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Abstract. A numerical model is proposed to analyse the effect of waves in near-shore waters on the beach 

groundwater flow. The groundwater flow is modelled by Richards’ equation which describes flows in 

variably-saturated porous media. A wave-driven boundary conditions is prescribed at the beach face. The 

model abilities are assessed against the results of a large-scale laboratory experiment called BARDEX II. 

This is a sand barrier with a lagoon whose level is controlled. The investigation of water flow rates through 

the barrier highlights the beach groundwater dynamics under different conditions. 

1 Introduction 

Around one-third of the world’s ice-free coastline are 

sandy beaches. Satellite data analysis indicates that a 

quarter of them are under erosion. There is a serious 

concern about their future evolution. 

Beach groundwater dynamics has become a topic of 

interest over the years because it controls many 

processes like biogeochemical cycles, sediment 

transport, contaminant exchanges, etc. The beach 

groundwater is mainly governed by the cross-beach 

gradients induced by tides or large-scale fluctuations of 

mean water level such as swell and infragravity waves 

[1]. The swash zone is the beach part subject to waves 

action. The interaction of the sheet of water with the 

porous beach causes infiltrations/exfiltrations through 

the beach face. They can in turn affect the beach 

groundwater dynamics, especially the unsaturated part. 

Although significant understanding of swash 

groundwater dynamics has been gained, experiments are 

limited because they are heavy to deploy, instruments 

lack spatio-temporal resolutions and measurements are 

quite intrusive [1,2]. Then, numerical models are needed 

to complete experimental insights. Even though 

extensive modelling effort has been provided over the 

last two decades, the proposed models [3,4-6] are mostly 

based on Darcy’s theory or horizontal dynamics 

(Dupuit-Forchheimer assumption). Thus, their scope 

remains limited since they ignore partial saturation and 

capillarity effect which are essential in fine-grained sand 

beaches. Indeed, field experiments demonstrated the 

presence of a circulation cell with vertical head 

gradients in sandy beaches [1]. To tackle these issues, 

the present study aims to model wave-resolved variably-

saturated groundwater flow based on Richards’ 
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equation. Up to now, there are very few attempts to 

implement wave-forced Richards’ equation [7]. 

The simulation of swash beach groundwater is 

challenging because the problem holds a wide range of 

space/time scales. Indeed, on one hand, waves have fast 

dynamics while groundwater is slow and on the other 

hand, swash infiltrations/exfiltrations have local effects 

while cross-beach gradients affect the whole beach. A 

numerical strategy has been developed in [8] to solve 

efficiently Richards’ equation. The resulting code, 

called Rivage, is used in this study to simulate wave-

resolved beach groundwater dynamics.  

The first section deals with the model problem based 

on Richards’ equation. Then, a brief description of the 

numerical methods used to solve Richards’ equation is 

presented. The next section is dedicated to the results. A 

comparison is made with BARDEX II experiments. 

Finally, some conclusive remarks are given. 

2 Model problem 

The modelling of wave-forced groundwater flows in 

unsaturated porous media is introduced. 

2.1 Richards’ equation 

Richards’ equation is a non-linear degenerate parabolic 

equation to describe flows in variably-saturated porous 

media. Both the saturated and unsaturated zones are 

modelled. Yet, Richards’ equation considers only the 

water phase which makes it competitive to simulate 

compared to full two-phase flow models. Richards’ 

equation is based on the assumption that air phase is 

continuously-connected with the atmosphere and 

neglects inertial effects. 
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The Richards’ equation under mixed formulation [9] is 

written in terms of hydraulic head ℎ = 𝜓 + 𝑧 [L]: 

 

𝜕𝑡𝜃(ℎ − 𝑧) − 𝛻 ⋅ (𝑲(ℎ − 𝑧)𝛻ℎ) = 0, (1) 

 

where 𝜓 is the pressure head [L], 𝜃 the water content     

[-], 𝑲 the hydraulic conductivity [L⸱T-1] and 𝑧 the 

elevation [L]. The saturated (𝜓 ≥ 0) and unsaturated 

(𝜓 < 0) zones are separated by the water table (𝜓 = 0). 

The capillary fringe is the unsaturated part almost 

entirely filled by water, just above the water table. 

Richards’ equation needs two constitutive laws to be 

solved: one for the water content and one for the 

hydraulic conductivity. The water content is described 

in terms of effective saturation 𝑆e [-] and the tensor of 

hydraulic conductivity is supposed to react to pressure 

head identically for each space direction: 

 

𝜃(𝜓) = 𝜃s + (𝜃s − 𝜃r)𝑆e(𝜓), (2) 

𝑲(𝜓) = 𝑲𝐬𝐾r(𝜓), (3) 

 

where 𝜃s is the saturated water content [-], 𝜃r the 

residual water content [-], 𝑲𝐬 is the saturated hydraulic 

conductivity tensor [L⸱T-1] and 𝐾r the relative hydraulic 

conductivity [-]. These two hydraulic properties have 

two different behaviours which explains the 

degeneracies of Richards’ equation: 

 

𝑆e(𝜓) = {
1       if 𝜓 ≥ 0,

𝑆e
⋆(𝜓)  otherwise,

(4) 

𝐾r(𝜓) = {
1       if 𝜓 ≥ 0,

𝐾r
⋆(𝜓)  otherwise.

(5) 

 

𝑆e
⋆ and 𝐾r

⋆ are monotonic increasing functions of 

pressure head in the unsaturated zone. In this paper, the 

Van Genuchten-Mualem relations [10,11] are used: 

 

𝑆e
⋆(𝜓) = (1 + (𝛼|𝜓|𝑛)−𝑚, (6) 

𝐾r
⋆(𝜓) = 𝑆e

⋆0.5(𝜓)(1 − (1 − 𝑆e
⋆

1
𝑚⁄

(𝜓))𝑚)2, (7) 

 

where 𝛼 denotes a parameter [L-1] linked to air entry 

pressure inverse, 𝑛 > 1 a pore-size distribution 

parameter [-] and 𝑚 = 1 −
1

𝑛
 [-]. 

2.2 Wave-driven boundary conditions 

Classical boundary conditions can be applied to 

Richards’ equation: a Dirichlet boundary condition 

enforces the hydraulic head and a Neumann boundary 

condition enforces the flux. 

In addition, a specific boundary condition, called 

seepage, can be used for Richards’ equation to model 

the interaction of porous media flow with atmosphere. 

This seepage boundary condition works as an outflow 

condition. If the porous medium is saturated, then the 

water pours out at atmospheric pressure. If the porous 

medium is unsaturated, then the water is prevented to go 

out. This condition can be written under many 

formulations but it can be viewed as a switch between a 

Dirichlet (prescribed zero pressure head) and a 

Neumann (prescribed zero flux) boundary conditions 

according to the state of saturations of the porous 

medium. Then, seepage can be interpreted as a nonlinear 

Robin boundary condition. For this study, the seepage 

boundary condition is treated inside the nonlinear 

iterative scheme according to the previous solution 

guess at a local level of the numerical scheme, as 

described in Clément et al. [8]. This technique needs no 

restrictive a priori assumption on the seepage face. 

In order to take into account the waves, a dynamic 

boundary condition is built to force the Richards’ 

equation. It combines a Dirichlet and a seepage 

boundary condition. The former applies the hydraulic 

head induced by the water column wherever the swash 

tongue floods the beach. The latter is applied to the 

remaining part of the beach, beyond the swash tip. 

Thereby, the waves forcing condition allows the swash 

tip and the water table to be disconnected. 

The surface water is computed by the open-source 

SWASH code which solves the nonlinear shallow water 

equations including non-hydrostatic pressure [12]. All 

parameters being kept by default, this wave-resolving 

model is used to get the bottom pressure which serves to 

monitor the Dirichlet boundary condition in space and 

time. From a technical point of view, the SWASH data 

are adapted to the groundwater model by performing 

linear interpolation of the space-time grids. The position 

of the swash tip is also provided to make explicitly the 

switch between the Dirichlet and seepage boundary 

conditions. 

3 Numerical methods 

Even though Richards’ equation is widely used in the 

hydrogeology field, it remains challenging to solve. 

Indeed, due to the behaviour of hydraulic properties, 

nonlinear convergence is difficult to achieve and can 

even fail [9]. In addition, the solution of Richards’ 

equation is known to exhibit spurious oscillations 

because of the degeneracies. Typically, an undershoot 

can appear ahead of a sharp wetting front propagating 

into an initially dry soil. These drawbacks make 

Richards’ equation costly to compute [9]. In the case of 

wave-driven problems, the simulation of successive 

rapidly-varying infiltrations is demanding. Thus, a 

numerical strategy has been developed to alleviate these 

issues in Clément et al. [8]. The main tools are presented 

briefly hereinafter. 

Space discretization of Richards’ equation (1) is 

done by a discontinuous Galerkin (DG) method called 

IIPG (Incomplete Interior Penalty Galerkin) because 

this formulation remains simple. Extensive introduction 

of DG methods can be found in the Rivière’s textbook 

[13]. The implicit Euler scheme is used for time 

discretization because it shows a wide region of stability 

needed for the Richards’ equation known to be stiff. 

Linearization is achieved through a fixed-point method. 

It is linearly convergent while Newton-Raphson method 

is quadratically convergent but the former is more robust 

since it is not sensitive to the initial guess. In addition, 

an adaptive strategy based on a weighted DG framework 

and local mesh refinement is used to help with the 

solving of Richards’ equation, see [8]. 



4 Results 

The wave-forced Richards’ equation-based model is 

used to assess water flow rates through an experimental 

beach barrier under different conditions. 

4.1 Experimental and numerical set-ups 

The BARDEX II project is a set of large-scale 

experiments conducted in July 2012 at the Delta Flume 

in the Netherlands [1,14]. They focus on the 

groundwater dynamics in a sand barrier under controlled 

laboratory conditions. Figure 1 represents the 

experimental set-up. The sand barrier is 4.5 m high and 

5 m wide. The barrier profile has five sections: (i) a 

concrete toe of slope 1:10 (24<X<29 m), (ii) a horizontal 

section (29<X<49 m), (iii) a beach face of seaward slope 

of 1:15 (49<X<109 m), (iv) a horizontal crest of height 

4.5 m (109<X<114 m) and (v) a landward slope of 1:5 

(114<X<124 m). A permeable retaining wall separates 

the barrier from a 10 m long lagoon. 

 

 

Fig. 1. Description of the experimental set-up for the 

BARDEX II cases. The mean water level (MWL) at sea 

constant while the lagoon MWL can be kept higher (A2), 

lower (A4) or same (A6) level. The green/red/violet lines 

indicate respectively the sea/swash/lagoon control planes for 

the water flow rate. 

Six experimental cases are selected to assess the 

effects of waves and cross-barrier gradients on the 

groundwater dynamics. Parameters are compiled in 

Table 1 where 𝐻s is the significant wave height and 𝑇p 

is the peak period. Each case is a run of 300 s. 

Table 1. BARDEX II experimental cases. 

Case 
𝐻s 

(m) 

𝑇p 

(s) 

MWL sea 

(m) 

MWL lagoon 

(m) 

A2 - - 3 4.3 

A2w 0.8 8 3 4.3 

A4 - - 3 1.75 

A4w 0.8 8 3 1.75 

A6 - - 3 3 

A6w 0.8 8 3 3 

 

The barrier sand has been characterized in [2]. In the 

present study, the relations (6) and (7) are used with 

hydraulic parameters from a similar sand found in [15] 

(Vail sand): 𝛼 = 4.6 m-1, 𝑛 = 5.14, 𝜃s = 0.41, 𝜃r =
0.03 and 𝑲𝐬 = 8 × 10−4 m⸱s-1. The SWASH model 

provides the free surface forcing on the beach face. The 

remaining boundary conditions for the simulation are 

similar as described in [3]. Initialization of groundwater 

is done in a such a way to match the initial state reached 

by the experimental runs described in [14]. 

4.2 Comparison of water flow rates through the 
barrier 

From BARDEX II experiments, Turner et al. [14] 

calculated the averaged cross-barrier fluxes at the 

vertical cross-sections near the sea and the lagoon, as 

shown in Figure 1. These horizontal averaged flow rates 

were also computed from the numerical simulations of 

the Richards’ equation-based model. The results are 

summarised in Table 2. Experimental and numerical 

values differ within a factor 2-3 which is reasonable in 

the field of hydrogeology [14] and supports the 

numerical estimates from the present model. Besides, 

one should note that experimental results only account 

for flows in the saturated part unlike the numerical 

model. When there is no wave, horizontal fluxes are 

driven by the gradients induced by the difference of sea 

and lagoon level. For the case A6, experimental fluxes 

are not negligeable which indicates that the steady state 

was not reached as expected. Under waves action, the 

horizontal flux at sea is increased and it is seaward 

irrespective to the lagoon level. It shows that infiltration 

induced by waves are powerful enough to drive flows in 

the lower part of the swash zone. 

Table 2. Averaged flow rates through the sea/lagoon vertical 

control planes shown in Figure 1. Positive/negative flow rates 

are respectively landward/seaward. Experimental results from 

[14] are in blue and numerical results are in red. 

Case 
Sea control plane 

(m3⸱s-1) 

Lagoon control plane 

(m3⸱s-1) 

A2 
−2.05 × 10−4 

−4.91 × 10−4 

−3.75 × 10−4 

−6.06 × 10−4 

A4 
8.70 × 10−5 

3.37 × 10−4 

6.46 × 10−5 

3.13 × 10−4 

A6 
−9.38 × 10−5 

−2.14 × 10−15 

−1.74 × 10−5 

1.61 × 10−15 

A2w 
−3.14 × 10−4 

−4.89 × 10−4 

−2.58 × 10−4 

−4.82 × 10−4 

A4w 
−3.83 × 10−4 

−5.28 × 10−4 

7.55 × 10−5 

4.72 × 10−4 

A6w 
−4.45 × 10−4 

−7.08 × 10−4 

4.78 × 10−5 

2.08 × 10−4 

 

In order to assess the effect of waves in the swash 

zone, the numerical simulations are used to compute 

normal fluxes through a control plane linking and 

closing the upper part of the sea and lagoon cross-

sections, as shown in Figure 1. Results are presented in 

the Table 3. Indeed, they show infiltrations are increased 

with waves action. 

Table 3. Averaged flow rates through the swash control 

planes shown in red in Figure 1 from the numerical results. 

Negative flow rates are inflows. 

Case 
Swash control 

plane (m3⸱s-1) 
Case 

Swash control 

plane (m3⸱s-1) 

A2 −1.79 × 10−3 A2w −2.32 × 10−5 

A4 −6.64 × 10−6 A4w −1.02 × 10−3 

A6 −7.73 × 10−15 A6w −9.03 × 10−4 



Figures 2, 3 and 4 bring insights about the repartition 

of averaged inflow/outflow in the upper part of the 

barrier under waves action. They confirm that the 

lagoon has limited influence. However, waves establish 

over time a circulation cell with infiltration/exfiltration 

respectively in the upper/lower part of the swash zone, 

which supports experimental observations [1,14]. For 

the cases A4w and A6w, infiltrations are important 

enough to explain the seaward horizontal flux. For the 

case A2w, infiltration is not dominant but the high 

lagoon level explains then the seaward horizontal flux. 

 

 

Fig. 2. Averaged surface flow rate (normal) along the swash 

control plane in the case A2w (sea level < lagoon level) from 

numerical results. 

 

Fig. 3. Averaged surface flow rate (normal) along the swash 

control plane in the case A4w (sea level > lagoon level) from 

numerical results. 

 

Fig. 4. Averaged surface flow rate (normal) along the swash 

control plane in the case A6w (sea level = lagoon level) from 

numerical results. 

5 Conclusion 

In this paper, a Richards’ equation-based model from 

the Rivage code is used to simulate wave-driven beach 

groundwater flows. Numerical results are compared 

against the large-scale BARDEX II experiments. A 

focus is made on the flow rates through the barrier. The 

difference between sea and lagoon water levels induces 

horizontal head gradients which rule the overall barrier 

groundwater dynamics. Nevertheless, waves generate 

infiltrations/exfiltrations beneath the swash zone which 

affect locally the beach saturation and produce vertical 

flow. These results highlight the establishment of a 

groundwater circulation cell as swash cycles recur. 

Future studies need to evaluate the competition of 

horizontal and vertical head gradients according to 

additional parameters (types of waves and beaches) to 

see the effects on the circulation cell and sediments. 
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