and complete time series. Here we describe the
use of the ADAMONT method based on RCM model output
comparable to EURO-CORDEX and on the mountain me-
teorological reanalysis SAFRAN. SAFRAN was developed
specifically to address the needs of snowpack numerical sim-
ulations in mountainous regions, and contains hourly time se-
ries of temperature, precipitation, wind speed, humidity, and
short- and longwave radiation for so-called massifs (ranging
between 500 and 2000 km? in the French Alps) by elevation
steps of 300 m (Durand et al., 2009a, b). Here, quantile map-
ping is applied using daily outputs from a given RCM for all
the variables provided in the SAFRAN reanalysis. Following
a subdaily disaggregation step based on analog days selec-
tion from the reanalysis itself, these hourly-adjusted fields
are then used to force the SURFEX/ISBA-Crocus (Vionnet
et al., 2012) model over the French Alps. We evaluate the
performance of the ADAMONT method by applying it to
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the ALADIN-Climate v5 RCM (Colin et al., 2010) forced by
the ERA-Interim reanalysis (Dee et al., 2011) over the pe-
riod 1980-2010. Section 2 describes the models used and the
evaluation approach. Sections 3 and 4 contain the results and
their discussions, respectively, and general conclusions are
drawn in Sect. 5.

2 Models and methods
2.1 Description of the ADAMONT method

ADAMONT is primarily a quantile mapping adjustment
method (Déqué, 2007; Gobiet et al., 2015). In general, quan-
tile mapping is considered to be one of the most efficient
bias adjustment methods available (Themefl et al., 2011;
Maurer and Pierce, 2014; Gobiet et al., 2015). It consists of
adjusting the quantiles of the simulated historical distribu-
tion based on the quantiles of the observed distribution. The
main issues with quantile mapping relate to the assumption
of time-invariant model biases, the fact that temporal prop-
erties of the RCM are untouched by the adjustment method
and that the spatial and intervariable consistency is not guar-
anteed. Moreover, Driouech et al. (2009) showed that for
mid-latitude climates, such as in Morocco, quantile mapping
adjustment can vary for different weather regimes, because
model biases vary in different regimes. Similarly, Addor et al.
(2016) demonstrated the sensitivity of quantile mapping ad-
justment to circulation biases over the alpine domain. Ad-
ditionally, the frequency of weather regimes may change in
a changing climate (Boe et al., 2006; Cattiaux et al., 2013).
To improve the stationarity of our method in a changing cli-
mate, weather regimes are thus taken into account, i.e. quan-
tile adjustment functions are computed and applied depend-
ing on the weather regime.

Assuming the availability of a gap-free meteorological ob-
servational dataset at hourly time resolution consisting of one
or several geographical locations considered sharing similar
large-scale meteorological conditions, and daily RCM model
outputs covering the geographical domain of interest, the sta-
tistical adjustment method ADAMONT consists of the fol-
lowing steps:

1. RCM grid point selection: for each observation point,
a RCM grid point is selected by minimising the follow-
ing distance:

\/(Ax)2 + (Ay)? + (N x Az)?, (1

where Ax, Ay and Az represent the longitudinal, lati-
tudinal and vertical distances (in km) between the ob-
servation point and the RCM grid points, and N is re-
ferred to as the elevation factor. Values of 0, 50 and 100
were tested, but 0 (NO) and 50 (N50) are reported in
this study. The factor N is a scaling factor between hor-
izontal and vertical distances, allowing us to take into
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account the strong dependence of meteorological vari-
ables (mainly precipitation and temperature) on altitude
(e.g. Gottardi et al., 2012; Kotlarski et al., 2012).

. Weather regime computation: each day of the RCM

and observational records are clustered into different
daily weather regimes based on the geopotential height
at 500 hPa, following Michelangeli et al. (1995), simi-
lar to the method described in Driouech et al. (2010).
Weather regime clusters were previously computed on
the basis of the large-scale meteorological reanalysis
ERA-40 (Uppala et al., 2005). The ERA-Interim reanal-
ysis (Dee and Uppala, 2009) was used to infer weather
regimes corresponding to each observation date and for
all observation points. RCM weather regimes were de-
termined based on the synoptic field of the GCM used
as a boundary condition for the RCM. In Michelangeli
et al. (1995) and Driouech et al. (2010), only regimes
for the winter season are defined. We chose to apply
the same method to determine weather regimes for the
other seasons as well. A classification and reproducibil-
ity analysis performed by Michelangeli et al. (1995)
showed that four weather regimes can reasonably be
chosen for Europe. On one hand, this number is a com-
promise between accuracy of the correction and robust-
ness of the percentile estimation (more regimes can be
used, such as in Ummenhofer et al., 2017). On the other
hand, this relatively small number of regimes ensures
a sufficiently large size of the datasets used for quantile
mapping (which are, as described below, further parti-
tioned into four seasons: DJF, MAM, JJA and SON).
Figure 1 represents the different regimes used in this
study.

. Aggregation from hourly to daily observations: the ob-

servational data are aggregated from hourly to daily
time resolution, depending on the variable considered
(see Table 1). For temperature, the daily minimum and
maximum values (from 06:00 to 06:00 UTC the next
day) are selected (RCMs generally offer daily mini-
mum and maximum temperature); for wind speed and
humidity, the last value of each day (at 06:00 UTC)
is selected (in order to be comparable to an instanta-
neous value), and for precipitation and radiation, the
daily mean (06:00 to 06:00 UTC) is used.

. Computation of quantile distributions: the quantile val-

ues (the 99 percentile values as well as the 0.5 and
99.5 % quantile values) of the observational dataset and
corresponding RCM grid point distributions are calcu-
lated for each variable, each season (DJF, MAM, JJA,
SON) and each of the four weather regimes for a ref-
erence (also referred to as learning) time period when
both datasets are available.

. Quantile mapping: quantile mapping is then applied to

the entire RCM dataset for the application time period,

Geosci. Model Dev., 10, 4257-4283, 2017
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Table 1. Variables considered in this study. Variable name, abbreviation, input or output of Crocus, units, level and method of aggregation
(of the observational dataset from hourly to daily) and disaggregation (RCM-adjusted data from daily to hourly). Variables used for the
evaluation of the ADAMONT method are highlighted in bold characters. SW is shortwave and LW is longwave.

Variable Abbreviation Input/Output ~ Units Level Method

Temperature Tair input K 2m min, max

Specific humidity Qair input kgkg™! 2m last value

Wind speed Wind input ms~! 10m last value

Rainfall rate Rainf input kg m~2h~!  surface mean

Snowfall rate Snowf input kgm~2h~!  surface mean

Incident LW radiation LWdown input Wm—2 surface mean

Incident direct SW radiation DIR_SWdown input Wm2 surface mean

Incident diffuse SW radiation = SCA_SWdown input Wm?2 surface mean

Snowpack depth SNOWDEPTH  output m < surface —

Regime 1 DJF Regime 1 MAM Regime 1 JIA Regime 1 SON
=

£
8

Regime 2 JJIA Regime 2 SON

27

Regime 3 JJA Regime 3 SON

A
Te-

- .
Regime 4 JJA
&= =T &
Ca i 3
e o
- - -TS.

Figure 1. Clusters of each weather regime for the different seasons (winter: DJF, spring: MAM, summer: JJA, autumn: SON) used in this
study: mean geopotential height at 500 hPa (m) in ERA-40 over the period 1958-2001. The seasonal climatological mean was removed.
Isohypses are represented every 50 m and the zero isohypse is not represented. For readability, positive values are shaded progressively.

taking into account the season and the weather regime. For precipitation, it can happen that for low quantiles,
A linear interpolation is used for quantile values be- the probability of precipitation is lower in the RCM than
tween the quantile values specifically computed (the 99 in the observation dataset (i.e. several null values in the
percentile values as well as the 0.5 and 99.5 % quantile RCM, which can correspond to different positive values
values). For RCM values greater than the 99.5 % quan- in the observational data). In this case, a random draw
tile, a constant adjustment based on the value of this last is performed amongst the observation values within the
quantile is applied in order to allow for new extremes. same quantile.

Geosci. Model Dev., 10, 4257-4283, 2017 www.geosci-model-dev.net/10/4257/2017/



6. Selection of analogue date for sub-daily disaggregation:

for each day in the RCM dataset, an analogous date is
chosen in the observational dataset, matching the fol-
lowing criteria: the month and the weather regime must
be the same as in the RCM dataset, and whenever pos-
sible, consecutive time slices are chosen in the obser-
vational dataset in order to avoid artificial jumps in the
final data linked to the choice of analogues. A further
criterion is applied to ensure that the weather situations
are even more comparable between the RCM date and
the analogous date from the observational record, based
on precipitation consistency (wet vs. dry conditions).
A threshold of 1 kgm~2day~! on total precipitation is
applied to partition dates between dry and wet condi-
tions. For the first RCM date, a random draw amongst
all available observational dates is performed, then the
dates are browsed through chronologically until one
meets all the requirements outlined above. This anal-
ogous day is then used in the following step for all vari-
ables. If the following analogue day in the observations
still meets all requirements, it is selected as analogue
for the following day in the RCM (to ensure as far as
possible consecutive time slices). A new random draw
is only performed once the analogue fails to meet all
requirements described above.

. Sub-daily disaggregation: the adjusted RCM dataset is
disaggregated from a daily integration period into an
hourly time step by using the hourly observational data
from each analogous date chosen in the previous step to
reconstruct the daily cycle of the data:

Xhom(@) =ax XBes+b, )

where XRCM (@) is the hourly adjusted RCM value of
the variable X and XOBS is the hourly observational
value of the same variable from the chosen analogous
date (step 6). Different criteria are chosen to calculate a
and b, depending on the variable considered (Table 1).
For the disaggregation of RCM-adjusted temperature
from daily to hourly (Table 1), a compromise must be
made between obtaining minimum and maximum daily
values as close as possible to RCM-adjusted daily min-
imum and maximum and minimising the possible jump
in adjusted values between consecutive days. This is
achieved by minimising the following function:

O(@) =[Thep(1h, i) — Ty (240, i — D]?

h d, adj
+o[T mm(z) — Tmm(z)]

+ o[ T max(i) — Trflax(i)]z, (3)
RCM RCM

where TRCM(I h, i) and T rem (24h, i —1) are the hourly-
adjusted RCM temperature values at the first time
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step of day i and at the last time step of day i — 1,
TminﬁCM(i ) and TmaxﬁCM(i) are the hourly minimum
and maximum adjusted RCM temperature values, re-
spectively, and TmindR’gla(i) and Tmade’gf/J[(i) are the
daily minimum and maximum adjusted RCM tempera-
ture values, respectively (Fig. 2). « is a parameter which
can be tuned to balance the importance of the minimi-
sation of differences between daily and hourly RCM
minima and maxima and the minimisation of the jump
between two consecutive days. For a value of 0 for «,
there would be no jump in values between consecutive
days, but the values of TmmRCM(z) and TmaxRCM(z)

could be far from the values of TmmRCM(z) and

TmaxRCM(l). For an infinitely large value for «, the
minimum and maximum hourly and daily values would
match, but the jump between consecutive days could be
significant. Sensitivity tests yielded an optimal value of
2 for «. Following Eq. (2), Eq. (3) transforms into

O(a,a,b) =[a x Thsg(1h) +b — Ty (24h,i — 1)1

h d, adj
+ala x Tm1n+b Tmln(z)]

+ala x Tmax+b—Trf1ax(i)]2. )
OBS RCM

By searching for the local minima §Q/déa =0 and
8Q/8b =0, a and b can be determined, and the hourly-
adjusted RCM temperature can be obtained following
Eq. (2). For specific cases, i.e. for the first day where
Té’CM(24 h, i — 1) does not exist or if the determinant of
our system is too close to zero (< 0.1) or in the case
where a < 0, a simpler equation is used in which we
only ensure that final minimum and maximum daily
values correspond to the RCM-adjusted minimum and
maximum values by solving

d,adj,. . d,adj,.
_ TmaxRCN]I(z) — Tm1nRCNi(z)

(5)
h s h
TmaxOBS — T'mingpg
h
b= Tmax(z) —a x T max. (6)
RCM OBS

This procedure is only applied for temperature be-
cause the use of the maximum and minimum crite-
rion can lead to important jumps between consecutive
days, which is not the case for other variables (Ta-
ble 1). For humidity, Eq. (2) is solved using b =0
and a = X5 29(i)/ X} (24h, 1), so that the hourly-
adjusted RCM value and the hourly observational value
at the last time step of day i (X OBS(24 h,7)) are equal.
For wind speed, the same calculation as for humidity is

applied, exceptifa > 1 (i.e. XRCaISf(z) > XOBS(24h i)).

If so, b= Xﬁgﬁ( ) — XéBS(24h z) is calculated. For

humidity and wind speed, if X/5¢(24h,i) <1071,

Geosci. Model Dev., 10, 4257-4283, 2017
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a = 0. For precipitation and radiation, b =0 and a =
Xg’gf,f(i)/Xé’)BS(mean,i), so that the mean hourly-
adjusted RCM value and the mean hourly observa-
tion value of day i are equal. For solar radiation, if
X?)BS (mean, i) < 10_10, a = 0. For precipitation, if this
is the case, a = 1.

8. Snow/rain partitioning: total precipitation is separated
into rainfall and snowfall based on hourly-adjusted tem-
perature (a threshold of 1°C is used for the transi-
tion from snow to rain). As mentioned above, intervari-
able consistency is not guaranteed by quantile mapping.
Given the importance of the consistency between tem-
perature and precipitation in many applications and in
particular in mountainous areas, given that precipita-
tion and temperature are corrected independently from
each other (step 5), and because the adjustment can dif-
fer for the different precipitation phases, the relation-
ship between temperature and precipitation phase may
be modified by quantile mapping so that the adjusted
rain and snow distributions may lose consistency. To
avoid this, Olsson et al. (2015) separated temperature
data into wet and dry days before adjustment. In our
case an additional quantile mapping against the obser-
vational dataset is applied for daily cumulated adjusted
RCM rainfall and snowfall separately. Hourly-adjusted
RCM rainfall and snowfall (a;) are then determined by
applying the ratio between daily rainfall or snowfall af-
ter quantile mapping (A;) and daily rainfall or snowfall
before quantile mapping (A1) to the hourly rainfall or
snowfall before quantile mapping (a;)

Ao 7
aj) =aj X A . ( )
IfA;=0and A, =0,thena, =0.If Ay =0and A, #
0, then a, = A».

9. Final adjusted dataset: the resulting adjusted hourly
time series for each variable are obtained for each snow
year (from the 1st of August to the 31 July of the fol-
lowing year), matching the format of the observational
dataset.

2.2 SAFRAN reanalysis and application of
ADAMONT method using SAFRAN

Although the ADAMONT method is highly generic and can
be applied using any hourly-resolution observational dataset,
in the following we focus on the use of ADAMONT using
the SAFRAN reanalysis data as an observational dataset. We
first describe SAFRAN, then we present specific features of
the ADAMONT method when using SAFRAN as the obser-
vational dataset.

The SAFRAN system is a regional-scale meteorological
downscaling and surface analysis system (Durand et al.,

Geosci. Model Dev., 10, 4257-4283, 2017
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1993), which provides hourly data of temperature, precipi-
tation amount and phase, specific humidity, wind speed, and
shortwave and longwave radiation for each mountain region
(or “massif”) in the French Alps (23 massifs, as illustrated in
Fig. 3) but also in the French and Spanish Pyrenees and Cor-
sica. Unlike traditional reanalyses, SAFRAN does not op-
erate on a grid but on French mountain regions subdivided
into different polygons known as massifs. Massifs (Durand
et al., 1993, 1999) correspond to regions ranging approxi-
mately between 500 and 2000 km? for which meteorological
conditions are assumed to be spatially homogeneous but vary
with altitude. SAFRAN data are available for elevation bands
with a resolution of 300 m, i.e. altitude levels 600, 900, 1200,
1500 m etc. are typically considered, making it possible to
extract meteorological information at these altitude levels, or
in-between using altitude interpolation. It was used by Du-
rand et al. (2009b) to create a meteorological reanalysis over
the French Alps by combining the ERA-40 reanalysis (Up-
pala et al., 2005) with various meteorological observations
including in situ mountain stations, radiosondes and satellite
data. It was complemented after the end of the ERA-40 re-
analysis (2002) by large-scale meteorological fields from the
ARPEGE analysis so that it now spans the period from 1959
to 2016, making it one of the longest meteorological reanal-
yses available in the French mountain regions.

When the ADAMONT method is applied using the
SAFRAN reanalysis, only one geographic coordinate is used
for each massif, corresponding to the centre of the massif
(see Fig. 3). However, for each massif several altitude levels
are considered, which means that depending on the N fac-
tor considered different RCM grid points may be selected for
a given massif and altitude. Also, in order to maximise the
consistency between massifs after the adjustment process,
the dry/wet analogue day criterion used for the time disag-
gregation of RCM-adjusted variables into hourly variables is
computed generally for the entire SAFRAN dataset, here in
the 23 French Alp massifs. This means that a day is consid-
ered dry when the average of all daily precipitation data is
below 1 kgm~2day~! and wet if it falls above the threshold
for all massifs and all altitude levels (from an observational
perspective), and for all corresponding adjusted RCM grid
points (from an adjusted RCM perspective).

2.3 SURFEX/ISBA-Crocus model

Crocus (Brun et al., 1989, 1992; Vionnet et al., 2012) is a de-
tailed snowpack model within the SURFEX externalised sur-
face module (Masson et al., 2013). It enables the computa-
tion of the exchanges of energy and mass between the snow
surface and the atmosphere (radiative balance, turbulent heat
and moisture fluxes, etc.), but also between the snowpack and
the ground underneath. Similarly to most land surface mod-
els, it requires sub-diurnal (ideally hourly) meteorological
forcing data including air temperature, humidity, incoming
longwave and shortwave radiation, wind speed, and rain and
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Figure 2. Timeline of the different parameters taken into account in the disaggregation of RCM temperature from a daily integration period
into an hourly time step. Té’CM(lh, i) and TI?CM(M h,i — 1) are the hourly-adjusted RCM temperature values at the first time step of

day i and at the last time step of the day before (i —1), Tmin}]éCM (i ) and Tmax}]éCM (7) are the hourly minimum and maximum adjusted

RCM temperature values, respectively, and TmlnRCM (i) and TmaxR (l) are the daily minimum and maximum adjusted RCM temperature
values, respectively. « is a parameter which can be tuned to give more 1mp0rtar1ce to the minimisation of differences between daily and hourly
RCM minima and maxima. Hourly-adjusted RCM temperature time series for values of 0, 2 and infinity for « are shown. ThBS corresponds

to the hourly series of the chosen daily analogue, and TmdeCri)[V (i) and Tmadeé;/vlv (i) are the daily raw minimum and maximum RCM

temperature values (before adjustment).
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Figure 3. Description of geographical configuration of the SAFRAN reanalysis and the ALADIN RCM. The top right panel illustrates the
spatial domains covered by the simulation (FRB12) and by EURO-CORDEX, and the location of the study area is indicated by the pink
box. In the left panel, SAFRAN massifs are delimited by the black contours for the northern Alps and by the burgundy contours for the
southern Alps, and their centre points are indicated by the black stars. ALADIN grid points are represented by circles, with pink circles for
the grid points closest to each SAFRAN massif centre point. Surface elevation in France is from the 50 m DEM from the Institut National
d’Information Géographique et Forestiere (IGN) and outside France from GTOPO30 (resolution of 30 arcsec =~ 1km). The elevation of
ALADIN grid points is indicated by the colour palette (in ma.s.l.). The bottom right panel indicates the location of each massif used in

Table 3. Projection is in Lambert II étendu (L2E).

snow precipitation. The one-dimensional multilayer physi-
cal snow scheme Crocus is able to simulate the evolution of
the snowpack over time by accounting for several processes
occurring in the snowpack, such as thermal diffusion, phase
changes, metamorphism, etc. The SAFRAN-Crocus model
chain has been operationally used for more than 20 years for
avalanche hazard forecasting and extensively evaluated over
the alpine domain in particular with snow depth observation
stations (Durand et al., 1999, 2009b; Lafaysse et al., 2013).
Here we apply the Crocus model using either the SAFRAN
reanalysis itself or adjusted fields from a given RCM us-
ing the ADAMONT method, in order to compute and com-
pare snow conditions using either driving data. This is both
a proof-of-concept of the applicability of the ADAMONT
method to generate data appropriate to driving land surface
models and a means to assess the intervariable consistency of
the ADAMONT output given that Crocus is simultaneously
sensitive to all meteorological fields and potentially disturbed
by inconsistencies in the forcing dataset.

Geosci. Model Dev., 10, 4257-4283, 2017

2.4 ADAMONT method evaluation

To evaluate the ADAMONT method, it was applied to the
Meétéo France ALADIN RCM forced by ERA-Interim over
the time period from 1980 to 2010. This RCM was run at
12.5 km resolution and we use the daily time resolution out-
put, which is consistent with typical output from EURO-
CORDEX RCMs. This simulation was then adjusted against
the SAFRAN reanalysis. The spatial domain (2200km x
2200km, centred on France; see Fig. 3) is deliberately
smaller than EURO-CORDEX (5000km x 5000 km domain
covering all of Europe; Fig. 3) although both are on the same
order of magnitude in order to place more emphasis on the
method skills than on the output of the RCM itself, especially
in terms of chronology. Indeed, the smaller the domain, the
more it is constrained by its driving large-scale model (be it
a GCM or a reanalysis) (Alexandru et al., 2007).
Performance indicators described below were computed
for temperature and total precipitation but also for the snow
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depth, which integrates all the meteorological variables con-
sidered in the ADAMONT method. Focus was hereby placed
on evaluating the ability of the method to correctly represent
integrated outputs computed using SURFEX/ISBA-Crocus
from meteorological variables adjusted independently of
each other. This is often applied to river discharge for down-
scaling methods used for hydrological applications (e.g.
Lafaysse et al., 2014; Olsson et al., 2015).

The method was applied for all 23 massifs of the French
Alps and all elevation bands (Fig. 3), totalling 187 mas-
sif/altitude configurations. Performance indicators, described
below, were either computed spanning all configurations or
focusing on a given altitude level (1200 and 2100 m) and/or
a subset of massifs (the Vercors massif was taken as an ex-
ample, and computations were also performed separately for
the northern and southern Alps, respectively).

We specifically tested the following aspects of the method:

— RCM grid point neighbour selection techniques (N =0
or N =50).

— Learning period: split-sample evaluation was performed
using three different learning and application periods
(1980-1995, 1995-2010 and 1980-2010) by evaluat-
ing the results on an evaluation period different from
the learning period (1995-2010 for simulations with the
learning period 1980-1995 and vice versa). These two
sub-periods correspond to markedly different climate
conditions in the French Alps (Reid et al., 2015). For
simulations using the entire learning period 1980-2010,
the evaluation period was 1980-2010. This case with
a 30-year learning period corresponds to the typical du-
ration of the learning period when the method is applied
for climate projections.

— Rain/snow quantile mapping: the method was applied
with (default case) or without (“no corr”) the last ad-
justment step operating on the rainfall and snowfall sep-
arately.

— Raw RCM data: raw RCM simulations, without any
adjustment, were considered for some of the variables
(temperature and precipitation only) and compared to
adjusted results. This can not be used in the case of
snow depth because daily-resolved RCM output cannot
be employed to run Crocus.

— The impact of using 6h input RCM data instead of
daily data was also tested but yielded similar results (not
shown). Only results based on daily RCM input are pre-
sented because GCM/RCM outputs are often available
at this time step on data distribution platforms such as
the one of EURO-CORDEX.

The following indicators were analysed for temperature,
total precipitation and snow depth:
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— the seasonal average time series from 1980 to 2010 in

the SAFRAN and the adjusted RCM datasets;

the mean annual cycle over two distinct periods: 1980—
1995 and 1995-2010 in the SAFRAN and the adjusted
RCM datasets;

the mean value for each elevation band over the eval-
uation period in the SAFRAN and the adjusted RCM
datasets;

the correlation and the ratio of standard deviations be-
tween time series of the SAFRAN and the adjusted
RCM datasets for each variable and as a function of the
integration window (from 1 day to several years) over
the evaluation period;

the cumulated PDF of daily variables over the evalu-
ation period in the SAFRAN and the adjusted RCM
datasets;

the root mean square error (RMSE) and the mean bias
over the evaluation period, computed over seasonal inte-
gration periods based on the SAFRAN and the adjusted
RCM datasets (to evaluate the method performance in
terms of reproducing amounts);

scores specific to the detection of occurrence of precip-
itation events in the SAFRAN and the adjusted RCM
datasets over the evaluation period: the probability of
detection (POD = nyy /(nhh 4 1nd)), the false alarm rate
(FAR = ngn/(ngn+nnn)), the probability of false detec-
tion (POFD = ngn/(ngn + n4q)) and the true skill score
(TSS = POD — FAR), where ny, is the number of days
which are wet in the SAFRAN and wet in the adjusted
RCM, nqq the number of days which are dry in the re-
analysis and dry in the adjusted RCM, npq the number
of days which are wet in the reanalysis but dry in the ad-
justed RCM and ngj, the number of days which are dry
in the reanalysis but wet in the adjusted RCM (a thresh-
old of 1kgm~2d~! was considered for the occurrence
of precipitation);

scores for the duration and persistence of precipitation
events over the evaluation period (Wilby et al., 1998;
Boe et al., 2000): the relative error on the probabil-
ity of a dry day (EPD = (n¥ —n5)/n5), the relative
error on the probability of a dry day following a dry
day (EPDD = (n® ,/n® —n3_,/n3)/n5_,/n3)), the
relative error on the probability of a wet day follow-
ing a wet day (EPHH = (n} , /(n —n®)—n} _, /(n —
ng))/(n;f_h/(n—nf,))) and the relative error on the
mean duration of wet periods (EHD = (hdurR —
hdur®) /hdur’), where nff and ng are the number of dry
days in the adjusted RCM and in SAFRAN, respec-
tively, n 5_ 4 and ng_ 4 the number of dry days following
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adry day in the adjusted RCM and in SAFRAN, respec-
tively, nf_ , and n;j_ ;, the number of wet days follow-
ing a wet day in the adjusted RCM and in SAFRAN,
respectively, n is the total number of days, and hdur®
and hdur’ are the duration of wet periods in the ad-
justed RCM and in SAFRAN, respectively. A threshold
of 1kgm~2d~! was considered for the occurrence of
precipitation.

These indicators are classically employed (e.g. Boe et al.,
2006; Vrac et al., 2007b; Lafaysse, 2011; Kotlarski et al.,
2014) to assess the following:

1. the ability of a model or method to reproduce the sta-
tistical characteristics of the observed meteorological
variables (through the RMSE, the mean bias, the ratio
of standard deviation values, the duration and persis-
tence of precipitation events and the cumulated PDFs)
and their spatial variability (through the mean values at
each elevation band and the analysis of different mas-
sifs);

2. its capacity to reproduce the low-frequency variability
in the observations, i.e. their chronology (through the
analysis of seasonal average time series, the correlation
as a function of the integration window and the detec-
tion of precipitation events);

3. its temporal transferability, i.e. its ability to reproduce
the observed variables over a period different from the
learning period (through the use of split-sample evalu-
ation, the analysis of the mean annual cycle over two
distinct periods and the seasonal average time series);

4. its intervariable consistency, which is assessed here by
applying the evaluation indicators to snow depth, an in-
tegrated output of the Crocus model.

When available, we compare the indicators with the
same criteria applied to analog-resampling-based or transfer-
function algorithms by Lafaysse (2011) and Lafaysse et al.
(2014), and for other downscaling and adjustment methods
by Vrac et al. (2012) and Olsson et al. (2015).

Table 1 outlines the input and output variables of Crocus.
Table 2 presents a summary of the different configurations
used for the evaluation.

3 Results

3.1 Spatial variability and statistical characteristics of
the variables

This section provides the evidence needed to assess the per-
formance of the ADAMONT method applied to a RCM
driven by a global reanalysis (ERA-Interim) using the
SAFRAN meteorological reanalysis as the observational
dataset in the French Alps. Adjusted RCM data are compared
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to SAFRAN itself. Adequate performance of the method is
attained when the two datasets match best.

Figure 4 presents the location of the Vercors massif
and its average temperature, precipitation and snow depth
for each elevation band, for the evaluation period in the
SAFRAN/Crocus reanalysis as well as adjusted RCM. The
shape of the mean altitudinal evolution of all three vari-
ables is well represented compared to SAFRAN, which is
also the case for other massifs (see the Supplement). The
computed temperature values are very similar to the ones in
SAFRAN. It is less so for precipitation, with over- or un-
derestimation depending on the learning period (Fig. 4) and
the massif considered (see the Supplement). Despite the dif-
ferences in the magnitude of average precipitation in the ad-
justed RCM compared to SAFRAN, the magnitude of aver-
age snow depth in the different adjusted RCM simulations
is remarkably close to the results obtained using the reanal-
ysis as meteorological input, with slight differences depend-
ing on the massif (see the Supplement). For all variables and
all massifs, the difference between simulations using the two
RCM grid points neighbour selection techniques (N =0 or
N = 50) is smaller than the difference induced by using dif-
ferent learning periods.

Figures 5-7 display the mean bias and the RMSE for each
raw and adjusted RCM simulation compared to SAFRAN,
for temperature, precipitation and snow depth for the Ver-
cors massif. Additionally, Table 3 presents the corresponding
scores on the annual time scale compared to mean values, for
the adjusted RCM L. 1980-2010 simulation, for each massif
in the French Alps and for the northern and southern Alps at
1200 and 2100 ma.s.1. This highlights the large biases and
RMSE values obtained when using raw RCM simulations
compared to adjusted simulations, a feature common to all
massifs (Figs. 5-6 and the Supplement).

For temperature, biases of the adjusted RCM simulations
vary with elevation and for the different massifs (Fig. 5, Ta-
ble 3 and the Supplement), but lie always within 1 K. Biases
are generally smaller in autumn (SON) than for other sea-
sons. RMSEs also vary with elevation and massifs, and can
differ significantly between simulations using the two dif-
ferent RCM grid point neighbour selection techniques. For
elevations above ~ 2100 ma.s.1., stronger biases and higher
RMSE:s are found for simulations using the selection tech-
nique accounting for altitude differences (N = 50), espe-
cially in summer (JJA) than for other seasons. Temperature
biases and RMSE values also depend on the learning period
considered, the longer learning period 1980-2010 generally
presenting smaller biases and RMSEs (Fig. 5 and the Sup-
plement).

For precipitation, biases generally vary with altitude
(Fig. 6, Table 3 and the Supplement), but less than for tem-
perature (Fig. 5, Table 3 and the Supplement). Biases of
the adjusted simulations remain smaller than 150 kgm~2 per
month in absolute value, corresponding to up to 90 % de-
pending on the massif and altitude, and are generally stronger
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Table 2. Name and description of the different configurations used in the evaluation of the ADAMONT method.

Name Description

SAFRAN reanalysis Simulation carried out with the SAFRAN reanalysis over the period considered
in the figures (1980-2010, 1980-1995 or 1995-2010)

RCM raw NO Simulation carried out over the period considered in the figures with the raw
ALADIN RCM (without adjustment)

RCM raw N50 Simulation carried out over the period considered in the figures with the raw

RCM L. 1980-1995 NO

RCM L. 1980-1995 N50

RCM L. 1980-1995 no corr

RCM L. 1995-2010 NO

RCM L. 1995-2010 N50

RCM L. 1995-2010 no corr

RCM L. 1980-2010 NO

RCM L. 1980-2010 N50

RCM L. 1980-2010 no corr

ALADIN RCM (without adjustment) using the spatial and altitudinal RCM grid
point neighbour selection technique (N = 50)

Simulation carried out over the period considered in the figures with the AL-
ADIN RCM and the learning period 1980-1995

Simulation carried out over the period considered in the figures with the AL-
ADIN RCM and the learning period 1980-1995 using the spatial and altitudinal
RCM grid point neighbour selection technique (N = 50)

Same as RCM L. 1980-1995 NO but without performing the last quantile map-
ping for rain and snow

Simulation carried out over the period considered in the figures with the AL-
ADIN RCM and the learning period 1995-2010

Simulation carried out over the period considered in the figures with the AL-
ADIN RCM and the learning period 1995-2010 using the spatial and altitudinal
RCM grid point neighbour selection technique (N = 50)

Same as RCM L. 1995-2010 NO but without performing the last quantile map-
ping for rain and snow

Simulation carried out over the period considered in the figures with the AL-
ADIN RCM and the learning period 1980-2010

Simulation carried out over the period considered in the figures with the AL-
ADIN RCM and the learning period 1980-2010 using the spatial and altitudinal
RCM grid point neighbour selection technique (N = 50)

Same as RCM L. 1980-2010 NO but without performing the last quantile map-
ping for rain and snow
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in summer. Smaller autumn and winter precipitation biases
lead to a good agreement between the magnitude of average
snow depth in the different adjusted RCM simulations and
the results obtained using the reanalysis as meteorological
input (as noted in Fig. 4). RMSE values generally increase
with altitude. Using different RCM grid point neighbour se-
lection techniques has less impact on precipitation scores
than for temperature, except that the N = 50 configuration
yields more variability in scores with altitude. This is due to
the choice of different grid points for different altitudes of
a single massif, because precipitation is spatially more vari-
able than temperature. The influence of the learning period
on scores is also visible.

For snow depth, the biases never exceed 50 cm, which cor-
responds to up to 50 % depending on the altitude and the
massif (Fig. 7, Table 3 and the Supplement). The biases are
smaller in autumn than for other seasons, similar to temper-
ature (Fig. 5 and the Supplement). Summer biases at high
altitudes are almost always negative, which cannot always be
explained by a combination of positive biases in temperature
and/or negative biases in precipitation, indicating the possi-
ble impact of other variables on snow depth (such as long-
wave radiation for example). RMSE values increase with al-
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titude due to the effect of increased snow accumulation with
altitude. Using the N = 50 configuration generally degrades
scores at high elevations, similar to the effect on temperature.

For precipitation and snow depth, simulations without the
final quantile mapping on snowfall and rainfall are also pre-
sented (by definition it has no impact on temperature). It is
clear from Figs. 6-7 and the Supplement that without this
final correction (no corr), biases in precipitation and snow
depth are much stronger and RMSEs much higher than when
this correction is applied.

Figure 8 represents the ratio of the standard deviation val-
ues between each adjusted RCM simulation and SAFRAN
for temperature, precipitation and snow depth and as a func-
tion of the integration window (from 1 day to several years)
over the learning period. Ratios are displayed for the Ver-
cors massif, for altitudes of 1200 and 2100 ma.s.l. If this
ratio is lower than 1, it means that adjusted RCM simula-
tions have a smaller standard deviation (i.e. variability) than
SAFRAN. For temperature, the ratio of standard deviation is
very close to 1 for integration windows of 1 day to a few
months. It varies more for longer integration windows of
1 year or more. The differences between the two altitudinal
levels considered or between massifs are limited (Fig. 8 and
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Figure 4. (a) Location of the Vercors massif with ALADIN RCM grid points chosen as the closest in x, y (N = 0, pink circle) and in x, y
and z (using N # 0). Coloured lines link each SAFRAN massif centre point with the corresponding grid point in ALADIN for the different
elevations considered (600-2400 ma.s.1.). In this case the 1500 and 1800 m lines are similar. (b) Mean temperature for each elevation band
over the evaluation period in each adjusted RCM simulation (different learning periods and two grid point neighbour selection methods) and
in SAFRAN (1980-2010). (¢) Mean precipitation for each elevation band over the evaluation period. (d) Mean snow depth (using Crocus in

this case) for each elevation band over the evaluation period.

the Supplement). Similarly, choosing different learning pe-
riods or different grid point neighbour selection techniques
has little effect on the ratio of the standard deviation values.
For precipitation, ratios of the standard deviation values are
also close to 1 (generally between 0.8 and 1.2) for integra-
tion windows of 1 day to 1 month. This result is similar to
ratios of variance between daily RCMs adjusted with a cu-
mulative distribution function transform and observations for
the Mediterranean region in Vrac et al. (2012). For integra-
tion windows of 1 month or more, the ratios vary more with
under- or overestimation of variance depending on the mas-
sif, the learning period and the grid points neighbour selec-
tion technique considered (Fig. 8 and the Supplement). For
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snow depth, the ratio does not vary until 1 month of integra-
tion approximately (Fig. 8 and the Supplement), and shows
larger variations for higher values. Some differences can be
noted for different altitudes, and different massifs, but also
for different learning periods and the two grid point neigh-
bour selection techniques considered.

Figure 9 presents the cumulated PDFs of daily tempera-
ture, precipitation and snow depth at 1200 and 2100 ma.s.1.
for the Vercors massif. The distributions of daily temperature
for adjusted RCM simulations are remarkably close to the
distribution of SAFRAN (Fig. 9 and the Supplement). The
agreement is better than the one observed in Lafaysse (2011)
and Lafaysse et al. (2014) between the different configura-
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Table 3. Mean values and scores for the ADAMONT-adjusted RCM L. 1980-2010 simulation compared to SAFRAN over the period 1980—
2010 for each massif of the French Alps (massif numbers indicated in Fig. 3) and for the northern and southern Alps at 1200 and 2100 m
elevation: mean annual temperature (7', in K) and precipitation (P, in kg m—2 yr_l), mean winter (DJFMAM) snow depth (SD, in m); mean
annual bias of 7 and P, mean winter bias of SD; annual root mean square error (RMSE) of 7 and P, winter RMSE of SD; and annual

correlations of 7' and P.

Number  Massif name Altitude ‘ Mean value ‘ Mean bias ‘ RMSE ‘ Correlation
| T P SD | T P SD| T P SD| T P

northern Alps 1200m | 280.1 991 032 | —0.04 =217 —-0.04 | 040 643 0.11 | 0.99 0.92

2100m | 275.8 675 1.25 0.03 —-294 —0.03 | 0.50 804 0.16 | 0.96 091

1 Chablais 1200m | 279.5 1247 040 | —0.05 —-233 —-0.04 | 0.56 1010 0.16 | 097 0.56
2100m | 275.5 845 1.54 0.07 =313 —0.04 | 055 1222 027 | 095 0.52

2 Aravis 1200m | 279.8 1205 042 | —0.02 —-282 —0.05 | 047 1021 0.17 | 098 0.88
2100m | 275.7 814 1.65 0.07 -—389 —0.03 | 056 1310 0.29 | 095 0.88

3 Mont Blanc 1200m | 279.7 1104 035 | —0.06 —232 —0.04 | 0.55 981 0.12 | 097 0.58
2100m | 275.6 854 144 0.04 —-367 —0.10 | 0.51 1316 0.29 | 0.97 0.59

4 Bauges 1200m | 279.7 1177 044 | —0.02 =273 —0.04 | 0.44 948 0.17 | 098 0.90
2100m | 275.6 751 1.65 0.07 —408 0.01 | 0.56 1099 0.31 | 095 0.90

5 Beaufortin 1200m | 280.1 921 040 | —0.02 —-195 —0.02 | 0.45 786 0.14 | 098 0.79
2100m | 275.6 653 1.36 0.05 —-291 —0.05 | 0.53 974 0.20 | 096 0.78

6 Haute Tarentaise  1200m | 280.3 727 033 | —0.04 —-177 —0.05 | 0.65 686 0.16 | 097 0.75
2100m | 2754 509 1.01 0.00 —-199 —0.06 | 0.62 789 025 | 097 0.74

7 Chartreuse 1200m | 280.0 1225 0.37 | —0.02 —-303 —-0.04 | 0.51 1070 0.21 | 0.97 0.87
2100m | 276.1 761  1.57 0.07 —409 0.06 | 0.75 1307 0.30 | 0.89 0.84

8 Belledonne 1200m | 280.1 1112 0.34 | —0.05 —229 —0.03 | 048 917 0.16 | 098 0.89
2100m | 275.9 771 145 0.03 -—-314 0.05 | 0.66 1175 0.26 | 091 0.88

9 Maurienne 1200m | 280.4 854 033 | —0.04 —184 —0.01 | 0.48 767 0.15 | 099 0.84
2100m | 275.8 548 1.10 0.03 -—-241 —0.02 | 0.55 868 0.21 | 0.95 0.85

10 Vanoise 1200m | 280.4 771 031 | —=0.03 —129 —0.02 | 0.53 694 0.11 | 098 0.82
2100m | 275.6 549  1.00 0.00 —186 —0.04 | 0.54 833 0.20 | 0.96 0.81

11 Haute Maurienne  1200m | 280.7 642 0.15 | —0.05 —147 —-0.04 | 0.59 693 0.10 | 097 0.87
2100m | 275.5 487 0.61 | —0.03 —185 —0.08 | 0.48 858 0.19 | 098 0.84

12 Grandes Rousses  1200m | 280.4 907 0.26 | —0.06 —200 —0.03 | 0.65 902 0.14 | 096 0.83
2100m | 276.0 591 1.06 0.00 —-244 —0.02 | 0.76 998 0.26 | 0.88 0.85

13 Vercors 1200m | 280.2 1032 0.20 | —0.02 —228 —0.04 | 0.50 768 0.13 | 097 0.89
2100m | 276.2 686 1.21 0.05 —-308 —0.03 | 0.73 971 0.25 | 0.88 0.85

14 Oisans 1200m | 280.5 947 0.19 | —0.03 —223 —0.05 | 0.49 903 0.11 | 098 0.84
2100m | 276.2 629 091 0.01 —-264 —-0.07 | 0.65 1038 0.28 | 0.93 0.85

southern Alps 1200m | 2812 775 0.10 003 —-150 —-0.02 | 049 530 0.05 | 098 0.93

2100m | 276.4 546 0.63 0.02 —194 —-0.04 | 0.47 646 0.15 | 098 0.93

15 Thabor 2100m | 275.9 452 0.70 0.00 —-220 —0.03 | 0.61 868 0.20 | 0.96 0.87
16 Pelvoux 1200m | 280.9 733 0.20 0.00 —146 —0.01 | 0.75 676 0.08 | 0.94 093
2100m | 276.2 533 0.92 0.02 —204 0.00 | 0.67 878 024 | 094 092

17 Queyras 1200m | 281.1 568 0.10 0.01 —138 —0.03 | 0.56 641 0.07 | 098 0.83
2100m | 276.0 426 0.46 0.02 —-163 —0.04 | 0.54 770 0.18 | 098 0.82

18 Dévoluy 1200m | 280.6 935 0.10 | —0.02 —171 —0.03 | 0.50 784 0.08 | 097 0.86
2100m | 276.4 633  0.77 0.05 —18 —0.02 | 0.66 919 024 | 094 0.84

19 Champsaur 1200m | 280.8 823 0.13 | —0.02 —180 —0.02 | 0.57 705 0.08 | 098 0.90
2100m | 276.4 580 0.74 0.01 =217 —0.04 | 0.57 880 0.24 | 0.97 0.88

20 Parpaillon 1200m | 281.1 629 0.13 0.02 —145 —0.02 | 0.60 644 0.07 | 097 0.87
2100m | 276.4 467 0.54 0.02 -179 —-0.03 | 0.52 736  0.17 | 099 0.87

21 Ubaye 1200m | 281.2 682 0.06 0.04 —132 —-0.01 | 0.82 580 0.05 | 092 0.89
2100m | 276.6 525 043 0.03 —-179 —0.06 | 0.58 705 0.18 | 098 0.89

22 Alpes Azur 1200m | 281.7 877 0.05 0.10 —119 —0.02 | 0.66 728 0.08 | 094 0.78
2100m | 277.0 590 0.53 0.03 —180 —0.10 | 0.48 854 022 | 098 0.78

23 Mercantour 1200m | 282.3 952  0.05 0.09 —-168 —0.03 | 0.71 974 0.07 | 0.94 0.68
2100m | 276.9 707 0.56 | —0.02 —223 —0.06 | 0.61 1133 0.27 | 096 0.69
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Figure 5. Temperature mean bias and root mean square error (RMSE) of each raw and adjusted RCM simulation compared to the SAFRAN
reanalysis over the evaluation period for the Vercors massif as a function of elevation. Scores computed for the raw RCM simulations concern
minimum and maximum daily temperatures.
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Figure 6. Precipitation mean bias and root mean square error (RMSE) of each raw and adjusted RCM simulation compared to the SAFRAN
reanalysis over the evaluation period for the Vercors massif as a function of elevation.
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Figure 7. Snow depth mean bias and root mean square error (RMSE) of each adjusted RCM simulation (used as input of Crocus) compared
to the SAFRAN/Crocus reanalysis over the evaluation period for the Vercors massif as a function of elevation.

tions of analog-based and transfer function algorithms and
SAFRAN for the Durance basin (see Fig. F.2 in Lafaysse,
2011, and Fig. 5 in Lafaysse et al., 2014). A similar agree-
ment was observed in Olsson et al. (2015) between two con-
figurations of a distribution-based scaling method and obser-
vations in Finland. Only small differences are observed for
different altitudes or different massifs (Fig. 9 and the Supple-
ment), and the choice of the learning period or the grid point
neighbour selection technique has almost no impact on the
PDEF. For precipitation, the PDFs of adjusted RCM simula-
tions are also very close to the PDF of SAFRAN with a slight
overestimation or underestimation of moderate to high pre-
cipitation depending on the learning period, occurring for
most massifs (Fig. 9 and the Supplement). This result is sim-
ilar to that observed in Lafaysse (2011) for the Durance basin
(see Fig. 11.7 therein). As for temperature, altitude and mas-
sif location have only a small impact on the distribution as
well as the grid point neighbour selection technique consid-
ered. The distribution of snow depth, however, depends more
on the massif considered and the altitude (Fig. 9 and the Sup-
plement). As for precipitation, the moderate to high snow-
depth values seem to be slightly overestimated or underes-
timated for most massifs, depending on the learning period.
The choice of the grid points neighbour selection technique
has also slightly more impact on snow depth PDFs than for
temperature and precipitation. The fact that PDFs for temper-
ature and precipitation are very close to the ones of SAFRAN
is a logical consequence of using a quantile mapping ap-

www.geosci-model-dev.net/10/4257/2017/

proach. That it is also true for snow depth indicates that even
if they are treated separately, the intervariable consistency of
the meteorological fields generated using our method is, in
general, appropriate.

The capacity to reproduce the duration and persistence of
precipitation events is shown in Fig. 10. The ratio between
the number of dry days and the number of rainy or snowy
days is very correctly reproduced for every massif and alti-
tude (Fig. 10 and the Supplement), the relative error on the
probability of a dry day being lower than 5 %. This feature
was also observed by Lafaysse (2011) in his study of the Du-
rance basin (see Fig. 11.10 therein). The persistence of dry
and rainy/snowy events is generally underestimated (up to
about —30 %), which was also the case in Lafaysse (2011),
even though the error depends on the massif and the altitude
considered. In general, errors on the persistence of precipita-
tion events are larger in massifs of the southern Alps than the
northern Alps (see the Supplement). Using different learn-
ing periods and different grid point neighbour selection tech-
niques has an impact on scores, but this is small compared to
the influence of the massif or the altitude.

3.2 Mean seasonal variations

Figure 11 represents the mean annual cycle of temperature,
precipitation and snow depth for the different adjusted RCM
simulations vs. the SAFRAN/Crocus reanalysis, for the pe-
riod 1980-1995 and 1995-2010 for the Vercors massif at

Geosci. Model Dev., 10, 4257-4283, 2017
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Figure 8. Ratio of standard deviation values between the SAFRAN reanalysis and adjusted RCM temperature, precipitation and snow depth
(using Crocus in this case) as a function of the integration window over the evaluation period for the Vercors massif at 1200 and 2100 ma.s.1.
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Figure 10. Scores for the duration and persistence of precipitation events in each adjusted RCM simulation compared to the SAFRAN
reanalysis over the evaluation period for the Vercors massif at 1200 and 2100 ma.s.l. EPD is the relative error on the probability of a dry
day, EPDD is the relative error on the probability of a dry day following a dry day, EPHH is the relative error on the probability of a wet day
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1200 and 2100 ma.s.l. The mean annual cycle of tempera-
ture is very well reproduced for every massif and altitude
(Fig. 11 and Supplement). Using different grid point neigh-
bour selection techniques has a limited impact on the mean
annual cycle. For precipitation, the mean annual cycle is rela-
tively well reproduced (Fig. 11 and Supplement). The choice
of grid point neighbour selection technique can have slightly
more influence on the results than for temperature. For snow
depth, the annual cycle is remarkably well reproduced, with
peak snow depth in the core of winter (JFM) and no snow or
reduced amounts in late summer months (JAS) (Fig. 11 and
Supplement). As for temperature, the impact of the grid point
neighbour selection technique is very limited.

3.3 Interannual variability

The chronology of time series of seasonal averages of tem-
perature, precipitation and snow depth from 1980 to 2010 is
shown in Figs. 12-14, for the Vercors massif at 1200 and
2100ma.s.l. in SAFRAN and the adjusted RCM. Tempera-
ture RCM time series are similar to SAFRAN, with an in-
terannual variability which is well reproduced (Fig. 12 and
Supplement). Some significant differences appear when us-
ing different learning periods, as already noted in Sect. 3.2.
Using different grid points neighbour selection techniques
has an impact on the time series of temperature which is gen-
erally smaller than the influence of the learning period. How-
ever, as already noted in Sect. 3.1, the agreement between
observed and simulated time series is degraded for high al-
titudes under the spatial and altitudinal (N = 50) grid point
neighbour selection technique. The interannual variability in
precipitation is also well reproduced for most massifs and al-
titudes (Fig. 13 and Supplement), especially given that the

Geosci. Model Dev., 10, 4257-4283, 2017

only forcing of the RCM comes from ERA-Interim reanaly-
sis at the boundaries of the RCM domain. It is slightly less
well reproduced in summer (JJA), as observed by Lafaysse
(2011) for the analog-resampling-based transfer function al-
gorithm DSCLIM (Pagé et al., 2009) and the Durance basin
(see Fig. 10.1 therein). Differences between simulations us-
ing different learning periods mostly appear in summer (JJA).
The use of different grid point neighbour selection tech-
niques has a rather limited impact on time series of precipita-
tion, whose magnitude depends on the massif and the altitude
(Fig. 13 and Supplement). For snow depth, the interannual
variability is well reproduced in winter (DJF) and correctly
reproduced in intermediate seasons (MAM and SON). Sum-
mer snow depths are generally underestimated, as already
noted in Sect. 3.1, but represent a small portion of the annual
snow accumulation. Likewise, adjusted data using the spatial
and altitudinal (N = 50) RCM grid point selection technique
can be degraded at high altitudes, similarly to temperature.
Figure 15 displays the temporal correlation between each
adjusted RCM simulation and SAFRAN over the evaluation
period for temperature and precipitation and as a function of
the integration window (from 1 day to several years). Cor-
relations are displayed for the Vercors massif, for altitudes
of 1200 and 2100 ma.s.l. Additionally, Table 3 presents the
same correlation values at the same altitudes, for an integra-
tion window of 1 year, and for the adjusted RCM L. 1980-
2010 simulation only, for every massif of the French Alps
and for the northern and southern Alps. Snow depth values
were not included because of their cumulative nature. Cor-
relations for temperature are very high (always above 0.8)
for all massifs and altitudes until an integration window of
a few months to 1 year (Fig. 15, Table 3 and Supplement),
as found by Lafaysse (2011) (see Fig. F.21 therein). The

www.geosci-model-dev.net/10/4257/2017/
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Figure 11. Mean annual cycle of temperature, precipitation and snow depth (using Crocus in this case) in each adjusted RCM simulation and
in the SAFRAN reanalysis over the periods 1980-1995 and 1995-2010 for the Vercors massif at 1200 and 2100 ma.s.1. Letters on the x axis
correspond to the different months of the calendar (J = January, F = February, etc.).

differences between learning periods are negligible. As al-
ready observed in Sect. 3.1 and for the time series above,
the correlation is clearly degraded for high altitudes (above
~ 2100 ma.s.l.) in simulations using the N = 50 grid points
selection technique. Precipitation also yields satisfactory cor-
relation values (always above 0.4) until a few months integra-
tion window, which vary depending on the massif considered
(Fig. 15 and Supplement). Correlations are generally similar
or even better than the ones observed in Lafaysse (2011) for
various statistical downscaling models and different config-
urations of the ALADIN RCM (see Fig. 12.10 therein). The

www.geosci-model-dev.net/10/4257/2017/

use of the N =50 grid point neighbour selection technique
increases or decreases correlation values depending on the
massif and the altitude considered. The choice of learning
period has a limited effect on correlation, at least up to in-
tegration windows of a few months. Correlations are higher
on the scale of the northern and southern Alps than on the
massif scale (Table 3). This scale dependence of precipita-
tion downscaling skill was also illustrated by Gangopadhyay
et al. (2004) and Mezghani and Hingray (2009).

Scores for the detection of precipitation events are pre-
sented in Fig. 16 for the Vercors massif for altitudes of 1200

Geosci. Model Dev., 10, 4257-4283, 2017
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Figure 12. Seasonal average time series of temperature from 1980 to 2010 in each adjusted RCM simulation and in the SAFRAN reanalysis
for the Vercors massif at 1200 and 2100 ma.s.1.

Vercors 1200 m Vercors 1200 m Vercors 2100 m Vercors 2100 m
600 700 MAM 800 DJF 900 MAM
550 700
9. 500 b
=] £ 600
o 450 o
= =
= 400 = 500
5] g
g 350 3 400
-£+300 £
g 8 300
2,250 g
E 200 g 200
2 2
(}}«3 150 100 &)eg 100
Vercors 1200 m Vercors 1200 m Vercors 2100 m
600 JIA 700 SON 700 JIA 1000 SON
. 600 . N
g g 600 300
g 500 g
2 50500
< 400 <z 600
8] .S 400
£ 300 £ 400
B .£4300
B3] 200 3
& & 200
5 100 5 200
=} =
z 0 0 z 100 0
< <
A 1980 1985 1990 1995 2000 2005 2010 1980 1985 1990 1995 2000 2005 2010 ¢ 1980 1985 1990 1995 2000 2005 2010 1980 1985 1990 1995 2000 2005 2010

— SAFRAN reanalysis —— RCML. 1995-2010 NO
—— RCM L. 1980-1995 NO -= RCML. 1995-2010 N50
== RCML. 1980-1995 N50 RCM L. 1980-2010 NO

RCM L. 19802010 N50

Figure 13. Seasonal average time series of precipitation from 1980 to 2010 in each adjusted RCM simulation and in the SAFRAN reanalysis
for the Vercors massif at 1200 and 2100 ma.s.1.
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Figure 14. Seasonal average time series of snow depth from 1980 to 2010 in each adjusted RCM simulation (used as input for Crocus) and
in the SAFRAN/Crocus reanalysis for the Vercors massif at 1200 and 2100 ma.s.1.

and 2100 ma.s.l. The scores vary depending on massifs and
altitude but a general pattern emerges (Fig. 16 and Supple-
ment). The POD is the highest with values between 0.55 and
0.8, very similar to Lafaysse (2011) (see Figs. 11.14 and 12.8
therein). The FAR is rather low (always below 0.5) as is the
POFD (below 0.2). TSSs are generally better for massifs of
the northern Alps (0.25 to 0.6) than the southern Alps (0.1
to 0.4, Supplement), where PODs are lower and FARs much
higher. Such results indicate that the method performs well
in detecting precipitation events. Using different learning pe-
riods has a rather limited impact on the detection of precip-
itation. The choice of the grid point selection technique has
a limited influence at low- to mid-altitudes, which increases
above ~ 2100 ma.s.1.

4 Discussion

This section discusses the main limits of the method de-
scribed and evaluated here, and the limits of the evaluation
method itself.

4.1 Transferability in time

The temporal transferability of the ADAMONT method, i.e.
its capacity to apply adequately to a period which is different
from the learning period, can be evaluated from results in
Sects. 3.1, 3.2 and 3.3.

Figures 11-14 and the Supplement reveal some significant
differences when using different learning periods. This fea-
ture is generally most visible in summer. It denotes a limit
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in the temporal transferability of the ADAMONT method,
which was also the case in Lafaysse (2011) for the analog-
based and transfer function algorithms (see Figs. 11.11 and
11.12 therein). Using the longer learning period of 1980—
2010 yields better results, most probably due to the fact that,
in this case, the learning and evaluation periods are the same,
but also the fact that the learning period is longer.

There are some limits in the conclusions which can be
drawn from this transferability assessment. First, reanalysis
data used here as forcing for the RCM (ERA-Interim) or for
statistical adjustment and evaluation purposes (SAFRAN re-
analysis) are heterogeneous in time (Sterl, 2004; Vidal et al.,
2010). These heterogeneities are especially marked in sum-
mer in the SAFRAN reanalysis, when most observations
from mountain stations are not available (Gobiet et al., 2015).
Secondly, variations which will occur in the future climate
are expected to be much stronger than the variations which
can be tested in our evaluation period. Issues related to the
time transferability of the adjustment approach may be am-
plified when applied in the context of climate projections, but
their relative impact will probably be lower than shown here
given the magnitude of the expected changes.

4.2 Impact of the spatial selection technique

The impact of the RCM grid point selection technique is il-
lustrated in Sects. 3.1 and 3.3. Indeed, Figs. 5-7, 12—15 and
the Supplement show a clear degradation of scores for ele-
vations above &~ 2100 ma.s.l. using a selection criterion ex-
plicitly accounting for the altitude difference (N = 50). This
is linked to the scarcity of high-altitude grid points in AL-
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Figure 15. Correlation between the SAFRAN reanalysis and adjusted RCM temperature and precipitation as a function of the integration
window over the evaluation period for the Vercors massif at 1200 and 2100 ma.s.l.

ADIN compared to SAFRAN, resulting in grid points be-
ing selected several tens of kilometres from the centre point
of most SAFRAN massifs (see Fig. 4 and the Supplement
for the location of selected grid points). The impact of this
issue depends on the location of massifs relative to high-
altitude grid points in ALADIN. For example, most southern
Alps massifs are affected, except the southernmost massifs
of Ubaye, Alpes Azur and Mercantour (see the Supplement),
which are located less than 15 km from high-altitude points.
This shows that, although it seems appealing to select RCM
grid points at elevations matching the elevation of the obser-
vation dataset rather than using RCM grid points with a po-
tentially large elevation difference (hence leading to stronger
adjustment requirements), in practice the results are far more
homogeneous and quantitatively generally equivalent or bet-
ter when concentrating only on the horizontal distance be-
tween the RCM grid points and the observation dataset.

Geosci. Model Dev., 10, 4257-4283, 2017

4.3 Intervariable consistency

The lack of explicitly enforced intervariable consistency in
the quantile mapping method can be a major disadvantage.
As we focus on a mountainous region for the evaluation and
future use of the method, the consistency between temper-
ature and precipitation phase is crucial. The impact of this
final correction is assessed in Sect. 3.1. Figures 67 and the
Supplement show that without this final correction (no corr),
biases for precipitation are much stronger and RMSEs much
higher than with this final correction, highlighting its impor-
tance.

The intervariable consistency of the ADAMONT method
is indirectly assessed by applying the evaluation metrics de-
scribed above to an integrated output of the Crocus model,
the snow depth, which is computed from meteorological
variables adjusted independently from each other. As men-
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Figure 16. Scores for the detection of precipitation events in each adjusted RCM simulation compared to the SAFRAN reanalysis over the
evaluation period for the Vercors massif at (a) 1200 and (b) 2100 ma.s.l. POD is the probability of detection, FAR is the false alarm rate,
POFD is the probability of false detection and TSS is the true skill score.

tioned above, snow depth results are generally satisfying,
which tend to indicate a good intervariable consistency. Per-
formance indicators for snow depth are often consistent with
temperature and precipitation indicators, even though they
cannot always be explained by these two variables alone (for
example the analysis of biases in Sect. 3.1), indicating the
probable influence of other variables not directly analysed
here such as longwave radiation.

4.4 Limits of the evaluation method

The spatial consistency of the ADAMONT method has not
been evaluated other than by using spatial averages. In fu-
ture studies, it would be necessary to test it by evaluating
spatial correlations (for example using metrics described in
Kotlarski et al., 2014) or by using integrated variables re-
quiring spatial variability such as snow cover area or river
discharges.

In this study, we evaluated the method using only the
ALADIN-Climate RCM. However, Olsson et al. (2015)
showed that the choice of RCM could have a significant im-
pact on the evaluation of the performance of the adjustment
method. Evaluation using another RCM could thus prove
useful, even though we would have to use RCM outputs run
on the same spatial domain as the ALADIN-Climate RCM
in order to compare them.

5 Conclusions

The new method ADAMONT is able to statistically ad-
just daily regional climate model projections and to provide
hourly-adjusted outputs of temperature, precipitation, wind
speed, humidity and short- and longwave radiation neces-
sary to force energy balance land surface (impact) models.
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The method processes daily outputs from an RCM and ad-
justs them with a sub-daily (typically hourly) observational
dataset. The method was evaluated using outputs from the
ALADIN-Climate RCM driven by ERA-Interim reanalysis
for the time period 1980-2010, using the SAFRAN me-
teorological reanalysis in the French Alps as an observa-
tion dataset. The direct outputs of the ADAMONT method,
namely temperature and total precipitation, as well as an
indirect output, namely snow depth, computed by the Cro-
cus model from meteorological variables corrected inde-
pendently of each other were evaluated. The impact of the
learning period was tested, as well as the method to select
RCM grid points corresponding to each observational point.
The evaluation addressed four main concerns: (1) the abil-
ity of the ADAMONT method to reproduce the spatial (es-
pecially altitudinal) variability and the statistical character-
istics of SAFRAN variables; (2) its ability to reproduce the
low-frequency variability, i.e. the chronology of SAFRAN,
through the analysis of the interannual variability and the an-
nual cycle of adjusted variables; (3) the temporal transfer-
ability of the method; and (4) its intervariable consistency.
Performance scores are always better for adjusted RCM
simulations than for raw RCM simulations, which highlights
the need for such adjustment and demonstrates the skill of
the method. In general, the performance of the ADAMONT
method concerning temperature is better than for precipi-
tation. However, evaluation indicators for precipitation are
generally similar or even better than the indicators evaluated
in Lafaysse (2011) and Lafaysse et al. (2014) for other types
of algorithms (analog-based or transfer functions). Snow
depth yields good results, considering its integrated nature,
i.e. the fact that it was computed from variables corrected in-
dependently. The impact of the learning period depends on
the evaluation indicator considered, and must be considered
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when applying the method. The best solution is probably to
choose the longest possible learning period. For precipitation
and snow depth, the importance of the final quantile map-
ping applied to snowfall and rainfall (i.e. after a first quantile
mapping on total precipitation, an additional quantile map-
ping against the observational dataset is applied for daily
cumulated adjusted RCM rainfall and snowfall separately)
is unambiguously demonstrated. Using a grid point selec-
tion technique relying on spatial but also altitudinal proxim-
ity between SAFRAN massif centre points and RCM grid
points either had no impact on the performance indicators
or degraded them for altitudes higher than 2100 ma.s.l. As
a consequence, the simple spatial grid point neighbour selec-
tion technique will be retained for future applications of the
method.

The ADAMONT method is generic and can be applied to
any observational dataset. Its application using the SAFRAN
reanalysis as the observation dataset is somewhat a spe-
cific case, initially tailored for French mountainous regions
(Durand et al., 2009a). However, beyond the French moun-
tain regions, the method could be applied in France using
the SAFRAN-France gridded reanalysis (Vidal et al., 2010).
A Spanish version of SAFRAN was also developed recently
(Quintana-Segui et al., 2017). The method could also be ap-
plied to other observational datasets or meteorological re-
analyses, such as ERA-Interim surface fields (Dee et al.,
2011) or MESCAN (Soci et al., 2016).

The Supplement related to this article is available
online at https://doi.org/10.5194/gmd-10-4257-2017-
supplement.
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