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Abstract. Using a database of vibratory signals captured from the in-
dex finger of participants during self-touch or other-touch, we wondered
whether these signals contained sufficient information to enable the au-
tomatic classification of these signals into self-touch and other-touch cat-
egories. In one section of the database, the tactile pressure was varied, in
another section, the speed of tactile slip was varied, and in the third, the
touching posture was varied. All other factors were kept as equal as it
was feasible. We found that using standard sound features extraction, a
random forest classifier was able to predict with an accuracy greater than
90% that a signal came from self-touch or from other-touch. This result
bears a number of intriguing implications that are briefly discussed.

Keywords: Self/Other-Touch · Machine Classification · Tactile Inputs.

1 Introduction

Skin-to-skin touch is an important type of tactile interaction. This type of
touch has attracted the attention of many authors (e.g. [31,24,9,25]) and mo-
tivated research across many fields; from philosophy [23,16], cognitive neuro-
science [5][2][10][20][28], to human development [4,1,8]. All these works are based
on introspection or behavioural observations since, by necessity, they cannot rely
on the objectification of the mechanical consequences of skin touching skin. It
was however recently been realised that the objectification of tactile interactions
was possible when hands actively interact with inanimate objects [30,12,29].
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Motivated by this observation, some of us collected a database of vibration
signals collected from a index finger interacting with another finger, or a fore-
arm, with a view to provide objective data produced during skin-to-skin inter-
actions [17]. This latter study demonstrated that the “tactile waves” measured
on a touching finger bore features related to the interaction, to wit, the pressure
applied (a tonic characteristic) and the sliding speed (a kinematic characteris-
tic). The signals were shown to be relatively independent from the posture with
which the interaction was effected, making this technique potentially useful for
analyses about behaviour.

A key attribute of the database is that it included signals recorded in similar
conditions of pressure and speed during self-touch or when touching another
person. The vibrations recorded from a finger sliding on skin clearly depended on
the pressure applied and on the sliding speed. On this account, it would be hardly
surprising if machine learning classifiers were be able to discriminate between
categories of intensity or speed. In fact, the multichannel whole-hand recordings
described in [29] contained sufficient information to enable a support vector
machine classifier to categorise twelve different tactile gestures, three types of
materials, as well as the shape of the objects being touched.

In the present study we advanced the hypothesis that information contained
in single-channel vibration signals recorded from a finger in sliding contact with
another finger, or with a forearm, contained information that would enable the
discrimination between self-touch and touching another person. In the foregoing,
we show that certain supervised machine classifiers can achieve a very high level
of success in deciding whether tactile vibrations came from self-touch or from
other-touch (touching another person). Supervised machine classifiers trained
models through ground truth labels which are indicated here by self and other.

Since the data at hand were available in form of time-dependent signals
arising from mechanical interactions between objects in contact, it stands to
reason that techniques developed to classify sounds would also be appropriate
to classify signals arising from sliding fingers. A first option was to train and
then to test classifiers using raw data. Another possibility was to extract domain
knowledge features from the signals.

Features frequently used in the processing of sound include: Maximum Mel
Frequency Cepstral Coefficients (MFCC), a quantification technique for vibra-
tory signals [11], minimum MFCC, mean MFCC, Zero-Crossing Rate which cap-
ture the rhythmic features of a signal [13], Chromograms which are commonly
used for the analysis of musical sounds [27], Spectral Roll-Off which measures the
right skewness of a spectrum [18], Spectral Flux which describes rate of change
a time-varying spectrum arising from a non-stationary process [21], and Pitch
which is a well-known instantaneous attribute of sounds [26]. Features do not
contribute equally significantly to a given classification problem. Their signifi-
cance can be assessed through the decrease of accuracy in classification when a
feature is dropped. To this end, GINI importance, or mean decrease in impurity
(MIDI), may be used to evaluate the importance of each feature [6].
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The performance of a classifier is relative to a test dataset used to examine
the model trained with a train dataset. Here we use standard performance
metrics. Accuracy is measured by

Accuracy = (Ntp +Ntn)/(Ntp +Nfp +Nfn +Ntn),

which accounts for the number, N , of predictions labeled as true positives (tp),
true negatives (tn), false positives (fp), and false negatives (fn), commonly ex-
pressed in percent, while precision is defined by the proportion of true positive
predictions to the total number of positive predictions, and recall which reaches
one when there are no false negatives. We also used a statistical measure termed,
F1-Score, which is the harmonic mean of precision and recall. These metrics are
recalled below.

Precision = Ntp/(Ntp +Nfp), Recall = Ntp/(Ntp +Nfn),

F1-Score = 2(Recall · Precision)/(Recall + Precision).

We used a graphical representation borrowed from Signal Detection Theory [22].
Here, a Receiver Operating Characteristics (ROC) curve plots the false positives
vs. true positives. It can be interpreted as a plot of 1-sensitivity vs. sensitivity.
Even though these curves may cross, any curve clearly above another is better.
A single-number separability measure, the area under the ROC curve (AUC),
follows from this representation. An AUC of 0.7 is said to be acceptable, excellent
if it around 0.8, and outstanding above 0.9.

In the present study we employed a recently introduced technique which
proposes that in case of ambiguity it is better to abstain rather than to make a
prediction [7]. This technique can be implemented, for example, in a three-way
random forest algorithm which can extract probabilities for each class. Given two
probability thresholds, α and β, having value 1.0 for the ground-truth class and
0 for the incorrect class, predictions are declared positive when the score of the
positive class is greater than α and the score the positive class is greater than the
score of the negative class. Conversely, predictions are declared negative when
the score of the negative class is greater than β and the score of the negative class
is greater than the score of the positive class. When neither of these conditions
are met, then there is an abstention. Typical values for α and β are 0.75.

2 Results

The skin-to-skin touch datasets described in [17] contained signal recorded with
eighteen participants of balanced gender and hence captured a reasonable diver-
sity of individual behaviours. The signals were recorded at audio-rate and down-
sampled 10-fold. The initial one second interval of each recording was edited
out to eliminate the energy burst due to the stick-to-slip transition. This dele-
tion potentially eliminating useful information for the purpose of this study. The
pressure dataset comprised ten 10-second recordings where participant touched
ten times for each condition their own or the other participant’s index finger with
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a gentle or firm touch, resulting in 720 trials. The speed dataset comprised sim-
ilar recordings but the participants touched their own or the other participant’s
forearm at three different speeds giving rise to 1080 trials. The posture dataset
comprised similar recordings but the participants touched their own or the other
participant’s index finger in two different orientation to vary the relationship be-
tween the sensor and the regions of skin contact, resulting in 720 trials.

2.1 Relative Performance of Classification Techniques

Table 1 shows the performance of various classification techniques using the
pressure dataset suggesting that that the random forest classifier performed best
compared to other classifiers. It produced negligible Mean Squared Error (MSE)
for the train dataset with a classification accuracy of 81% greatly surpassing
logistic regression, decision tree, Gaussian, and support vector classification.

Table 1. Classifier performance & Importance of feature extraction. Accuracy in %.

classifier w pressure Accuracy Precision Recall F1-Score train-MSE test-MSE AUC

logistic regression 52.5 0.52 0.52 0.52 0.41 0.47 0.56
decision tree 65.0 0.65 0.65 0.65 0.00 0.35 0.65
Gaussian 55.0 0.56 0.46 0.50 0.42 0.45 0.57
support vector 53.4 0.53 0.61 0.56 0.40 0.47 0.53
random forest 81.0 0.81 0.79 0.80 0.00 0.19 0.84

raw/features w dataset

raw w pressure 61.0 0.58 0.63 0.60 0.02 0.39 0.64
raw w speed 62.0 0.57 0.67 0.62 0.17 0.38 0.64
raw w posture 53.0 0.54 0.56 0.55 0.10 0.47 0.54
features w pressure 81.0 0.81 0.79 0.80 0.00 0.19 0.83
features w speed 78.0 0.76 0.76 0.76 0.00 0.22 0.85
features w posture 76.0 0.78 0.75 0.76 0.01 0.24 0.81

2.2 Importance of Feature Extraction

Tests conducted with the combined datasets to evaluate the contribution of
extracted features vs raw data unequivocally confirmed the importance of pro-
viding the algorithms with extracted domain knowledge features. Most metrics,
Table 1, show low to unacceptable values when raw data was used. Figures 1a,b
further indicate that classification models become skilful with the introduction
of domain knowledge features since the figure shows across-the-board reduction
in false positives rate.

The results shown in Table 2 indicate that a three-way classification al-
gorithm with abstention greatly improved discrimination between the labels
self and other. Accuracy was increased from 81% to 92% with the pressure
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Fig. 1. ROC curves. a, Weak performance of classifiers on the raw data of combined
datasets. b, Overall effect of domain knowledge feature extraction on different datasets.

dataset, from 78% to 97% with the speed dataset, and from 76% to 84% with the
posture dataset. For the case of the combined dataset accuracy was increased
from 73% to 90%, which is very significant.

Table 2. Three-way classification of self and other using abstention.

Accuracy (%) Precision Recall F1-Score Train-MSE Test-MSE AUC
pressure 92.2 0.96 0.89 0.92 0.00 0.08 0.92
speed 97.6 1.00 0.95 0.87 0.00 0.02 0.98
posture 84.8 0.88 0.85 0.86 0.00 0.15 0.84
combined 90.2 0.87 0.97 0.91 0.00 0.01 0.90

Figure 2 summarizes the GINI importance of the different domain knowledge
features used relatively to the datasets.
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2.3 Discussion and Conclusion

Overall, the best performance was achieved by the random forest classification
algorithm which makes use of an ensemble learning method though a multitude
of decision trees. The mutually exclusive branches represent sub-categories of
the input features. The random forest classifier overcomes overfitting though
voting to predict an output. The technique known as bootstrap aggregating de-
correlates the decision trees corresponding to different training sets. Noise in
single tree affects the performance of the model but not the average of many
trees. This strategy was very successful in the classification of self-touch and
other-touch (labels self and other) from single-channel recordings of tactile
waves in the index finger.

As a whole, the eight domain knowledge features showed little relative advan-
tages over the others in the task of discriminating self-touch from other-touch.
The mean and max MFCC features which made important contributions when
the speed of sliding contact varied could be considered as exceptions. Also, the
zero-crossing feature was important when the posture was changed. Chromogram
and pitch had the highest importance in terms of classification with combined
data. These findings indicates that none of the commonly used audio-sound
features preferentially revealed the latent characteristics of skin-to-skin friction-
induced vibrations that can be used to distinguish self-touch from touching other
people. It is possible that the removal of the stick-to-slip frictional transitions
was responsible for this general lack of sensitivity. These findings therefore sug-
gest that further research is needed to discover better domain knowledge features
for this type of data.

The AUC measure was found to be a prefered performance indicator over
accuracy, an observation that was commented in [19] although it is recommended
to consider different evaluation metrics to discuss performance of a classifier on
a particular problem. This observation is validated by the ROC curve obtained
under change in posture compared to that obtained under change in speed.

Aside from the advantages provided by different classification techniques, it
is astonishing that some of the algorithms could reach very high level of per-
formance in discriminating self- from other-touch. It is not at all obvious which
signal characteristics these algorithms exploited to achieve this result. Common
sense would suggest that the applied pressure would be a factor but the results
suggest otherwise. The same can be said of the speed of sliding. If it was an im-
portant factor, then the dataset where speed was purposefully varied would have
led to poor performance, which was not the case. Thus, the latent characteris-
tics that enabled discrimnation between self- and other-touch were not related
to neither the tonic nor the kinematic attributes of the gestures employed.

In sum, our findings could contribute to the study of behaviour in many
domains, chief among them is the study of the role of touch in social interac-
tions [31,8]. It also bears the intriguing conclusion that the determining factors
differentiating self from ordinary touch are not limited to a unique convergence of
sensory and motor signals [23,3,14,15] but that the tactile inputs per se contain
cues that are special to self-touch.
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