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Abstract— The present study aims at predicting the speech 
fluency of children using automatic acoustic measures derived 
from forward-backward divergence segmentation (FBDS). 
Thirteen Korean children were recorded while reading out loud a 
set of sentences. Three native-Korean speakers evaluated the 
fluency of each sentence on a five-point scale. A FBDS algorithm 
was used to segment speech recordings into sub-phonemic units 
and silent segments. In addition to the low-level acoustic features 
directly derived from FBDS segments, higher-level acoustic 
features were computed by clustering FBDS segments into 
pseudo-syllables and silent breaks. Both low- and higher-level 
features were used to predict average ratings of speech fluency, 
using a leave-one-speaker-out cross-validation scheme and three 
regression models: a multiple linear regression, a support vector 
regression, and a random-forest regressor. Highly accurate 
predictions were achieved, with average root-mean-square errors 
(RMSEs) as low as 0.3. Prediction accuracy did not significantly 
change as a function of regression model. Using higher-level 
features yielded lower RMSEs than using raw FBDS features. The 
results of a multiple linear regression using higher-level features 
(R2 = 0.94) suggest that speech/silence ratio and pseudo-syllable 
rate are the two most important predictors of speech fluency.  

I. INTRODUCTION 

Measures of speech fluency are useful tools for monitoring 
speech production skills during first (L1) and second language 
(L2) acquisition, as they indicate the extent to which speech 
“flows easily without pauses and other disfluency markers” [1]. 
However, subjective evaluations of speech fluency are time-
consuming since raters (e.g., teachers) have no choice but to 
assess speech productions individually, that is, one speaker at 
a time. To cope with this issue, early studies proposed using 
automatic speech recognition (ASR) to compute rapid and 
objective estimates of speech fluency. For example, in the 
context of L2 acquisition, ASR systems were used to compute 
speech rate and speech/silence ratio estimates that were 
strongly correlated with subjective ratings of speech fluency 
[2,3].  

However, an important drawback of ASR systems is that 
they can be challenged by noncanonical speech. ASR systems 
are usually trained using speech samples produced by healthy, 
native adult speakers, and their recognition accuracy decrease 

when processing nonnative (L2) speech [4], pathological 
speech [5], or speech produced by children [6]. Using ASR-
based features to predict speech fluency in such populations 
can thus be hazardous, as word-recognition errors may bias the 
measurement of speech-fluency predictors (e.g., speech rate 
can be under- or overestimated depending on the length of the 
words recognized by the system). To overcome this 
shortcoming, some authors used low-level, temporal acoustic 
analyses to directly estimate predictors of speech fluency such 
as speech/silence ratio, speech rate, rate of silent breaks and 
presence of hesitations [7-9]. In particular, forward-backward 
divergence segmentation (FBDS [10]) was successfully used 
for predicting speech fluency in adult L2 speakers [8-9] as well 
as in adults with speech disorders [11]. The FBDS algorithm 
detects significant changes in the trajectory of the signal energy 
over time (e.g., abrupt increases or decreases in signal energy) 
and, when applied to speech, results in a subphonemic 
segmentation of the input signal. To measure speech fluency, 
authors either used low-level predictors directly based on 
FBDS segments (e.g., number of FBDS speech segments per 
second as a measure of speech rate [8,9]) or predictors that 
required a clustering of FBDS segments into higher-level units 
such as silent breaks and pseudo-syllables [12] (e.g., pseudo-
syllable rate [13-15]).  

However, as none of the previous studies used both low-
level and higher-level predictors, it is not clear if the clustering 
of FBDS segments into higher-level units provide any 
significant benefit for the prediction of speech fluency. Also, 
another limit of previous studies is that only linear 
combinations of features (e.g., multiple linear regressions) 
were used to predict speech fluency. Yet, it is possible that the 
importance of a given predictor depends on other predictors 
(e.g., one could assume that the presence of silent breaks has a 
lesser impact on speech fluency when speech rate is already 
very low) — in which case using nonlinear models could 
improve the prediction accuracy.  Finally, so far, the FBDS 
algorithm was only used to predict speech fluency in adult 
speakers, despite the numerous clinical and educational 
applications that could be developed for children using such 



 

 

techniques (e.g., for the automatic assessment of children 
literacy during read-aloud tasks). 

Therefore, the main aim of the present study is to establish 
the proof-of-concept that the FBDS algorithm can be used to 
accurately predict speech fluency in children. A second 
objective of the study is to overcome the methodological limits 
of previous research works by 1) determining whether the 
clustering of FBDS segments into pseudo-syllables and silent 
breaks significantly improves the prediction of speech fluency 
by comparison with the use of low-level FBDS features alone, 
and 2) if nonlinear regression models yield more accurate 
predictions of speech fluency than a multiple linear regression. 
A final contribution of this work is to analyze regression results 
to determine which features contribute the most to the 
prediction of speech fluency. 

II. SUBJECTIVE RATINGS OF SPEECH FLUENCY 

A. Speech material 
In order to collect reference data bearing enough variability 

in terms of speech fluency, 13 Korean children (6 female) of 
different ages and different levels of language exposure were 
recruited. Their age ranged from 9 to 12 years (mean: 10 years 
and 11 months; standard deviation, SD: one year). All were 
born and raised in Tokyo (Japan) under Korean parents and 
were attending local Japanese schools at the time of their 
participation. They all used Korean and Japanese, with 
different amounts of each language used at home depending on 
each family.  

During the recording task, the children were seated in a quiet 
room in their homes, at their desks. They were instructed to 
read out loud an excerpt from The Giving Tree [16], a 
children’s book translated in Korean, which consisted of 9 
sentences. 

The children were recorded using an ECM-MS957 electret 
condenser microphone (SONY, Tokyo, Japan). The 
microphone was placed in front of each child, at a distance of 
approximately 20 cm. Prior to the study, which complied with 
the ethical guidelines of Waseda University (Tokyo, Japan), all 
children’s parents provided their informed consent. 

B. Rating procedure 
The first five sentences pronounced by the children (mean 

length of the sentences: 7.6 words; SD: 3.6) were used for the 
fluency rating task, for a total of 65 sentences (5 sentences × 
13 children). Three female raters, all of them native speakers 
of Korean, participated in the assessment. Their age was 
comprised between 25 and 28 years. None of them reported any 
history of hearing difficulties. 

Speech recordings were presented to each rater in a random 
order, using the Prodigy software (ExplosionAI GmbH, Berlin, 
Germany) version 1.11.7. Each rater assessed twice the whole 
65 speech recordings, using a five-point scale in which 1 and 5 
corresponded to the lowest and highest degree of speech 
fluency, respectively.  

Prior to the rating procedure, the raters were familiarized 
with the concept of speech fluency. In particular, they were 
made aware that their ratings of speech fluency should not be 

influenced by the ability of the speakers to pronounce Korean 
phonemes — a poor fluency being possibly associated with a 
correct segmental production, and vice-versa. The raters also 
listened to several examples of utterances illustrating the whole 
fluency range. These examples were not part of the material 
later used in the rating task. 

III. PREDICTION OF SPEECH FLUENCY 

To predict ratings of speech fluency, the audio recordings 
were first segmented using FBDS. Then, FBDS segments were 
clustered into silent breaks and pseudo-syllables, and low-level 
and higher-level predictors were computed. Finally, three 
regression models were used to predict speech fluency ratings. 
The whole procedure is detailed in the following subsections. 

A. Automatic segmentation of speech signals 
Three steps were used to segment the speech signals into 

FBDS segments, pseudo-syllables and silent breaks (Fig. 1). 
During the first step, FBDS was applied. The principle of 
FBDS is as follows. The FBDS algorithm uses two windows: a 
short-term analysis window, and a longer-term window used as 
a buffer to store the current FBDS segment. The signals 
contained in the two windows are each modeled by an auto-
regressive Gaussian model. As the short-term window is used 
to progressively scan the input signal, the distance between the 
two Gaussian models (measured by the Kullback-Leibler 
divergence measure [17]) is used to detect segment boundaries. 
Each time a boundary is detected, the long-term window buffer 
is flushed, and the analysis goes forward. This process is 
eventually carried out backwards, and the boundaries found 
during forward and backward analyses are merged together. 

 

 
 

Fig. 1. Processing steps used to automatically segment speech signals into 
pseudo-syllables (transparent rectangles shown at step 3) and silent breaks 
(gray-shaded rectangles shown at step 3). 



 

 

In a second step, the segments found by the FBDS algorithm 
were classified as either speech segments or silent segments, 
depending on their maximum energy exceeding 4% of the 
maximum energy found in the whole recording (in which case 
the segment was classified as speech), or not (in which case the 
segment was classified as silence). 

In the third step, FBDS speech segments and FBDS silent 
segments were clustered into pseudo-syllables and silent 
breaks, respectively. Two consecutive FBDS speech segments 
were considered as part of the same pseudo-syllable if the 
average signal energy did not decrease more than a given ratio 
when switching from the first segment to the next. To define 
silent breaks, consecutive silent FBDS segments were merged 
together. All resulting silence clusters that lasted more than 
250ms were considered as silent breaks, as this threshold was 
shown to be optimal for the measurement of speech 
fluency [20]. Fig. 2 shows, as an example, the results of the 
automatic segmentation of a speech signal corresponding to the 
three first words of the target text pronounced by one of the 
children. 

B. Computation of predictors of speech fluency 
Both low-level and higher-level predictors of speech fluency 

were computed. Low-level predictors were computed using 
FBDS speech segments and FBDS silent segments, that is, 
using the information directly available after the step 2 shown 
in Fig. 1. These low-level predictors included:  
• Rate of FBDS speech segments: the number of FBDS 

speech segments divided by the duration of the recording. 
This feature provides an estimate of speech rate, and is 
thus expected to be positively correlated with speech 
fluency; 

• Standard deviation of FBDS speech segments duration. 
As the standard deviation of speech segments increases 
with the presence of hesitations (filled pauses, i.e., 
sustained vowels), this feature is expected to be negatively 
correlated with speech fluency; 

• Rate of FBDS silent segments:  the number of FBDS silent 
segments divided by the duration of the recording. It is 

assumed that the higher the rate of FBDS silents, the lower 
the speech fluency; 

• Speech ratio: the total duration of FBDS speech segments, 
divided by the duration of the recording. A high speech 
ratio is supposed to be indicative of a high speech fluency, 
and vice-versa. 

Higher-level predictors were computed based on the 
information available after the clustering of FBDS segments 
into pseudo-syllables and silent breaks (step 3 in Fig. 1). 
Higher-level predictors included: 
• Rate of pseudo-syllables:  the number of pseudo-syllables 

divided by the duration of the recording; 
• Standard deviation of pseudo-syllable duration;  
• Rate of silent breaks:  the number of silent breaks divided 

by the duration of the recording. 
Consistent with the assumptions made for low-level features, 

the rate of pseudo-syllables is expected to be positively 
correlated with speech fluency, whereas standard deviation of 
pseudo-syllables and rate of silent breaks are assumed to be 
negatively correlated with speech fluency. 

C. Application of regression models 
Three regression models were finally used to predict speech 

fluency ratings: a multiple linear regression (MLR), and two 
nonlinear models — a support vector regression (SVR) using a 
Radial Basis Function, and a random forest regressor (RFR). 
All models were implemented and evaluated using the Scikit 
Learn Python library [19], version 0.24.2.  

Two sets of predictors were used with each model (Table 1). 
The low-level predictor set contained the three predictors that 
were calculated based on FBDS segments. The higher-level 
predictor set contained the three predictors that were calculated 
based on pseudo-syllables and silent breaks. Both sets 
contained speech ratio, as this measure does not change when 
calculated using low-level or higher-level units (i.e., using 
FBDS speech segments or pseudo-syllables). 

As the number of speech samples did not allow for the 
creation of a separate validation set, hyperparameters of the 
SVR (regularization parameter, gamma, and epsilon) and RFR  

 

Fig. 2. Spectrogram corresponding to the first three words of the target text (“옛날에 한 그루의”– “Once upon a time there was a (tree)”) 
pronounced by one of the children, along with the corresponding phonetic transcription based on the International Phonetic Alphabet, and 
the FBDS segment boundaries, pseudo-syllables and silent breaks that were automatically identified. 



 

 

TABLE I 
PREDICTORS USED IN THE LOW-LEVEL AND HIGHER-LEVEL SETS 

Low-level set Higher-level set 

Speech ratio 

Rate of FBDS speech 
segments   Rate of pseudo-syllables 

Standard deviation of FBDS 
speech segment duration 

Standard deviation of 
pseudo-syllable duration 

Rate of FBDS silent 
segments Rate of silent breaks 

 
(number of trees and maximum depth of the trees) models were 
tuned using a nested cross-validation procedure. 

Both the outer and inner cross-validation loops followed a 
leave-one-speaker-out (LOSO) scheme. The results of the inner 
loop were used to select optimal parameters. These parameters 
were fixed during the final LOSO cross-validation that was 
carried out to compare the performance of the three models. 

IV. RESULTS 

A. Reliability of subjective ratings of speech fluency 
To assess intra-rater reliability, Spearman’s rank correlation 

coefficients (rhos) and Cronbach’s alphas (α) were computed 
on the two series of ratings provided by each rater for the 65 
sentences (Table I). For the three raters, very strong 
correlations (all rhos ≥ 0.89), and very high alphas (all ≥ 0.95) 
are observed, indicating an excellent reliability.  

To assess inter-rater reliability and agreement, the two series 
of ratings provided by each rater were first averaged. The 
results indicate a very high reliability, with a Cronbach’s α 
equal to 0.97, and Spearman correlation coefficients ≥ 0.86 
(Table II). 

Inter-rater agreement was finally assessed by analyzing the 
distribution of fluency ratings (Table III). The aim of this 
analysis was to determine if all three raters used “the same 
yardstick” [2] when evaluating speech fluency — case in which 
a straightforward combination of ratings (i.e., the computation 
of mean fluency ratings across raters) could be carried out to 
produce the final reference ratings.  
 

TABLE I 
INTRA-RATER RELIABILITY (SPEARMAN’S RHO AND CRONBACH’S α) 

Rater rho α 
1 0.95 (p < 0.001) 0.98 
2 0.89 (p < 0.001) 0.96 
3 0.89 (p < 0.001) 0.95 

 
TABLE II 

INTER-RATER RELIABILITY: SPEARMAN CORRELATION COEFFICIENTS (RHOS) 
BETWEEN SPEECH FLUENCY RATINGS GIVEN BY EACH PAIR OF RATERS, AND 

ASSOCIATED ONE-TAILED P-VALUES 

 Rater 2 Rater 3 
Rater 1 rho = 0.88 

(p < 0.001) 
rho = 0.88 
(p < 0.001) 

Rater 2  rho = 0.86 
(p < 0.001) 

TABLE III 
AVERAGE RATINGS (x̄) AND ASSOCIATED STANDARD DEVIATION (SD) FOR 

EACH RATER 

Rater x̄ SD 
1 3.84 1.42 
2 3.66 1.36 
3 3.82 1.35 

 
The descriptive statistics provided in Table III show that the 

distribution of fluency ratings is very similar across raters, with 
a maximum difference between mean ratings equal to 0.18 (for 
raters 1 and 2). As a Kruskal-Wallis test confirmed that there 
was no significant difference between the distributions of the 
ratings provided by the three raters (H(2) = 1.04; p = 0.6), the 
ratings were eventually averaged across raters. The final 65 
speech-fluency ratings ranged from 1 to 5, with a mean value 
of 3.8 (SD = 1.4). 

B. Bivariate correlations between individual predictors and 
speech fluency  

The relationship between each predictor and average fluency 
ratings was assessed through nonparametric (Spearman) 
correlations (Table IV), as a Kolmogorov-Smirnov test 
indicated that the ratings were not normally distributed 
(p < 0.01). As was assumed, measures of speech rate and 
speech ratio are positively correlated with ratings of speech 
fluency: the higher the fluency, the faster the speech rate and 
the higher the speech ratio. Standard deviations of speech 
segments (FBDS speech segments and pseudo-syllables) are, 
on the contrary, negatively correlated with ratings of speech 
fluency. The same is true for the two measures of the rate of 
silences (FBDS silent segments and silent breaks): the higher 
the rate of silent segments, the lower the speech fluency. 
Altogether, the strongest correlations are observed for speech 
ratio, rate of silent breaks and rate of pseudo-syllables (all 
absolute rhos ≥ 0.88). 

C. Prediction of speech fluency  
Table V shows the average root-mean-square errors 

(RMSEs) found for each predictor set and regression model.  
 

TABLE IV 
SPEARMAN’S CORRELATION COEFFICIENT (RHO) BETWEEN EACH PREDICTOR 
AND RATINGS OF SPEECH FLUENCY, AND ASSOCIATED ONE-TAILED P-VALUE 

Predictor   rho p-value 

Rate of FBDS speech segments   0.85 < 0.001 

Rate of pseudo-syllables   0.88 < 0.001 

Standard deviation of FBDS speech 
segment duration –0.60 < 0.001 

Standard deviation of pseudo-
syllable duration –0.37    0.001 

Rate of FBDS silent segments –0.66 < 0.001 

Rate of silent breaks –0.89 < 0.001 

Speech ratio   0.89 < 0.001 



 

 

TABLE V 
AVERAGE ROOT-MEAN-SQUARE ERROR (RMSE) AND ASSOCIATED STANDARD 

DEVIATION AS A FUNCTION OF PREDICTOR SET AND REGRESSION MODEL 

Predictor set Regression 
Model 

Average 
RMSE 

Standard 
deviation 

Low-level set 

MLR 0.46 0.11 
SVR 0.41 0.17 
RFR 0.36 0.12 

Higher-level set 

MLR 0.35 0.11 
SVR 0.30 0.13 
RFR 0.37 0.12 

 
In general, predictions of speech fluency are accurate, with 

average RMSEs close to, or even inferior to one tenth of the 
speech-fluency scale (i.e., to 0.4). This accuracy is higher than 
in previous studies that used comparable methods to predict the 
speech fluency of adult L2 learners, in which the lowest RMSE 
was 0.51 [13-15]. In the present study, the smallest RMSEs are 
found for the SVR model and the higher-level predictor set. 

D. Effects of predictor set and regression type on prediction 
accuracy 

As can be observed from Table V, for MLR and SVR 
models, the average RMSE tends to be lower when using 
higher-level predictors. The RFR model follows a different 
trend with a slight increase of the average RMSE when 
switching from low-level to higher-level predictors. Depending 
on the predictor set, the ranking of the regression models in 
terms of accuracy changes (RFR > SVR > MLR and 
SVR > MLR > RFR for the low-level and higher-level 
predictor sets, respectively).  

To assess the statistical significance of the RMSE 
differences observed as a function of the predictor set and 
regression model, a linear mixed model was computed using 
SPSS Statistics version 23.0 (IBM, Armonk, NY).  Predictor 
set and Regression model factors were treated as fixed effects, 
while Speaker factor (i.e., the speaker for whom the prediction 
was made in the LOSO setup) was considered as a random 
effect. The results indicate that Predictor set has a significant 
effect on the RMSE (F(1, 72) = 5.3; p = 0.02), contrary to 
Regression model (F(2, 72) = 1.2; p = 0.3). The interaction 
between Predictor set and Regression model just falls below 
the 5% level of significance (F(2, 72) = 3.1; p = 0.049). 

E. Individual contribution of higher-level predictors 
To evaluate the role of each higher-level feature for the 

prediction of speech fluency, a MLR was computed on the 
whole dataset (Fig. 2). The very high coefficient of 
determination indicates that the model explained 94% of the 
variability in fluency ratings. The standardized coefficients 
(std. coef.) of the regression equation show that speech ratio 
and rate of pseudo-syllable are the two most important 
predictors of speech fluency (std. coefs. of 0.52 and 0.49, 
respectively). Rate of silent breaks had a smaller predictive 
power (std. coef. = –0.31), and standard deviation of pseudo-
syllable duration only played a marginal role for the prediction 
of speech fluency (std. coef. = –0.08). 
 

 
Fig. 2. Scatterplot relating average subjective ratings to automatic measures of 
speech fluency obtained with the MLR model, and associated regression line  
(R2 = 0.94; RMSE = 0.34). 

V. CONCLUSIONS 

The present study demonstrated that FBDS-based automatic 
acoustic measures can be used to achieve highly accurate 
predictions of read-speech fluency in children. The study also 
demonstrated that clustering FBDS segments into higher-level 
units — namely, pseudo-syllables and silent breaks — 
significantly improves the prediction of speech fluency by 
comparison with the use of FBDS segments alone. This is all 
the more interesting since the method used for clustering FBDS 
segments into pseudo-syllables is theoretically relevant for all 
the languages in which syllables consist of vocalic nuclei, that 
is, for the vast majority of existing languages [20]. 

Another assumption was that using a nonlinear regression 
model might yield more accurate predictions than an MLR. The 
results failed to validate this hypothesis. This is not very 
surprising when considering that the MLR model could already 
account for 94% of the variance in speech-fluency ratings and 
achieved very low RMSEs (0.46 and 0.30 using low- and 
higher-level predictors, respectively), which left very little 
room for improvement. The analysis of the MLR coefficients 
showed that the two most important predictors of speech 
fluency were speech ratio and speech rate.  

Altogether, the results of this study open the way to the use 
of FBDS-derived measures of speech fluency for numerous 
applications dedicated to children, whether educational (e.g., to 
assess reading skills at school [21]), clinical (e.g., to diagnose 
and monitor fluency disorders in children [22]), or scientific 
(e.g., to investigate the factors influencing the development of 
speech fluency during language acquisition [23]).  
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