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ABSTRACT

We investigate graph transformations, defined using Datalog-like

rules based on acyclic conjunctive two-way regular path queries

(acyclic C2RPQs), and we study two fundamental static analysis

problems: type checking and equivalence of transformations in the

presence of graph schemas. Additionally, we investigate the prob-

lem of target schema elicitation, which aims to construct a schema

that closely captures all outputs of a transformation over graphs

conforming to the input schema. We show all these problems are

in EXPTIME by reducing them to C2RPQ containment modulo

schema; we also provide matching lower bounds. We use cycle re-

versing to reduce query containment to the problem of unrestricted

(finite or infinite) satisfiability of C2RPQsmodulo a theory expressed

in a description logic.

CCS CONCEPTS

• Theory of computation→ Logic and databases.
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1 INTRODUCTION

The growing adoption of graph databases calls for suitable data

processing methods. Query languages for graph databases typi-

cally define their semantics as a set of tuples, which alone is inad-

equate for scenarios such as (materialized) graph database views

and data migration in the context of schema evolution [10]. Amore
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adequate mechanism is that of a transformation, which takes a

graph as input and produces a graph on the output.

Example 1.1. Consider a scenario where the schema of a medical

knowledge graph undergoes changes due to advances in the un-

derstanding of biomolecular processes. The purpose of this knowl-

edge graph is to catalog vaccines based on the antigen they are

designed to target and to identify the pathogens that exhibit the

antigens, each antigen being exhibited by at least one pathogen.

Additionally, some pairs of antigens are known to be cross react-

ing: if a vaccine E targets an antigen G that is cross reacting with

an antigen ~, then E also targets ~. Thus, the set of all antigens

targeted by a vaccine is represented implicitly.

The schema (0 of the original knowledge graph is presented in

Figure 1 as a graph itself. It specifies the allowed node and edge la-

(0: Vaccine
Antigen

Pathogen

crossReacting

* *

exhibits +*designTarget* 1

(1: Vaccine
Antigen

Pathogenexhibits +*designTarget* 1

targets* +

Figure 1: Evolving schema of a medical knowledge graph.

bels, and expresses participation constraints on edges in a manner

that is typical for data modeling languages, e.g., A Br* 1 indicates

that every �-node has one outgoing A -edge to a �-node but a �-

node may have arbitrarily many incoming A -edges from �-nodes.

Now, suppose that new findings refute the rule of cross-reacti-

vity of antigens. The cross-reacting edges between antigens are no

longer adequate for representing information about the antigens

that a vaccine targets, and so, in the new schema (1, this informa-

tion is recorded explicitly with targets edges. Since up to that point,

the knowledge graph did not contain any data points that contra-

dicted the cross-reactivity rule, the logic of the rule can be used

to transform the old knowledge graph to one that conforms to the

new schema. Afterwards cross-reacting edges are removed. �

In the present paper, we study two classical problems of static

analysis on graph transformations: type checking, that verifies if for
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every graph conforming to the source schema the transformation

outputs a graph conforming to the target schema, and equivalence,

that verifies if two transformations produce the same output for

every graph conforming to the source schema. Additionally, when

the target schema is not known, we investigate the problem of tar-

get schema elicitation that constructs the containment-minimal tar-

get schema that captures the graphs produced by the transforma-

tion.

We study executable graph transformations definedwithDatalog-

like rules. The rules specify how to construct the output graph

from the results of regular path queries evaluated over the input

graph. To allow multiple copies of the same input node the rules

use node constructors, essentially explicit Skolem functions that

create nodes. As an example, the cross-reactivity rule from Exam-

ple 1.1 gives rise to the following graph transformation rule.

targets( 5+ (G), 5� (~)) ← (designTarget · crossReacting
∗)(G,~) ,

where 5+ (G) and 5� (~) are constructors of Vaccine and Antigen

nodes respectively.

We investigate transformations that use only acyclic two-way

conjunctive regular path queries (acyclic C2RPQs), which is argu-

ably of practical relevance in the context of graph transformations.

For instance, we have found no cyclic queries in the transforma-

tions implementing graph datamigration between consecutive ver-

sions of the FHIR data format [32, 50] (Fast Healthcare Interoper-

ability Resources is an international standard for interchange of

medical healthcare data). Our constructions rely on acyclicity of

C2RPQs to obtain relatively low computational complexity. We ar-

gue that the acyclicity assumption cannot be lifted without a sig-

nificant complexity increase (see Section 7).

Node constructors are closely related to object creating func-

tions [34, 35]. Our use of node constructors is inspired by analo-

gous constructions in transformation languages such as R2RML [16,

20, 52], where node IRIs are typically obtained by concatenation of

a URL prefix and the key values of a object represented by the con-

structed node. Our node constructors can have an arbitrary arity,

thus allowing for instance to create nodes in the target graph that

represent relationships (edges) between nodes in the source graph.

To isolate the concern of possible overlaps between node construc-

tors, we make the natural assumption that node constructors are

injective, have pair-wise disjoint ranges, and for every node kind

(label) a single dedicated node constructor is used. These assump-

tions allowus to remove the need to analyze the definitions of node

constructors, which is out of the scope of the present paper, and

they are consistent with how the analogous constructions are used

in languages such as R2RML and FHIR mapping language.

For schemas, we employ a natural formalism of graph schemas

with participation constraints, inspired by standard data modeling

languages such as Entity-Relationship diagrams [15], and already

studied, for instance, in the context of graph database evolution [10].

Such schemas allow to declare the available labels of nodes and

edges and to express participation constraints. In contrast to more

expressive languages as ShEx and SHACL [17, 53], our formalism

allows a single label per node, which determines the node type.

Thus, roughly speaking, our schema formalism is to ShEx and SHACL

what DTD is to XML Schema.

The key contributions of the present paper are as follows.

(1) We define graph database transformations and we reduce

the problems of interest to containment of C2RPQs in unions

of acyclic C2RPQs modulo schemas.

(2) We reduce the query containment problem to the unrestricted

(finite or infinite) satisfiabilty of a C2RPQ modulo a set of

constraints expressed in the Horn fragment of a description

logic known as ALCIF . The reduction involves an appli-

cation of the cycle reversing technique [18, 36], carefully tai-

lored to our needs.

(3) The unrestricted satisfiability problem for ALCIF can be

solved in EXPTIME owing to a simple model property [14].

We provide a new algorithmwith improved complexity bounds,

needed to deal with the exponential blow-up inherent to cy-

cle reversing. We also reformulate the simplicity of models

in terms of a graph-theoretical notion of (:, ;)-sparsity [41],

which allows to simplify the reasoning.

These reductions allow to solve all problems of interest in EXP-

TIME and we also establish the matching lower bounds.

The paper is organized as follows. In Section 2 we discuss re-

latedwork. In Section 3we introduce basic notions. In Section 4 we

define graph transformations and the problems of interest, which

we reduce to query containment modulo schema. In Section 5 we

reduce the latter to satisfiability of a query modulo Horn-ALCIF
theory, which we solve in Section 6. In Section 7 we summarize our

findings and identify directions of future work. Because of space

restrictions full proofs and some standard definitions have been

moved to Appendix.

2 RELATED WORK

Graph-based data models have been proposed in various forms

and shapes since the 1980s [4]. The proposals in the 1980s and

1990s included labeled graphs [30], graphs where certain nodes

represent complex values [31, 40], graphs where nodes have asso-

ciated complex values [1, 2], and graphs where nodes are associ-

ated with nested graphs [42]. More recently the RDF data model

[28] and the Property Graph data model [3] have become popular.

RDF graphs are similar to labeled graphs except that nodes are un-

labeled and participate in at least one edge, and the labels of edges

can be nodes and participate in edges. Property Graphs are also

similar to labeled graphs except that nodes and edges have mul-

tiple labels and properties, and edges have identity. In our work

we assume one of the simplest models, namely, labeled graphs

where nodes have multiple labels and edges have a single label; our

schemas require exactly one label per node. Since we focus here on

transformations of the graph structure, we have no explicit notion

of value associated with nodes and edges, but there are straightfor-

ward ways of adding this, as is done for example in [30].

The term graph transformations can refer to different for-

malisms [51]: the purpose of graph grammars is to define graph

languages; algebraic graph transformations are mainly used to mo-

del systems with infinite behavior and are not functional (they

produce multiple outputs on single input). Therefore, not only are

these formalisms ill-suited for defining transformations of graph

databases, but also the problems studied for them are unrelated to

the problems we study here. Monadic second-order (MSO) graph
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transductions [19] can capture our transformations only when re-

stricted to unary node constructors; moreover, resorting to MSO

logic typically incurs a prohibitive complexity overhead.

Transformation languages for graph databases are often

based on Datalog extended with node-creation syntax in the head

of the rules. It could be just a variable that is not bound in the body

of the rule, like in IQL [2] and G-Log [48]; this ensures a fresh node

is created for each valuation that makes the body true. Another op-

tion is to replace the unbound variable with a term consisting of

a constructor function (sometimes called a Skolem function) ap-

plied to bound variables, like in O-logic [43] and F-logic [38]; the

constructor creates a fresh node when called for the first time for

certain arguments, and after that the same node for the same argu-

ments. We adopt the idea of node constructors because we believe

it provides a powerful and intuitive way to control the identity

of new nodes. A different proposal, based on structural recursion,

is offered by UnQL [11], but the underlying data model considers

graphs equivalent if they are bisimilar, which makes the expres-

sive power quite different. Finally, popular graph query languages

such as SPARQL and Cypher have the option to output a graph and

can therefore express graph transformations, but they are far too

expressive to lend themselves to static analysis.

In the context of data exchange, schema mappings provide

a declarative way to define database transformations [7, 12, 22].

Our transformations could be simulated by considering canonical

solutions for plain SO-tgds [5] extended to allow acyclic C2RPQs

in rule bodies. Note, however, that equivalence is undecidable for

plain SO-tgds with keys [23], and open for plain SO-tgds [39].

The static type checking problem originates in formal lan-

guage theory and has been studied for finite state transducers on

words and for various kinds of tree transducers, including some

designed to capture XML transformation languages [44–47]. Type

checking has also been studied for graph transformations. In [31]

labelled graphs are transformed using addition, deletion, and re-

duction operations, and type checking is investigated for schemas

similar to ours but without participation constraints. The typing

problem for UnQL is studied in [37], but the approach relies on

schemas specifying graphs up to bisimulation, which limits their

power to express participation constraints. Regarding transforma-

tions defined by schema mappings, if the mapping does not define

target constraints, then the target schema is simply a relational sig-

nature and type checking is reduced to trivial syntactic check, and

as such it is irrelevant. This is most often the case for graph schema

mappings [7, 12], with seldom exceptions such as [9] for mapping

relational to graph-shaped data. Their notion of consistency is re-

lated to type checking, but is studied for a simpler formalism with-

out path queries. In the context of XML schema mappings, abso-

lute consistency can be seen as a counterpart of type checking for

non-functional transformations [8].

3 PRELIMINARIES

Graphs. We fix an enumerable set N of node identifiers, an enu-

merable set Γ of node labels, and an enumerable set Σ of edge

labels. We work with labeled directed graphs, and in general, a

node may have multiple labels while an edge has precisely one

label. We allow, however, multiple edges between the same pair

of nodes, as long as these edges have different labels. We model

graphs as relational structures over unary relation symbols Γ and

binary relation symbols Σ. That is, a graph� is a pair
(
dom(�), ·�

)

where dom(�) ⊆ N is the set of nodes of � and the function

·� maps each � ∈ Γ to a set �� ⊆ dom(�) and each A ∈ Σ to

a binary relation A� ⊆ dom(�) × dom(�). A graph � is finite

if dom(�) is finite and �� and A� are empty for all but finitely

many � ∈ Γ and A ∈ Σ. In the sequel, we use D, E, . . . to range over

node identifiers, �, �,�, . . . to range over node labels, and A, A ′, . . .

to range over edge labels. Also, we use A− for inverse edges and let

(A−)� =
{
(D, E) | (E,D) ∈ A�

}
. We let Σ± = Σ ∪ {A− | A ∈ Σ} and

use ', '′, . . . to range over Σ±.

Schemas.We consider a class of schemas that constrain the num-

ber of edges between nodes of given labels and we express these

constraints with the usual symbols: ? for at most one, 1 for pre-

cisely one, + for at least one, * for arbitrary many, and 0 for none.

A schema is a triple ( = (Γ( , Σ( , X( ), where Γ( ⊆ Γ is a finite set of

allowed node labels, Σ( ⊆ Σ is a finite set of allowed edge labels,

and X( : Γ( × Σ
±
(
× Γ( → {?, 1, +, *, 0}. Schemas can be presented

as graphs themselves, interpreted as illustrated next.

Example 3.1. Take the schema (0 in Figure 1 and consider, for

instance, the designTarget edge. It indicates that every Vaccine has

a single design target Antigen, in symbols

X(0 (Vaccine, designTarget,Antigen) = 1 ,

and that every Antigen may be the design target of an arbitrary

number of Vaccines, in symbols

X(0 (Antigen, designTarget
−, Vaccine) = * .

Edges that are not present are implicitly forbidden, e.g., no exhibits

edge is allowed from Vaccine to Pathogen:

X(0 (Vaccine, exhibits, Pathogen) = 0 ,

X(0 (Pathogen, exhibits
−, Vaccine) = 0 . �

Now, a graph� conforms to a schema ( if 1) every node in� has a

single node label in Γ( and every edge has a label in Σ( , and 2) for

all �, � ∈ Γ( and ' ∈ Σ
±
(
, for every node with label � the number

of its '-successors with label � is as specified by X( (�, ', �). By
!(() we denote the set of all finite graphs that conform to ( .

Queries.Wework with conjunctive two-way regular path queries

(C2RPQs) that have the form

@(Ḡ) = ∃~̄.i1 (I1, I
′
1) ∧ . . . ∧ i: (I: , I

′
: ) ,

where Ḡ = {I1, I
′
1, . . . , I: , I

′
:
} \ ~̄ and for every 8 ∈ {1, . . . , :} the

formula i8 is a regular expression that follows the grammar

i ::= ∅ | n | � | ' | i · i | i + i | i∗ ,

where � ∈ Γ matches nodes, ' ∈ Σ
± matches edges, n matches

empty paths, and ∅ matches no path. The semantics of C2RPQs

is defined in the standard fashion [13] and we denote the set of

answers to @(Ḡ) in � by [@(Ḡ)]� (see Appendix A for formal defi-

nitions).

Example 3.2. Recall the schema (0 in Figure 1. The following

query selects vaccines togetherwith the antigens they are designed

to target or target through cross-reaction.

@(G,~) = (Vaccine · designTarget · crossReacting∗ ·Antigen)(G,~). �
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In the sequel, we abuse notation and write trivial atoms of the form

∅(G, G), n (G, G), and �(G, G) simply as ∅(G), n (G), and �(G) respec-
tively. The subclass of acyclic C2RPQs consists of queries that have

no cycle in the implied multigraph of variables containing for ev-

ery atom an edge connecting the two variables of the atom (except

for trivial atoms).

A Boolean C2RPQ @ has all its variables existentially quantified,

and it may have only a single answer, the empty tuple, in which

case, we say that @ is satisfied in � and write � |= @. We also use

unions of C2RPQs (abbreviated as UC2RPQs) represented as sets of

C2RPQs & (Ḡ) = {@1(Ḡ), . . . , @: (Ḡ)} and extend the notions of an-

swers, satisfaction, and acyclicity to UC2RPQs in the natural fash-

ion. Given two UC2RPQs % (Ḡ) and & (Ḡ), and a schema ( , we say

that % (Ḡ) is contained in& (Ḡ) modulo ( , in symbols % (Ḡ) ⊆( & (Ḡ),
if [% (Ḡ )]� ⊆ [& (Ḡ)]� for every � ∈ !(().

Description logics. We operate on properties of graphs formu-

lated in the description logic ALCIF (and its fragments) [6]. In

description logics, elements of Γ and Σ are called concept names

and role names, respectively. ALCIF allows to build more com-

plex concepts with the following grammar:

� ::= ⊥ | � | � ⊓� | ¬� | ∃'.� | ∃≤1'.� ,

where� ∈ Γ and ' ∈ Σ± . We also use additional operators that are

redundant but useful when defining fragments; for brevity we in-

troduce them as syntactic sugar:⊤ := ¬⊥,�1⊔�2 := ¬(¬�1⊓¬�2),
∀'.� := ¬∃'.¬� , �'.� := ¬∃'.� . We extend the interpretation ·�

to complex concepts as follows:

⊥� = ∅ , (�1 ⊓�2)
�
= ��1 ∩�

�
2 , (¬�)� = dom(�) \�� ,

(∃'.�)� =
{
D ∈ dom(�) | ∃E. (D, E) ∈ '� ∧ E ∈ ��

}
,

(∃≤1'.�)� =
{
D ∈ dom(�) | ∃≤1E. (D, E) ∈ '� ∧ E ∈ ��

}
.

Statements in description logics have the form of concept inclu-

sions,

� ⊑ �

where� and � are concepts. A graph� satisfies � ⊑ � , in symbols

� |= � ⊑ � , if �� ⊆ �� . A set T of concept inclusions is tradi-

tionally called a TBox and we extend satisfaction to TBoxes in the

canonical fashion: � |= T if� |= � ⊑ � for each � ⊑ � ∈ T .
In the Horn fragment of ALCIF , written Horn-ALCIF , we

only allow concept inclusions in the following normal forms:

 ⊑ � ,  ⊑ ⊥ ,  ⊑ ∀'. ′ ,

 ⊑ ∃'. ′ ,  ⊑ �'. ′ ,  ⊑ ∃≤1'. ′ ,

where� ∈ Γ, ' ∈ Σ±, and  , ′ are intersections of concept names

(intersection of the empty set of concepts is⊤). If statements of the

form  ⊑ �1 ⊔�2 ⊔ · · · ⊔�= are allowed too, then we recover the

full power ofALCIF (up to introducing auxiliary concept names).

Participation constraints of schemas can be expressed with sim-

ple Horn-ALCIF statements as illustrated in following example.

Example 3.3. For instance, the assertion in (0 (Figure 1) that

Pathogenmanifests at least oneAntigen is expressed with the state-

ment Pathogen ⊑ ∃exhibits.Antigen. The assertion that an Antigen

may be exhibited by an arbitrary number of Pathogens needs no

Horn-ALCIF statement. However, statements are needed for im-

plicitly forbidden edges, e.g., Vaccine ⊑ �exhibits.Antigen. �

4 GRAPH TRANSFORMATIONS

We propose transformations of graphs defined with Datalog-like

rules that use acyclic C2RPQs in their bodies. To allow multiple

copies of the same source nodewe use node constructors. Formally,

a :-ary node constructor is a function 5 : N: → N and we de-

note the set of node constructors by F . To remove the concern of

overlapping node constructors, and the need to analyze their def-

initions, we assume that for every node label � ∈ Γ we have pre-

cisely one node constructor 5� , all node constructors are injective,

and their ranges are pairwise disjoint.

We introduce two kinds of graph transformation rules: node rules

and edge rules. A node rule has the form

�
(
5� (Ḡ)

)
← @(Ḡ) ,

where � ∈ Γ, 5 ∈ F , and @ is an acyclic C2RPQ. An edge rule has

the form

A
(
5 (Ḡ), 5 ′(~̄)

)
← @(Ḡ, ~̄) ,

where A ∈ Σ, 5 , 5 ′ ∈ F , and @ is an acyclic C2RPQ. Now, a graph

transformation) is a finite set of graph transformation rules. By Γ)
and Σ) we denote the finite sets of node and edge labels, respec-

tively, used in the heads of the rules of ) .

Example 4.1. Below we present rules defining the transforma-

tion)0 of the medical database, described in Example 1.1. We use 3

unary node constructors 5� (G) forAntigennodes, 5% (G) for Pathogen
nodes, and 5+ (G) for Vaccine nodes.

Vaccine( 5+ (G)) ← (Vaccine)(G) ,

Antigen( 5� (G)) ← (Antigen)(G) ,

designTarget( 5+ (G), 5� (~)) ← (designTarget)(G, ~) ,

targets( 5+ (G), 5� (~)) ← (designTarget · crossReacting
∗)(G,~) ,

Pathogen( 5% (G)) ← (Pathogen)(G) ,

exhibits( 5% (G), 5� (~)) ← (exhibits)(G) . �

Now, given a graph � and a graph transformation ) the result of

applying) to� is a graph ) (�) such that (for � ∈ Γ and A ∈ Σ)

�) (�) =
{
5� (C)

�� �
(
5� (Ḡ)

)
← @(Ḡ) ∈ ), C ∈ [@(Ḡ)]�

}
,

A) (�) =
{(
5 (C), 5 ′(C ′)

) �� A
(
5 (Ḡ), 5 ′(~̄)

)
← @(Ḡ, ~̄) ∈ ),

(C, C ′) ∈ [@(Ḡ, ~̄)]�
}
.

Weare interested in the following two classical static analysis tasks.

Type checking Given a transformation) , a source schema ( , and

a target schema ( ′ check whether for every� that conforms

to ( the output of transformation ) (�) conforms to ( ′.

Equivalence Given a source schema ( and two transformations

)1 and)2 check whether)1 and)2 agree on every graph that

conforms to ( .

In settings where the target schema is not known, it might be use-

ful to construct one.

Schema elicitation Given a transformation) and a source schema

( , construct the containment minimal target schema ( ′ such

that ) (�) ∈ !(( ′) for every � ∈ !(().

We observe that ) (�) may have nodes with no label, which may

preclude it from satisfying any schema, and consequently, schema

elicitation may also return error.
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We prove the main result by reducing the problems of interest

to query containment modulo schema (and vice versa), which we

later show to be EXPTIME-complete.

Theorem 4.2. Type checking, schema elicitation, and equivalence

of graph transformations are EXPTIME-complete.

We outline the main ideas of the proof by illustrating how a trans-

formation ) can be analyzed with a toolbox of methods based on

query containment modulo source schema ( . We formulate these

methods with an entailment relation:

(), () |=  ⊑  ′ iff ) (�) |=  ⊑  ′ for every � ∈ !(().

W.l.o.g. we assume that every rule of transformation) is trim i.e., it

uses in its bodya query@(Ḡ) that is satisfiablemodulo( , in symbols

∃Ḡ .@(Ḡ) *( ∅; otherwise, ) can be trimmed.

First, we group queries from rules of ) based on the labels of

nodes and edges they create. For �, � ∈ Γ) and A ∈ Σ) we define

&� (Ḡ) =
{
@(Ḡ)

�� �
(
5� (Ḡ)

)
← @(Ḡ) ∈ )

}
,

&�,A,� (Ḡ, ~̄) =
{
@(Ḡ, ~̄)

�� A
(
5� (Ḡ), 5� (~̄)

)
← @(Ḡ, ~̄) ∈ )

}
,

&�,A−,� (Ḡ, ~̄) =
{
@(~̄, Ḡ)

�� A
(
5� (~̄), 5� (Ḡ)

)
← @(~̄, Ḡ) ∈ )

}
.

In essence, &� (Ḡ) identifies tuples over the input graph that yield

a node constructed with 5� and with label � while &�,',� (Ḡ, ~̄)
identifies tuples that yield '-edges from a node created with 5� to

a node created with 5� .

Example 4.3. A couple of examples of above queries for the trans-

formation )0 in Example 4.1 follow.

&Vaccine (G) = (Vaccine)(G) ,

&Vaccine,targets,Antigen (G,~) = (designTarget · crossReacting
∗)(G,~) ,

&Vaccine,designTarget,Antigen (G,~) = (designTarget)(G, ~) . �

Since an edge rule does not assign labels to nodes it creates, the

result of a transformation may be a graph with nodes without a la-

bel. Such a situation precludes type checking from passing and pre-

vents schema elicitation from producing meaningful output. Con-

sequently, we first verify that every node in every output graph has

exactly one label, in symbols (), () |= ⊤ ⊑
⊔

Γ) , where
⊔
{�1, . . . , �: }

is a shorthand for�1⊔. . .⊔�: .We prove the following (Lemma B.6).

(), () |= ⊤ ⊑
⊔

Γ) iff

∃~̄.&�,',� (Ḡ, ~̄) ⊆( &� (Ḡ) for all �, � ∈ Γ) and ' ∈ Σ±) .

We point out that the restriction of one node constructor per node

label ensures that each node of the output has at most one label.

Example 4.4. Take )0 from Example 4.1 and (0 in Figure 1. Veri-

fying that ()0, (0) |= ⊤ ⊑
⊔

Γ)0 requires a number of containment

tests including the following two.

∃~.(designTarget · crossReacting∗)(G, ~) ⊆(0 (Vaccine)(G) ,

∃~.(designTarget)(G, ~) ⊆(0 (Vaccine)(G) . �

Now, to perform type checking against a given target schema ( ′,

we verify that Γ) ⊆ Γ(′ and Σ) ⊆ Σ(′ . Then, we take the TBox T(′

of concept inclusions that expresses participation constraints of

the target schema ( ′ andwe verify that (), () |= T(′ . Type checking
succeeds if and only if all the above tests succeed (Lemma B.2).

The TBox T(′ consists of statements from a small fragment L0
of Horn-ALCIF which allows only statements of the forms

� ⊑ ∃'.� , � ⊑ �'.� , � ⊑ ∃≤1'.� ,

where �, � ∈ Γ and ' ∈ Σ
±. The entailment of such statements is

also reduced to query containment (Lemma B.7):

(), () |= � ⊑ ∃'.� iff &� (Ḡ) ⊆( ∃~̄.&�,',� (Ḡ, ~̄) ,

(), () |= � ⊑ �'.� iff ∃~̄.&� (Ḡ)∧&�,',� (Ḡ, ~̄) ⊆(
∧
8 ∅(G8 ) ,

(), () |= � ⊑ ∃≤1'.� iff

∃Ḡ .&� (Ḡ)∧&�,',� (Ḡ, ~̄)∧&�,',� (Ḡ, Ī) ⊆(
∧
8 n (~8 , I8 ) .

Example 4.5. Take the transformation )0 and the schemas (0
and (1 in Figure 1. The schema (1 requires every vaccine to tar-

get at least one antigen, in symbols Vaccine ⊑ ∃targets.Antigen.
This statement is entailed by )0 and (0 if and only if the following

holds

(Vaccine)(G) ⊆(0 ∃~.(designTarget · crossReacting
∗)(G,~) . �

For schema elicitation, we use a close correspondence between

schemas and L0 TBoxes. It is sufficient to construct the TBox T
containing all L0 statements that are entailed by) and ( ; T corre-

sponds to the containment-minimal target schema (Lemma B.5).

Finally, the equivalence of two transformations )1 and )2 is es-

sentially the equivalence (modulo () of the respective queries &�
and &�,',� of both transformations (Lemma B.8). Naturally, query

equivalence is reduced to query containment, as usual.

We have shown that type checking, schema elicitation, and equiv-

alence of graph transformations are Turing-reducible in polyno-

mial time to testing containment of UC2RPQs in acyclic UC2RPQs

modulo schema. We also show polynomial-time reductions of con-

tainment of 2RPQs modulo schema to all above problems of inter-

est (Lemma F.2). With that, Theorem 4.2 follows from Theorem 5.1.

5 QUERY CONTAINMENT MODULO SCHEMA

The aim of this section is to show the following result.

Theorem 5.1. Containment of UC2RPQs in acyclic UC2RPQs mod-

ulo schema is EXPTIME-complete.

The lower bound can be derived from the EXPTIME-hardness of

unrestricted containment of 2RPQs (using only edge labels) mod-

ulo very simple TBoxes. The latter is obtained by reduction from

another reasoning task (satisfiability of ALCI TBoxes) and relies

on the inner workings of its hardness proof. For completeness,

we provide a direct reduction from the acceptance problem for

polynomial-space alternating Turing machines (Theorem F.1). The

remainder of this section is devoted to the upper bound. We show

it by reduction to unrestricted (finite or infinite) satisfiability of

C2RPQs modulo a Horn-ALCIF TBox, which we discuss in Sec-

tion 6. The principal technique applied in the reduction is cycle

reversing [18].

Let ( be a schema, % a UC2RPQ, and& an acyclic UC2RPQ.With-

out loss of generality wemay assume that % and& are Boolean (see

Lemma D.1). The key idea is to pass from finite to possibly infinite

graphs, thus making canonical witnesses for non-containment eas-

ier to find. However, as Example 5.2 shows, we cannot pass freely

from finite to possibly infinite graphs, as this may affect the an-

swer.
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Figure 2: Query containment over finite and infinite graphs.

Example 5.2. Consider the schema ( in Figure 2. Observe that

( allows infinite graphs that are essentially infinite trees when re-

stricted to B-edges, e.g.�∞ in Figure 2. In fact, every infinite graph

satisfying ( that is connected when restricted to B-edges is an in-

finite tree. On the other hand, every non-empty finite graph that

conforms to ( is a collection of disjoint cycles when restricted to

B-edges, e.g., �0 in Figure 2. Clearly, the topology of finite and in-

finite graphs defined by the schema differs drastically.

Now, take the queries % = ∃G.A (G, G), & = ∃G,~.(A · B+ · A )(G,~),
and observe that % ⊆( & . However, the containment does not hold

over infinite graphs: % is satisfied by�∞ while & is not. �

The reason why we cannot pass directly to infinite models is

that finite graphs conforming to schema ( may display certain ad-

ditional common properties, detectable by queries, but not shared

by infinite graphs conforming to ( . The cycle reversing technique

[18] allows to capture these properties in (∗ such that

% ⊆( & iff % ⊆∞(∗ &

where by ⊆∞
(∗

we mean containment over possibly infinite graphs

conforming to (∗. However, as the following example shows, we

cannot obtain (∗ by analysing ( alone.

Example 5.3. In Example 5.2 we saw that in a finite graph con-

forming to ( , each node has exactly one incoming and one out-

going B-edge. We can use this observation to tighten the original

schema ( to the schema (∗ (Figure 2). Alas, we still have % *∞
(∗
&

because there is an infinite graph�∗∞ that satisfies % but not& . �

Instead, we first reduce containment modulo schema to finite

satisfiability, fusing the schema ( and the query & into a single

Horn-ALCIF TBox, and then pass from finite to unrestricted sat-

isfiability by applying cycle reversing to the resulting TBox. We

follow closely the approach of Ibáñez-García et al. [36], relying cru-

cially on some of their results.

Let T be a Horn-ALCIF TBox. A finmod cycle is a sequence

 1, '1,  2, '2, . . . ,  =−1, '=−1,  =

where '1, . . . , '=−1 ∈ Σ
± and  1, . . . ,  = are conjunctions of con-

cept names such that  = =  1 and

T |=  8 ⊑ ∃'8 . 8+1 and T |=  8+1 ⊑ ∃
≤1'−8 . 8

for 1 ≤ 8 < =. By reversing the finmod cycle we mean extending T
with concept inclusions

 8+1 ⊑ ∃'
−
8 . 8 and  8 ⊑ ∃

≤1'8 . 8+1

for 1 ≤ 8 < =. The completion T ∗ of a TBox T is obtained from T
by exhaustively reversing finmod cycles. The following key result

is stated in [36] in terms of sets of ground facts (so-called ABoxes)

rather than subgraphs, but our formulation is equivalent.

( :
A

s
?

+

r
*

*

� : . . .D D′ D′′

� ⊓ �A � ⊓ �A ·B+ � ⊓ �A ·B+

s s s
r

Figure 3: Cycle reversal argument.

Theorem 5.4 (Ibáñez-García et al., 2014). A Horn-ALCIF TBox

T has a finite model containing a finite subgraph� iff its completion

T ∗ has a possibly infinite model containing � .

Example 5.5. Schema ( from Example 5.2 is equivalent to TBox

T( that consists of

⊤ ⊑ � , � ⊑ ∃B .� , � ⊑ ∃≤1B− .� .

Non-satisfaction of& is captured by TBox T¬& that consists of

⊤ ⊑ ∀A .�A , �A ⊑ ∀B .�A ·B+ , �A ·B+ ⊑ ∀B .�A ·B+ , �A ·B+ ⊑ ∀A .⊥ .

Let T = T( ∪ T¬& and observe that � ⊓ �A ·B+ , B , � ⊓ �A ·B+ is a
finmod cycle in T . By reversing it, we obtain

� ⊓ �A ·B+ ⊑ ∃B
−.� ⊓ �A ·B+ and � ⊓ �A ·B+ ⊑ ∃

≤1B .� ⊓ �A ·B+ .

Now, suppose that there exists a (finite or infinite) model� of T ∗

that satisfies % (see Figure 3).� must have a nodeDwith (D,D) ∈ A� .
It follows already from T that D ∈ (� ⊓ �A )

� and that D has an

B-successor D ′ ∈ (� ⊓ �A ·B+)
� . The statement � ⊓ �A ·B+ ⊑ ∃B

−.� ⊓
�A ·B+ in T

∗ implies that D ′ has an B−-successor D ′′ ∈ (� ⊓�A ·B+)
� .

As each node has at most one incoming B-edge, D = D ′′ and D ∈
(�A ·B+)

� . But D has an outgoing A -edge, which contradicts the last

concept inclusion in T¬& . Thus, % is not satisfied in T ∗. �

We are now ready to reduce containment modulo schema to

unrestricted satisfiability modulo Horn-ALCIF TBox. Note that

the guarantees on the resulting TBox in the statement below are

sufficient to conclude Theorem 5.1 using Theorem 6.1.

Theorem 5.6. Given a UC2RPQ % , an acyclic UC2RPQs & , and a

schema ( , one can compute in EXPTIME a UC2RPQ %̂ of polyno-

mial size and a Horn-ALCIF TBox T using linearly many addi-

tional concept names and polynomially many at-most constraints,

such that %̂ is (unrestrictedly) satisfiable modulo T if and only if

% ⊆( & .

Let us sketch the proof. Let T( be the Horn-ALCIF TBox cor-

responding to ( . Note that apart from the explicit restrictions cap-

tured in T( the schema ( also ensures that only graphs with exactly

one label per node are considered. To ensure at most one label from

Γ( per node, we use the TBox T̂( = T( ∪ {� ⊓ � ⊑ ⊥ | �, � ∈
Γ( , � ≠ �}. The concept inclusion ⊤ ⊑

⊔
Γ( , expressing that each

node has at least one label from Γ( , is not Horn and cannot be used.

Instead, we modify the query % . Assuming Γ( = {�1, �2, . . . , �=},
we include (�1 + �2 + · · · + �=) before and after each edge label

used in an atom of % . Additionally, to ensure that % uses only la-

bels allowed by ( , we substitute in % each label not in Γ( ∪ Σ
±
(
by

∅. Letting %̂ be the resulting query, we have

% ⊆( & iff %̂ ⊆
T̂(
&

(see Lemma D.3). Because & is acyclic, by adapting the rolling-up

technique [33] one can compute in PTIME a Horn-ALCIF TBox

T¬& over an extended set of concept names Γ( ∪ Γ& such that

%̂ ⊆
T̂(
& iff %̂ is finitely satisfiable modulo T̂( ∪ T¬& .
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(see Lemma C.2). Since T̂( ∪ T¬& is a Horn-ALCIF TBox, we can

consider its completion
(
T̂( ∪ T¬&

)∗
. As UC2RPQs are witnessed

by finite subgraphs whenever they are satisfied, we can infer from

Theorem 5.4 that %̂ is finitely satisfiable modulo T̂( ∪ T¬& iff %̂ is

satisfiable modulo
(
T̂( ∪ T¬&

)∗
(see Lemma D.4).

It remains to compute the completion. Reversing cycles does

not introduce new concept names, but it may generate exponen-

tially many concept inclusions. Identifying a finmod cycle involves

deciding unrestricted entailment of Horn-ALCIF concept inclu-

sions, which is decidable in EXPTIME [24]. However, since the in-

put TBox might grow to an exponential size as more and more

cycles are reversed, it is unlikely that the completion can be com-

puted in EXPTIME for every Horn-ALCIF TBox. Our key insight

is that T̂( ∪ T¬& enjoys a particular property, invariant under re-

versing cycles, that allows to keep the complexity under control.

A concept inclusion (CI) of the form ⊑ ∃'. ′ or ⊑ ∃≤1'. ′

is relevant for a TBox T if the triple ( , ',  ′) is satisfiable modulo

T ; that is, somemodel� ofT contains nodesD andD ′ such thatD ∈
 � , (D,D ′) ∈ '� , and D ′ ∈ ( ′)� . We say that T is (-driven if for

each relevant CI in T of the form  ⊑ ∃'. ′ (resp.  ⊑ ∃≤1'. ′),
T contains � ⊑ ∃'.�′ (resp. � ⊑ ∃≤1'.�′) for some �,�′ ∈ Γ(

such that � ∈  , �′ ∈  ′; here and later we blur the distinction

between conjunctions of concept names and sets of labels. Note

that T̂( ∪T¬& is trivially (-driven, as all its existential and at-most

constraints are of the form � ⊑ ∃'.�′ or � ⊑ ∃≤1'.�′.

Lemma 5.7. Every (-driven TBox T can be reduced in polynomial

time so that it contains at most |Σ±
(
| · |Γ( |

2 at-most constraints.

From our results in Section 6 it follows that unrestricted entail-

ment for a Horn-ALCIF TBox T with : concept names and ℓ

at-most constraints can be solved in time$
(
poly( |T |) · 2poly(:,ℓ)

)

(Corollary E.7). Hence, it would suffice to show that by reversing

a finmod cycle in an (-driven TBox, we obtain another (-driven

TBox. In fact, we prove something weaker, but sufficient to com-

pute the completion in EXPTIME, and conclude that it is (-driven.

Let  1, '1, . . . ,  =−1, '=−1,  = be a finmod cycle in an (-driven

Horn-ALCIF TBox T . Reversing it will extend T with CIs

 8+1 ⊑ ∃'
−
8 . 8 and  8 ⊑ ∃

≤1'8 . 8+1

for 1 ≤ 8 < =. If all triples ( 8 , '8 ,  8+1) are unsatisfiable wrt T ,
then all CIs to be added are irrelevant for T and we are done. Sup-

pose that some ( 8, '8 ,  8+1) is satisfiable. Then, in the model for

( 8 , '8 ,  8+1) we can trace the finmod cycle forward, witnessing

each triple. Hence, the whole cycle is satisfiable (all triples its are).

Then, we can show that there are unique �1, �2, . . . , �= ∈ Γ( such

that�8 ∈  8 for all 8 ≤ =, and�1, '1, . . . , �=−1, '=−1, �= is a finmod

cycle in T (Lemma D.6). By reversing it, we can add to T CIs

�8+1 ⊑ ∃'
−
8 .�8 and �8 ⊑ ∃

≤1'8 .�8+1

for 1 ≤ 8 < =, which makes the resulting extension (-driven.

Based on the obtained invariant we can compute the completion(
T̂( ∪ T¬&

)∗
in EXPTIME (Lemma D.7). By reducing

(
T̂( ∪ T¬&

)∗
as described above, we obtain the desired TBox.

Finite containment modulo general TBoxes. While the EXP-

TIME upper bound relies on the special shape of T̂( ∪ T¬& , the
method can be applied directly to general Horn-ALCIF TBoxes,
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Figure 4: Simple witness for satisfiability.

at the cost of an exponential increase in complexity. Thus, we im-

mediately get that finite containment of UC2RPQs in acyclic UC2RPQs

modulo Horn-ALCIF TBoxes can be solved in 2EXPTIME. To the

best of our knowledge this is the first result on finite containment

of C2RPQs in the context of description logics. A related problem

of finite entailment has been studied for various logics [25–27, 29].

While for conjunctive queries the solutions carry over to finite con-

tainment, for CRPQs these logics are too weak.

6 SATISFIABILITY MODULO TBOX

The last missing piece is to solve the unrestricted satisfiability of

C2RPQsmoduloHorn-ALCIF . Calvanese et al. show that the prob-

lem is in EXPTIMEnot only forHorn-ALCIF , but even forALCIF
extended with additional features [14]. This result is not directly

applicable, because our reduction produces a TBox of exponen-

tial size. The following theorem gives the more precise complexity

bounds we need.

Theorem 6.1. Unrestricted satisfiability of a C2RPQ ? modulo an

ALCIF TBox T using : concept names and ℓ at-most constraints

can be decided in time $
(
poly( |T |) · 2poly( |? |,:,ℓ)

)
.

Calvanese et al. solve the problemby first showing a simplemodel

property and then providing an algorithm testing existence of sim-

ple models. We rely on the same simple model property, but design

a new algorithm with the desired complexity bounds. Yet, rather

than diving into the details of the algorithm, we devote most of this

section to the simple model property. We do it to show a connec-

tion to an elegant graph-theoretical notion that allows to simplify

the reasoning considerably, at least for ALCIF . We begin by il-

lustrating how simple models are obtained for queries satisfiable

modulo schemas (rather than arbitrary TBoxes).

Example 6.2. Take the schema ( in Figure 4 (its two types are

represented with a blue square and a red circle), and consider the

following satisfiable (cyclic) query

? (G,~) = (0 ·1 · 2+ ·3 · 0)(G,~) ∧ (0∗)(G,~) ∧ (0∗ · 1 · 3 · 0∗)(G,~) .

Since ? is satisfiable modulo ( , we take any graph conforming to

( where ? is satisfied, and we choose any 3 paths witnessing each

of the regular expressions of ? . We construct the initial graph �0

consisting of the 3 paths joined at their ends: it might look like the

one in Figure 4. We observe that ( requires every red circle node

to have at most one outgoing 0-edge and at most one incoming 0-

edge (to and from a red circle node). The initial graph �0 violates

this requirement and to enforce it we exhaustivelymerge offending

nodes. The final graph�C is a simple model of ? modulo ( . �
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We formalise simple models using a graph-theoretic notion of

sparsity proposed by Lee and Streinu [41].We say that a connected

graph � with = nodes and < edges is 2-sparse if < ≤ = + 2 . (In
Lee and Streinu’s terminology this corresponds to (1,−2)-sparsity.)
Being 2-sparse is preserved under adding and removing nodes of

degree 1. By exhaustively removing nodes of degree 1 from a 2-

sparse graph � we arrive at single node or a connected 2-sparse

graph � in which all nodes have degree at least 2. Assuming 2 ≥ 1,

it is not hard to see that such a graph consists of at most : = 22

distinguished nodes connected by at most ; = 32 simple paths dis-

joint modulo endpoints (see Lemma E.1). We call such a graph a

(:, ;)-skeleton, and we refer to the graph � above as the skeleton

of � . Thus, a 2-sparse graph consists of a (22, 32)-skeleton and a

number of attached trees; by attaching a tree to a graph we mean

taking their disjoint union and adding a single edge between the

root of the tree and some node of the graph.

For the purpose of the simple model property we need to lift the

notion of 2-sparsity to infinite graphs. We call a (possibly infinite)

graph 2-sparse if it consists of a finite connected 2-sparse graph

with finitely many finitely branching trees attached.

Theorem 6.3. A connected C2RPQ ? is satisfiable in a possibly in-

finite model of an ALCIF TBox T iff ? is satisfiable in a possibly

infinite |? |-sparse model of T .

Proof. Let 2 be the difference between the number of atoms and

the number of variables of ? . Because ? is connected, 2 ≥ −1. By
definition, ? understood as a graph with variables as nodes and

atoms as edges is 2-sparse.

We write � → � ′ to indicate that there is a homomorphism

from graph � to graph � ′; that is, a function ℎ mapping nodes of

� to nodes of � ′ that preserves node labels and the existence of

labelled edges between pairs of nodes. Let� be a (possibly infinite)

model of ? and T . We construct a sequence of finite connected 2-

sparse graphs of strictly decreasing size

�0 → �1 → · · · → �C → �

such that�0 |= % and the homomorphism from�C to� is injective

over '-successors of every node, for each '.

To construct �0 let us fix a match of ? in � together with a

(finite) witnessing path for each atom of ? . We construct �0 as

follows. For each variable G of ? we include a node EG whose set

of labels is identical to that of the image of G in � under the fixed

match. Next, for each atom of ? that connects variables G and ~ we

add a simple path connecting G and ~ such that the sequence of

edge labels and sets of node labels read off of this path is identical

to that of the witnessing path of this atom in � . This graph can

be seen as a specialization of ? where each regular expression is

replaced by a single concrete word, except that we include full sets

of labels of nodes, as they are encountered in the witnessing path

in � . It follows immediately that �0 |= ? and that �0 → � . To

see that�0 is 2-sparse one can eliminate the internal nodes of the

connecting paths one by one, like in the proof of Lemma E.1, until

a graph isomorphic to ? remains.

We define the remaining graphs�8 inductively, maintaining an

additional invariant�8 → � . Supposewe already have�8 together

with a homomorphism ℎ8 : �8 → � for some 8 ≥ 0. If ℎ8 is injective

over '-successors of each node of �8 , we are done. If not, there

are two different '-successors D1 and D2 of a node E in �8 that are

mapped to the same nodeD ′ in� . It follows thatD1 andD2 have the

same sets of labels types. We let �8+1 be the graph obtained from

�8 by merging D1 and D2 into a single node D . We include an '′-

edge between D and each '′-successor of D1 or D2. This decreases

the number of nodes by one, and the number or edges by at least

one. It follows that�8+1 is 2-sparse and �8 → �8+1 → � .

Because the sizes of graphs �8 are strictly decreasing, at some

point we will arrive at a graph �C such that the homomorphism

from�C to� is injective over '-successors.

The graph �C clearly satisfies ? . It also satisfies all concept in-

clusions in T of the forms  ⊑ �1 ⊔ �2 ⊔ · · · ⊔ �= ,  ⊑ ⊥,
 ⊑ ∀'. ′,  ⊑ �'. ′, and  ⊑ ∃≤1'. ′, because ℎ8 is injec-
tive over '-successors and � |= T . On the other hand, �C is not

guaranteed to satisfy concept inclusions of the form  ⊑ ∃'. ′

in T . In order to fix it, we exhaustively (ad infinitum) perform the

following: whenever a node E in�C is missing an '-successor with

some set of labels, we add it and map it to some such '-successor

D ′ of the image of E in� (D ′ exists because� |= T ). As 2 ≤ |? |, the

resulting (typically infinite) graph �̂ is |? |-sparse, and it satisfies ?
and T . �

The connectedness assumption in Theorem 6.3 is not restrictive,

because a witnessing graph for ? can be obtained by taking the

disjoint union of witnesses for its connected components. Hence,

it remains to decide for a given connected ? if there exists a |? |-
sparse graph� that satisfies ? and T . To get a finer control of the
effect different parameters of the input have on the complexity,

we side-step two-way alternating tree automata (2ATA) applied

by Calvanese et al. and develop a more direct algorithm. Observe

that if ? is satisfied in a |? |-sparse graph � , then � contains a

(4|? |, 5|? |)-skeleton � ′, extending the skeleton of � , such that all

variables of ? are mapped to distinguished nodes of � ′. Thus, the

algorithm can guess a (4|? |, 5|? |)-skeleton � ′ with each path rep-

resented by a single symbolic edge and check that it can be com-

pleted to a suitable graph � by materializing symbolic edges into

paths and attaching finitely many finitely branching trees in such

a way that � is a model of T and there is a match of ? in � that

maps variables of ? to distinguished nodes of� ′. This can be done

within the required time bounds by means of a procedure that can

be seen as a variant of type elimination or an emptiness test for an

implicitly represented nondeterministic tree automaton (see Theo-

rem E.3).

7 CONCLUSIONS AND FUTUREWORK

In this paper we have studied several static analysis problems for

graph transformations definedwithDatalog-like rules that use acyclic

C2RPQs. When the source schema is given, we studied the equiv-

alence problem of two given transformations, and the problem of

target schema elicitation for a given transformation. If the output

schema is also given, we have studied the problem of type checking.

We have shown that the above problems can be reduced to contain-

ment of C2RPQs in acyclic UC2RPQs modulo schema, a problem

that we have reduced to the unrestricted (finite or infinite) satis-

fiabilty of a C2RPQ modulo Horn-ALCIF TBox using cycle re-

versing. For the latter problem we have presented an algorithm
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with sufficiently good complexity to accommodate the exponen-

tial blow-up introduced by cycle reversing, thus allowing to solve

in EXPTIME all problems of interest.

We have also shown matching lower bounds by reducing query

containment modulo schema to each of the static analysis prob-

lems. Because containment of CRPQs alone (with no schema) is

known to be EXPSPACE-complete [13] and containment of RPQs

modulo disjunctive dependencies is known to be undecidable [21],

it is unlikely (or even impossible) that our results can be extended

to transformations with C2RPQs or schemas with disjunctions.

However, a number of extension of the presented results can be

envisioned as future work. First, we believe that our methods can

be extended to more expressive classes of queries used in transfor-

mation rules. It is straightforward to extend our methods to two-

way nested regular expressions (NREs) [49] and we also intend to

investigate introducing negation in filter expressions of NREs. It

is straightforward to encode data values in our graph model, for

instance, by using dedicated node labels to designate literal nodes

whose identifiers are their data values. Then, one can apply meth-

ods similar to type checking to verify that transformations are well-

behaved, and in particular, do not attempt to construct literal nodes

from non-literal ones. However, the full consequences of allow-

ing literal values in definitions of transformation rules need to be

thoroughly investigated. Finally, we have considered equivalence

of transformations based on equality of results but one could also

consider a variant based on isomorphism of results.
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A DETAILS ON QUERIES

A two-way regular expression is an expression defined with the fol-

lowing grammar.

i ::= ∅ | n | � | ' | i · i | i + i | i∗,

where � ∈ Γ and ' ∈ Σ± . We define the semantics with the notion

of witnessing paths that we formalize next. Given a graph� , a path

fromD0 toD: in� is a sequence c = D0 ·ℓ1 ·D1 · . . . ·D:−1 ·ℓ: ·D: such
that D0, . . . , D: are nodes of � , ℓ1, . . . , ℓ: ∈ Γ ∪ Σ

± , and for every

8 ∈ {1, . . . , :} the following conditions are satisfied:

(1) if ℓ8 ∈ Γ, then D8−1 = D8 and D8 ∈ ℓ
�
8 ,

(2) if ℓ8 ∈ Σ
±, then (D8−1, D8) ∈ ℓ

�
8 .

The labeling of c is ℓ1 ·. . .·ℓ= . Given a two-way regular expressioni
we define the corresponding binary relation on nodes of the graph:

(D, E) ∈ [i]� iff there is a path from node D to node E in � whose

labeling is recognized by i .

Now, a conjunctive two-way regular path query (C2RPQ) is a for-

mula of the form

@(Ḡ) = ∃~̄.i1 (I1, I
′
1) ∧ . . . ∧ i: (I: , I

′
: ),

where for every 8 ∈ {1, . . . , :} the formula i8 is a two-way regular

expression and Ḡ = {I1, I
′
1, . . . , I: , I

′
:
} \ ~̄. A C2RPQ is Boolean if

all of its variables are existentially quantified.

Evaluating a C2RPQ @(Ḡ) over a graph� yields a set [@(Ḡ)]� of

tuples over Ḡ i.e., functions that assign nodes of� to elements of Ḡ .

Formally, C ∈ [@(Ḡ)]� iff there is a tuple C ′ over ~̄ such that the two

tuples combined C ′′ = C ∪ C ′ satisfy all atoms i.e., (C ′′ (I8), C
′′ (I ′8 )) ∈

[i8 ]� for every 8 ∈ {1, . . . , :}. When the query is Boolean, then it

may have only a single answer, the empty tuple () i.e., the unique
function with the empty domain. If indeed () ∈ [@]� we say that @

is satisfied in� and denote it by� |= @; otherwise, when [@]� = ∅,
we say that @ is not satisfied in� and we write� 6 |= @.

For defining transformations we employ the subclass of acyclic

C2RPQs. Formally, for a query @ we construct its query multigraph

whose nodes are variables and for every atom i (G,~) we add an

edge (G,~) unless the atom is of the form�(G, G), n (G, G), or∅(G, G).
@ is acyclic if its query multigraph is acyclic.

Finally, the semantics of unions of conjunctive two-way regular

path queries (UC2RPQs), represented as sets of C2RPQs, is defined

simply as:

[{&1 (Ḡ), . . . , &: (Ḡ)}]
�
= [&1 (Ḡ)]

� ∪ . . . ∪ [&: (Ḡ)]
� .

A UC2RPQ is acyclic if all of its components are acyclic. A Boolean

UC2RPQ consists of Boolean C2RPQs.

B PROOFS FOR TRANSFORMATIONS

We begin by introducing elements of useful terminology. Given

any finite subsets Γ0 ⊆ Γ and Σ0 ⊆ Σ, we say that a schema ( is

over Γ0 and Σ0 if Γ( = Γ0 and Σ( = Σ0. Analogously, we say that a

ALCIF TBox T is over Γ0 and Σ0 if all base concept names and

base rule names used in T are from Γ0 and Σ0 respectively. Also,

we say that a graph� is over Γ0 and Σ0 if� does not use any node

or edge label outside of Γ0 and Σ0, and we extend this notion to

families of graphs in the canonical fashion: G is a family of graphs

over Γ0 and Σ0 if every graph in � is over Γ0 and Σ0. Finally, a

transformation ) is over Γ0 and Σ0 if all rules in ) use in their

heads node and edge labels in Γ0 and Σ0 respectively.

However, for a transformations we shall need to identify tighter

sets of node and edge labels when the input schema is known.

As such, a transformation rule d ← @(Ḡ) is productive modulo a

schema ( if @(Ḡ) *( ∅. A transformation) is trimmed modulo ( if

1) every rule in) is productive modulo ( , 2) for every � ∈ Γ) there

is an�-node rule in) , and 3) for every A ∈ Σ) there is a A -edge rule

in ) . Naturally, checking that a transformation is trimmed can be

Turing-reduced in polynomial time to testing query containment

modulo schema. Moreover, for a given schema ( we can trim a

given transformation) by removing all unproductive rules and re-

moving from Γ) and Σ) any symbols that are not present in the

head of any of the remaining rules.

https://doi.org/10.1145/2003476.2003482
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Next, an L0 TBox over Γ0 and Σ0 is a set of statements of the

forms

� ⊑ ∃'.�, � ⊑ �'.�, � ⊑ ∃≤1'.�,

where�, � ∈ Γ0 and' ∈ Σ
±
0 .T is coherent iff 1)T does not contains

two contradictory rules � ⊑ ∃'.� and � ⊑ �'.� for any �, � ∈ Γ

and ' ∈ Σ
± , and 2) T contains � ⊑ ∃≤1'.� whenever it contains

� ⊑ �'.�. Now, for a given schema ( the corresponding L0 TBox
T( (over Γ( and Σ( ) is defined as follows.

T( = {� ⊑ ∃'.� | �, � ∈ Γ( , ' ∈ Σ
±
( , X( (�, ', �) ∈ {1, +}}

∪ {� ⊑ ∃≤1'.� | �, � ∈ Γ( , ' ∈ Σ
±
( , X( (�,', �) ∈ {1, ?, 0}}

∪ {� ⊑ �'.� | �, � ∈ Γ( , ' ∈ Σ
±
( , X( (�,', �) = 0}.

It is easy to see that there is one-to-one correspondence between

schemas and coherent TBoxes. More precisely, given Γ0 ⊆ Γ and

Σ0 ⊆ Σ, for any schema ( over Γ0 and Σ0, T( is a coherent TBox

over Γ( and Σ( , and for any coherent TBox T over Γ0 and Σ0 there

is a unique schema ( over Γ0 and Σ0 such that T( = T . Naturally,
T( also captures the semantics of the cardinality constraints of ( .

Proposition B.1. For any schema ( and for any graph � , � con-

forms to ( if and only if� |= T( ,� |= ⊤ ⊑
⊔

Γ( , and� |= �⊓� ⊑ ⊥
for any �, � ∈ Γ( .

Proof. Straightforward since the ALCIF formulas are transla-

tions of the conditions of conformance of a graph to a schema. �

Weuse the above result to reduce type checking to testing entail-

ment of simpleALCIF statements. Recall that that for a schema (

and a transformation ) we define the entailment relation (), () |=
 ⊑  ′ as ) (�) |=  ⊑  ′ for every � ∈ !(().

Lemma B.2. Given two schemas ( and ( ′ and a transformation ) ,

{) (�) | � ∈ !(()} ⊆ !(( ′) if and only if (), () |= ⊤ ⊑
⊔

Γ) and

(), () |= T(′ .

Proof. Immediate consequence of Proposition B.1 and the fact

that transformations must use a single dedicated node construc-

tor for each node label. This ensures that (), () |= �⊓� ⊑ ⊥ holds

for any �, � ∈ Γ(′ . �

Later we prove how to reduce entailment of statements to query

containment. Before, we address the problem of schema elicita-

tion by observing that the correspondence between schemas and

their L0 TBoxes is tighter. We first need to establish two auxiliary

results. The first one characterizes the containment of schemas,

which is expressed as an extension of a syntactic containment re-

lation 4 on the symbols used to specify participation constraints.

More precisely, we define 4 as the transitive and reflexive closure

of the following assertions: 0 4 ?, 1 4 ?, ? 4 +, and + 4 *.

Proposition B.3. Take finite Γ0 ⊆ Γ and Σ0 ⊆ Σ. Given two

schemas (1 and (2 over Γ0 and Σ0, !((1) ⊆ !((2) if and only if

X(1 (�, ', �) 4 X(2 (�, ', �)

for every �, � ∈ Γ0 and ' ∈ Σ
±
0 .

Proof. For the if part, we take any� that conforms to (1 and we

note first that every node of� has exactly one label in Γ0. Also, for

any �, �, ∈ Γ0 and any ' ∈ Σ±0 we observe that

X(1 (�, ', �) 4 X(2 (�, ', �)

implies that any �-node in� whose number of '-successors with

label � satisfies the participation constraint X(1 (�, ', �) will also
satisfy X(2 (�, ', �). �

Next, we establish correspondence between L0 theories of sets of
graphs and their containment-minimal schemas.

Proposition B.4. Take finite Γ0 ⊆ Γ and Σ0 ⊆ Σ and take any

nonempty family G of graphs over Γ0 and Σ0 such that G |= ⊤ ⊑⊔
Γ0 and G |= � ⊓ � ⊑ ⊥ for all �, � ∈ Γ0. Let T be the set of all

L0 statements over Γ0 and Σ0 that hold in every graph in G. Then,
T corresponds to the containment minimal schema ( over Γ0 and Σ0
such that G ⊆ !(().

Proof. We first argue that T is coherent. Indeed, should T con-

tain two contradictory statements � ⊑ ∃'.� and � ⊑ �'.�, then
no graph in G could satisfy T and we know that G is nonempty.

Consequently, T corresponds to a schema that we denote (◦ =

(Γ0, Σ0, X(◦ ). Naturally, G ⊆ !((◦) because G |= ⊤ ⊑
⊔

Γ0 and

G |= � ⊓ � ⊑ ⊥.
Now, take any schema ( over Γ0 and Σ0 such that G ⊆ !((). We

show that !((◦) ⊆ !(() with a proof by contradiction. Suppose

!((◦) * !((). By Proposition B.3, there are �, � ∈ Γ0 and ' ∈ Σ
±
0

such that X(◦ (�,', �) $ X( (�,', �). This means that T( contains

an (�, ', �)-constraint q that T(◦ does not (by (�,', �)-constraints
we mean � ⊑ ∃'.�, � ⊑ ∃≤1'.�, and � ⊑ �'.�). Since q ∉ T(◦

there is a graph� ∈ G such that � 6 |= q , and consequently,� does

not conform to ( . Thus G * !((), a contradiction. �

We obtain the following result allowing to solve the problem of

schema elicitation problem.

LemmaB.5. Take a schema( and a transformation) that is trimmed

modulo ( and such that (), () |= ⊤ ⊑
⊔

Γ) . Let T be the set of all

L0 statements over Γ) and Σ) that are satisfied by every graph in the

family {) (�) | � ∈ !(()}. Then, T corresponds to the containment

minimal schema over Γ) and Σ( that contains {) (�) | � ∈ !(()}.

Proof. The proof follows immediately from Proposition B.4 ex-

cept for the case when ) is empty. Then, however, Γ) and Σ) are

empty too and so is T . However, the schema that corresponds to

T is also empty and it recognizes only empty graphs. As such it

is the containment minimal schema over Γ) and Σ) that contains

{) (�) | � ∈ !(()} ⊆ {∅}. �

To move to reducing entailment of statements to query contain-

ment we repeat the definitions of the relevant queries but in this

version we clearly indicate the transformation in question. More

precisely, For a transformation) , �, � ∈ Γ) , and A ∈ Σ) we define:

&)� (Ḡ) =
{
@(Ḡ)

�� �
(
5� (Ḡ)

)
← @(Ḡ) ∈ )

}
,

&)�,A,� (Ḡ, ~̄) =
{
@(Ḡ, ~̄)

�� A
(
5� (Ḡ), 5� (~̄)

)
← @(Ḡ, ~̄) ∈ )

}
,

&)�,A−,� (Ḡ, ~̄) =
{
@(~̄, Ḡ)

�� A
(
5� (~̄), 5� (Ḡ)

)
← @(~̄, Ḡ) ∈ )

}
.

Now,we prove that the entailment of⊤ ⊑
⊔

Γ) is reduced to query

containment.

Lemma B.6. Given a schema ( and a transformation ) , (), () |=
⊤ ⊑

⊔
Γ) if and only if ∃~̄.&)

�,',�
(Ḡ, ~̄) ⊆( &

)
�
(Ḡ) for every �, � ∈

Γ) and ' ∈ Σ±
)
.
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Proof. For the if direction, we take any graph � ∈ !(() and any

element in D ∈ dom() (�)). This element has been introduced by

node rule or by an edge rule, but only the latter is of concern. Thus,

assume thatD = 5 (C) has been generated by the rule'( 5� (Ḡ), 5� (~̄)) ←
& (Ḡ, ~̄)with the valuation Ḡ = C and ~̄ = C ′ . Since (C, C ′) ∈ &)

�,',�
(�)

and ∃~̄.&)
�,',�

(Ḡ, ~̄) ⊆( &
)
�
(Ḡ), C ∈ &)

�
(�), and therefore, there is

a node rule�( 5� (Ḡ)) ← & ′(Ḡ) such that C ∈ & ′(�). Consequently,

D ∈ �) (�) .
For the only if direction, we take any� ∈ !(() and any answer

(C, C ′) ∈ &)
�,',�

(Ḡ, ~̄) which implies that (C, C ′) ∈ @(Ḡ, ~̄) for some

rule '( 5� (Ḡ), 5� (~̄)) ← @(Ḡ, ~̄). Consequently, ) (�) contains the
fact '( 5� (C), 5� (C

′)). Since ) (�) satisfies the statement ⊤ ⊑
⊔

Γ)

and nodes constructed with 5� can only be part of node label as-

sertions with �, ) (�) |= 5� (C). Therefore, there must be a rule

�( 5� (Ḡ) ← @′(Ḡ) that generated the fact 5� (C) with the valuation

Ḡ = C . Consequently, C ∈ [&�]
) (�) . �

Lemma B.7. Take a schema ( and a transformation ) , such that

Γ) ⊆ Γ( , Σ( ⊆ Σ( , and (), () |= ⊤ ⊑
⊔

Γ) . For any �, � ∈ Γ) and

any ' ∈ Σ±
)
we have that

(), () |= � ⊑ ∃'.� iff &� (Ḡ) ⊆( &
)
�,',� (Ḡ),

(), () |= � ⊑ �'.� iff ∃~̄.&� (Ḡ)∧&
)
�,',� (Ḡ, ~̄) ⊆( ∅,

(), () |= � ⊑ ∃≤1'.� iff

∃Ḡ .&)� (Ḡ)∧&
)
�,',� (Ḡ, ~̄)∧&

)
�,',� (Ḡ, Ī) ⊆(

∧
8 [n (~8 , I8).

Proof. We prove each of the 3 claims separately.

(1) For the if part, we fix a graph � ∈ !(() and take any node

D = 5� (C) with label � in ) (�). Thus, there is a node rule
�( 5� (Ḡ)) ← @(Ḡ) such that C ∈ [@(Ḡ)]� and consequently,

C ∈ [&)
�
(Ḡ)]� . Since&)

�
(Ḡ) ⊆( &

)
�,',�

(Ḡ), C ∈ [&)
�,',�

(Ḡ)]�

and there exists rule '( 5� (Ḡ), 5� (~̄)) ← @′(Ḡ, ~̄) such that

(C, C ′) ∈ [@′(Ḡ, ~̄)]� . Consequently, ) (�) contains the edge
'( 5� (C), 5� (C

′)). Because ) (�) satisfies ⊤ ⊑
⊔

Γ) , there is

also a rule � ( 5� (~̄)) ← @′′(~̄) such that C ′ ∈ [@′′(~̄)]� , and
hence the node 5� (C

′) has label � in� .

For the only if part, we fix a graph� ∈ !(() and take any C ∈
[&)
�
]� , which means that there is a node rule �( 5� (Ḡ)) ←

@(Ḡ) with C ∈ [@(Ḡ)]� . Consequently, �( 5� (C)) belongs to
) (�). SinceM0 (�) |= � ⊑ ∃'.�,� has an edge '( 5� (C), E)
and the node E has label �. This edge must be generated by

an edge rule '( 5� (Ḡ), 5� (~̄)) ← @′(Ḡ, ~̄). Consequently, C
belongs to the answers to ∃~̄.@′(Ḡ, ~̄)] which is contained

in &�,',� (Ḡ) modulo ( .

(2) The proof of this statement is by contradiction and it uses

arguments that are analogous to those used in the proof of

the above claim and we only outline it. We take a graph

� ∈ !(() such that in ) (�) there is a node 5� (C) with label

� and an '-edge to a node with with label �. This happens

if and only if the intersection of &� (Ḡ) and ∃~̄.&�,',� (Ḡ, ~̄)
is non-empty.

(3) Similarly, the proof is by contradiction but uses argument

analogous to those in the proof of the first claim and we

only outline it. We take a graph � ∈ !(() such that ) (�)
has an �-node 5� (C) which has '-edges to two different �-

nodes 5� (C
′
1) and 5� (C

′
2). This is possible if and only if the

query ∃Ḡ .&)
�
(Ḡ) ∧ &)

�,',�
(Ḡ, ~̄) returns both C ′1 and C

′
2, and

consequently, ∃Ḡ .&)
�
(Ḡ) ∧ &)

�,',�
(Ḡ, ~̄) ∧ &)

�,',�
(Ḡ, Ī) ⊆(∧

8 n (~8 , I8) returns (C
′
1, C
′
2). Because node constructors are

invective, C ′1 ≠ C ′2, and therefore, (C ′1, C
′
2) cannot be answer

to
∧
8 n (~8 , I8). �

For testing equivalence of two transformations we observer that

since a transformation is equivalent to its trimmed version, two

transformations )1 and )2 are equivalent modulo ( if and only

if they trimmed versions trim( ()1) and trim( ()2) are equivalent

modulo ( . In the following lemma,&1 ≡( &2 is short for&1 ⊆( &2

and &2 ⊆( &1.

Lemma B.8. Take a schema ( and two transformations )1 and )2
that are both trimmed modulo ( . We have that )1 ≡( )2 if and only
if the following conditions are satisfied:

(1) Γ)1 = Γ)2 and Σ)1 = Σ)2 ,

(2) &)1
�
(Ḡ) ≡( &

)2
�
(Ḡ) for every � ∈ Γ)1 ,

(3) &)1
�,',�

(Ḡ, ~̄) ≡( &
)2
�,',�

(Ḡ, ~̄) for every �, � ∈ Γ)1 , ' ∈ Σ)1 .

Proof. The if part is trivial. We prove the only if part by proving

the contraposition: we show that if one of the conditions (1), (2),

and (3) is not satisfied, then )1 .( )2.

If (1) is not satisfied, then one of the transformations has at least

one rule d that generate a node or an edge with a label that is

not employed by the other transformations. Since both transfor-

mations are trimmed, there exists an input graph � such that the

rule d produces objects on the output. But then )1 (�) ≠ )2 (�).
If (2) is not satisfied, then there is an input graph � such that

one of the transformations generates a node that the other does

not. Hence, )1 (�) ≠ )2 (�).
If (3) is not satisfied, then analogously, there is an input graph

� such that one of the transformations generates an edge that the

other does not. Hence, )1 (�) ≠ )2 (�). �

C ROLLING UP QUERIES

Wenext show how to reduce the non-satisfaction of a acyclic UC2RPQ

& to the satisfaction of a Horn-ALCIF TBox T¬& . The TBox &

is basically a recursive program that defines a collection of sets

(monadic relations) of nodes. We illustrate the this construction

with the following example.

Example C.1. We take the following Boolean query.

&0 = ∃G0, G1, G2, G3 . (0 ·1
∗ ·2)(G2, G1) ∧ (�)(G3, G1) ∧ (0

−)(G1, G0).

We construct a TBox that essentially simulates automata for the

regular expressions, which are presented in Figure 5.

@0 @1
0 @2

2

1

@3 @4
� @5 @6

0−

Figure 5: Automata for regular expressions of & .

The TBox T¬&0 consists of the following constraints.

⊤ ⊑ @0 , @0 ⊑ ∀0.@1 , @1 ⊑ ∀1.@1 , @1 ⊑ ∀2.@2 ,

⊤ ⊑ @3 , @3 ⊓� ⊑ @4 , @2 ⊓ @4 ⊑ @5 , @5 ⊑ ∀0
−.@6 , @6 ⊑ ⊥ .

�
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T¬& introduces a set fresh node labels Γ& and the satisfaction T¬&
is defined in terms of the existence of valuations of symbols in Γ& .

More precisely, given a graph� over Γ0 and Σ0 and a TBox T over

Γ0 ∪ Γ1 and Σ0, we say that � satisfies T if and only if there is an

interpretation ·* : Γ1 → P(dom(�)) of symbols in Γ1 such that

� ∪* |= T .

LemmaC.2. Given a Boolean acyclic UC2RPQs& , one can compute

in polynomial time a Horn-ALCIF TBox T¬& and a reserved set of

concept names Γ& such that for every � that does not use labels in

Γ& ,� 6 |= & if and only if� satisfies T¬& .

Proof. We prove the lemma for queries that are Boolean C2RPQs

that are acyclic and connected. The claim extends to unions of

Boolean acyclic C2RPQs in a straightforward fashion: it suffices

to take the union of the desired TBoxes of all connected compo-

nents of the union. Consequently, the query can be seen as a tree

and we assume that it is defined with the following grammar:

& ::= i (&, . . . , &),

wherei is a two-way regular expression over Σ and Γ. For instance,

the query from Example C.1 is represented as&0 = 0
− (�,0 ·1∗ · 2).

We express the semantics of such defined queries as the set of all

nodes that satisfy it.

[i (&1, . . . ,&: )]
�

= {D ∈ dom(�) | ∃E. (E,D) ∈ [i]� , E ∈
⋂
8 [&8 ]

� }.

Naturally, a graph� satisfies & iff [&]� ≠ ∅.
Now, fix an acyclic Boolean C2RPQ & and let Φ be the set of all

two-way regular expressions used in & . For any i ∈ Φ by #i =

( i , �i , Xi , �i ) we denote an n-free NDA over the alphabet Σ ∪ Γ

that recognizes i , where  i is a finite set of states, �i ⊆  i is the

set of initial states, �i ⊆  i is the set of final states, and Xi ⊆  i ×
(Σ∪Γ)× i is the transition table. We assume that the size of#i is

polynomial in the size of the expression i (such automaton can be

obtained for instance with the standard Glushkov technique). We

also assume that the sets of states are pair-wise disjoint.

The set of additional node labels consists of the states of au-

tomata: Γ& =
⋃
i  i . The constructed TBox consists of two sub-

sets of rules: T¬& = T1 ∪ T0. The set T1 encodes transitions of the
automata that simulate their execution.

(1) For every i and every (@, ', @′) ∈ Xi such that ' ∈ Γ
±, T1

contains @ ⊑ ∀'.@′;
(2) For every i and every (@,�, @′) ∈ Xi such that � ∈ Σ, T1

contains @ ⊓ � ⊑ @′;
(3) For every nodei of& with childreni1, . . . , i: , every @ ∈ �i ,
T1 contains

.
{@′ | @′ ∈ �i8 , 1 ≤ 8 ≤ :} ⊑ @. Note thatwhen

i is a leaf of& , then T1 contains ⊤ ⊑ @ for every @ ∈ �i .

The set T0 contains denial rules that ensure lack of valid run.

(4) For every @ ∈ �i of the root i of & , T0 contains @ ⊑ ⊥;

Now, we fix a graph � whose node labels do not use any symbol

in Γ& . We first argue that there is a unique minimal interpretation

*0 : Γ& → P(dom(�)) such that � ∪ *0 |= T1. Indeed, since the
rules are Horn-like, an intersection of two models of T1 is also a

model of T1.
Next, we prove themain claimwith an inductive argument which

requires defining subqueries of& . For i ∈ Φ and @ ∈  i by&@ we

denote the queryk (&1, . . . ,&: ), where &1, . . . ,&: are children of

i in & and k is the two-way regular expression corresponding to

the automaton"i,@ = ( i , �@ , Xi , {@}) (essentially, we make @ the

only final state). We claim that for any i ∈ Φ, any @ ∈  i , and any
D ∈ #� we have

D ∈ [&@]
� iff D ∈ @*0 .

In essence, the unary predicate @ identifies all nodes at which the

subquery&@ is satisfied. We prove the above claim with double in-

duction: firstly over the height of the subquery&@ = k (&1, . . . ,&: ),
and secondly, over the length of the witnessing path for (E, D) ∈
[k ]� such that E ∈

⋂
8 [&8 ]

� .

If we let �i = {@1, . . . , @: }, then & is equivalent to the union of

&@1 ∪ . . . ∪ &@: . Consequently, & is satisfied at a node D ∈ #�
iff D ∈ @8

*0 for some 8 ∈ {1, . . . , :}. As such, & is not satisfied at

any node of � if and only if *0 |= @8 ⊑ ⊥ for every 8 ∈ {1, . . . , :}
i.e., *0 |= T0. We finish the proof by observing that if the minimal

model*0 does not satisfyT0, then none of supersets of*0 does. �

D PROOFS FOR CONTAINMENT

Lemma D.1. Given a schema ( , a UC2RPQ % (Ḡ), and an acyclic

UC2RPQ & (Ḡ), one can compute in polynomial time a schema (◦, a

Boolean UC2RPQ %◦, and a Boolean acyclic UC2RPQ &◦ such that

% (Ḡ) ⊆( & (Ḡ) iff %
◦ ⊆(◦ &

◦.

Proof. Let Ḡ = (G1, G2, . . . , G=) and let Γ( = {�1, . . . , �: }. We

take a fresh node labels -1, . . . , -= ∉ Σ( and fresh edge labels

A1, A2, . . . , A= ∉ Σ( . The schema (◦ is obtained from ( as follows:

Γ(◦ = Γ( ∪ {�0},

Σ(◦ = Σ( ∪ {A1, . . . , A=},

X(◦ (�, ', �) =




X( (�, ', �) if �, � ∈ Γ( and ' ∈ Σ±
(
,

? if � = -8 , ' ∈ {A8 , A
−
8 }, and � ∈ Γ( ,

0 otherwise.

Now, the queries %◦ and &◦ are obtained from % (Ḡ) and & (Ḡ)
by quantifying existentially G1, G2, . . . , G= and also adding atoms

∃~.(-8 ·A8)(~, G8 ) for every 8 ∈ {1, . . . , =}. It is routine to check that
% (Ḡ) ⊆( & (Ḡ) if and only if %◦ ⊆(◦ &

◦. There are two key facts.

Firstly, 2RPQs in % and & do not use labels A1, A2, . . . , A= (nor wild-

cards) and consequently cannot traverse edges with such labels.

Secondly, the schema (◦ ensures that the original regular expres-

sion can be witnessed only by paths that begin and end in nodes

with labels in Σ( only. �

Corollary D.2. Given a schema ( , two unary acyclic 2RPQs ? (G)
and @(G), one can compute in polynomial time a schema (◦ and

Boolean 2RPQs ?◦ and @◦ such that ? (G) ⊆( @(G) iff ?
◦ ⊆(◦ ?

◦.

Proof. The construction of (◦ is as in Lemma D.1 and the con-

struction of Boolean RPQs depends on the form of the unary RPQ:

1) if ? (G1) = ∃G2.i (G1, G2), then ?
◦
= A1 · i and 2) if ? (G1) =

∃G2.i (~, G), then ?
◦
= i ·A−1 ; @

◦ is constructed in the same way. �

Lemma D.3. % ⊆( & iff %̂ ⊆
T̂(
& .

Proof. Each finite graph falsifying the left-hand side condition fal-

sifies the right-hand side condition as well. For the converse, let�

be a finite graph falsifying the right-hand side condition. Without

loss of generality we can assume that only labels from Γ( ∪ Σ(
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are used in � . Let � ′ be obtained by dropping all nodes without a

label, as well as edges incident with these nodes. Because all con-

cept inclusions in T̂( that require a witnessing neighbour specify

the label of this neighbour, they are not affected by this modifica-

tion. Other concept inclusions are always preserved when passing

to a subgraph. It follows that� ′ conforms to ( . The RPQs in %̂ can

only traverse nodes with a label from Γ( , so %̂ is still satisfied in� ′.

Then, % is satisfied as well. & is not satisfied in� ′, because� ′ is a

subgraph of� . �

Lemma D.4. %̂ is finitely satisfiable modulo T̂( ∪ T¬Q iff %̂ is satis-

fiable modulo
(
T̂( ∪ T¬Q

)∗
.

Proof. Suppose that %̂ is satisfied in a finite model� of T̂( ∪ T¬& .

By Theorem 5.4, there is a (possibly infinite) model of
(
T̂( ∪T¬&

)∗

containing � as a subgraph. This model obviously satisfies %̂ .

Conversely, suppose that there is a possibly infinite graph� sat-

isfying %̂ and
(
T̂( ∪ T¬&

)∗
. Let ? be the disjunct of %̂ that is satisfied

in � . Let � be the image of ? in � , including a finite witnessing

path for each RPQ. Note that � is finite. By Theorem 5.4, there is

a finite model of T̂( ∪ T¬Q containing � as a substructure. This

models satisfies %̂ as well. �

Lemma D.5. Every (-driven TBox T can be reduced in polynomial

time so that it contains at most |Σ±
(
| · |Γ( |

2 at-most constraints.

Proof. To achieve this, for each such CI of the form  ⊑ ∃≤1'. ′

in T we do one of the following.

• If T contains � ⊑ ∃≤1'.�′ for some �,�′ ∈ Γ( such that

� ∈  and �′ ∈  ′, then simply remove  ⊑ ∃≤1'. ′ from
T . This is correct because � ⊑ ∃≤1'.�′ |=  ⊑ ∃≤1'. ′.
• Otherwise, because T is (-driven, it follows that the triple

( , ',  ′) is not satisfiable modulo T . That is, T |=  ⊑
�'. ′. Since  ⊑ �'. ′ |=  ⊑ ∃≤1'. ′, we can safely

replace  ⊑ ∃≤1'. ′ with  ⊑ �'. ′ in T .

The resulting TBox T ′ is equivalent to T and it only contains

at-most constraints involving single concept names from Γ( . The

number of those is clearly bounded by |Σ±
(
| · |Γ( |

2. �

Lemma D.6. Let T be an (-driven Horn-ALCIF TBox that was

obtained from T̂( ∪ T¬& by reversing some finmod cycles. For every

satisfiable finmod cycle

 1, '1, . . . ,  =−1, '=−1,  =

in T there exist unique�1, �2, . . . , �= ∈ Γ( such that �8 ∈  8 for all
8 ≤ =, and

�1, '1, . . . , �=−1, '=−1, �=

is a finmod cycle in T

Proof. Since all triples in  1, '1, . . . ,  =−1, '=−1,  = are satisfiable,

all CIs  8 ⊑ ∃'8 . 8+1 and  8+1 ⊑ ∃
≤1'−8 . 8 are relevant for T . We

cannot simply apply the fact that T is (-driven, because these CIs

need not belong to T : they are only entailed by T . The proof will
proceed in several steps.

The first step is to see that each  8 contains a label from Γ( .

Towards contradiction, suppose it does not. We construct a graph

witnessing that T does not entail  8 ⊑ ∃'8 . 8+1, which is a con-

tradiction. Let)8 be the tree-shaped graph obtained by unravelling

some model of T witnessing that ( 8 , '8 ,  8+1) is satisfiable, from
a nodeD satisfying  8 . Clearly,)8 is also a model of T , its rootD sat-
isfies  8 and has an '8 -successor D

′ satisfying  8+1. We construct

� as the graph with a single node D0 whose labels are copied from

the root D of )8 but with any letter from Γ( dropped. To see that

� 6 |=  8 ⊑ ∃'8 . 8+1, note that as D ∈ ( 8)
)8 and  8 contains no la-

bels from Γ( , also D0 ∈ ( 8)
� ; but clearly D0 has no '8 -successors

at all. Let us check that � |= T .

• New CIs of the form  ⊑ � are not introduced by reversing

cycles, so it suffices to look at ones from T̂( ∪ T¬& . There,
such CIs are only present in T¬& and always satisfy � ∉ Γ(

(see the proof of Lemma C.2). Hence, as they were satisfied

in )8 and � was obtained by dropping labels from Γ( , they

still hold in � .

• CIs of the form  ⊑ ⊥ in T were satisfied in )8 and they

cannot be violated by dropping labels (recall that  does

not use negation).

• All CIs of the forms  ⊑ ∀'. ′,  ⊑ �'. ′, and  ⊑
∃≤1'. are trivially satisfied in � .

• Consider a CI of the form  ⊑ ∃'. ′ from T . Suppose that
D0 ∈  

� . Then also D ∈  )8 . This means that the CI was

“fired” in)8 , which implies that ( ,',  ′) is satisfiable mod-

ulo T and  ⊑ ∃'. ′ is relevant for T . As T is (-driven,

it follows in particular that  contains a label from Γ( . But

this contradicts the fact that D0 ∈  
� . Hence,  ⊑ ∃'. ′ is

trivially satisfied in � .

Thus we have shown that � |= T . This concludes the first step.
Now, as all 8 contain a label from Γ( and all triples ( 8 , '8 ,  8+1)

are satisfiable modulo T , it follows that for each 8 there exists ex-
actly one label �8 ∈ Γ( such that �8 ∈  8 . It remains to show that

�8 ⊑ ∃'8 .�8+1 and �8+1 ⊑ ∃
≤1'−8 .�8 .

Let us begin with �8 ⊑ ∃'8 .�8+1. Consider graph � obtained

from )8 (same as above) by removing all subtrees rooted at '8 -

successors of the root that satisfy 8+1. Clearly,� 6 |=  8 ⊑ ∃'8 . 8+1.
As T |=  8 ⊑ ∃'8 . 8+1, it follows that � 6 |= T . Then, some CI of

the form  ⊑ ∃'. ′ from T is violated in � , because CIs of other

forms are preserved when passing to a subgraph. In particular, it

must be the case that the root of � satisfies  . But then also the

root of )8 satisfies  and since )8 |= T , the root D of )8 has an

'-successor D ′ that satisfies  ′. This means that  ⊑ ∃'. ′ is rel-
evant for T . Because T is (-driven, it must contain � ⊑ ∃'.�′

for some �,�′ ∈ Γ( such that � ∈  , �′ ∈  ′. As the root of �

satisfies both  and  8 , and we know that � ∈  and �8 ∈  8
and that labels from Γ( are exclusive, it follows that � = �8 . We

claim that also ' = '8 and �
′
= �8+1. If ' ≠ '8 , then D

′ is not

an '8 -successor of the root in)8 , and it has not been removed in� .

That would imply that� actually does satisfy ⊑ ∃'. ′. Since we
know this is not the case, we conclude that ' = '8 . Similarly, sup-

pose that �′ ≠ �8+1. Because D
′ satisfies  ′ and �′ ∈  ′, it must

have label �′. But then D ′ cannot have label �8+1, which means it

cannot satisfy  8+1, and has not been removed in � . This yields a

contradiction just like before and we can conclude that �′ = �8+1.

Wrapping up, we have seen that � ⊑ ∃'.�′ belongs to T and that
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� = �8 , ' = '8 , and �
′
= �8+1. This means that �8 ⊑ ∃'8 .�8+1

belongs to T .
Finally, let us see that �8+1 ⊑ ∃

≤1'−8 .�8 belongs to T . Con-
sider the model )8 but reorganize it so that the root D satisfies

 8+1 and has an '−8 -successor D
′ satisfying  8 . Let � be the graph

obtained from )8 by duplicating the whole subtree rooted at D ′,

and adding an '−8 -edge from D to the root D ′′ of the copy. Clearly

� 6 |=  8+1 ⊑ ∃
≤1'−8 . 8 and since T |=  8+1 ⊑ ∃

≤1'−8 . 8 , we con-

clude that � 6 |= T . It follows immediately that � violates some

CI of the form  ⊑ ∃≤1'. ′ from T , as CIs of other forms are

not affected by the modification turning )8 to� . Similarly, it must

hold that ' = '−8 , and that D satisfies  and D ′ and D ′′ satisfy  ′.

It follows that  ⊑ ∃≤1'. ′ is relevant, �8+1 ∈  , �8 ∈  
′, and

�8+1 ⊑ ∃
≤1'−8 .�8 belongs to T . �

LemmaD.7. For T = T̂(∪T¬& , the completionT ∗ can be computed

in EXPTIME.

Proof. Construct a graph �T over all possible intersections  of

concept names used in T , including an edge with label ' ∈ Σ
±

from  to  ′ iff

T |=  ⊑ ∃'. ′ and T |=  ′ ⊑ ∃≤1'− . .

�T has exponential size and can be constructed in EXPTIME, be-

cause CI entailment by Horn-ALCIF TBoxes can be tested in

exponential time [24]. Repeat the following until the graph stops

changing. Pick an '-edge from  to  ′ such that there is no '−-

edge from  ′ to  . Check if there exists a path from  ′ to  in�T .

If so, the identified path combined with the '-edge from  to  ′

constitutes a finmod cycle

 1, '1, . . . ,  =−1, '=−1,  =

in T . Add to �T an '−8 -edge from  8+1 to  8 for all 8 < = and ex-

tend T with the corresponding concept inclusions. Note that this

includes an '−-edge from  ′ to  and concept inclusions

 ′ ⊑ ∃'− . and T |=  ⊑ ∃≤1'. ′ .

Moreover, if there are unique�1, �2, . . . , �= ∈ Γ( such that�8 ∈  8
for 8 ≤ =, check if

�1, '1, . . . , �=−1, '=−1, �=

is a cycle in �T . If so, add to � an '−8 edge from �8+1 to �8 , and

the corresponding CIs to T . By Lemma D.6, this ensures that the

extended T is (-driven. We can now reduce it and recompute�T
based on the updated T . Using the complexity bounds for CI en-

tailment given in Corollary E.7, we conclude that this can be done

in EXPTIME. Note that we are indeed relying on the more precise

complexity bounds here, because at later iterations of the cycle

reversing procedure the TBox might well contain exponentially

many concept inclusions. However, it has still only the original

concept names and, after reducing, only a polynomial number of

at-most restrictions. �

E PROOFS FOR SATISFIABILITY

E.1 Introductory lemmas

We begin by showing the two lemmas mentioned in the body of

the paper.

LemmaE.1. For 2 ≥ 1, if a finite connected 2-sparse graph has only

nodes of degree at least 2, then it is (22, 32)-skeleton.

Proof. Let � be a finite connected 2-sparse graph without nodes

of degree 0 or 1. We claim that� consists of at most 22 nodes con-

nected by at most 32 paths disjoint modulo endpoints. If� is empty,

we are done. Otherwise, we eliminate vertices of degree 2 that are

incident with two different edges bymerging these edges into a sin-

gle edge. This process results in a 2-sparse multigraph �0, whose

edges represent simple paths in � . This graph is either a single

node with a loop or all its nodes have degree at least 3. In the first

case it follows that � is a single cycle, and thus a (1, 1)-skeleton.
In the second case, assuming that�0 has = nodes and< edges, we

have 3=/2 ≤< ≤ = + 2 . It follows that 2 > 0, = ≤ 22 ,< ≤ 32 . �

LemmaE.2. If ? is satisfied in a |? |-sparse graph� , then� contains

a (4|? |, 5|? |)-skeleton � , extending the skeleton of � , such that all

variables of ? are mapped to distinguished nodes of � and � can be

obtained by attaching finitely many finitely branching trees to � .

Proof. The skeleton �0 of � is a (2|? |, 3|? |)-skeleton. Consider
a match of ? in � . Some variables of ? might well be matched to

nodes on the paths connecting the distinguished nodes of �0 or in

the attached trees. We define� as follows. First, we add to� as dis-

tinguished nodes all images of variables of ? that lie on the paths

connecting distinguished nodes of�0. Next, for each attached tree

) that contains an image of a variable of ? , we add to � as dis-

tinguished nodes all the images of variables of ? that belong to )

together with all their least common ancestors in ) , as well as the

node of � to which the root of) is connected. All ancestors (in ) )

of these nodes are added to � as ordinary nodes. The skeleton �

thus obtained has the required properties. �

E.2 The main result

The goal of this section is to prove the following theorem.

Theorem E.3. Given a C2RPQ ? and an ALCIF TBox T using

: concept names and ℓ at-most constraints, one can decide in time

$
(
poly( |T |) · 2poly( |? |,:,ℓ)

)
if there exists a |? |-sparse graph that

satisfies ? and T .

The proof of Theorem E.3 is not very hard, but it combines sev-

eral components and requires developing some machinery. Let us

begin with a road map.

Relying on Lemma E.2, we guess a (4|? |, 5|? |)-skeleton � . The

distinguished nodes of � are represented explicitly, together with

all their labels, but each of the connecting paths is represented by

a single symbolic edge. Note that there might be multiple symbolic

edges between the same pair of distinguished nodes, representing

different paths. We need to check that � can be completed to a

graph� by materializing the symbolic edges into paths and attach-

ing finitely many finitely branching trees in such a way that � is

a model of T and there is a match of ? in� that maps variables of

? to distinguished nodes of � .

To achieve this, we guess an annotation of � that summarizes

how the witnessing paths of ? can traverse the parts of� missing

from� , and which witnesses of distinguished nodes required by T
these parts provide (Section E.3). We then check if these promises
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of the annotation are sufficient to guarantee that ? and T are sat-

isfied (Section E.4). Finally, we verify that the promises of the an-

notation can be fulfilled: we check if we can attach trees to the dis-

tinguished nodes and expand the symbolic edges into finite paths

with attached trees in a way that matches the promises of the an-

notation and respects the TBox T (Section E.5).

E.3 Annotated skeleta

Let Γ? , Σ? , ΓT , ΣT be the sets of edge and node labels used in ?

and T , respectively. In what follows we only consider graphs and

skeleta using only node labels from Γ? ∪ ΓT and edge labels from

Σ? ∪ ΣT .

Let Φ be the set of two-way regular expressions used in ? . For

each i ∈ Φ we fix an equivalent linear size non-deterministic au-

tomatonAi over the alphabet Γ? ∪Σ
±
? with states i , initial states

�i ⊆  i , and final states �i ⊆  i . We assume that all  i are pair-

wise disjoint and let X =
⋃
i∈Φ Xi .

An annotation of skeleton � is given by the following functions.

• Vsrc and Vtgt record information about the source and target

of the paths represented by each symbolic edge: they both

map each symbolic edge 4 to
(
Σ? ∪ ΣT

)±
× 2Γ?∪ΓT .

• Xnode records how the witnessing paths for ? may loop in

the subtrees attached to the distinguished nodes. Thus,Xnode
maps every distinguished node to a subset of

⋃
i∈Φ  i × i .

• Xedge records how the witnessing paths for ? progress along

paths (and the trees attached to them) represented by the

symbolic edges in the skeleton. Thus, Xedge maps every edge

4 to a subset of
⋃
i∈Φ  i ×  i × { y , y,←,→}. If 4 is an

edge from D to E , then (B, B ′,→) ∈ Xedge (4) indicates that
some path enters (the part of the model summarized by) the

edge 4 from D in state B , and exits at node E in state B ′. Simi-

larly, (B, B ′, y) ∈ Xedge (4) indicates a loop: some path enters

4 from E in state B , and exits at the same node E in state B ′,

etc.

E.4 Verifying annotated skeleta

An annotation of� is sufficient for TBox T if thewitnesses recorded

by Vsrc and Vtgt respect T ; that is, for each distinguished nodeD of

� the graph�D defined below satisfies the TBox T0 obtained from
T by dropping all concept inclusions of the form� ⊑ ∃'.�. To con-
struct �D we begin from D with labels inherited from � , and then

for each symbolic edge 4 incident with D we add an '-successor E4
of D with label set Λ, where (',Λ) = Vsrc(4) if D is the source of 4

and (',Λ) = Vtgt (4) if D is the target of 4 .

An annotation is sufficient for C2RPQ ? if there exists a function

[ mapping variables of ? to distinguished nodes of � such that for

each atom i (G,~) of ? , there exists a finite witnessing sequence

B0D0B1D1 . . . B:D: of states and distinguished nodes of � satisfying

the following conditions.

• The witnessing sequence begins and ends correctly; that is,

B0 ∈ �i , B: ∈ �i , D0 = [ (G), D: = [ (~).
• Each transition step along a symbolic edge (or subtree at-

tached to a distinguished node) updates the state as expected:

for each 8 < : one of the following holds:

– (B8 , B8+1,→) ∈ Xedge (4) for some edge 4 from D8 to D8+1;

– (B8 , B8+1,←) ∈ Xedge (4) for some edge 4 from D8+1 to D8 ;

– (B8 , B8+1, y ) ∈ Xedge (4) for some edge 4 from D8 to some D ,

and D8 = D8+1;

– (B8 , B8+1, y) ∈ Xedge (4) for some edge 4 from some D to D8 ,

and D8 = D8+1;

– (B8 , B8+1) ∈ Xnode (D8) and D8 = D8+1.

We point out that thewitnessing sequencemay traverse a symbolic

edge multiple times. In consequence, each tuple in Xedge (4) must

be “realised” by the single path represented by 4 (and the attached

trees).

Proposition E.4. One can decide if a given annotated skeleton is

sufficient for ? and T in PTIME.

Proof. To check that the annotated skeleton is sufficient for T it

is enough to examine the graphs�D for each distinguished node D

of the skeleton.

Checking that the annotated skeleton is sufficient for ? amounts

to guessing the function [ and for each atom i (G,~) running a

reachability test in the product graph whose nodes combine dis-

tinguished nodes of the skeleton with states from  i , where edges

are defined according to the symbolic edges in the skeleton and the

triples from Xedge. In the reachability test we check if there exists

a path beginning in {[ (G)} × �i and ending in {[ (~)} × �i . �

E.5 Implementing annotated skeleta

Consider an annotated skeleton H =
(
�, Vsrc, Vtgt, Xedge, Xnode

)
.

We say that a graph � implements H if � is obtained from � by

replacing each symbolic edge 4 with a path c4 connecting the end-

points of 4 and by attaching finitely many finitely branching trees

in a way consistent with the annotations, in the following sense.

• For each symbolic edge 4 from D to D ′, the subgraph �4 of

� that consists of c4 and all trees attached to the internal

nodes of c4 is correctly summarized in the annotations:

– for each (B, B ′, 3) ∈ Xedge (4) with B, B
′ ∈  i there is a path

in �4 with endpoints (D,D) if 3 = y , (D,D ′) if 3 =→ ,

(D ′, D ′) if 3 = y , and (D ′, D) if 3 =← , on which Ai
moves from state B to state B ′;

– if Vsrc(4) = ('1,Λ1) and Vsrc(4) = ('2,Λ2), then the first

edge of c4 is an '-edge, the last edge of c4 is an '
−
2 -edge,

the second node on c4 has the labels setΛ1, and the penul-

timate node on c4 has label set Λ2.

• For each distinguished node D , the trees attached to D are

summarized correctly in the annotations: for each (B, B ′) ∈

Xnode (D) with B, B
′ ∈  i there is a tree ) B,B

′

D attached to D

and a path that starts and ends inD and otherwise only visits

nodes of) B,B
′

D , on which Ai moves from state B to state B ′.

• � is a model of T .

Note that all the missing pieces of the graph are essentially trees

(finitely branching, but typically infinite). Indeed, each) B,B
′

D simply

is a tree, but also�4 can be viewed as a tree: its root is the source of

4 , the root has exactly one child, the path c4 constitutes a special

finite branch ending in the target of 4 which is a leaf in this tree.

Importantly, each (B, B ′) ∈ Xnode(D) is witnessed by a finite sub-

graph of ) B,B
′

D , and each triple (B, B ′, 3) ∈ Xedge (4) is witnessed by

a finite subgraph of�4 . The algorithm to check if there exist such
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) B,B
′

D and �4 can be seen as an emptiness test for tree automaton,

or as a variant of type elimination.

We first define types, which can also be viewed as states of a tree

automaton. We assign to each node of the tree a type that records

the following information:

• a subset of Γ? ∪ ΓT , representing the labels of the current

node;

• an element of Σ±? ∪Σ
±
T and a subset of Γ? ∪ΓT , representing

the label on the edge to the parent and the parent’s label set;

• with ℓ the number of at-most restrictions in T , a list of C ≤
ℓ+1 elements of Σ±?∪Σ

±
T
and subsets of Γ?∪ΓT , representing

labels on the edges to C children of the current node and the

children’s label sets;

• a Boolean flag indicating whether the current node belongs

to the special path (not used for ) B,B
′

D at all);

• a subset of
⋃
i∈Φ  i× i×{

y,y, ↓, ↑} recording the progress
on witnessing Xedge or Xnode:

– (B, B ′,y) indicates that from state B in the current nodewe

can navigate the current subtree and return to the current

node in state B ′,

– (B, B ′,y) indicates that from state B in the current node

we can navigate outside of the current subtree and return

to the current node in state B ′,

– (B, B ′, ↓) indicates that from state B in the current node, we

can reach the target node of 4 in state B ′,

– (B, B ′, ↑) indicates that from state B in target node of 4 we

can reach the current node in state B ′.

Actually, all four kinds of triples are required along the spe-

cial path, but in the remaining nodeswe only need the triples

of the form (B, B ′,y).

By a pre-type we shall understand a type with the boolean flag

and the progress information dropped; that is, a tuple

(Λ, '′,Λ′, '1,Λ1, . . . , 'C ,ΛC )

with Λ,Λ′,Λ1, . . . ,ΛC ⊆ Γ? ∪ ΓT , and '
′, '1, . . . , 'C ∈ Σ

±
? ∪ Σ

±
T ,

and 0 ≤ C ≤ ℓ + 1. In what follows we blur the distinction between

conjunctions  of concept names and sets Λ of labels, as usual, and

write  ⊆ Λ.

A pre-type (Λ, '′,Λ′, '1,Λ1, . . . , 'C ,ΛC ) is compatible with T iff

there exists a graph� such that

• there are pairwise different nodes D,D ′, D1, . . . , DC with label

sets Λ,Λ′,Λ1, . . . ,ΛC ;

• there is an '′-edge from D to D ′ and an '8 -edge from D to D8
for all 8 ≤ C , and no other edges are incident with D ′;

• for each  ⊑ ∃≤1'. ′ in T with  ⊆ Λ, every '-successor

of D that satisfies  ′ belongs to {D ′, D1, . . . , DC }; and
• � satisfies T except that CIs of the form  ⊑ ∃'. ′ are not
required to be satisfied for D ′.

Note that unlike in the notion of satisfiability used in Appendix D,

the witnessing nodes cannot have additional labels, not listed in

Λ,Λ′,Λ1, . . . ,ΛC .

Lemma E.5. Given T and ? one can compute the set of pre-types

compatible with T within the time bound stated in Theorem E.3

Proof. Each pre-type (Λ, '′,Λ′, '1,Λ1, . . . , 'C ,ΛC ) can be interpreted
as a star-shaped graph consisting of nodes D,D ′, D1, . . . , D= with la-

bel sets Λ,Λ′,Λ1, . . . ,ΛC such that D ′ is an '′-successor of D , D8 is

an '8 -successor ofD for all 8 ≤ C , and there are no other edges. Thus
we can speak of a pre-type satisfying a concept inclusion, etc.

We say a pre-type (Λ, '′,Λ′, '1,Λ1, . . . , 'C ,ΛC ) is repeatable if
there is no at-most restriction ⊑ ∃≤1'. ′ in T such that ⊆ Λ

′,

' = ('′)−, and  ′ ⊆ Λ.

A pre-type (Λ, '′,Λ′, '1,Λ1, . . . , 'C ,ΛC ) is said to be compatible

with T modulo a set Θ of pre-types if

• Θ contains a pre-type (Λ8 , '
−
8 ,Λ, . . . ) for each 8 ≤ C ;

• the pre-type satisfies all CIs in T not of the form ⊑ ∃'. ′;
• for each concept inclusion  ⊑ ∃'. ′ in T with  ⊆ Λ, at

least one of the following holds:

– ' = '′ and  ′ ⊆ Λ
′, or

– ' = '8 and  
′ ⊆ Λ8 for some 1 ≤ 8 ≤ C , or

– ' = '0 and  
′ ⊆ Λ0 for some repeatable (Λ0, '

−
0 ,Λ, . . . )

from Θ.

Now, to compute the set of pre-types compatible with T , we
start with the set Θ = Θ0 of all pre-types, and exhaustively remove

those pre-types that are not compatible with T modulo Θ. This

algorithm terminates after at most

|Θ0 | =
ℓ+1∑

C=0

��Σ±? ∪ Σ
±
T

��C+1 ·
(
2 |Γ?∪ΓT |

)C+2

iterations. Each iteration takes time polynomial in |Θ| and |T |.
The result is the maximum set Θ of pre-types such that each

pre-type from Θ is compatible with T modulo Θ. Each pre-type

compatible with T will belong to this set, because the graph wit-

nessing the triple can be used to argue that the triple will not be

removed at any iteration. Conversely, each triple fromΘ is compat-

ible with T , because one can construct a witnessing tree-shaped

graph top-down, using the witnesses justifying the presence of pre-

types in Θ in the last iteration of the algorithm. �

Lemma E.6. The existence of a graph implementing a given anno-

tated skeleton is decidable within the time bound from Theorem E.3.

Proof. We call a type (Λ, '′,Λ′, '1,Λ1, . . . , 'C ,ΛC , 1, Δ) compatible

with T if the underlying pre-type (Λ, '′,Λ′, '1,Λ1, . . . , 'C ,ΛC ) is
compatiblewithT . Repeatable types are defined analogously, based
on the underlying pre-types. Clearly, Lemma E.5 suffices to pre-

compute the set of types compatible with T . Our task is to check

if from these types one can construct the witnessing �4 and )
B,B′

D .

We will build them bottom-up, guaranteeing that each promise re-

lated to ? is fulfilled in a finite fragment.

A type (Λ, '′,Λ′, '1,Λ1, . . . , 'C ,ΛC , 1, Δ) is compatiblewith ?mod-

ulo a set Θ of types if there exists types (Λ8 , '
−
8 ,Λ, . . . , 18 , Δ8) ∈ Θ

for 1 ≤ 8 ≤ C such that

• if 1 = 0, then 18 = 0 for all 1 ≤ 8 ≤ C , else C ≥ 1, 11 = 1, and

18 = 0 for all 1 < 8 ≤ C ;
• for each (B, B ′,y) ∈ Δ,
– (B,�, B ′) ∈ X for some � ∈ Λ, or
– (B, '8 , B1) ∈ X , (B1, B2,

y) ∈ Δ
∗
8 , and (B2, '

−
8 , B
′) ∈ X for

some B1, B2 and 1 ≤ 8 ≤ C , or
– (B, '0, B1) ∈ X , (B1, B2,

y) ∈ Δ
∗
0, and (B2, '

−
0 , B
′) ∈ X for

some B1, B2 and repeatable (Λ0, '
−
0 ,Λ, . . . , 0,Δ0) ∈ Θ,
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where Δ∗8 is the set of all
(
B, B ′,y

)
such that there are states

B = B1, B2, . . . , B< = B ′ with
(
B 9 , B 9+1,

y)
∈ Δ8 for all 9 <<;

• if 1 = 1, then for each (B, B ′, ↑) ∈ Δ, there are B1, B2 such that

(B, B1, ↑) ∈ Δ1, (B1, B2,
y) ∈ Δ∗1, and (B2, '

−
1 , B
′) ∈ X ;

• if 1 = 1, then for each (B, B ′, ↓) ∈ Δ, there are B1, B2 such that

(B, '1, B1) ∈ X , (B1, B2,
y) ∈ Δ∗1, and (B2, B

′, ↓) ∈ Δ1;

• if 1 = 1, then for each (B, B ′,y) ∈ Δ1, there are B1, . . . , B<
such that (B, '−1 , B1), (B<, '1, B

′) ∈ X and for all 9 < <, ei-

ther (B 9 , B 9+1,
y) ∈ Δ

∗
2 ∪ · · · ∪ Δ

∗
< , or (B 9 , B 9+1,y) ∈ Δ, or

(B 9 , �, ( 9+1) ∈ X for some � ∈ Λ.

Let us first see how to decide the existence of �4 for a given

symbolic edge 4 . The algorithm begins with the set Θ of all “initial

types”, which are

• types (Λ, '′,Λ′, 1, Δ) such that

– Λ is the label set of the target of 4 ,

– ('′,Λ′) = Vsrc(4),
– 1 = 1,

– Δ consists of all (B, B ′,y) such that (B, B ′, y) ∈ Xedge (4),
as well as all (B, B, ↑) and (B, B, ↓);

• types (Λ, '′,Λ′, . . . , 1, Δ) compatible with T such that

– 1 = 0,

– Δ = ∅.

Then, we exhaustively extend Θ with types that are compatible

with T and compatible with ? moduloΘ. When no more types can

be added, the graph�4 exists iffΘ contains a type (Λ, '′,Λ′, . . . , 1, Δ)
such that

• Λ is the label set of the source of the symbolic edge 4 ;

•
(
('′)−,Λ

)
= Vsrc(4);

• 1 = 1;

• Δ contains no triples of the form (B, B ′,y);
• for each (B, B ′,y) ∈ Xedge (4) there are states B1, B2 such that(

B, ('′)−, B1
)
∈ X , (B1, B2,

y) ∈ Δ∗, and
(
B2, ('

′)−, B ′
)
∈ X ;

• for each (B, B ′, ↓) ∈ Xedge (4) there are states B1, B2 such that(
B, ('′)−, B1

)
∈ X , (B1, B2,

y) ∈ Δ∗, and (B2, B ′, ↓) ∈ Δ;
• for each (B, B ′, ↑) ∈ Xedge (4) there are states B1, B2 such that

(B, B1, ↑) ∈ Δ, (B1, B2,
y) ∈ Δ∗, and (B2, '′, B ′) ∈ X .

This number of iterations of the algorithm is bounded by the

number of all types,

ℓ+1∑

C=0

��Σ±? ∪ Σ
±
T

��C+1 ·
(
2 |Γ?∪ΓT |

)C+2
· 2 ·

(
2
��⋃

i∈Φ  i× i×{
y
,y,↓,↑}

��)C
.

Each iteration takes time polynomial in |Θ|ℓ and |T |. The promised

complexity bounds follow.

Deciding the existence of the witnessing trees for a node D of

the annotated skeleton is very similar. We can reuse the set Θ com-

puted for any symbolic edge 4 . The only delicate issue is that we

need to account for Vsrc(4
′) for all edges 4 ′ outgoing from D and

Vtgt (4
′′) for all edges 4 ′′ incoming to D . Essentially, we check if

there exists a type (Λ, '1,Λ1, . . . , 'C , 1, Δ) – note themissing '′ and

Λ
′ – with 1 = 0 and C ≤ ℓ + deg(D), compatible with T and com-

patible with ? modulo Θ, except that for 8 = 1, 2, . . . , deg(D), the
components '8 ,Λ8 must be as specified by Vsrc(4

′) and Vtgt (4
′′) for

outgoing 4 ′ and incoming 4 ′′, and their corresponding types must

be (Λ8 , '
−
8 ,Λ, 0, ∅), not required to belong to Θ. This can be done

in time polynomial in |Θ|ℓ , T , andH . �

Corollary E.7. Unrestricted entailment of concept inclusions by an

ALCIF TBox T using : concept names and ℓ at-most constraints

can be decided in time $
(
poly( |T |) · 2poly(:,ℓ)

)
.

Proof. The result holds in full generality, but we only sketch the

arguments for the two kinds of concept inclusions we need to com-

pute the completion. For existential constraints, note that

T |= �1 ⊓ · · · ⊓ �= ⊑ ∃'. 
′

iff the query

∃G.(�1 · . . . ·�= · �)(G, G)

is unsatisfiable modulo the TBox

T ∪
{
 ′ ⊑ ∀'−.� ′ , � ⊓ � ′ ⊑ ⊥

}
,

where � and � ′ are fresh concept names. For at-most constraints,

T |= �1 ⊓ · · · ⊓ �= ⊑ ∃
≤1'.�′1 ⊓ · · · ⊓�

′
<

iff the query

∃G,~, I.(�1 · . . . · �=)(G, G)∧(' · �
′
1 · . . . · �

′
< · �)(G,~)∧

∧(' · �′1 · . . . · �
′
< · �

′)(G, I)

is unsatisfiable modulo the TBox

T ⊔
{
� ⊓ � ′ ⊑ ⊥

}

where � and � ′ are fresh concept names. �

F PROOF OF HARDNESS

TheoremF.1. Testing containment of Boolean 2RPQsmodulo schema

is EXPTIME-hard.

Wepresent a reduction of the acceptance problem of an alternat-

ing Turing machine with a polynomial bound on space. We begin

by defining a special variant of alternating Turing machines. We

also present a number of conceptual tools used in the reduction.

Alternating Turingmachines.We consider a variant of alternat-

ing Turing machine with the following particularities:

• there is a single distinguished initial state that the machine

never reenters;

• there are two special states @yes and @no that are final (no

transition allowed to follow)1;

• the transition table has exactly two transitions for any non-

final state and any symbol;

• there exists 3 special symbols: � for empty tape space, ⊲ for

left tape boundary, and ⊳ for right tape boundary; we only

assume that the input word does not use those symbols and

the transition table handles the boundary symbols appropri-

ately.

It’s relatively easy to see that any alternating Turing machine with

polynomially bounded space can converted to the variant above.

Formally, an alternating Turing machine (ATM) is a tuple " =

(�, , @0, X1, X2), where � is a finite alphabet,  is a finite set of

states with two distinguished final states @yes and @no and parti-

tioned into three pair-wise disjoint subsets =  ∀∪ ∃∪{@yes, @no},
@0 ∈  is a distinguished initial state, and X8 : ( \ {@yes, @no}) ×

1The state@no is not necessary for the purposes of our reduction but we include it for
the sake of completeness of this variant of ATM
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�→ ( \ {@0}) ×� × {−1,+1} are two transition tables such that

X8 (@, G) = (@
′, ~,3) satisfies the following two conditions:

(1) if G = ⊲, then ~ = ⊲ and 3 = +1 and
(2) if G = ⊳, then ~ = ⊳ and 3 = −1.

A configuration of" is a string of the form⊲·F ·@ ·E ·⊳,where @ ∈  
andF, E ∈ Σ∗ Applying a transition (@′, I, 3) ∈  ×�× {−1,+1} to
the configuration ⊲ ·F · G · @ · ~ · E · ⊳ yields:

(1) ⊲ ·F · @′ · G · I · E · ⊳ if 3 = −1
(2) ⊲ ·F · G · I · @′ · E · ⊳ if 3 = +1

We consider ATMs with polynomially bounded space, a class of

Turing machines that defines the class ASPACE known to coincide

with EXPTIME. Recall that a binary tree is a finite prefix-closed

subset ) ⊆ {1, 2}∗ and a labeled-tree is a function _ that assigns a

label to every element (node) of a tree.

Given an ATM " and a polynomial poly(=), a run of " w.r.t.

poly on an input F ∈ (Σ \ {⊲,⊳,�})∗ is a binary tree _ whose

nodes are labeled with configurations of" such that:

(1) the root node is labeledwith_(Y) = ⊲·@0·F ·�
poly ( |F |)− |F | ·⊳

(2) for non-leaf node = ∈ dom(_) let _(=) = ⊲ ·F ·@ ·G ·E ·⊳; for
every 8 ∈ {1, 2} if = has a child = · 8 , then the configuration

_(= · 8) is obtained by applying the transition X8 (@, G) to the
configuration _(=). Also, if @ ∈  ∀, then = has both children
= · 1 and = · 2 and if @ ∈  ∃, then = has precisely one child,

(3) for every leaf node = ∈ dom(_) the configuration _(=) uses
a final state @yes or @no.

A run is accepting if and only if all its leaves use the state @yes.

The ATM" (with space bound poly) accepts a wordF , in symbols

" (F) = yes if and only if there is an accepting run of" w.r.t. poly

onF .

Reduction outline. We present a reduction of the problem of

word acceptance by an ATM with polynomial bound on space to

the complement of the problem of containment of Boolean 2RPQs

in the presence of schema. We point out that the class of ASPACE-

complete problems is closed under complement, and consequently,

this reduction proves that the query containment problem is EXP-

TIME-hard.

More precisely, for anATM" , whose space is bounded by poly(=),
and an input word F we construct a schema ( and two Boolean

2RPQs ? and @ such that

" (F) = yes iff ? *( @ iff ∃� ∈ !((). � |= ? ∧� 6 |= @ .

In the sequel, we refer to ? as the positive query and to @ as the neg-

ative query. Naturally, we present a reduction that is polynomial

i.e., the combined size of ? , @, and ( is bounded by polynomial in

the size of" andF .

The reduction constructs a schema ( and queries ? and @ for

which the counter-example of ? ⊆( @ represents an accepting run

of" onF . Before we present the reduction in detail, we introduce

3 conceptual devices that we use in the reduction: nesting queries,

encoding disjunction, and enforcing tree structure.

Nesting queries. The reduction employs a relatively large and

complex queries and throughout the reduction we employ nesting

of regular path queries that is expanded as follows:

? [@] = ? · @ · @−

with the inverse operator being extended to regular path queries

in the standard fashion.

∅− = ∅ , n− = n , �− = � ,

(i1 · i2)
−
= i−2 · i

−
1 , (i1 + i2)

−
= i−1 + i

−
2 , (i

∗)− = (i−)∗ .

Wepoint out that, in general, this definition is not equivalent to the

standard meaning of nesting of regular expressions but in our re-

duction nested queries are evaluated at nodes forwhich the schema

ensures the intended meaning.

Encoding disjunction. The first conceptual device allows us to

express disjunction in schemas, which we illustrate on the follow-

ing example. Take two node labels � and � and suppose we wish

to require �-nodes to have either one outgoing 0-edge or one out-

going 1-edge to a node with label �. The schema formalism allows

us to make the following restriction.

�→ 0 : �?, 1 : �? .

Alone, it is insufficient as it allows nodes that do not fulfill the

disjunctive requirement: a �-node that has no outgoing edge or

has both outgoing edges. We remove those cases with the help of

a positive and a negative query. Namely, we define

? = �[(0 + 1)] and @ = �[0] [1]

and we observe that in a graph that conforms to the above schema

any node with label � that satisfies ? and does not satisfy @ has

precisely one outgoing edge.

Enforcing tree structure. In our reduction we aim at construct-

ing a tree-shaped counter examples and we use the positive query

to diligently enforce disjunction in every node. In essence, the pos-

itive query will traverse the counter-example and impose satisfac-

tion of a relevant query in every node.We present this device on an

example where we define rooted binary trees. The general shape

of the tree follows the schema in Figure 6.

Node Leaf

01
? ?

02
??

01
? ?

02? ?

Figure 6: Example schema for modeling trees.

Naturally, the schema alone is insufficient to capture the right

structure of the tree. Consequently, additional requirements are

imposed with the help of the following negative Boolean query

@ = Node[01 ·Node] [01 ·Leaf ]+Node[02 ·Node] [02 ·Leaf ]+[0
−
1 ] [0

−
2 ]

that ensures that an inner node does not have two outgoing edges

with the same label and that no node has two incoming edges. We

point out that when @ is not satisfied at a node, schema ensures

that it has at most one incoming edge. To enforce the correct tree

structure we define the following unary query

?Tree (G) =
(
((Node[01] [02] · 01)

∗ · Leaf · (0−2 )
∗ · 0−1 · 02)

∗ ·

Leaf · (0−2 )
∗) (G, G) .



PODS’23, June 18–23, 2023, Sea�le, WA, USA Anonymous, Iovka Boneva, Benoît Groz, Jan Hidders, Filip Murlak, and Sławek Staworko

The key observation here is that 0−1 is always followed by 02 and

the query can move up the tree only after a leaf has been reached.

This ensures a proper traversal of the structure, with every node

satisfying the pattern Node[01] [02]. Consequently, for any con-

nected graph� that conforms to the above schema, satisfies ? , and

does not satisfy @,� is a binary tree.

The input of the reduction.We fix an ATM" = (�, ,@0, X1, X2)
whose space is bounded by poly(=) and we fix an input wordF ∈
(� \ {⊲,⊳,�})∗. We let = = |F |, < = poly( |F |), and assume that

� = {01, . . . , 0: } and that  = {@0, @1, . . . , @ℓ }. Throughout the
description of the reduction, unless we say otherwise, we use 0,1

to range over symbols in �, we use @, ? to range over states in  ,

and we use 8, 9 to range over tape positions {1, . . . ,<}.

The schema.We construct a schema ( whose signature is

Σ( = {Config, Pos, Symb, St} ,

Γ( = {∀1,∀2, ∃1,∃2, pos1, . . . , pos<} ∪ {01, . . . , 0: } ∪ {@0, . . . , @ℓ } .

In essence, Config-nodes represent configurations and Pos-nodes

represent tape cells. The edges labeled with {∀1,∀2,∃1, ∃2} are
transition edges that connect configurations. The schema ( is pre-

sented in Figure 7.We introducemacros that illustrate the intended

( :

Config Pos

Symb

St

∃1
? ?

∃2
? ?

∀1

? ?

∀2

? ?

pos<? ?

...

01? ? 0 :
?

?

. . .

@ 0

?

?

@
ℓ

?

?...
pos

1

?

?

Figure 7: Schema for the reduction.

meaning of the remaining edge labels. The first macro checks that

the symbol at position 8 on the tape is 0.

Symbol8,0 = Config
[
pos8 · 0

]
.

The next one checks that the configuration is a given state @ with

the head at a given position 8 .

State8,@ = Config [?>B8 · @] .

Finally, we also introduce a macro that asserts the state of a con-

figuration without any constraint on the position of the head.

State@ = Config
[
+8 ?>B8 · @

]
.

And analogously, a macro that asserts heads position only

Head8 = Config
[
+@ ?>B8 · @

]
.

The negative query. We define a number of queries that detect

violations of good structure of a run; their union will be used as

the negative query. First, we identify configurations that has two

different symbols at a position of the tape.

@TwoSymbols = Config
[
+8+0≠1 Symbol8,0 · Symbol8,1

]
.

Similarly, we identify configurations with two different heads.

@TwoHeads = Config
[
+8≠ 9∨?≠@ State8,@ · State 9,?

]
.

Next, we identify configurations with outgoing transition edges

that do not fit their state.

@BadTransitionEdges = Config



+@∈ ∀ State@ [∃1 + ∃2] +
+@∈ ∃ State@ [∀1 + ∀2] +
State@yes [∀1 + ∀2 + ∃1 + ∃2] +

State@no [∀1 + ∀2 + ∃1 + ∃2]



.

Additionally, identify configurationswith existential states that have

both existential outgoing edges (the definition of a run requires

precisely one).

@TwoExistentialEdges =+@∈ ∃ State@ [∃1] [∃2] .
The initial configuration, which is the only configurationwith state

@0, should be the root of the run and as such it should not have any

incoming transition edges.

@BadTreeRoot = State@0 [∃
−
1 + ∃

−
2 + ∀

−
1 + ∀

−
2 ] .

To make sure that the run is a tree, no configuration should have

two incoming transitions (note that the schema forbids more than

one incoming edge with the same label).

@BadTreeNode = Config

[
[∃−1 ] [∃

−
2 ] + [∃

−
1 ] [∀

−
1 ] + [∃

−
1 ] [∀

−
2 ] +

[∃−2 ] [∀
−
1 ] + [∃

−
2 ] [∀

−
2 ] + [∀

−
1 ] [∀

−
2 ]

]
.

Similar requirements apply to tape: we do not allow tape positions

that are used by two different configurations.

@BadTape =+8≠ 9 Pos[pos−8 ] [pos−9 ] +
+?≠@ St [?−] [@−] +
+0≠1 Symb[0−] [1−] .

Finally, we construct the union of the above queries.

@" = @TwoSymbols + @TwoHeads + @BadTransitionEdges +

@TwoExistentialEdges + @BadTreeRoot + @BadTreeNode + @BadTape .

The positive query.We first construct a query that ensures that

a configuration is valid and then we design a path query that tra-

verses the tree and ensures that each of its configurations is valid.

A valid configuration satisfies the following queries. It has a head

at some position.

?Head = Config [+8 Head8 ] .
Every position has a symbol.

?Tape = Config
[
+0 (~<1>;1,0

]
. . .

[
+0 (~<1>;<,0

]
.

The configuration has the required outgoing transitions and only

final states are accepted in leaves.

?Transition = Config



+@∈ ∀ State@ [∀1] [∀2] +
+@∈ ∃ State@ [∃1 + ∃2] +
State@yes + State@no


.

The positive query ensuring that transitions are executed properly

is more difficult to define and we decompose it into several macros.

First, we define a macro Move8,@,0 that verifies that that a config-

uration in state @ at position 8 with symbol 0 ∈ Σ has the right



Static Analysis of Graph Database Transformations PODS’23, June 18–23, 2023, Sea�le, WA, USA

children configurations. We define this macro depending on the

type of state:

(1) For @ ∈ {@yes, @no} no children are necessary (the negative

query @BadTransitionsEdges forbids any)

Move8,@,0 = State@ · Symbol8,0 .

(2) For @ ∈  ∃ we check that one of the transitions is implemented

(the negative query @TwoExistentialEdges forbids more than one). We

let X1 (@, 0) = (@1, 11, 31) and X2 (@, 0) = (@2, 12, 32).

Move8,@,0 = [State8,@ · Symbol8,0 · ∃1 · State8+31,@1 · Symbol8,11]

+ [State8,@ · Symbol8,0 · ∃2 · State8+32,@2 · Symbol8,12] .

(3) For @ ∈  ∀ both transitions must be implemented. Again we let

X1 (@, 0) = (@1, 11, 31) and X2 (@, 0) = (@2, 12, 32).

Move8,@,0 = [State8,@ · Symbol8,0 · ∀1 · State8+31,@1 · Symbol8,11]

· [State8,@ · Symbol8,0 · ∀2 · State8+32,@2 · Symbol8,12] .

Now, a transition is executed correctly if the following positive

query holds at a configuration node.

?Execution = Config
[
+8,@,0 Move8,@,0

]
.

To handle the tape we need to make sure that 1) the tape of the

initial configuration contains precisely the input word and 2) that

symbols at the positions without head are copied correctly. For the

first, we define the following macro.

InitTape = Symbol1,F1
·. . . Symbol=,F=

·Symbol=+1,�·. . .·Symbol<,� .

The next macro verifies that the symbol at a position 8 of the tape

is a correct copy of its preceding configuration.

PosCopy8 =
[
+0 Symbol8,0 (∃1 + ∃2 + ∀1 + ∀2)

−Symbol8,0
]
.

Naturally, when the head in the preceding configuration is at po-

sition 8 , then we must only verify that symbols at positions other

than 8 are copied.

TapeCopy =+8
(
[(∃1 + ∃2 + ∀1 + ∀2)

−Head8] ·

PosCopy1 · . . . · PosCopy8−1 ·

PosCopy8+1 · . . . · PosCopy<
)
.

Finally, the query that verifies the correctness of the tape follows.

?TapeCopy = Config
[
State1,@0 · InitTape + TapeCopy

]
.

Now, we take the conjunction of the queries that verify local cor-

rectness of a configuration.

?Config = ?Head · ?Tape · ?Transition · ?Execution · ?TapeCopy .

Additionally, we define a configuration that is a leaf (accepting)

?Accept = ?Config · State@yes .

And, the initial configuration

?Start = ?Config · State@0 .

Finally, we define the positive query, based on the ideas of enforc-

ing tree structure in ?Tree. It traverses the counter-example and

ensures that it contains only good configurations.

?",F = ?Start ·
(
(?Config · (∀1 + ∃1 + ∃2))

∗ · ?Accept · (∃
−
1 + ∃

−
2 + ∀

−
2 )
∗ · ∀−1 · ∀2

)∗ ·
(?Config · (∀1 + ∃1 + ∃2))

∗ · ?Accept · (∃
−
1 + ∃

−
2 + ∀

−
2 )
∗ · ?Start .

Before stating the main proof we present in Figure 8 a conceptual

automaton that corresponds to the above Boolean 2RPQ. In the

@0 @1 @2 @3
?Start

?Accept

∀−1 · ∀2

?Start

?Config · (∀1 + ∃1 + ∃2) ∀−2 + ∃
−
1 + ∃

−
2

Figure 8: Conceptual automaton of the positive query ?",F .

proof below, we refer to ?8, 9 as the query defined with the above

automaton whose initial state is @8 and final state is @ 9 . The main

claim follows.

Claim. ?",F *( @" if and only if" (F) = yes.

Proof. For the if direction, we take the accepting run _ and con-

struct the corresponding graph � as follows. The nodes and their

labels are as follows.

Config� = {2= | = ∈ dom(_)},

Pos� = {C=,8 | = ∈ dom(_), 1 ≤ 8 ≤ "},

St� = {B= | = ∈ dom(_)},

Symb� = {4=,8 | = ∈ dom(_), 1 ≤ 8 ≤ "} .

The edges of� are:

(1) (2=, pos8 , C=,8) for every = ∈ dom(_) and 8 ∈ {1, . . . , "},
(2) (C=,8 , @, B=) for every = ∈ dom(_) where @ is the state of con-

figuration _(=);
(3) (C=,8 , 0, 48,=) for every = ∈ dom(_) and 8 ∈ {1, . . . , "} where

0 is the symbol at position 8 of the tape of configuration

_(=);
(4) (2=,∀1, 2= ·1) and (2=,∀2, 2= ·2) for every = ∈ dom(_) such

that the configuration _(=) is at state @ ∈  ∀;
(5) (2=,∃9 , 2= · 9 ) for every = ∈ dom(_) such that the configura-

tion _(=) is at state @ ∈  ∃ and = has a child = · 9 in _ for

some 9 ∈ {1, 2}.

It is easy to show that � satisfies the schema ( , does not satisfy @,

all Config-nodes satisfy ?Config , the root node satisfies ?Start and

every leaf node satisfies ?Accept .

With a simple induction, on the height of a node = ∈ dom(_),
we prove that for any = ∈ dom(_) the node 2= satisfies the query

?1,2. This shows that the root node 2Y satisfies the query ?0,3 = ? .

For the only if direction, we take any� that satisfies ( , satisfies

? , and does not satisfy @. W.l.o.g. we can assume that � is con-

nected; otherwise we take any connected component that satisfies

? . We show that � is a tree encoding an accepting run of " on F .

Note that @ is a Boolean RPQ, and thus a single two-way regular

expression. Thus, in the sequel we analyze its witnessing paths in

� but ? should not be confused with a binary query; a Boolean

RPQ ask the existence of a witnessing path without the need to

report its endings.

Take any pair of nodes D0 and E0 such that there is a path from

D0 to E0 that witnesses @ (which is a regular expression). Since �
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does not have a node with two incoming edges (@BadTreeNode and

@BadTape are not satisfied at any node),D0 and E0 are the same node.

Consequently there is a path from D0 to D0 that witnesses ?1,2 and

we show with an induction on the length of the path from D0 to

any reachable Config-node E that there is a path form E to E that

witnesses ?1,2, and consequently, E satisfies ?Config . This implies

that� has the form of a tree, all of its Config-nodes satisfy ?Config
and all its leaves satisfy ?Accept . Moreover, we can construct an

accepting run _ from� that shows that" (F) = yes. �

Finally, we observe that the sizes of ( , ? , and @ are polynomial in

the size of" andF , which proves the main claim.

The hardness of containment in the presence of schema implies

hardness of the static analysis problems we study.

Lemma F.2. Type checking, equivalence, and schema elicitation are

EXPTIME-hard.

Proof. We reduce the containment of unary 2RPQs in the pres-

ence of schema to the problems of interest. Note that by Theo-

rem F.1 and Corollary D.2, containment of unary acyclic 2RPQs is

EXPTIME-hard. We take any schema ( and two unary 2RPQs ? (G)
and @(G). In all reductions ( is the input schema and we assume a

single unary constructor F = {5�}.

We begin by showing that testing (), () |=
.

Γ) is EXPTIME-hard.

We take the transformation ) defined with the following rules.

�( 5� (G)) ← @(G) and 0( 5� (G), 5� (G)) ← ? (G) .

We observe that (), () |=
.

Γ) if and only if ? (G) ⊆( @(G).

For equivalence, we define the following two transformations.

)1 : �( 5� (G)) ← @(G) .

)2 : �( 5� (G)) ← @(G) , �( 5� (G)) ← ? (G) .

We observe that )1 ≡( )2 if and only if ? (G) ⊆( @(G).

For type checking we define the following transformation and out-

put schema

) : �( 5� (G)) ← ? (G) , �( 5� (G)) ← @(G) ,

0( 5� (G), 5� (G)) ← @(G) .

( ′ : �→ 0 : �1 .

We observe that that ) (() ⊆ ( ′ if and only if ? (G) ⊆( @(G).

To prove that schema elicitation is also EXPTIME-hard, we take

the previous transformation ) , the input schema ( , and show that

? (G) ⊆( @(G) if and only if the ⊆-minimal schema that captures

the output graphs is precisely ( ′. We observe that deciding equiv-

alence of two schemas is easily accomplished in polynomial time

and therefore any algorithm for schema elicitation must require

exponential time. �
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